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LGM Split Sampler: An Efficient MCMC
Sampling Scheme for Latent Gaussian
Models
Óli Páll Geirsson, Birgir Hrafnkelsson, Daniel Simpson and Helgi Sigurdarson

Abstract. A general and flexible class of latent Gaussian models is proposed
in this paper. The latent Gaussian model is adapted to the generalized addi-
tive model for location, scale and shape (GAMLSS), that is, the data density
function of each data point can depend on more than a single linear predictor
of the latent parameters. We refer to this framework as extended latent Gaus-
sian models. The most commonly applied latent Gaussian models (LGMs)
are such that a linear predictor is proposed only for the location parameter.
Extended LGMs allow proposing linear predictors also for the scale parame-
ter and potentially other parameters. We propose a novel computationally ef-
ficient Markov chain Monte Carlo sampling scheme for the extended LGMs
which we refer to as the LGM split sampler. It is a two block Gibbs sampling
scheme designed to exploit the model structure of the extended LGMs. An
extended LGM is constructed for a simulated dataset and the LGM split sam-
pler is implemented for posterior simulations. The results demonstrate the
flexibility of the extended LGM framework and the efficiency of the LGM
split sampler.

Key words and phrases: Bayesian hierarchical models, Gibbs sampling, la-
tent Gaussian models, Markov chain Monte Carlo, posterior simulation.

1. INTRODUCTION

Latent Gaussian models (LGMs) form a flexible sub-
class of Bayesian hierarchical models and have become
popular in many areas of statistics and various fields of ap-
plications, as LGMs are practical from a statistical mod-
eling point of view and readily interpretable. For exam-
ple, LGMs play an important role in spatial statistics; see
Cressie (1993), Diggle, Tawn and Moyeed (1998), Chilès
and Delfiner (2012); statistical climatology (Cooley, Ny-
chka and Naveau, 2007, Guttorp and Gneiting, 2006);
disease mapping (Pettitt, Weir and Hart, 2002, Lawson,
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2013); stochastic volatility models (Martino et al., 2011);
and hydrology (Schaefli, Talamba and Musy, 2007), to
name a few. The concept of LGMs has proven to be very
successful for doing Bayesian inference, and a wealth of
models may be presented as LGMs, which in turn are
amenable to the Bayesian inference approaches developed
specifically for LGMs; see Martins et al. (2013a) for var-
ious applications and further references.

However, many LGMs in the literature focus only on
a subclass of LGMs in which the response data den-
sity is only allowed to depend on a single linear pre-
dictor of the latent parameters. While this assumption
holds in some practical cases, neglecting potential depen-
dence on multiple parameters or features of a data den-
sity may render inferential conclusions invalid as argued
in Klein et al. (2013, 2015) and Kneib (2013). For ex-
ample, in Hrafnkelsson, Morris and Baladandayuthapani
(2012) and Geirsson, Hrafnkelsson and Simpson (2015),
latent Gaussian spatial models were imposed on the loca-
tion, scale and shape parameters of the data density func-
tion in order to capture underlying spatial dependence.

This paper focuses specifically on LGMs where the data
density function of each data point can depend on more
than a single linear predictor of the latent parameters, as
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discussed in Martins et al. (2013b). We refer to this frame-
work as extended LGMs when the need for such clarity
is necessary. In the extended LGM framework, the data
density can be conditioned on several linear predictors,
say η(1), . . . ,η(k), one for each parameter of a given data
density with k parameters. As such, extended LGMs can
be viewed as a specific extension of additive regression
models discussed in Fahrmeir and Tutz (1994). Imposing
latent models on every parameter of a given data den-
sity is in line with the structured additive distributional
regression approach presented in Rigby and Stasinopou-
los (2005) and Klein et al. (2013, 2015), in which each
parameter of a response data density is related to a struc-
tured additive predictor for improving modeling flexibil-
ity.

The goal of this paper is to provide a framework for
extended LGMs. We discuss how to construct extended
LGMs and propose a novel Bayesian inference algorithm
tailored for extended LGMs. From an inferential perspec-
tive, the mathematical structure of LGMs is well suited
for the development of efficient inferential algorithms. Of
particular notice is the integrated nested Laplace approx-
imation (INLA) proposed by Rue, Martino and Chopin
(2009). INLA is an inferential algorithm which performs
approximate Bayesian inference on a subclass of LGMs,
through use of deterministic nested Laplace approxima-
tions. INLA has been shown to give fast and accurate es-
timates of posterior marginals, and has also been shown
to be a valuable tool in practice via the R-package R-
INLA; see Rue et al. (2017) and the web-site www.r-
inla.org for available software. However, R-INLA only
provides support for LGMs in which the data density of
each data point only depends on a single linear predic-
tor of the latent parameters, although the INLA idea has
already been reimplemented in a special case of an ex-
tended LGM; see (Ferkingstad et al., 2008). The exten-
sion of INLA to extended LGMs might seem trivial but
it is not (Martins et al., 2013b). Thus, in order to provide
an efficient framework for extended LGMs we propose a
novel efficient Markov chain Monte Carlo (MCMC) in-
ferential algorithm which is adapted to extended LGMs.
The proposed MCMC algorithm will be referred to as the
LGM split sampler.

Several MCMC sampling strategies have been sug-
gested for Bayesian hierarchical models to improve the
mixing properties of MCMC algorithms. For example,
methods based on approximate diffusions such as the
Metropolis-adjusted Langevin algorithm (MALA), see
Roberts and Rosenthal (1998); methods based on Hamil-
tonian mechanics (HMC), suggested by Neal (1993),
which use the gradient of the target density to drive the
proposal mechanism toward regions of higher posterior
density; manifold methods, proposed by Girolami and

Calderhead (2011), which provide a systematic way of de-
signing proposal densities for MALA and HMC by mak-
ing use of the gradient and curvature information of the
target density; and various block sampling strategies such
as the single block updating strategy of Knorr-Held and
Rue (2002). Filippone, Zhong and Girolami (2013) con-
ducted a detailed comparison of these methods for LGMs
and found that the single block strategy of Knorr-Held
and Rue (2002), in which the latent parameters and its
corresponding hyperparameters are updated jointly in a
single block, performed best in most situations. However,
the single block updating strategy is only applicable to
a subclass of LGMs, where the latent Gaussian model is
imposed only on the location parameter.

The LGM split sampler is a two block Gibbs sam-
pling scheme (Rue and Held, 2005) designed to utilize the
model structure of extended LGMs for efficient MCMC
sampling. The principal idea behind the LGM split sam-
pler is to split the latent Gaussian parameters into two vec-
tors, such that the single block sampler of Knorr-Held and
Rue (2002) becomes applicable to a subset of the model
parameters. The first vector, η, consists of elements that
appear in the data density function and the second vector,
ν, consists of elements that do not appear in it. We con-
struct the two sampling blocks by placing ν and all hyper-
parameters into a block we refer to as the data-poor block,
while η is placed in another sampling block we refer to as
the data-rich block.

We show that the conditional posterior density of ν con-
ditioned on the parameter vector η and the hyperparam-
eters becomes Gaussian. Consequently, a modified ver-
sion of the single block sampler (Knorr-Held and Rue,
2002) can be constructed and implemented for the pa-
rameter vector ν and the hyperparameters in the data-poor
block. This proposed sampling scheme is invariant of the
choice of a data density function as the data-poor block
is updated conditioned on the data-rich block. Moreover,
if the joint Gaussian prior density for the latent parame-
ters η and ν is a Gaussian Markov random field (GMRF)
(Rue and Held, 2005) with a sparse precision matrix, we
show how the proposed sampling strategy for the data-
poor block conserves the sparse GMRF precision struc-
ture in the cases of both the hyperparameters conditional
on η, and ν conditional on η and the hyperparameters,
thus reducing computational cost. We further demonstrate
that the proposed sampling strategy scales well in terms
of MCMC sampling efficiency as the dimension of ν in-
creases.

In practical applications of extended LGMs with non-
Gaussian data density functions, especially in the field
of spatial statistics, the vector ν in the data-poor block
has sometimes higher dimension than the vector η in the
data-rich block; see, for example, Hrafnkelsson, Morris
and Baladandayuthapani (2012). Additionally, the con-
ditional posterior of η in the data-rich block is in most
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cases only known up to a constant and is computation-
ally costly to evaluate. However, in the proposed blocking
scheme of the LGM split sampler the data-rich block con-
tains a minimum number of parameters which are needed
for the evaluation of the usually computationally costly
conditional posterior density. In this paper, we imple-
ment a Metropolis–Hasting-type MCMC algorithm with
a tailored independence proposal density (Rue and Held,
2005) in the data-rich block. We construct the indepen-
dence proposal density by approximating the conditional
posterior density in the data-rich block with a Gaussian
approximation evaluated at the mode. We give an exam-
ple to demonstrate that the proposed sampling strategy in
the data-rich block is highly efficient. The LGM split sam-
pler is modular in the sense that η in the data-rich block
can be tackled with any sampling scheme; the same is true
for the hyperparameters in the data-poor block while the
proposed sampling scheme for ν in the data-poor block
conditional on η and the hyperparameters is optimal. So,
other sampling schemes, more efficient than the ones pro-
posed in this paper, can potentially be found or developed
for η and the hyperparameters; however, this is beyond
the scope of the paper.

The structure of the paper is such that in Section 2 the
extended LGM is presented and the LGM split sampler
is proposed. In Section 3, an example is given to demon-
strate how the extended LGM setup and the LGM split
sampler can be applied. Finally, in Section 4 a discussion
is given.

2. EXTENDED LATENT GAUSSIAN MODELS

2.1 LGMs and Additive Models

A general formulation for latent Gaussian models can
be presented as follows. The vectors y, x and θ contain
the observations, the latent parameters and the hyperpa-
rameters, respectively.

Data-level: The observations y depend on the latent
parameters x, through some choice of data distribution
with a data density function π(y | x, θ).

Latent level: The prior density for the latent parameters
x is Gaussian and is potentially dependent on the hyper-
parameters θ , that is,

π(x | θ) =N
(
x | μ(θ),Q(θ)−1)

.

Hyperparameter level: A prior distribution is assigned
for the hyperparameters θ , with a density function π(θ).

LGMs are related to regression models (Fahrmeir and
Tutz, 1994) and generalized linear regression models. To
see how, assume, for example, a Gaussian data density
where each data point yi only depends on a single linear
predictor ηi , for example, through the mean of the Gaus-
sian density, of the latent parameters, that is,

(2.1) ηi = ∑
j

βj zij + ∑
k

ukaik + εi.

Here, {zij} are known covariates and {βj } are the corre-
sponding coefficients, sometimes referred to as fixed ef-
fects. The terms {uk} are structured random effects, where
each uk serves as a model component which contributes
to the ith component of the linear predictor if aik �= 0,
where {aik} are known weights. Examples of such struc-
tured random effects are time-series models, stochastic
spline models, spatial models, etc. The term εi is an un-
structured random effect and serves as a model error term.

Now, the linear predictor equation in (2.1) in its vector-
ized form becomes

(2.2) η = Xβ + Au + ε,

where X is a design matrix based on the covariates {zij},
β is the corresponding vector of the covariate coefficients
{βj }, u is a vector containing the structured random ef-
fects, A is a fixed matrix based on {aik} mapping the struc-
tured random effects {uk} to their related component of
the linear predictor and ε is a vector of the unstructured
random effects. When Gaussian priors are assigned to β ,
u and ε, the structured additive regression formulation in
(2.2) fits into the LGMs setup since the joint distribution
of the vector

x = (
βT,uT,εT)T

becomes Gaussian, and thus, this vector is the latent pa-
rameter vector in the general LGM setup presented above.

2.2 The Structure of Extended LGMs

The generalized additive model for location, scale and
shape (GAMLSS) of Rigby and Stasinopoulos (2005),
also presented in Klein et al. (2013), is such that each nat-
ural parameter of the data density function is modeled by
a structural additive predictor. In this section, we high-
light how models in the extended LGM framework can
be expressed in order to impose latent models on any of
the natural parameter of a given data density function in a
fashion similar to that of Rigby and Stasinopoulos (2005)
and Klein et al. (2013). To that end, consider without loss
of generality, a data density function π(y | μ,τ ) where μ
and τ are vectors of location and log-scale parameters, re-
spectively. Next, impose latent Gaussian models on both
μ and τ , for example, the following additive model struc-
ture:

(2.3)
μ = Xμβμ + Aμuμ + εμ,

τ = Xτβτ + Aτuτ + ετ ,

where Xμ and Xτ are fixed design matrices; βμ and βτ

are the corresponding coefficients; Aμ and Aτ are fixed
matrices; uμ and uτ are structured random effects; and
εμ and ετ are unstructured random effects which serve
as model error terms. Adding the model error terms εμ

and ετ to the latent models is in line with structured addi-
tive regression discussed in Fahrmeir and Tutz (1994) and



LGM SPLIT SAMPLER 221

the latent Gaussian model presented in Rue, Martino and
Chopin (2009). Furthermore, small variances can be im-
posed a priori on the model errors terms even if they are
not desired in the model. However, adding the unstruc-
tured random effects is reasonable in many cases from a
statistical modeling point of view as they serve as error
terms for the latent models. Moreover, adding the unstruc-
tured random effects makes the posterior inference com-
putationally feasible. On the other hand, if the variance of
an unstructured random effect is set equal to a very small
value or the data suggest that this variance is very small
then the posterior inference may not be as computation-
ally feasible since the dependence between the parame-
ters found at the data level, for example, μ and τ in the
above example, and the parameters that are only found at
the latent level, for example, βμ, uμ, βτ and uτ in the
above example, increases when this variance decreases.

The model structure in (2.3) requires informative prior
densities for the hyperparameters. In particular, in a spa-
tial model in which μ and τ contain the latent parameters
at individual sites and Aμuμ and Aτuτ represent the spa-
tial model components at the individual sites, the hyperpa-
rameters are hard to identify. This is supported by results
from Zhang (2004), namely, the log-likelihood function
for the range parameter is very flat for any value of the
marginal variance.

Assign the following Gaussian prior density functions
to the latent model parameters

(2.4)

π(βμ) = N
(
βμ | μβμ,Q−1

βμ

)
,

π(βτ ) = N
(
βτ | μβτ ,Q

−1
βτ

)
,

π(uμ) = N
(
uμ | μuμ,Q−1

uμ

)
,

π(uτ ) = N
(
uτ | μuτ ,Q

−1
uτ

)
,

π(εμ) = N
(
εμ | 0,Q−1

εμ

)
,

π(ετ ) = N
(
ετ | 0,Q−1

ετ

)
,

where the parameters of the prior density functions can
potentially depend on the hyperparameters θ , and Q−1

εμ

and Q−1
ετ are diagonal matrices.

Since the vector μ in equation (2.3) is a linear com-
bination of βμ, uμ and εμ, it is equivalent to ob-
tain MCMC samples from the posterior distribution
of (μ,βμ,uμ) and from the posterior distribution of
(βμ,uμ,εμ). Analogous argument holds for the pa-
rameters corresponding to τ . The LGM split sampler
is designed to obtain MCMC samples from the poste-
rior distribution of (μ,τ ,βμ,βτ ,uμ,uτ ) as opposed to
(βμ,βτ ,uμ,uτ ,εμ,ετ ) as in the former parameteriza-
tion only the vector (μ,τ ) enters the data density func-
tion, while all the elements of the latter vector enter the
data density function in the latter parameterization. This
parameterization for posterior inference is along the lines

of the posterior inference scheme proposed in Rue, Mar-
tino and Chopin (2009). Thus, define

η = (
μT,τT)T

, ν = (
βT

μ,uT
μ,βT

τ ,u
T
τ

)T

which will act as the splitting of the latent parameters. The
latent model structure in (2.3) and the prior distributions
in (2.4) can be written in a joint matrix form, which forms
the basis for the derivation of the LGM split sampler. De-
fine the following matrices and vectors:

Z =
(
Xμ Aμ · ·
· · Xτ Aτ

)
,

ε =
(
εμ

ετ

)
, Qε =

(
Qεμ ·

· Qετ

)

and group the following parameters and matrices to-
gether:

μν =

⎛
⎜⎜⎜⎝

μβμ

μuμ

μβτ

μuτ

⎞
⎟⎟⎟⎠ ,

Qν =

⎛
⎜⎜⎜⎝

Qβμ · · ·
· Qμu · ·
· · Qβτ ·
· · · Qτu

⎞
⎟⎟⎟⎠ ,

where the dotted entries denote zero entries. The additive
model structure implied by (2.3) for both latent parame-
ters is thus equivalent to the matrix form

η = Zν + ε(2.5)

and the Gaussian prior assumptions in (2.4) are equivalent
to

(2.6)
π(η | ν, θ) =N

(
η | Zν,Q−1

ε

)
,

π(ν | θ) = N
(
ν | μν,Q

−1
ν

)
.

By using the Gaussian prior assumptions in (2.6), it fol-
lows that the joint density of η, ν|θ is a Gaussian density
of the form

(2.7)

π

((
η
ν

) ∣∣∣ θ

)

= N
((

η
ν

) ∣∣∣∣
(
Zμν

μν

)
,

(
Qε −QεZ

−ZTQε Qν + ZTQεZ

)−1)
.

As the data density function and the corresponding pa-
rameters were arbitrarily chosen above, analogous deriva-
tions can be carried out for any parametric data density
function and all of its parameters jointly. For example, in
addition to imposing latent Gaussian models on the loca-
tion and log-scale parameters of the generalized extreme
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value distribution, equations (2.3) and (2.4) can be ex-
tended by imposing a latent Gaussian model on the shape
parameter; see Section 3 for details. Therefore, equations
(2.5), (2.6) and (2.7) are general for all LGMs in the ex-
tended LGM framework. We will thus adapt equations
(2.5) and (2.6) as the setup for LGMs henceforth in this
paper. Note that, as the vector x = (ηT, νT)T is Gaussian
it can be viewed as the latent parameter x in the general
LGM setup in Section 2.1.

2.3 Inference for Extended LGMs

The vector η in the LGM setup in (2.5) and (2.6) con-
sists of the latent parameters that explicitly enter the data
density function while the vector ν consists of latent pa-
rameters which do not enter it. Therefore, the data vec-
tor y is conditionally independent of ν conditioned on η,
that is, π(y | η, ν) = π(y | η). The parameters η and ν
are referred to as the data-rich latent parameters and the
data-poor latent parameters, respectively, in this paper.
The corresponding posterior distribution, where the data-
poor latent parameters are potentially dependent on a vec-
tor of hyperparameters, denoted by θ , is thus proportional
to

(2.8) π(η, ν, θ | y) ∝ π(y | η)π(η, ν | θ)π(θ).

The block sampling scheme of the LGM split sampler
consists of grouping all the model parameters into two
separate blocks. That is, both ν and the hyperparameters θ
are placed in one block referred to as the data-poor block,
while η is placed in the other block referred to as the
data-rich block in this paper. A Gibbs sampling strategy
is then implemented for each block, conditioned on the
other block. That is, the (k + 1)th MCMC sample from
the posterior density π(η, ν, θ | y) is obtained by using
the following two block Gibbs sampling scheme:

Data-poor block: sample (νk+1, θk+1) jointly from
π(ν, θ | y,ηk).

Data-rich block: sample ηk+1 from π(η | y, νk+1,

θk+1).

To elaborate on the potential efficiency gain offered by
this blocking scheme, consider the following. Due to the
splitting of the latent field expressed in equation (2.8), the
parameters ν and θ in the data-poor block become con-
ditionally independent of the data y conditioned on the
vector η from the data-rich block, that is,

π(ν, θ | y,η) = π(ν, θ | η).

In other words, the form of the conditional posterior
π(ν, θ | y,η) becomes invariant of the data density func-
tion. The resulting conditional posterior density function
in the data-poor block is thus proportional to

(2.9) π(ν, θ | y,η) ∝ π(θ)π(ν|η, θ).

Furthermore, the conditional posterior density of the data-
poor latent parameters ν conditioned on the data-rich la-
tent parameters η and the hyperparameters θ becomes
Gaussian and is independent of the data y, that is,

(2.10)

π(ν | y,η, θ)

= π(ν | η, θ)

= N
(
ν|Q−1

ν|η
(
Qνμν + ZTQεη

)
,Q−1

ν|η
)
,

where Qν|η = Qν + ZTQεZ; see Appendix A.1 for
derivation. Due to the Gaussianity offered by equa-
tion (2.10), it is possible to obtain exact samples from
π(ν|η, θ) in every MCMC iteration.

When the data density function is non-Gaussian or
Gaussian with a latent model on the log-variance, the con-
ditional posterior density π(η | y, ν, θ) in the data-rich
block becomes computationally challenging in posterior
simulations. However, a key part of the design is such that
the data-rich block contains a minimum number of pa-
rameters needed for the evaluation of the computationally
demanding conditional posterior density π(η | y, ν, θ). In
other words, the dimension of the computationally de-
manding data-rich block is designed to be as low as pos-
sible. This is particularly helpful when the dimension of
the data-rich component of the latent field, η, is low. How-
ever, when the dimension of η is high the conditional pos-
terior density π(η | y, ν, θ) will be computationally de-
manding.

The LGM split sampler is designed such that, in prin-
ciple, any efficient MCMC sampler can be implemented
for each block. In this paper, computationally efficient
sampling strategies tailored to the particular conditional
model structure of each block are proposed. These strate-
gies are described in the subsequent sections.

2.3.1 Sampler for the data-poor block. The relation in
(2.9) and the Gaussianity of the conditional posterior den-
sity π(ν|η, θ) in (2.10) demonstrate that the single-block
updating scheme of Knorr-Held and Rue (2002) is appli-
cable within the data-poor block with some modifications.
As discussed in the Introduction, the single-block updat-
ing scheme is known to outperform most modern sam-
pling algorithms in terms of MCMC sampling efficiency
when applicable. Therefore, the following modified ver-
sion of the single-block updating scheme, adapted for the
data-poor block of the MCMC split sampler, is proposed.

For some proposal density q(θ∗|θk) for the hyperpa-
rameters θ , a new proposed value (ν∗, θ∗) is generated
jointly as follows:

(2.11)
θ∗ ∼ q

(
θ∗ | θk),

ν∗ ∼ π
(
ν∗ | ηk, θ∗)

.
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Denote the proposal density implied by (2.11) with
q(ν∗, θ∗|νk, θk). The proposed value (ν∗, θ∗) is then ac-
cepted jointly with acceptance probability

(2.12) α = min
{

1,
π(ν∗, θ∗ | y,ηk)

π(νk, θk | y,ηk)

q(νk, θk | ν∗, θ∗)
q(ν∗, θ∗ | νk, θk)

}
.

It can be shown, see Appendix A.2, that the acceptance
ratio in (2.12) can be simplified to

(2.13)

π(ν∗, θ∗ | y,ηk)

π(νk, θk | y,ηk)

q(νk, θk | ν∗, θ∗)
q(ν∗, θ∗ | νk, θk)

= π(θ∗ | ηk)

π(θk | ηk)

q(θk | θ∗)
q(θ∗ | θk)

.

The relation in (2.13) shows that the acceptance ratio is
only dependent on the acceptance ratio for θ . Thus, this
steps, which is conditional on η, amounts to sampling first
from the marginal distribution of θ and then from the con-
ditional distribution of ν. As a result, the dependence be-
tween θ and ν is broken down. To save computation time,
sampling of ν∗ is delayed until acceptance is verified. Fur-
thermore, since the conditional posterior π(ν | η, θ) is a
known Gaussian (see equation (2.10)), and the elements
of ν can be sampled jointly, the proposed sampling strat-
egy scales well in terms of MCMC sampling efficiency
as the dimension of the data-poor latent parameters, ν, in-
creases.

If the Gaussian models in the prior assumptions (2.6)
are GMRF density functions (Rue and Held, 2005), with
a sparse precision structure, the ratio in (2.13) is com-
putationally costly to calculate directly, since π(θ | η) ∝
π(θ)π(η | θ) and the density π(η | θ) does not necessar-
ily preserve the sparse GMRF structure. However, from
the law of conditional independence it follows that

(2.14) π(η | θ) = π(η | ν, θ)π(ν | θ)

π(ν | η, θ)
,

where the density functions on the right-hand side in
(2.14) preserve the sparse GMRF precision structure. Fur-
thermore, as the density π(η | θ) is invariant of ν, the
value of ν can be set to zero for computational gain on the
right-hand side of (2.14). Main result 1 summarizes how
the ratio in (2.12) can be calculated with low computa-
tional cost by using the results in (2.13), (2.15) and (2.16)
in the case of GMRFs with sparse precision structures.
This is a key result for the implementation of the pro-
posed sampling scheme in the data-poor block for Gaus-
sian prior densities with sparse GMRFs precision struc-
tures. The proof can be seen in Appendix A.3. The algo-
rithm for the sampling scheme in the data-poor block is
summarized in Algorithm 1.

Algorithm 1 The proposed algorithm for obtaining the
(k+1)th sample from π(ν, θ | y,η) in the data-poor block

Input: (νk, θk,ηk)

1: Sample each element of θ∗ from a proposal density
q(θ∗ | θk)

2: Calculate

r = π(θ∗)
π(θk)

· π(ηk | 0, θ∗)π(0 | θ∗)
π(0 | ηk, θ∗)

· π(0 | ηk, θk)

π(ηk | 0, θk)π(0 | θk)

· q(θk | θ∗)
q(θ∗ | θk)

on a logarithmic scale, using the equations in (2.16)
for the conditional posterior densities functions

3: Calculate α = min{1, r}
4: Sample u ∼ U(0,1)

5: if α > u

6: Calculate Qν|η = Qν + ZTQεZ
7: Sample ν∗ from

ν∗|ηk, θ∗

∼N
(
ν|Q−1

ν|η
(
Qνμν + ZTQεη

k+1)
,Q−1

ν|η
)

8: (νk+1, θk+1) = (ν∗, θ∗)
9: else if α < u

10: (νk+1, θk+1) = (νk, θk)

11: end if
Output: (νk+1, θk+1)

MAIN RESULT 1. The term π(θ∗ | ηk)/π(θk | ηk) in
(2.13) can be rewritten as

(2.15)

π(θ∗ | ηk)

π(θk | ηk)

= π(θ∗)
π(θk)

· π(ηk | 0, θ∗)π(0 | θ∗)
π(0 | ηk, θ∗)

· π(0 | ηk, θk)

π(ηk | 0, θk)π(0 | θk)
.

Additionally, the conditional density functions on the
right-hand side in (2.15) on a logarithmic scale are

logπ(η | 0, θ)

= 1

2
log detQε − 1

2
ηTQεη + const,

logπ(0 | θ)

= 1

2
log detQν − 1

2
μT

νQνμν + const,(2.16)
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logπ(0 | η, θ)

= 1

2
log detQν|η

− 1

2

(
Q−1

ν|η
(
Qνμν + ZTQεη

))T

· (
Qνμν + ZTQεη

) + const,

where Qν|η = Qν + ZTQεZ. Moreover, if the Gaussian
prior density functions in (2.6) are GMRFs with sparse
precision structures, then all of the conditional density
functions on the right-hand side of (2.16) are GMRFs with
sparse precision structures.

2.3.2 Sampler for the data-rich block. The conditional
posterior density π(η | y, ν, θ) in the data-rich block is

(2.17)
logπ(η | y, ν, θ) = f (η) − 1

2
ηTQεη

+ (QεZν)Tη + const,

where f (η) = logπ(y | η) for notational convenience.
As the conditional posterior density π(η | y, ν, θ) is of-
ten only known up to a constant, a Metropolis–Hastings
algorithm with an independence proposal density is pro-
posed for the data-rich block. The proposal density is con-
structed by approximating the conditional posterior den-
sity π(η | y, ν, θ) with a Gaussian approximation evalu-
ated at the mode, η0, of π(η | y, ν, θ). It can be shown
that the Gaussian approximation of the conditional poste-
rior becomes

(2.18) π̃(η | y, ν, θ) = N
(
η | η0, (Qε − H )−1)

,

where H = ∇2 logπ(η | y, ν, θ); see Appendix A.4 for
derivation.

Once a new η∗ is proposed in the (k + 1)th iteration of
the MCMC chain with the independence proposal density
q(η∗) = π̃(η∗ | y, νk, θk), it is accepted with the follow-
ing acceptance probability:

α = min
{

1,
π(η∗ | y, νk+1, θk+1)

π(ηk | y, νk+1, θk+1)
· q(ηk)

q(η∗)

}
.(2.19)

The logarithm of the acceptance ratio given in (2.19) can
be simplified to

(2.20)

r = f
(
η∗) −

(
1

2

(
η∗)T

H + bT
)
η∗ − f

(
ηk)

+
(

1

2

(
ηk)T

H + bT
)
ηk,

where b = ∇f (η0)−Hη0 for notational convenience; see
Appendix A.5. As the gradient ∇f (η0) and the Hessian
H have already been calculated to obtain (2.18), the ex-
pression in (2.19) can be computed with low computa-
tional cost in every iteration of the MCMC chain.

In many applications, conditional independence as-
sumption is imposed on the data density function. That
is, there exists a partition of η into subvectors ηi , such
that

π(y | η) = ∏
i

πi(yi | ηi).

In some cases, a proposal density based on the Gaussian
approximation in (2.18) can be a poor approximation of
the conditional posterior density in some partition of η.
Updating the whole vector η in one block may then re-
sult in the MCMC chain getting stuck, thus leading to
lower computational efficiency. In order to circumvent
this issue and to retain the computational speed gained
by using the Gaussian approximation in (2.18) as a pro-
posal density, a modification can be made to the sampling
scheme which utilizes the conditional independence of the
partitions within the data-rich block. The details of the
modification can be seen in the Supplementary Material
(Geirsson et al., 2020).

The proposed sampling scheme for the data-poor block
is outlined in Algorithm 2. Note that by choosing I = 1
in Algorithm 2, the above sampling scheme without the
conditional independence assumptions on the likelihood
is obtained, while selecting I ≥ 2 in Algorithm 2 assumes
the aforementioned partitioning of η and that each ηi is
accepted or rejected separately. Note that when I ≥ 2
steps 5–14 can be performed in parallel across I clusters
to speed up the computation.

3. EXAMPLE

One example of a latent Gaussian model is presented
in this section to demonstrate how the LGM split sam-
pler can be applied to obtain posterior samples. In this ex-
ample, we present a simulation study on extreme events.
The dataset consists of simulations of monthly maxi-
mum instantaneous flow based on characteristics of ten
river catchments across Iceland. The simulated time se-
ries were chosen to represent 150 years. Boxplots of the
distribution of the simulated data can be seen in Figure 1.

Two characterizing features were chosen to simulate the
time series from each river, namely, river catchment area
and maximum daily precipitation index, along with the
month index, as these are known to be positively corre-
lated with maximum instantaneous flow; see Davíðsson
(2015) and Crochet (2012). The maximum daily precipi-
tation index for a given catchment is based on the maxi-
mum monthly precipitation over the catchment. Then an
average of these monthly maximum values is taken over
a reference period. So, the maximum daily precipitation
index varies with month while the river catchment area
stays the same over months as expected. The precipitation
is computed with a linear orographic precipitation model
(Crochet et al., 2007) which provides 24-h precipitation
on a grid with 1 km resolution.
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FIG. 1. Boxplots of the simulated annual maximum instantaneous flow as a function of months for all of the ten river catchments.

The values of the parameters used to simulate the time
series were based on data from the Icelandic Meteorolog-
ical Office on monthly maximum instantaneous flow from
the ten aforementioned river catchments. In Davíðsson
(2015), these data were analyzed, and estimates of param-
eters from that analysis were used as basis for generating
the simulated time series analyzed in this section. The rea-
sons for using simulated time series as opposed to the real
time series are (i) the capability of verifying that the LGM
sampler captures the underlying values, and (ii) a large
fraction of the real time series were short, only between
20 to 40 observation per month, which is limiting for an
extreme value analysis.

Model setup

The data level. The data were modeled with an LGM
assuming the generalized extreme value distribution (GEV)

for the observations. To that extend, let ymj,t denote the
value from river j at month m and year t , with a density
function of the form

f (ymj,t )

= 1

σmj

(
1 + ξmj

(
ymj,t − μmj

σmj

))−1− 1
ξmj

· exp
{
−

(
1 + ξmj

(
ymj,t − μmj

σmj

))− 1
ξmj

}

if 1 + ξmj(ymj,t − μmj)/σmj > 0, and f (ymj,t ) = 0; other-
wise, for j = 1, . . . , J , t = 1, . . . , T , m = 1, . . . ,12. The
parameters μmj, σmj and ξmj are the location, scale and
shape parameters, respectively, of the GEV distribution
for river j in month m. Additionally, J is the number
of rivers and T is the number of years. Furthermore, the
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Algorithm 2 The proposed algorithm for obtaining the
(k + 1)th sample from π(η|y, ν, θ) in the data-rich block.
By choosing I = 1, the sampling scheme introduced in
Section 2.3.2 is obtained. For I ≥ 2, the modified sam-
pling scheme, which is derived in the Supplementary Ma-
terial (Geirsson et al., 2020), is obtained for the partitions

Input: (νk+1, θk+1,ηk)

1: Find the mode η0 = arg max
η

logπ(η|y, νk+1, θk+1)

2: Calculate H = ∇2f (η0) and b = ∇f (η0) − Hη0

3: Sample η∗ ∼ N (η0, (Qε − H )−1)

4: Calculate ρ(ηk) and ρ(η∗), where

ρ(η) =
(
−1

2
ηTH − bT

)
◦ η

and ◦ denotes an entrywise product
5: for i = 1, . . . , I

6: Calculate ri = fi(η
∗
i ) + ρ(η∗)T

i 1 − (fi(η
k
i ) +

ρ(ηk)T
i 1)

7: Calculate αi = min{1, exp ri}
8: Sample ui ∼ U(0,1)

9: if αi > ui

10: ηk+1
i = η∗

i

11: else if αi < ui

12: ηk+1
i = ηk

i

13: end if
14: end for
Output: ηk+1

data are assumed independent between rivers and between
months.

The latent level. The location and scale parameters are
modeled on a logarithmic scale at the latent level, which is
modeling setup along the lines presented in Cunnane and
Nash (1971) and GREHYS (1996). Thus, define λmj =
logμmj and τmj = logσmj. The shape parameter is mod-
eled on its native scale.

As discussed in Davíðsson (2015), the underlying pro-
cesses of monthly maximum instantaneous flow exhibit
a seasonal behavior. Therefore, the following seasonal
model is proposed for the location parameter on a loga-
rithmic scale. That is,

(3.1)
λmj = β0,λ + u0,m,λ + x1,mj (β1,λ + u1,m,λ)

+ · · · + xp,mj (βp,λ + up,m,λ) + εmj,λ,

where β0,λ denotes an overall intercept term; xi,mj denotes
the ith covariate in month m at the j th river; βi,λ denotes
the weight of the ith covariate for i = 1, . . . , p; u0,m,λ de-
notes the seasonal random effect of the mth month; ui,m,λ

denotes the seasonal additional weight of the ith covari-
ate within month m; and εmj,λ denotes an unstructured
random effect.

In order to write the model in a matrix form for the
implementation of the LGM split sampler, combine the

location parameters for river j over months. That is,

λj = (λ1j , . . . , λ12j )
T, j = 1, . . . , J

and define the following:

ui,λ = (ui,1,λ, . . . , ui,12,λ)
T,

Ai,j = diag(xi,1j , . . . , xi,12j ),

where i = 0, . . . , p and x0,mj = 1 denotes the intercept
term for river j and month m. Additionally, define

Xj =

⎛
⎜⎜⎜⎝

1 x1,1j · · · xp,1j

1 x1,2j · · · xp,2j

...
...

1 x1,12j · · · xp,12j

⎞
⎟⎟⎟⎠ ,

Aj = (
A0,j , . . . ,Ap,j

)
.

The seasonal model presented in (3.1) for the log-location
parameter for river j can be written in matrix form as

λj = Xjβλ + Ajuλ + εj,λ,

where βλ = (β0,λ, . . . , βp,λ)
T, uλ = (u0,λ, . . . ,up,λ)

T,
and εj,λ = (ε1j,λ, . . . , ε12j,λ)

T. By combing the seasonal
model over rivers, the following holds:

λ = Xβλ + Auλ + ελ,

where

λ =
⎛
⎜⎝

λ1
...

λJ

⎞
⎟⎠ , X =

⎛
⎜⎝

X1
...

XJ

⎞
⎟⎠ ,

A =
⎛
⎜⎝

A1
...

AJ

⎞
⎟⎠ , ελ =

⎛
⎜⎝

ε1,λ

...

εJ,λ

⎞
⎟⎠ .

Analogous model structure was also implemented for the
log-scale parameter. That is,

τ = Xβτ + Auτ + ετ .

A reduced model with a similar structure was imple-
mented for the shape parameter ξ . That is,

(3.2) ξmj = β0,ξ + u0,m,ξ + εmj,ξ ,

where β0,ξ denotes an overall intercept term; u0,m,ξ de-
notes the seasonal random effect of the mth month; and
εmj,ξ denotes an unstructured random effect. The full ma-
trix model for ξ becomes

ξ = 112J β0,ξ + (1J ⊗ I 12)uξ + εξ ,

where 1n denotes an n-dimensional vector of ones, and ⊗
is the Kronecker product.
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Working within the LGM framework, the following
prior density functions were assigned to the latent param-
eters. First assign

π(βλ) = N
(
βλ | 0, σ 2

βλI
)
,

π(βτ ) = N
(
βτ | 0, σ 2

βτI
)
,

π(βξ ) = N
(
βξ | 0, σ 2

βξ

)
.

The parameters βλ, βτ and βξ are assumed a priori to
have a low precision on their native scales in order to let
the data play the dominate role in their inference. Thus,
the parameter values σβλ = 4, σβτ = 4 and σβξ = 2 were
chosen for the prior density functions.

Secondly, the selection of prior density functions for the
seasonal random effects needs to incorporate a correlation
structure that induces a strong correlation between neigh-
boring months. This is achieved by assigning the follow-
ing prior density functions:

π(uλ) = N
(
uλ | 0,diag(ψλ) ⊗ Q−1

u

)
,

π(uτ ) = N
(
uτ | 0,diag(ψτ ) ⊗ Q−1

u

)
,

π(uξ ) = N
(
uξ | 0,ψξQ

−1
u

)
,

where ψλ = (ψ0,λ, . . . ,ψp,λ)
T, ψτ = (ψ0,τ , . . . ,ψp,τ )

T

and ψξ serve as scaling parameters for the monthly ran-
dom effects corresponding to the three intercepts and the
covariates; and Qu(κ) is a 12×12 circular band precision
matrix that has the vector[

1 − 2
(
κ2 + 2

)
κ4 + 4κ2 + 6 − 2

(
κ2 + 2

)
1
]

on the diagonal band, as discussed in Lindgren, Rue and
Lindström (2011), which captures the autocorrelation be-
tween months. In this example, the decay parameters was
fixed to simplify the inference and set equal to κ = 1. Fur-
thermore, this value of κ induces an autocorrelation a pri-
ori between consecutive months. Third, for the unstruc-
tured random effects, the following priors were chosen:

π(ελ) =N
(
ελ | 0, σ 2

ελI
)
,

π(ετ ) =N
(
ετ | 0, σ 2

ετI
)
,

π(εξ ) =N
(
εξ | 0, σ 2

εξI
)
.

The hyperparameter level. Let θ denote all the hyper-
parameters of the model that are not fixed. They are on a
logarithmic scale and the parameters are parameterized as
precision parameters for computational purposes. That is,

θ = (
logψ−1

0,λ, . . . , logψ−1
p,λ, logψ−1

0,τ , . . . , logψ−1
p,τ ,

logψ−1
ξ , logσ−2

ελ , logσ−2
ετ , logσ−2

εξ

)
Gaussian prior distributions with fixed parameters were
assigned to the hyperparmeters in θ .

Posterior inference. The data-rich block includes η =
(λ,τ , ξ) and the data-poor block consists of ν = (βλ,uλ,

βτ ,uτ , βξ ,uξ ) and the hyperparameters θ . For the imple-
mentations of the LGM split sampler, define μν = 0 and
the following sparse matrices:

(3.3)

Z =
⎛
⎝X A · · · ·

· · X A · ·
· · · · 112J I 12J

⎞
⎠ ,

Qε =
⎛
⎜⎝

σ−2
ελ I · ·
· σ−2

ετ I ·
· · σ−2

εξ I

⎞
⎟⎠

and

(3.4)
Q−1

ν = bdiag
(
σ 2

βλI ,diag(ψλ) ⊗ Q−1
u , σ 2

βτI ,

diag(ψτ ) ⊗ Q−1
u , σ 2

βξ ,ψξQ
−1
u

)
,

where bdiag denotes a block diagonal matrix.

Data-poor block. The sampling scheme outlined in
Section 2.3.1 was used to obtain MCMC samples from
the conditional posterior π(ν, θ | y,η) in the data-poor
block. A proposal density based on the Gaussian distri-
bution centered on the last draw of θ , as discussed in
Roberts, Gelman and Gilks (1997), was selected for Al-
gorithm 1, with a precision matrix c−1(−H ) where H

is a finite difference estimate of the Hessian matrix of
logπ(θ |η̂) evaluated at the mode. That is,

(3.5) H ≈ ∇2 logπ(θ |η̂)|θ=θ0,

where η̂ is the maximum likelihood estimate of η for each
river and month; θ0 is the mode of logπ(log θ |η̂); and
c is a scaling constant. Conditioning on η̂, as opposed
to ηk+1 for example, removes the necessity to estimate
H in every iteration. Moreover, setting a specific scaling
constant c removes the need for tuning. The scaling con-
stant c = 2.3822/dim(θ) was implemented, as it is op-
timal in a particular scenario; see Roberts, Gelman and
Gilks (1997). The resulting proposal density therefore be-
comes

(3.6) q
(
θ∗ | θk) = N

(
θ∗ | θk, c(−H )−1)

.

Algorithm 1 was thus implemented to obtain MCMC
samples from the conditional posterior within the data-
poor block, with μν = 0; Z, Qε as in equation (3.3); Qν

as in equation (3.4); and the proposal density in (3.6).

Data-rich block. The modified version of the sam-
pling scheme in Section 2.3.2, outlined in the Supple-
mentary Material (Geirsson et al., 2020), was used to
obtain MCMC samples from the conditional posterior
π(η | y, ν, θ). The logarithm of the conditional posterior
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is of the same form as in equation (2.17), with Z and Qε

defined in equation (3.3) and

(3.7)

f (η) =
12∑

m=1

J∑
j=1

fmj (ηmj )

=
12∑

m=1

J∑
j=1

T∑
t=1

logπgev(ymj,t | expλmj ,

exp τmj , ξmj ),

where πgev denotes the density function of the general-
ized extreme value distribution and ηmj = (λmj, τmj, ξmj).
Therefore, Algorithm 2 was used to obtain MCMC sam-
ples from the conditional posterior from the data-rich
block, with I = J · 12 = 120 and f (η) as in (3.7).

Convergence diagnostics. The following convergence
diagnostics are based on four MCMC chains sampled in
parallel with the LGM split sampler from the proposed
model. Each chain was calculated with 50,000 iterations
where 10,000 iterations were burned in. Runtime, on a
modern desktop (Ivy Bridge Intel Core i7-3770K, 16 GB
RAM and a solid state hard drive), was approximately 7
hours. All calculations were carried out using R.

Gelman–Rubin plots, autocorrelation plots, trace plots
and running mean plots for nine model parameters based
on the MCMC run are shown in the Supplementary Mate-
rial (Geirsson et al., 2020). All four plots are based on the
same set of parameters and arranged identically. Three pa-
rameters were chosen from the location, scale and shape
structures of the proposed model which were placed in
the first, second and third rows of the figures. The first
columns are based on parameters from the data-rich part
of the latent field; the second columns are based on pa-
rameters from the data-poor part of the latent field; and
the third column is based on hyperparameters.

The Gelman–Rubin plots in the Supplementary Mate-
rial (Geirsson et al., 2020) show that the sampler has con-
verged in the mean after roughly 10.000 iterations. Sim-
ilar results hold for all the model parameters (results not
shown). Furthermore, the autocorrelation plots in the Sup-
plementary Material (Geirsson et al., 2020) demonstrate
that the MCMC chains for the parameters from the data-
rich and the data-poor parts of the latent field, exhibit a
negligible autocorrelation after lag 10 and lag 20, respec-
tively. The hyperparameters show a negligible autocorre-
lation after lag 30. Trace plots show the four MCMC have
mixed well, and the running mean plots show that the four
MCMC chains have converged in the mean; see the Sup-
plementary Material (Geirsson et al., 2020).

Relying on these results, the MCMC chains exhibit all
signs of having converged. Moreover, these results further
indicate that the LGM split sampler, with the modified
proposal density of Roberts, Gelman and Gilks (1997) im-
plied by equation (3.6) for the hyperparameters, is highly
computationally efficient in both the data-rich and data-
poor blocks.

The left panel in Figure 2 compares the empirical cu-
mulative distribution from river j = 1 in January with its
posterior cumulative distribution functions based on the
MCMC runs. The right panel shows the corresponding
probability–probability plots. These results demonstrate
that the LGM split sampler recaptures the known under-
lying values of the model parameters, which were used
to generate the simulated data. Analogous results hold
across all rivers and months (results not shown).

Since the data were generated from a known model
setup, the results of the inference based on the MCMC
runs can be compared to the known values of the model
parameters. In Figure 3, the known values of the seasonal
random effects are shown along with the corresponding
95% posterior intervals. The top panel in Figure 3 shows

FIG. 2. The left panel shows the empirical cumulative distribution of maximum instantaneous flow from river j = 1 in January (black solid curve)
and the posterior mean of the corresponding cumulative distribution function (blue solid curve) and corresponding 95% posterior intervals (blue
dashed curve). The right panel shows a probability–probability plot of maximum instantaneous flow from river j = 1 in January, along with 95%
posterior intervals.
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FIG. 3. The top panel shows the known value (denoted with the blue entries) of the seasonal random effect u0,m,λ for the log-location parameter
λ as function of month, m. The middle panel shows the known value (denoted with the green entries) of the seasonal random effect u0,m,τ for
log-scale parameter τ as function of month, m. The bottom panel shows the known value (denoted with the red entries) of the seasonal random
effect u0,m,ξ for the shape parameter ξ as function of month, m. The errors bars in all panels represent the corresponding 95% posterior intervals
based on the MCMC-runs.

TABLE 1
The 95% posterior intervals from the MCMC run of all the covariate
coefficients. The last column shows the underlying values which were

used in the simulation of the data

Covariate 0.025 posterior 0.975 posterior
coefficient quantile quantile True value

β0,λ −5.22 −4.21 −4.30
β1,λ 0.85 0.97 0.89
β2,λ 0.71 0.94 0.74
β0,τ −4.99 −4.40 −4.50
β1,τ 0.64 0.73 0.69
β2,τ −0.05 0.09 0.00
β0,ξ 0.08 0.14 0.10

this comparison for the seasonal random effect u0,m,λ for
the log-location parameter λ as a function of months.
The middle and the bottom panels in Figure 3 show the
same comparison for u0,m,τ for the log-scale parameter
and u0,m,ξ for the shape parameter ξ , respectively. The
results reveal that the 95% posterior intervals for the sea-
sonal random effects contain their known values. These
results demonstrate that the LGM split sampler recaptures
the known seasonal random effects. Furthermore, Tables 1
and 2 show the 95% posterior intervals of the main re-
gression parameters and the hyperparameters and the un-
derlying values of the parameters. These two tables reveal
that the 95% posterior intervals of these parameters cap-
ture their underlying values except for σ 2

ελ. In the case of
model parameters not presented in Tables 1 and 2, their
95% posterior intervals capture their underlying values
for 90% of them (results now shown).

4. DISCUSSION

In this paper, we presented extended LGMs that are
such that each data point depends on more than one linear

TABLE 2
The 95% posterior interval from the MCMC run of all the

hyperparameters in θ on their original parameterization. The last
column shows the underlying values which were used in the

simulation of the data. The star denotes that the 95% posterior
interval did not capture the true value

Hyper- 0.025 posterior 0.975 posterior
parameter quantile quantile True value

ψ0,λ 0.00175 0.04915 0.01429
ψ1,λ 0.00050 0.00476 0.00200
ψ2,λ 0.00017 0.00324 0.00100
ψ0,τ 0.00063 0.02014 0.00500
ψ1,τ 0.00031 0.00243 0.00100
ψ2,τ 0.00013 0.00252 0.00050
ψ0,ξ 0.00003 0.00088 0.00020

σ 2
ελ 0.03452 0.06142 ∗0.06250

σ 2
ετ 0.00708 0.01536 0.01000

σ 2
εξ 0.00002 0.00674 0.000025

predictor at the latent level and proposed a novel sampler
for the corresponding posterior density. This sampler has
not been presented before and is referred to as the LGM
split sampler. It is based on the sampler of Knorr-Held and
Rue (2002). The LGM split sampler places the unknown
parameters into two blocks in such a way that efficient
sampling is achieved for each block by utilizing the par-
ticular structure of the extended LGMs and the Gaussian
assumption at the latent level.

In the data-rich block, we proposed a Metropolis–
Hastings algorithm with an independence proposal den-
sity which was constructed with a Gaussian approxima-
tion of the conditional posterior density evaluated at its
mode. Furthermore, we proposed a modification for the
sampler which is applicable if conditional independence
assumptions are imposed on the data density function.
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The modification can potentially increase the computa-
tional efficiency of the sampler, as discussed in the Sup-
plementary Material (Geirsson et al., 2020).

Although the proposed sampler in the data-rich block
is computationally efficient, it is only applicable in prac-
tice if the mode of conditional posterior density function
can be found, and can be calculated reasonably fast. For
example, in the case of models where each observed data
point has more than one unique data density parameter as-
sociated with it, say of the type yi ∼ π(yi |μi, σi) for every
measurement i, finding the mode of the conditional poste-
rior π(μi, σi |yi) becomes computationally impractical in
some cases. Models of this type include, for example, cer-
tain spatial temporal models (Hrafnkelsson, Morris and
Baladandayuthapani, 2012). Similar computational issues
also arise if data dependence at the data-level of an LGM
is desired; see, for example, Davison, Padoan and Rib-
atet (2012) where t-copulas are implemented with GEV
marginal density functions at the data level as a model
for spatial extremes. However, in both of the aforemen-
tioned cases different sampling schemes for the data-rich
block can be implemented without changing the sampling
scheme of choice in the data-poor block. For example, a
sampling scheme based on a MALA and HMC-type al-
gorithm are well suited for the structure of the data-rich
block in both cases.

In the data-poor block, the conditional posterior density
π(ν|η, θ) is a Gaussian of the form in (2.10) and invariant
of the data density function. These results serves as one
of the main computational advantage introduced by the
LGM split sampler due to the following reasons. First, as
the conditional posterior π(ν|η, θ) is Gaussian, a mod-
ified version of the single block sampler of Knorr-Held
and Rue (2002), which is known to be a highly efficient
sampling scheme when applicable (Filippone, Zhong and
Girolami, 2013), becomes applicable within the data-poor
block regardless of the data-density function at the data
level. As a consequence, computationally efficient sam-
pling algorithms can be used to sample from the exact
Gaussian conditional posterior density π(ν|η, θ). Further-
more, if the prior density functions in (2.6) have a sparse
GMRF precision structure, then π(ν|η, θ) preserves the
sparse structure as discussed in Section 2.3.1, which in
turn allows for highly efficient sampling algorithms for
the Gaussian density π(ν|η, θ). Therefore, the proposed
sampling scheme in Section 2.3.1 for the data-poor blocks
scales well in terms of computational speed and efficiency
with increasing dimension of the data-poor part of the la-
tent field, which is of great importance to achieve, espe-
cially in the field of spatial statistics. It was shown that the
density π(θ |η) also preserves the sparse GMRF precision
structure when it is assumed a priori in (2.6). Since the
densities π(ν|η, θ) and π(θ |η) are used to sample (ν, θ)

from the conditional posterior density π(ν, θ |y,η), then

the sparse GMRF structure assumed in (2.6) is preserved,
and thus supporting fast computation within the entire
data-poor block.

Second, as the conditional posterior density π(ν|η, θ)

is a known Gaussian and the acceptance rate in the sam-
pling scheme for the data-poor block in Section 2.3.1 only
depends on the hyperparameters, the computational effi-
ciency of the proposed sampling scheme for the data-poor
block is only dependent on the sampling scheme used for
the hyperparameters. In this sense, the sampling scheme
in Section 2.3.1 is in itself modular, that is, any proposal
density for the hyperparmeters is applicable. Choosing
a computationally efficient sampling scheme for the hy-
perparameters can thus increase the computational effi-
ciency of the overall sampling scheme within the data-
poor block, as demonstrated in the example in Section 3.
In this example, we proposed a modified version of the
sampling scheme of Roberts, Gelman and Gilks (1997)
implied by equation (3.5), which resulted in rapidly de-
creasing autocorrelation in the MCMC chains.

Due to the modularity of the LGM split sampler, sam-
pling schemes for the data-rich block can be developed
and improved independently of the sampler in the data-
poor block, and vice versa. Additionally, as the condi-
tional posterior density π(ν|η, θ) in the data-poor block
becomes invariant of the data, the computational advan-
tages introduced by the conditional posterior structure in
the data-poor block hold for all LGMs. Moreover, the
LGM split sampler can be applied to various LGMs as it is
designed to handle LGMs where latent models Gaussian
models are imposed on more than just the mean structure
of the data density function. Thus, in our view, further de-
veloping and improving sampling schemes that utilize the
computational advantages introduced by the LGM split
sampler presents an interesting area of future research.

APPENDIX: PROOFS FOR RESULTS IN THE MAIN
BODY TEXT

A.1

PROOF. By known results about Gaussian distribu-
tions and inverses of block matrices, the joint distribution
of (η, ν) is given by

π

(
η
ν

)
=N

((
η
ν

) ∣∣∣∣
(
Zμν

μν

)
,

(
Qε −QεZ

−ZTQε Qν + ZTQεZ

)−1)

=N
((

η
ν

) ∣∣∣∣
(
Zμν

μν

)
,

(
Q−1

ε + ZQ−1
ν ZT ZQ−1

ν

Q−1
ν ZT Q−1

ν

))
.
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The conditional distribution of ν conditioned on η follows
directly from Lemma 2.1 in Rue and Held (2005), that is,

π(ν | η) =N
(
ν|Q−1

ν|η
(
Qνμν + ZTQεη

)
,Q−1

ν|η
)
,

where Qν|η = Qν + ZTQεZ. �
A.2

PROOF. By definition of the proposal density in
(2.11), the following holds:

q(νk, θk | ν∗, θ∗)
q(ν∗, θ∗ | νk, θk)

= π(νk | ηk, θk)q(θk | θ∗)
π(ν∗ | ηk, θ∗)q(θ∗ | θk)

,

where q(θ∗|θk) is some proposal density for θ and
π(ν | η, θ) is the conditional Gaussian density function
in (2.10). Therefore, the acceptance ratio in (2.12) can be
written as

(A.1)

π(ν∗, θ∗ | y,ηk)

π(νk, θk | y,ηk)

π(νk | ηk, θk)

π(ν∗ | ηk, θ∗)
q(θk | θ∗)
q(θ∗ | θk)

= π(θ∗ | ηk)

π(θk | ηk)

q(θk | θ∗)
q(θ∗ | θk)

since π(ν, θ |y,η) = π(ν, θ |η), as discussed in Sec-
tion 2.3.1, and π(ν, θ | η)/π(ν | η, θ) = π(θ | η) for any
η, ν and θ . The result in (A.1) demonstrates that the
acceptance ratio in (2.12) only depends on θ within in
the proposed setup. In other words, the acceptance ra-
tio in (2.12) becomes independent of the value of ν.

�
A.3

PROOF. In order to rewrite π(θ | η) in (2.13), we use
the relation

π(θ | η) ∝ π(θ)π(η | θ).(A.2)

Furthermore, by the law of conditional probability, the
following holds:

(A.3) π(η | θ) = π(η, ν | θ)

π(ν | η, θ)
= π(η | ν, θ)π(ν | θ)

π(ν | η, θ)
.

As π(η | θ) is independent of the value of ν, it follows
that the two ratios in (A.3) are invariant of the choice of
ν. In particular, the following holds:

(A.4) π(η | θ) = π(η | 0, θ)π(0 | θ)

π(0 | η, θ)

by choosing the value ν = 0. Combining (A.2) and (A.4)
yield

π(θ∗ | ηk)

π(θk | ηk)
= π(θ∗)π(ηk | θ∗)

π(θk)π(ηk | θk)

= π(θ∗)
π(θk)

· π(ηk | 0, θ∗)π(0 | θ∗)
π(0 | ηk, θ∗)

· π(0 | ηk, θk)

π(ηk | 0, θk)π(0 | θk)
.

Moreover, if the Gaussian prior density functions in (2.6)
are GMRFs with sparse precision structures, then all of
the conditional density functions on the rightmost side
of (A.3) are GMRFs with sparse precision structures,
by known results about conditioning on subvectors as
demonstrated in Theorem 2.5 in Rue and Held (2005).
�
A.4

PROOF. The conditional posterior density function
π(η | y, ν, θ) is proportional to the product of the data
density function and the conditional Gaussian prior den-
sity π(η | ν, θ) given by (2.6), that is,

π(η | y, ν, θ) ∝ π(y | η)π(η | ν, θ).

Thus, the logarithm of the conditional posterior density
function is given by

logπ(η | y, ν, θ) = f (η) − 1

2
ηTQεη

+ (QεZν)Tη + const,

where f (η) = logπ(y | η) for notational convenience.
The second-order Taylor approximation of f (η) ex-
panded around the mode η0 of the conditional posterior
π(η | y, ν, θ) is

f (η) ≈ f
(
η0) + ∇f

(
η0)T(

η − η0)
+ 1

2

(
η − η0)T

H
(
η − η0)

= 1

2
ηTHη + (∇f

(
η0) − Hη0)T

η + const.

Consequently, the second-order Taylor approximation of
logπ(η | y, ν, θ) expanded around η0 becomes

logπ(η | y, ν, θ)

≈ 1

2
ηTHη + (∇f

(
η0) − Hη0)T

η

− 1

2
ηTQεη + (QεZν)Tη + const

= −1

2
ηT(Qε − H )η + (QεZν + b)Tη + const,

where b = (∇f (η0) − Hη0). This derivation yields a
Gaussian approximation with a mean vector

(Qε − H )−1(QεZν + b)

and covariance matrix (Qε −H )−1. However, as the vec-
tor η0 is the mode of the conditional posterior function
π(η | y, ν, θ). the following relation holds:

∇ logπ
(
η0 | y, ν, θ

)
= ∇f

(
η0) − Qεη0 + (QεZν)T = 0.
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The mean of the Gaussian approximations becomes

(Qε − H )−1(QεZν + b)

= (Qε − H )−1(
QεZν + ∇f

(
η0) − Hη0)

= (Qε − H )−1(
Qεη

0 − Hη0)
= (Qε − H )−1(Qε − H)η0 = η0.

Thus, a Gaussian approximation of the conditional poste-
rior density function π(η | y, ν, θ) evaluated at the mode
η0 is given by

π̃(η | y, ν, θ) = N
(
η | η0, (Qε − H )−1)

. �
A.5

PROOF. The logarithm of the acceptance ratio given
in (2.19) is

(A.5) r = log
π(η∗ | y, ν, θ)q(ηk)

π(ηk | y, ν, θ)q(η∗)
,

where π(η | y, ν, θ) is the conditional posterior density
function given in (2.17) and q(η) is the proposal density
based on the Gaussian approximation in (2.18). The right-
hand side term in (A.5) can be written as

logπ
(
η∗ | y, ν, θ

) − logq
(
η∗)

− (
logπ

(
ηk | y, ν, θ

) − logq
(
ηk)).

Since the proposal density q is based on the Gaussian ap-
proximation in (2.18), the following holds:

logπ(η | y, ν, θ) − logq(η)

= f (η) − 1

2
ηTQεη + (QεZν)Tη

−
(

1

2
ηTHη + bTη − 1

2
ηTQεη + (QεZν)Tη

)

+ const

= f (η) −
(

1

2
ηTHη + bTη

)
+ const

which yields the result in (2.20). �
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