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Discussion of Models as Approximations
I & II
Sara van de Geer

Abstract. We discuss the papers “Models as Approximations” I & II, by
A. Buja, R. Berk, L. Brown, E. George, E. Pitkin, M. Traskin, L. Zao and
K. Zhang (Part I) and A. Buja, L. Brown, A. K. Kuchibhota, R. Berk,
E. George and L. Zhao (Part II). We present a summary with some details
for the generalized linear model.
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1. PARAMETERS AS FUNCTIONALS

The authors have written a thought-provoking paper
(Part I & II), which takes the issue that models are only
approximations to a higher level, describing clearly the
consequences and how to deal with model misspecifi-
cation.

As the authors argue, it helps to view a parameter
as some function of the distribution instead of think-
ing of the distribution as some function of a parameter.
This is very much in line with Huber’s view; see Huber
(1967) where the sandwich formula for the asymptotic
variance appears.

Let me recall Huber’s results in the context of M-
estimation. Let x1,x2, . . . be i.i.d. copies of a random
variable x ∈ X with distribution P . Let be given for
b ∈ B be given loss functions ρb : X → R. Suppose
we observe the sample x1, . . . ,xN . The M-estimator is
now

β̂N := arg min
b∈B

N∑
i=1

ρb(xi ).

This is an estimator of the target

β := arg min
b∈B Eρb(x).

Under some standard conditions β̂N is a consistent
and asymptotically linear estimator of β . The influence
function is

IF(·) = −�−1ψβ(·),
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where � := �(β), and where, for b ∈ B, the function
ψb and the matrix �(b) are defined as ψb := ∂

∂b
ρb(·)

and �(b) := ∂
∂b′Eψb(x), respectively.

Thus
√

N(β̂N − β)
D−→ N (0, J ),

where the asymptotic covariance matrix is

J = �−1V �−1,

where V := V (β) with, for b ∈ B, the matrix V (b)

given by V (b) := Eψb(x)ψ ′
b(x). This is the population

version of the famous sandwich formula. The asymp-
totic variance can be estimated by

(1.1) ĴN := �̂−1
N V̂N�̂−1

N ,

where �̂N = �̂N(β̂N), and V̂N := V̂N(β̂N) with

�̂N(b) := ∂

∂b′
N∑

i=1

ψb(xi )/N

and

V̂N(b) :=
N∑

i=1

ψb(xi )ψ
′
b(xi )/N (b ∈ B).

The estimate �̂N also occurs when doing the
Newton–Raphson algorithm, as β̂N is a fixed point of
the iterations

β̂new = β̂old − �̂−1
N (β̂old)

1

N

N∑
i=1

ψ
β̂old

(xi ).

Thus

‖β̂new −β̂old‖2
2 = trace

(
�−1

N (β̂old)V̂N

(
β̂old)

�−1
N (β̂old)

)
.
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The trace of the sandwich formula can therefore be
seen as a measure of the numerical stability.

The bootstrap also nicely picks up the sandwich for-
mula.

Apart from technical regularity conditions, there are
no model assumptions, that is, as the authors call it,
M-estimation can be “assumption-lean.”

For example, suppose one believes the model P =
{Pϑ : ϑ ∈ �} holds true, with � a given subset of Rp .
Suppose densities pϑ := dPϑ/dμ exist with respect to
a given dominating measure μ for all ϑ and let θ̂N be
the maximum likelihood estimator

θ̂N := arg max
ϑ∈�

N∑
i=1

logpϑ(xi ).

The target is then

θ := arg max
ϑ∈�

E logpϑ(x).

If the model is well specified, we have P = Pθ ∈ P .
Otherwise, Pθ is the best approximation of P in terms
of Kullback–Leibler information. The sandwich for-
mula holds with

V = E

[
ṗθ (x)ṗ′

θ (x)

p2
θ (x)

]
= � +E

(
p̈θ (x)

pθ (x)

)
.

2. REGRESSION

The paper considers a regression framework, where
there is an “input” variable x and a “response” vari-
able y. This leads to a very interesting connection be-
tween misspecification and causality. Let me summa-
rize part of their framework as follows. First, replace
in the above the variable x by the pair (x,y). The esti-
mator is thus

β̂N := arg min
b∈B

N∑
i=1

ρb(xi ,yi )

and the target is

β := arg min
b∈B Eρb(x,y)).

The authors clarify that, with a fixed design in mind,
one may aim at a different target, namely

β(X) = arg min
b∈B

N∑
i=1

E
[
ρb(xi ,yi)|xi

]
,

with

X := (x1, . . . ,xN)′.

By fixing X, applying Huber’s arguments for indepen-
dent, nonidentically distributed observations, and fi-
nally integrating out, one gets

√
N

(
β̂N − β(X)

) D−→ N
(
0,�−1V1�

−1)
with

V1 = V1(β) := ECov
(
ψβ(x,y)|x)

.

We use here the notation Cov(z) := Ezz′ − (Ez)(Ez)′
for the covariance matrix of a random vector z. We
have then

V = Cov
(
ψβ(x,y)

)
= ECov

(
ψβ(x,y)|x) + Cov

(
E

[
ψβ(x,y)|x])

= V1 + V2.

If the model is well specified, E[ψβ(x,y)|x] = 0 so
that the second term V2 vanishes. In particular, in a
generalized linear model, where x ∈ R

p (a row-vector)
and y ∈R, the loss function is of the form

ρb(x,y) = ρ(xb,y).

Defining μ(x) := arg minz∈R E[ρ(z,y)|x], we see that

V = Ex′x
(
σ 2(x) + η2(x)

)
,

where σ 2(x) := E[ρ̇2(μ(x),y)|x] and η2(x) :=
E[(ρ̇(xβ,y) − ρ̇(μ(x),y))2|x]. In the particular case
of a one parameter family in canonical form, we have

ρ(z, y) = yz − d(z), ρ̇(z, y) = y − ḋ(z),

σ 2(x) = Var(y|x), η2(x) = (
ḋ
(
μ(x)

) − ḋ(xβ)
)2

,

and

V1 = Ex′xσ 2(x), V2 = Ex′xη2(x).

In this case, moreover,

� = Ex′xd̈(xβ).

The authors of the paper have highlighted a very
useful view on regression models. There is indeed a
strong relation with the “invariance” principle as ex-
plored in Peters, Bühlmann and Meinshausen (2016).
In (over)simplified wording: if x is causal for y, the for-
mula for the distribution of y given x does not change
if one changes (the distribution of) x. In the present
setup model, misspecification means that the param-
eter changes if X changes. The authors propose to
artificially change (the distribution of) X by using a
reweighting scheme. This can be a very useful diag-
nostic tool for misspecification. The exact interpreta-
tion per coefficient is however less clear.
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The idea of ancillarity is related, but somehow dif-
ferent. In regression and in simple words, ancillarity
means that the distribution of x does not depend on
the parameters of the model for y given x. Thus p(x)

and p(y|x) do not share parameters. On the other hand,
suppose they do:

pβ(x, y) = pβ(y|x)pβ(x).

Then the one has for the Fisher information

I := I1 + I2,

where

I := Cov
(
sβ(x,y)

)
, I1 := ECov

[
sβ(y|x)|x]

,

and

I2 := Cov
(
E

[
sβ(x,y)|x]) = Cov

(
sβ(x)

)
with

sβ(x, y) = ṗβ(x, y)

pβ(x, y)
, sβ(y|x) = ṗβ(y|x)

pβ(y|x)
,

sβ(x) := ṗβ(x)

pβ(x)
.

In other words, x contains information about the pa-
rameter which results in an increase in Fisher infor-
mation. The situation in this paper is exactly the other

way around. as formulated at the end of Section 4.1. It
is the regressor distribution that affects the parameters
(not the regressor itself) that is, β(X) is a function of
X.

Finally, I think the idea to view parameters as func-
tional of the distribution, instead of distributions de-
termined by parameters, is very appropriate but may
lead to less interpretability of these parameters. The
methodology in the paper allows one to infer to a cer-
tain extent whether or not the model is misspecified.
But even if the conclusion is that model misspecifica-
tion is likely, I would take a pragmatic point of view
and still interpret the estimates as if the model were
correct.

REFERENCES

HUBER, P. J. (1967). The behavior of maximum likelihood es-
timates under nonstandard conditions. In Proc. Fifth Berke-
ley Sympos. Math. Statist. and Probability (Berkeley, Calif.,
1965/66), Vol. I: Statistics 221–233. Univ. California Press,
Berkeley, Calif. MR0216620

PETERS, J., BÜHLMANN, P. and MEINSHAUSEN, N. (2016).
Causal inference by using invariant prediction: Identification
and confidence intervals. J. R. Stat. Soc. Ser. B. Stat. Methodol.
78 947–1012. MR3557186

http://www.ams.org/mathscinet-getitem?mr=0216620
http://www.ams.org/mathscinet-getitem?mr=3557186

	Parameters as Functionals
	Regression
	References

