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Abstract. We provide a survey of recent results on covariance estimation
for heavy-tailed distributions. By unifying ideas scattered in the literature,
we propose user-friendly methods that facilitate practical implementation.
Specifically, we introduce elementwise and spectrumwise truncation oper-
ators, as well as their M-estimator counterparts, to robustify the sample co-
variance matrix. Different from the classical notion of robustness that is char-
acterized by the breakdown property, we focus on the tail robustness which
is evidenced by the connection between nonasymptotic deviation and con-
fidence level. The key insight is that estimators should adapt to the sample
size, dimensionality and noise level to achieve optimal tradeoff between bias
and robustness. Furthermore, to facilitate practical implementation, we pro-
pose data-driven procedures that automatically calibrate the tuning param-
eters. We demonstrate their applications to a series of structured models in
high dimensions, including the bandable and low-rank covariance matrices
and sparse precision matrices. Numerical studies lend strong support to the
proposed methods.

Key words and phrases: Covariance estimation, heavy-tailed data, M-
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1. INTRODUCTION

Covariance estimation serves as a building block for
many important statistical learning methods, includ-
ing principal component analysis, discriminant analy-
sis, clustering analysis and regression analysis, among
many others. Recently, estimating structured large co-
variance matrices, such as bandable, sparse and low-
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rank matrices, has attracted ever-growing attention in
statistics and machine learning (Bickel and Levina
2008a, 2008b; Cai, Ren and Zhou, 2016; Fan, Liao
and Liu, 2016). It has broad applications, ranging from
functional magnetic resonance imaging (fMRI), analy-
sis of gene expression arrays to risk management and
portfolio allocation.

Theoretical properties of large covariance estima-
tors discussed in the literature often hinge heavily on
the Gaussian or sub-Gaussian' assumption (Vershynin,
2012). See, for example, Theorem 1 of Bickel and Lev-
ina (2008a). Such an assumption is typically very re-
strictive in practice. For example, a recent fMRI study
by Eklund, Nichols and Knutsson (2016) reported that
most of the common software packages for fMRI anal-
ysis, such as SPM and FSL, can result in inflated false-
positive rates up to 70% under 5% nominal levels, and
questioned a number of fMRI studies among approxi-

1A random variable Z is said to have sub-Gaussian tails if
there exists constants ¢y and ¢p such that P(|1Z — EZ| > 1) <
c1 exp(—cztz) forall 1 > 0.
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mately 40,000 studies according to PubMed. Their re-
sults suggested that:

The principal cause of the invalid cluster in-

ferences is spatial autocorrelation functions
that do not follow the assumed Gaussian
shape.

Eklund, Nichols and Knutsson (2016) plotted the em-
pirical versus theoretical spatial autocorrelation func-
tions for several datasets. The empirical autocorrela-
tion functions have much heavier tails compared to
their theoretical counterparts under the commonly used
assumption of a Gaussian random field, which causes
the failure of fMRI inferences. Similar phenomenon
has also been discovered in genomic studies (Liu et al.,
2003; Purdom and Holmes, 2005) and in quantitative
finance (Cont, 2001). It is therefore imperative to de-
velop robust inferential procedures that are less sensi-
tive to the distributional assumptions.

Heavy-tailed distribution is a viable model for data
contaminated by outliers that are typically encountered
in applications. Due to heavy tailedness, the probabil-
ity that some observations are sampled far away from
the “true” parameter of the population is nonnegligi-
ble. We refer to these outlying data points as stochas-
tic outliers. A procedure that is robust against such
outliers, evidenced by its better finite-sample perfor-
mance than a nonrobust method, is called a fail-robust
procedure. In this paper, by unifying ideas scattered
in the literature, we provide a unified framework for
constructing user-friendly tail-robust covariance esti-
mators that admit tight nonasymptotic deviation guar-
antees under weak moment assumptions. Specifically,
we propose elementwise and spectrumwise trunca-
tion operators, as well as their M-estimator counter-
parts, with adaptively chosen robustification parame-
ters. Theoretically, we establish nonasymptotic devi-
ation bounds and demonstrate that the robustification
parameters should adapt to the sample size, dimension-
ality and noise level for optimal tradeoff between bias
and robustness. To obtain estimators that are compu-
tationally efficient and easily implementable in prac-
tice, we propose data-driven schemes to calibrate the
tuning parameters, making our proposal user-friendly.
Finally, we discuss applications to several structured
models in high dimensions, including bandable matri-
ces, low-rank covariance matrices as well as sparse pre-
cision matrices. In the Supplementary Material (Ke et
al., 2019), we further consider robust covariance esti-
mation and inference under factor models, which might
be of independent interest.

Our definition of robustness is different from the
conventional perspective under Huber’s e-contam-
ination model (Huber, 1964), where the focus has been
on developing robust procedures with a high break-
down point. The breakdown point (Hampel, 1971) of
an estimator is defined (informally) as the largest pro-
portion of outliers in the data for which the estima-
tor remains stable. Since the seminal work of Tukey
(1975), a number of depth-based robust procedures
have been developed; see, for example, the papers by
Liu (1990), Zuo and Serfling (2000), Mizera (2002)
and Salibian-Barrera and Zamar (2002), among others.
Another line of work focuses on robust and resistant
M -estimators, including the least median of squares
and least trimmed squares (Rousseeuw, 1984), the S-
estimator (Rousseeuw and Yohai, 1984) and the MM-
estimator (Yohai, 1987). We refer to Portnoy and He
(2000) for a literature review on classical robust statis-
tics, and to Chen, Gao and Ren (2018) for recent de-
velopments on nonasymptotic analysis under contami-
nation models.

The rest of the paper is organized as follows. We start
with a motivating example in Section 2, which reveals
the downsides of the sample covariance matrix. In Sec-
tion 3, we introduce two types of generic robust covari-
ance estimators and establish their deviation bounds
under different norms of interest. The finite-sample
performance of the proposed estimators, both element-
wise and spectrumwise, depends on a proper tuning of
the robustification parameter that should adapt to the
noise level for bias-robustness tradeoff. We also dis-
cuss the median-of-means estimator, which is virtually
tuning-free at the cost of slightly stronger assumptions.
For practical implementation, in Section 4 we propose
a data-driven scheme to choose the key tuning parame-
ters. Section 5 presents various applications to estimat-
ing structured covariance and precision matrices. Nu-
merical studies are provided in Section 6. We conclude
this paper with a discussion in Section 7.

1.1 Overview of the Previous Work

In the past several decades, there has been a surge
of work on robust covariance estimation in the absence
of normality. Examples include the Minimum Covari-
ance Determinant (MCD) estimator, the Minimum Vol-
ume Ellipsoid (MVE) estimator, Maronna’s (Maronna,
1976) and Tyler’s (Tyler, 1987) M -estimators of multi-
variate scatter matrices. We refer to Hubert, Rousseeuw
and Van Aelst (2008) for a comprehensive review.
Asymptotic properties of these methods have been es-
tablished for the family of elliptically symmetric dis-
tributions; see, for example, Davies (1992), Butler,



456 Y. KE ET AL.

Davies and Jhun (1993) and Zhang, Cheng and Singer
(2016), among others. However, the aforementioned
estimators either rely on parametric assumptions, or
impose a shape constraint on the sampling distribution.
Under a general setting where neither of these assump-
tions are made, robust covariance estimation remains a
challenging problem.

The work of Catoni (2012) triggered a growing inter-
est in developing tail-robust estimators, which are char-
acterized by tight nonasymptotic deviation analysis,
rather than mean squared errors. The current state-of-
the-art methods for covariance estimation with heavy-
tailed data include those of Catoni (2016), Minsker
(2018), Minsker and Wei (2018), Avella-Medina et al.
(2018) and Mendelson and Zhivotovskiy (2018). From
a spectrumwise perspective, Catoni (2016) constructed
a robust estimator of the Gram and covariance matrices
of arandom vector X € R? via estimating the quadratic
forms E(u, X)? uniformly over the unit sphere in R,
and proved error bounds under the operator norm.
More recently, Mendelson and Zhivotovskiy (2018)
proposed a different robust covariance estimator that
admits tight deviation bounds under the finite kurtosis
condition. Both constructions, however, involve brute-
force search over every direction in a d-dimensional &-
net, and thus are computationally intractable. From an
elementwise perspective, Avella-Medina et al. (2018)
combined robust estimates of the first and second mo-
ments to obtain variance estimators. In practice, three
potential drawbacks of this approach are: (i) the ac-
cumulated error from estimating the first and second
moments may cause high variability; (ii) the diago-
nal variance estimators are not necessarily positive and
therefore additional adjustments are required; and (iii)
using the cross-validation to calibrate a total number
of O(d?) tuning parameters is computationally expen-
sive.

Building on the ideas of Minsker (2018) and Avella-
Medina et al. (2018), we propose user-friendly tail-
robust covariance estimators that enjoy desirable finite-
sample deviation bounds under weak moment condi-
tions. The constructed estimators only involve simple
truncation techniques and are computationally friendly.
Through a novel data-driven tuning scheme, we are
able to efficiently compute these robust estimators for
large-scale problems in practice. These two points dis-
tinguish our work from the literature on the topic. The
proposed robust procedures serve as building blocks
for estimating large structured covariance and preci-
sion matrices, and we illustrate their broad applicabil-
ity in a series of problems.

1.2 Notation

We adopt the following notation throughout the
paper. For any 0 < r,s < 0o and a d x d matrix
A = (Ake)1<k.t<d, we define the max norm ||A||max =
maxi<k ¢<d |Ake|, the Frobenius norm |[A|f =
Q1<k.t<a A%IV,)I/2 and the operator norm

Allrs = sup Ay,

u=(uy,...ug)T:|ull,=1

where ||u|| = Zz=1 lur|” for r € (0,00), |ulo =
>4 I(lugl # 0) and [lulloo = max; <g<q lug]. In par-
ticular, it holds [|A]1,; = maxj<¢<g4 >¢_, |Ae| and
|A oo, 00 = Max|<k<d Zgzl |Are|. Moreover, we write
|All2 := ||All2,2 for the spectral norm and use r(A) =
tr(A)/||A||2 to denote the effective rank of a nonnega-
tive definite matrix A, where tr(A) = Zg: 1 Akk 1s the
trace of A. When A is symmetric, it is well known that
|All2 = maxi<k<q |[Ac(A)| where A1(A) > A2(A) >
-++ > Xq(A) are the eigenvalues of A. For any matrix
A € R?*4 and an index set J C {1, ...,d}*, we use
J¢ to denote the complement of J, and A, to denote
the submatrix of A with entries indexed by J. For a
real-valued random variable X, let kurt(X) be the kur-
tosis of X, defined as kurt(X) = E(X — n)*/o*, where
u=EX and o2 =var(X).

2. MOTIVATING EXAMPLE: A CHALLENGE OF
HEAVY-TAILEDNESS

Suppose that we observe a sample of independent
and identically distributed (i.i.d.) copies X1, ..., X, of
a random vector X = (X1, ..., X4)T € R? with mean
i and covariance matrix X = (Ok¢)1<k.e<d- 10 as-
sess the difficulty of mean and covariance estimation
for heavy-tailed distributions, we first provide a lower
bound for the deviation of the empirical mean under
the £oo-norm in R,

PROPOSITION 2.1. For any 0 >0 and 0 < <
(2e)~ Y, there exists a distribution in RY with mean
W and covariance matrix o1y such that the empir-
ical mean X = (1/n) Yi 1 Xi of iid. observations
X1,..., X, from this distribution satisfies, with prob-
ability at least §,

_ d 2e8\ n—1D/2
QD) X -plo>o —(1——) .
nd n

The above proposition is a multivariate extension of
Proposition 6.2 of Catoni (2012). It provides a lower
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FI1G. 1.  Plots of estimation error under max norm versus dimension.

bound under the ¢,,-norm for estimating a mean vec-
tor via the empirical mean. On the other hand, combin-
ing the union bound with Chebyshev’s inequality, we
obtain that with probability at least 1 — 4§,

- d
X —plloc <0/ —.
né

Together, this upper bound and inequality (2.1) show
that the worst case deviations of the empirical means
grow polynomially in 1/§ under the {,-norm in
the presence of heavy-tailed distributions. As we
shall see later, a tail-robust estimator can achieve an
exponential-type deviation bound under weak moment
conditions.

To demonstrate the practical implications of Propo-
sition 2.1, we perform a toy numerical study on co-
variance matrix estimation. Let X, ..., X,, be i.i.d.
copies of X = (X1y,...,Xgq) € R4, where X’s are in-
dependent and have centered Gamma(3, 1) distribution
so that p =0 and X = 31;. We compare the perfor-
mance of three methods: the sample covariance matrix,
the elementwise truncated covariance matrix and the
spectrumwise truncated covariance matrix. The latter
two are tail-robust covariance estimators that will be
introduced in Sections 3.1 and 3.2 respectively. Take
n =200 and let d increase from 50 to 500 with a step
size of 50. We report the estimation errors under the
max norm based on 50 simulations. Figure 1 displays
the average (line) and the spread (dots) of estimation
errors for each method as the dimension increases. We
see that the sample covariance estimator has not only
the largest average error but also the highest variabil-
ity in all the settings. This example demonstrates that
the sample covariance matrix suffers from poor finite-
sample performance when data are heavy tailed.

3. TAIL-ROBUST COVARIANCE ESTIMATION
3.1 Elementwise Truncated Estimator

We consider the same setting as in the previous sec-
tion. For mean estimation, the suboptimality of devi-
ations of X = (X1,..., X7)T under £s-norm is due
to the fact that the tail probability of | Xk — k| de-
cays only polynomially in the deviation. A simple yet
natural idea for improvement is to truncate the data to
eliminate outliers introduced by heavy-tailed noises, so
that each entry of the resulting estimator exhibits sub-
Gaussian tails. To execute this idea, we introduce the
following truncation operator, which is closely related
to the Huber loss.

DEFINITION 3.1 (Truncation operator). Let i (-)
be a truncation operator given by

G Y ) = (Jul A T)sign(u),

where the truncation parameter t > 0 is also referred
to as the robustification parameter that trades off bias
against robustness.

uel,

As an illustration, we assume that g = 0 whence
¥ =E(XXT). We apply the truncation operator above
to each entry of X; X iT, and then take the average to
obtain

n
507,—1{13 = % Z Vo (XikXie), 1=k t=d,

i=1
where 1, > 0 are robustification parameters. When
the mean vector u is unspecified, a straightforward
approach is to first estimate the mean vector using
existing robust methods (Minsker, 2015; Lugosi and
Mendelson, 2019), and then to employ 8({ k¢ s robust
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estimates of the second moments. Estimating the first
and second moments separately will unavoidably in-
troduce additional tuning parameters, thus increasing
both statistical variability and computational complex-
ity. In what follows, we propose to use the pairwise dif-
ference approach to directly estimate variances and co-
variances, which is free of mean estimation. To the best
of our knowledge, the difference-based techniques can
be traced back to Rice (1984) and Hall, Kay and Tit-
terington (1990) in the context of bandwidth selection
and variance estimation for nonparametric regression.
Let N :=n(n — 1)/2 and define the paired data

{(Y{,Yo,.... YN}
3.2)
={Xy

- X2, X1 —X3,..., Xn—1 — X0},

which are identically distributed from a random vector
Y with mean 0 and covariance matrix cov(Y) = 2X.
It is easy to check that the sample covariance ma-
trix, T = (1/n) Y0_ (X; — X)(X; — X)T with X =
(1/n)>""_, X;, can be expressed as a U -statistic

Aqam L Z Y; YT/2

Following the argument from the last section, we ap-
ply the truncation operator i, to Yin.T /2 entrywise,
and then take the average to obtain

Zwm(mm/z) 1<k t=d.

Ulke—

Concatenating these estimators, we define the elemen-
twise truncated covariance matrix estimator via

T T ~
(3.3) Y, =X D= (Uz—ke)lfk,zfd’

where I' = (Ty¢)1<k,¢<q 1S @ symmetric matrix of pa-
rameters. fr can be viewed as a truncated version of
the sample covariance matrix %™ We assume that
n>2,d > 1 and define m = |n/2], the largest integer
not exceeding n/2. Moreover, let V = (vi¢)1<k,¢<q be
a symmetric d x d matrix such that

vee =E(Y12Y10/2)?
= B{(X1x — X20)(X1¢ — X20)}2/4.

THEOREM 3.1. For any 0 < § < 1, the estimator
37 = $7T(T) defined in (3.3) with

(3.4) I =/m/(2logd +logs—!)V

satisfies

max

2logd + logé—!
zznvnmax\/ B )528.

Theorem 3.1 indicates that, with properly calibrated
parameter matrix I', the resulting covariance matrix
estimator achieves elementwise tail robustness against
heavy-tailed distributions: provided the fourth mo-

ments are bounded, each entry of fr concentrates
tightly around its mean so that the maximum error

scales as +/log(d)/n + ,/log(6—!)/n. Elementwise,

we are able to accurately estimate X at high con-
fidence levels under the constraint that log(d)/n is
small. Implicitly, the dimension d = d(n) is regarded
as a function of n, and we shall use array asymptotics
‘n,d — 00” to characterize large sample behaviors.
The finite sample performance, on the other hand, is
characterized via nonasymptotic probabilistic bounds
with explicit dependence on n and d.

P(1E] - 2|

REMARK 1. It is worth mentioning that the esti-
mator given in (3.3) and (3.4) is not a genuine sub-
Gaussian estimator, in the sense that it depends on
the confidence level 1 — § at which one aims to con-
trol the error. More precisely, following the termi-
nology used by Devroye et al. (2016), it is called a
d-dependent sub-Gaussian estimator. Estimators of a
similar type include those of Catoni (2012), Minsker
(2015), Brownlees, Joly and Lugosi (2015), Hsu and
Sabato (2016), Minsker (2018) and Avella-Medina
et al. (2018), among others. For univariate mean es-
timation, Devroye et al. (2016) proposed multiple-8
mean estimators that satisfy exponential-type concen-
tration bounds uniformly over § € [8pin, 1). The idea is
to combine a sequence of §-dependent estimators in a
way similar to Lepski’s method (Lepskii, 1990).

REMARK 2. Since the elementwise truncated esti-
mator is obtained by treating each covariance oy¢ sep-
arately as a univariate parameter, the problem is equiv-
alent to estimation of a large vector given by the con-
catenation of the columns of X. This type of result is
particularly useful for proving upper bounds for sparse
covariance and precision estimators in high dimen-
sions; see Section 5. Integrated with £.-type perturba-
tion bounds, it can also be applied to principle com-
ponent analysis and factor analysis for heavy-tailed
data (Fan et al., 2019). However, when dealing with
large covariance matrices with bandable or low-rank
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structure, controlling the estimation error under spec-
tral norm is arguably more relevant. A natural idea is
then to truncate the spectrum of the sample covariance
matrix instead of its entries, which leads to the spec-
trumwise truncated estimator defined in the following
section.

3.2 Spectrumwise Truncated Estimator

In this section, we propose and study a covariance
estimator that is tail-robust in the spectral norm. To this
end, we directly apply the truncation operator to matri-
ces in their spectrum domain. We need the following
standard definition of a matrix functional.

DEFINITION 3.2 (Matrix functional). Given areal-
valued function f defined on R and a symmetric
A € REXK with eigenvalue decomposition A = UAUT
such that A = diag(Ay,...,Ak), f(A) is defined as
f(A) = Uf(A)UT, where f(A) = diag(f(r1),...,
(k).

Following the same rationale as in the previous sec-

tion, we propose a spectrumwise truncated covariance
estimator based on the pairwise difference approach:

ST _ T

(3.6) X, =3,()=— > ¥ (Y;Y]/2),

where Y; are given in (3.3). Note that Yin-T/Z is a
rank-one matrix with eigenvalue ||Y; ||2 /2 and the cor-
respondlng eigenvector Y;/||Y;|l2. By Definition 3.2,

22 can be rewritten as

1 1 S\ Y Y]
N;wr(innnz) L

1Yill3
1

> wf( 1%, - X;13)

<i<j<n

X=X — X7
IX; — X3 '

This alternative expression renders the computation al-
most effortless. The following theorem provides an

exponential-type concentration inequality for f;r un-
der operator norm, which is a useful complement to
Minsker (2018). Similarly to Theorem 3.1, our next re-
sult shows that sz achieves exponential-type concen-
tration in the operator norm for heavy-tailed data with
finite operatorwise fourth moment, meaning that

1
BT v’ =Bl - X)X - X)TF

is finite.

THEOREM 3.2. For any 0 < § < 1, the estimator
f; = f;(‘c) with

m
3.8 =
38 ’ v\/log(Zd) +logé—!

satisfies, with probability at least 1 — §,

log(2d) + log§~!

m

39 |5 -2, < 2v\/

To better recognize this result, note that v> can be
written as

1
S IE{X — (X — W)

which is well defined if the fourth moments E(X ) are
finite. Let

K = sup kurt(uTX)
uecRd
be the maximum kurtosis of one-dimensional projec-
tions of X. Then
v? < I Zl2{(K + D(E)/2+ | ]2}

The following result is a direct consequence of Theo-
rem 3.2: )A_?; admits exponential-type concentration for
data with finite kurtoses.

COROLLARY 3.1. Assume that K =
sup, cre kurt(u X) is finite. Then, for any 0 <§ < 1,
the estimator f; = f;(t) defined in Theorem 3.2 sat-

isfies
N
1% - %],

(3.10) -
< Kl/zllznz\/r():)(logd +1logs!)
n

with probability at least 1 — §. Here and below, “<”
stands for “<” up to an absolute constant.

REMARK 3. An estimator proposed by Mendelson
and Zhivotovskiy (2018) achieves a sharper deviation

bound, namely, with ||Z||2\/r(2)(logd+log8—1) in
(3.10) [ Z]l24/1(X)logr(X) +

| Zl24/logé~1; in particular, the second term in the
deviation bound is controlled by the spectral norm
|2 instead of the possibly much larger tr(X). Es-
timators admitting such recovery guarantees are of-
ten called “sub-Gaussian” as they achieve performance
similar to the sample covariance obtained from data
with multivariate normal distributions. Unfortunately,

improved  to
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the aforementioned estimator is computationally in-
tractable. The question of computational tractabil-
ity was subsequently resolved by Hopkins (2018)
and Cherapanamjeri, Flammarion and Bartlett (2019).
The former showed that a polynomial-time algorithm
achieves statistically optimal rate under the £;-norm,
and the latter proposed an estimator that has a signif-
icantly faster runtime; in particular, these results ap-
ply to covariance estimation with theoretical guaran-
tees under Frobenius norm. Yet it remains an open
problem to design a polynomial-time algorithm ca-
pable of efficiently computing the estimator proposed
by Mendelson and Zhivotovskiy (2018) that achieves
near-optimal deviation under the spectral norm.

3.3 An M-Estimation Viewpoint

In this section, we discuss alternative tail-robust co-
variance estimators from an M-estimation perspec-
tive, and study both the elementwise and spectrum-
wise truncated estimators. The connection with trun-
cated covariance estimators is discussed at the end of
this section. To proceed, we revisit the definition of Hu-
ber loss.

DEFINITION 3.3 (Huber loss). The Huber loss

£:(-) (Huber, 1964) is defined as

u’/2 if lu| <,

3.11
G.11) tlul — /2 if u] > T,

be(u) =
where v > 0 is a robustification parameter similar to
that in Definition 3.1.

Compared with the squared error loss, large values
of u are down-weighted in the Huber loss, yielding ro-
bustness. Generally speaking, minimizing Huber’s loss
produces a biased estimator of the mean, and parame-
ter T can be chosen to control the bias. In other words,
T quantifies the tradeoff between bias and robustness.
As observed by Sun, Zhou and Fan (2019), in order to
achieve an optimal tradeoff, T should adapt to the sam-
ple size, dimension and the noise level.

Starting with the elementwise method, we define the
entrywise estimators

N
~H .
o =argmm§ e, YirYie/2 —6),
312) M Teer e

1<k, f<d,

i=1

where i, are robustification parameters satisfying
Tke = Tek- When k = £, even though the minimization
is over R, it turns out the solution 8{"“,( « 18 still positive

almost surely and therefore provides a reasonable esti-
mator of ‘71Hkk~ To see this, for each 1 < k < d, define

Oox = minj<;<n Yizk/2 and note that for any 7 > 0 and
0 < 6ok,
N N

D o Le(Yi/2—-0) = D Lo (/2 — Ook).-

i=1 i=1

It implies that 81?,{/( « = Ook, which is strictly positive as
long as there are no tied observations. Again, concate-
nating these marginal estimators, we obtain a Huber-
type M -estimator

oH oH ~
(3.13) X=X, (I)= (Ufsz)lgk,eg’

where I' = (Tk¢) 1<k ¢<q- The following main result of

this section indicates that frf[ achieves tight concen-
tration under the max norm for data with finite fourth
moments.

THEOREM 3.3. Let V = (Vk¢)1<k t<d be a sym-
metric matrix with entries

(3.14) v7, = var((X1x — Xou) (X1¢ — X20)/2).

. . SH .
For any 0 < § < 1, the covariance estimator X given

in (3.13) with

m

3.15 I'= A\
3-15) \/210gd +logs—!
satisfies

oM

P(IZV - 2l
(3.16) 1
2logd +logé—
z4||V||max\/ I EL

as long as m > 810g(d28_1).

The M-estimator counterpart of the spectrum-
truncated covariance estimator was first proposed by
Minsker (2018) using a different robust loss function,
and extended by Minsker and Wei (2018) to more gen-
eral framework of U-statistics. In line with the previ-
ous elementwise M -estimator, we restrict our attention
to the Huber loss and consider

N
iy , 1
(3.17) ¥," €  argmin tr{NZZT(YiY;r/Z—M)},

MeRd*xd :M=MT i=1
which is a natural robust variant of the sample covari-
ance matrix
N

~ 1
M= argmin tr{ — Z(Yi Y!/2— M)2}
MeR4xd :M=MT i=1
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Define the d x d matrix So = E{(X| — X2)(X| —
X»)T/2 — %) that satisfies

_EX -w& - +u(D)E
- . :

The following result is modified from Corollary 4.1 of
Minsker and Wei (2018).

So

THEOREM 3.4. Assume that there exists some
K > 0 such that sup, cga kurt(u™X) < K. Then for any

O0<8<landv> IISollé/z, the M -estimator f;{ with
T= v\/m/(2logd + 2log 81 satisfies

. logd + log 6!
(3.18) HZ;{—EH2§C11},/%

with probability at least 1 — 58 as long as n > C2K -
r(X)(logd + log 8§71, where C1, C> > 0 are absolute
constants.

To solve the convex optimization problem (3.17),
Minsker and Wei (2018) proposed the following gradi-
ent descent algorithm: starting with an initial estimator

f(o), at iteration r = 1,2, ..., compute

N
s _ -1 _ 1 $ =D
U= -2 (VY230
i=1
where ¥, is given in (3.1). From this point of view,
the truncated estimator f; given in (3.6) can be

viewed as the first step of the gradient descent itera-
tion for solving optimization problem (3.17) initiated

at £© = 0. This procedure enjoys a nice contraction
property, as demonstrated by Lemma 3.2 of Minsker
and Wei (2018). However, since the difference ma-
trix Yin.T/Z — 3D for each ¢ is no longer rank-
one, we need to perform a singular value decompo-
sition to compute the matrix ¥, (¥; Yl-T /2 — f(l_l)) for
i=1,...,N.

We end this section with a discussion of the simi-
larities and differences between M -estimators and es-
timators defined via truncation. Both types of estima-
tors achieve tail robustness through a bias-robustness
tradeoff, either elementwise or spectrumwise. However
(informally speaking), M -estimators truncate symmet-
rically around the true expectation as shown in (3.12)
and (3.17), while the truncation-based estimators trun-
cate around zero as in (3.3) and (3.6). Due to smaller
bias, M -estimators are expected to outperform the sim-
ple truncation estimators. However, since the opti-
mal choice of the robustification parameter is often

much larger than the population moments in magni-
tude, either elementwise or spectrumwise, the differ-
ence between truncation estimators and M -estimators
becomes insignificant when the sample size »n is large.
Therefore, we advocate using the simple truncated esti-
mator primarily due to its simplicity and computational
efficiency.

3.4 Median-of-Means Estimator

Truncation-based approaches described in the previ-
ous sections require knowledge of robustification pa-
rameters Ti¢. Adaptation and tuning of these param-
eters will be discussed in Section 4 below. Here, we
suggest another method that does not need any tun-
ing but requires stronger assumptions, namely, exis-
tence of moments of order six. This method is based on
the median-of-means (MOM) technique (Nemirovsky
and Yudin, 1983; Devroye et al., 2016; Minsker and
Strawn, 2017). To this end, assume that the index
set {1,...,n} is partitioned into k disjoint groups
G, ..., G (partitioning scheme is assumed to be in-
dependent of X1, ..., X};) such that the cardinalities
|G| satisty ||G;| — z| < 1 for j =1,..., k. For each
J=1.. kletXg, =(/1G;|) Z,-GGJ. X; and

—~(i 1 - _
£V = Y (X, — X6 (X — Xg))T
GjlicG, |
J
be the sample covariance evaluated over the data in
group j. Then, for all 1 < ¢,m < d, the MOM esti-
mator of oy, 1s defined via

oM median{&z(,ln), - 6\22},
where 86(;1) is the entry in the £th row and mth column

of f(j ). This leads to

<MOM ~
)2 = (UleOM)lgz,mgd'

Let A%m = Var((X¢; — EX¢o)(Xpy — EX))) for 1 <
¢,m < d. The following result provides a deviation

) <MOM
bound for the MOM estimator X ©
norm.

under the max

THEOREM 3.5. Assume that ming A%m >cp >0
and max<k<q E| Xy — EXk|® < ¢, < oo. Then, there
exists Co > 0 depending only on (cy, ¢,) such that

P(JEV - 2|

max

log(d + 1) +logs~!
> 3 max Agm{\/ ogld +1) +log
L,m n

(3.19) L
+ CO_D <26
n
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for all § satisfying /{log(d + 1) +logd=1}/k +
Co/E/n <0.33.

REMARK 4.

1. The only user-defined parameter in the definition

of MM is the number of subgroups k. The bound

above shows that, provided k < 4/ (say, one could set
k = \/n/logn), the term Cok/n in (3.19) is of smaller
order, and we obtain an estimator that admits tight de-
viation bounds for a wide range of §. In this sense,

estimator & is essentially a multiple-§ estimator
(Devroye et al., 2016); see Remark 1.

2. Application of the MOM construction to large
covariance estimation problems has been explored
by Avella-Medina et al. (2018). However, the re-
sults obtained therein are insufficient to conclude that
MOM estimators are truly “tuning-free.” Under a
bounded fourth moment assumption, Avella-Medina
et al. (2018) derived a deviation bound (under max
norm) for the elementwise median-of-means estimator
with the number of partitions depending on a prespec-
ified confidence level parameter.

4. AUTOMATIC TUNING OF ROBUSTIFICATION
PARAMETERS

For all the proposed tail-robust estimators besides
the median-of-means, the robustification parameter
needs to adapt to the sample size, dimensionality and
noise level in order to achieve optimal tradeoff between
bias and robustness in finite samples. An intuitive
idea is to use cross-validation or the Lepski’s method
(Lepski and Spokoiny, 1997; Minsker, 2018). However
both approaches are computationally expensive. In this
section, we propose tuning-free approaches for con-
structing both truncated and M -estimators that have
low computational costs. Our nonasymptotic analysis
provides useful guidance on the choice of key tuning
parameters.

4.1 Adaptive Truncated Estimator

We first introduce a data-driven procedure that au-
tomatically tunes the robustification parameters in the
elementwise truncated covariance estimator. This pro-
cedure is motivated by the theoretical properties es-
tablished in Theorem 3.1. To avoid notational clut-
ter, we fix 1 <k <{ <d and define {Zy,...,ZN} =
{Y1xY1e/2, ..., YN YNe/2} such that o =EZ;. Then
8{,{4 can be written as (1/N) ZlN:l Yo (Zi). In view

of (3.4), an “ideal” choice of 1 is

m
4.1 = [ — ith vz, = EZ?,
@1 e = vre 2logd + ¢ W Vke

where ¢t = logé™! > 1 is prespecified to control the
confidence level and will be discussed later. A naive
estimator of v,%g is the empirical second moment
(I/N) ZlNzl Ziz, which tends to overestimate the true
value when data have high kurtoses. Intuitively, a well-
chosen 13y makes (1/N) Z,N:] Y (Zi) a good esti-
mator of EZ, and meanwhile, we expect the empiri-
cal truncated second moment (1/N) ZZNZI szk . (Z) =
(1I/N) vazl(Zi2 A rkze) to be a reasonable estimate of
Ele. Plugging this empirical truncated second mo-
ment into (4.1) yields

1 X (Z2A12) 2logd +1
42) -y = =
42y

i=1

2 = , T>0.
We then solve the above equation to obtain Ty, a data-
driven choice of tz¢. By Proposition 3 in Wang et al.
(2018), equation (4.2) has a unique solution as long
as 2logd +t < (m/N) ZlNzl I{Z; # 0}. We character-
ize the theoretical properties of this tuning method in a
companion paper (Chen and Zhou, 2019).

Regarding the choice of t = logé™': on the one
hand, because it controls the confidence level accord-
ing to (3.5), we shall let # = 1, be sufficiently large so
that the estimator concentrates around the true value
with high probability. On the other hand, ¢ also appears
in the deviation bound that corresponds to the width of
the confidence interval, so it should not grow too fast
as a function of n. In practice, we recommend using
t =logn (or equivalently, § = n~"), a slowly varying
function of n.

To implement the spectrumwise truncated covari-
ance estimator in practice, note that there is only one
tuning parameter whose theoretically optimal scale is

1 2011/2 m
— — — T -
2{|E{(X1 X)) (X1 —X2)T} ||2 /log(Zd)—H'

Motivated by the data-driven tuning scheme for the el-
ementwise estimator, we choose t by solving the equa-

tion
1 Xony;? 2y.yT
! Z(” l||2M> ¥
T Ni:l 2 ”Yl||2

_log(2d) +1
= — ,

2

where as before we take t =logn.
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4.2 Adaptive Huber-Type M-Estimator

To construct a data-driven approach that automat-
ically tunes the adaptive Huber estimator, we follow
the same rationale from the previous subsection. Since
the optimal 7z, now depends on var(Z1) instead of the
second moment EZ?2, it is therefore conservative to di-
rectly apply the above data-driven method in this case.
Instead, we propose to estimate 1z and ox, simultane-
ously by solving the following system of equations

1 L {(Zi —6)> AT?
f1<9,r>=ﬁ2{( )2 A T2

i=1
2logd +1
p =

2
(4.3a)
0,

N
43b) (0, 7) =) ¥ (Zi —0) =0,
i=1

for 6 € R and t > 0. Via a similar argument, it can be
shown that the equation f1(6, -) = 0 has a unique solu-
tion as long as 2logd + t < (n/N) ZlN:l 1{Z; # 6};
for any 7 > 0, the equation f>(-,t) = 0 also has a
unique solution. Starting with an initial estimate 0¥ =
(1/N) ZlN: | Zi, which is the sample variance estima-
tor of oy, we iteratively solve fi O6=D )y =0
and fz(G(S),r(S)) =0 for s = 1,2,... until conver-
gence. The resultant estimator, denoted by 837ka with
slight abuse of notation, is then referred to as the adap-
tive Huber estimator of o¢. We then obtain the data-
adaptive Huber covariance matrix estimator as IE\;{ =
(837’{,(()15;(,13501. Algorithm 1 presents the summary of
this data-driven approach.

5. APPLICATIONS TO STRUCTURED MATRIX
ESTIMATION

The robustness properties of the elementwise and
spectrumwise truncation estimators are demonstrated
in Theorems 3.1 and 3.2. In particular, the exponential-
type concentration bounds are essential for establishing
reasonable estimators for high-dimensional structured
covariance and precision matrices. In this section, we
apply the proposed generic robust methods to the esti-
mation of bandable and low-rank covariance matrices
as well as sparse precision matrices.

5.1 Bandable Covariance Matrix Estimation

Motivated by applications to climate studies and
spectroscopy in which the index set of variables X =

Algorithm 1 Data-adaptive huber covariance matrix
estimation

Input Data vectors X; € R4 (i =1,...,n), tolerance
level € and maximum iteration Spgx.

Output Data-adaptive Huber covariance matrix esti-

/\H PR
mator X3 = (agfkghgk,egd-

1: Compute pairwise differences Y| = X1 — X2, Y2 =

X —Xs3,....Yn=X,_1—X,,where N =n(n —
1)/2.
forl <k<t<ddo
6O = (2N)_1 zN=1 YirYie.
fors=1,..., Spax do

) « solution of f1(8¢~D,.)=0.
6) « solution of f>(-, 7®) =0.
if [0 —06~D| < ¢ break
stop 837:‘% = 837ka = (Smax),
stop
10: return f? = (ngkg)lgk,@d-

B AN A A

(X1,...,X4)T admits a natural order, one can ex-
pect that a large “distance” |k — {¢| implies near-
independence. We characterize this feature by the fol-
lowing class of bandable covariance matrices consid-
ered by Bickel and Levina (2008a) and by Cai, Zhang
and Zhou (2010):

fOl(MOa M)

5.1) = {z — 0k 1<k.t<a € RO 01 (E) < Mo,

M
max Z |oge| < — for all m}
I=t=d;  Zoi>m m®
Here My, M are regarded as universal constants and
the parameter « specifies the decay rate of oy, to zero
as ¢ — oo for each row.

When X follows sub-Gaussian distribution, Cai,
Zhang and Zhou (2010) proposed a minimax-optimal
estimator over JF, (Mo, M) under the spectral norm.
Specifically, they proposed a tapering estimator ffzp =
(Cke - wik—e|), Where the positive integer m < d spec-
ifies the bandwidth, w, = 1, 2 — 2g/m, 0, when
q<m/2,m/2 <q <m, q >m, respectively. T8 =
(Oke)1<k.e<a denotes the sample covariance. With the
optimal choice of bandwidth m = min{n!/Ce+D 4},
Cai, Zhang and Zhou (2010) showed that f;:p achieves
the minimax rate of convergence { /log(d)/n +
n=/QatDy A /d]n under the spectral norm.

To obtain a root-n consistent covariance estimator,
we expect the coordinates of X to have at least fi-
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FIG. 2. Motivation of our estimator of bandable covariance matrices.

nite fourth moments. Under this condition, it is un-
clear whether the optimal rate can be achieved over
Fo (Mo, M) without imposing additional distributional
assumptions, such as the elliptical symmetry (Mitra
and Zhang, 2014; Chen, Gao and Ren, 2018). Estima-
tors that naively use the sample covariance will inherit

its sensitivity to outliers. Recall the definition of f;
in (3.6); a simple idea is to replace the sample covari-

ance by a spectrumwise truncated estimator f;r in the
first step, to which the tapering procedure can be ap-
plied. However, such an estimator is not optimal: in-
deed, the analysis of a tapering estimator requires each
small principal submatrix of the initial estimator to be
highly concentrated around the population object. Sup-
pose that we truncate the £>-norm of the entire vec-
tor Y; at a level t scaling with tr(X). For each subset
J C{l,...,d},let Y;; be the subvector of Y; indexed
by J. Then the corresponding principal submatrix

1Y 1 Yi Y],
A AL RILD
Né 2T a3
is not an ideal robust estimator of X 5 ; because the “op-

timal” 7 in this case should scale with tr(X ;) rather
than tr(X). This explains why directly applying the ta-

pering procedure to sz is not ideal.

In what follows, we propose an optimal robust co-
variance estimator based on the spectrumwise trunca-
tion technique introduced in Section 3.2. First, we in-
troduce some notation. Let Z;p’q) =i p, Yipt1...-s
Yi p+4—1)7 be a subvector of ¥; given in (3.3). Accord-
ingly, define the truncated estimator of the principal
submatrix of X as

f(zp,q)ﬂ' _ f(zp,q)ﬂ'(r)

(5.2) !

N
~ Z wr (ZEPJ[) ZZ(P,Q)T/z)’

i=1
where 7 is as in (3.8) with d replaced by ¢ and v =

||IE{Z§’7"])Z§’7’q)T}2 l2/4. Moreover, we define an oper-
ator that embeds a small matrix into a large zero ma-
trix: for a ¢ x g matrix A = (ax¢)1<k,¢<q, define the

d x d matrix Ef) (A) = (bke)1<k.e<d, Where p indicates
the location and

b ag—pt+1,0-p+1 M p<kl=<p+qg-—1,
ke = .
0 otherwise.

Our final robust covariance estimator is then defined as

[(d=1/q]

<S(ig+1.29), T
> ELL &)
j=1

[d—1)/q1

- X(:) E?qul
j:

5, =
(5.3)
()A:équrl,q),T)‘

The idea behind the construction above is that a
bandable covariance matrix in J, (Mo, M) can be ap-
proximately decomposed into several principal subma-
trices of size 2q and g, as shown in Figure 2. Us-

ing spectrumwise truncated estimators fép DT and

=(p.2 . 1 1nci
ng 20T 16 estimate the corresponding principal sub-

matrices in this decomposition leads to the proposed
estimator fq.

This construction is different from the literature
where the banding or tapering procedure is directly
applied to an initial estimator, say the sample covari-
ance matrix (Bickel and Levina, 2008a; Cai, Zhang and
Zhou, 2010). It is worth mentioning that a similar ro-
bust estimator can be constructed following the idea of
Cai, Zhang and Zhou (2010), which differs from our
proposal. Computationally, our estimator evaluates as
many as O(d/q) matrices of size g x g (or 2g X 2q),
while the method developed by Cai, Zhang and Zhou
(2010) computes as many as O (d) such matrices.

The following result shows that the estimator de-
fined in (5.3) achieves near-optimal rate of conver-
gence under the spectral norm as long as X has uni-
formly bounded fourth moments. The proof is deferred
to the Supplementary Material.

THEOREM 5.1. Assume that ¥ € Fo,(My, M) and
Sup, csd—1 kurt(mT™X) < My for some constant M| >
0. For any co > 0, take 6 = (nd)= in the defini-
tion of t for constructing principal submatrix estima-

tors fg‘p’q)’T in (5.2). Then, with a bandwidth q =<
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{n/ log(nd)}l/(2“+l) A d, the estimator fq defined in

(5.3) is such that with probability at least 1 — 2n=0,
log(nd) >a/(20{+1)

n

d- log(nd)}
\/ I

where C > 0 is a constant depending only on M, M,
M 1, CO-

’

1%, - 2l < Cminf (

According to the minimax lower bounds established
by Cai, Zhang and Zhou (2010), up to a logarithmic
term our robust estimator achieves the optimal rate of
convergence that is enjoyed by the tapering estimator
when the data are sub-Gaussian. Our estimator is not
fully data-driven, because the optimal choice of the
bandwidth ¢ depends on the unknown parameter «. We
refer to Liu and Ren (2018) for a Lepski-type adaptive
procedure.

5.2 Low-Rank Covariance Matrix Estimation

In this section, we consider a structured model where
Y = cov(X) is approximately low-rank. Using the
trace-norm as a convex relaxation of the rank, we pro-
pose the following trace-norm penalized optimization
program:

T |1 sT
(5.4) %, € argmm{i IA-%] [p+y ||A||tr},
AeS,

where S; denotes the set of d x d positive semi-definite
matrices, y > 0 is a regularization parameter and sz,
defined in (3.6), serves as a pilot estimator. This trace-
penalized method was first proposed by Lounici (2014)
with the initial estimator taken to be the sample covari-
ance matrix, and later studied by Minsker (2018) using
a different initial estimator. In fact, given the initial es-
timator f;, the estimator given in (5.4) has the follow-
ing closed-form expression (Lounici, 2014):

d
2,, =Y max{n(Z,) —y,0}
(5.5) T

STV, (T

X vk(Zg )i (E3),
where Al(f;) > ...
of f; in an nonincreasing order and vl(fz—), cees

> kd(f;) are the eigenvalues

vd(f;—) are the associated orthonormal eigenvectors.
The following theorem provides a deviation bound for
fzy under the Frobenius norm. The proof follows di-
rectly from Theorem 3.2 and Theorem 1 of Lounici
(2014), and therefore is omitted.

THEOREM 5.2. Foranyt > 0and v > 0 satisfying
(3.7), let

[log(2d) +t
T=" L and y Z 2v M
log(2d) +t¢ m

Then with probability at least 1 — e™', the trace-
penalized estimator EZV satisfies

ST 2
1%, — 2|k
< inf [||Z — A||# 4+ min{4y | Ay, 3y rank(A)}]
AeSy

and
T
IZ,, — 2], <2y

In particular, if rank(X) < ro, then with probability at

least 1 —e %,

T 2 .
5.6) |Z7, - Z|f < min{4]Z ]2y, 3y}
5.3 Sparse Precision Matrix Estimation

Our third example is related to sparse precision ma-
trix estimation in high dimensions. Recently, Avella-
Medina et al. (2018) showed that minimax optimality
is achievable within a larger class of distributions if the
sample covariance matrix is replaced by a robust pi-
lot estimator, and also provided a unified theory for
covariance and precision matrix estimation based on
general pilot estimators. Specifically, Avella-Medina
et al. (2018) robustifed the CLIME estimator (Cai, Liu
and Luo, 2011) using three different pilot estimators:
adaptive Huber, median-of-means and rank-based es-
timators. Based on the elementwise truncation proce-
dure and the difference of trace (D-trace) loss proposed
by Zhang and Zou (2014), we further consider a ro-
bust method for estimating the precision matrix @* =
¥ ~! under sparsity, which represents a useful comple-
ment to the methods developed by Avella-Medina et al.
(2018).

The advantage of using the D-trace loss is that it
automatically results a symmetric solution. Specifi-

cally, using the elementwise truncated estimator IE\IT =
f?(l‘) in (3.3) as an initial estimate of X, we propose
to solve

5.7

O € argmin{ - (O, X| ) — tr(®) +A[|O||, {,
@eRdxd

£(©)
where [[®ll¢; = > k20 |Okel for @ = (Oke)1<k,t<d-
For simplicity, we write £L(®) = (92, flT) — tr(O).
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Zhang and Zou (2014) imposed a positive definiteness
constraint on @, and proposed an alternating direction
method of multipliers (ADMM) algorithm to solve the
constrained D-trace loss minimization. However, with
the positive definiteness constraint, the ADMM algo-
rithm at each iteration computes the singular value de-
composition of a d x d matrix, and therefore is com-
putationally intensive for large-scale data. In (5.7), we
impose no constraint on @ primarily for computational
simplicity.

Before presenting the main theorem, we need to in-
troduce an assumption on the restricted eigenvalue of
the Hessian matrix of £(®). The Hessian can be writ-
ten as

1 T <
HFZE(I®EIT+ZIT®I),

where T’ is the tuning parameter matrix in (3.3).
For matrices A,B € ]Rdzx‘jz, we define (A, A)g =
vec(A)TBvec(A), where vec(A) designates the d>-
dimensional vector concatenating the columns of A.
Let S = supp(®*) C {l,...,d}?, the support set of
oF.

DEFINITION 5.1 (Restricted eigenvalue for matri-
ces). For any £ > 0 and m > 1, we define the max-
imal and minimal restricted eigenvalues of the Hessian
matrix Hr as

(W, W)n,.
IW|2

W e R4 W =£0,3J such that S C J,

k_(T, & m)= igvf{

1< m W oelle, < EIW e, };

W, Wy,
(T 6 m) = sup SN
W wiz

W e R4 W =£0,3J such that S C J,
1< m, [Welle, ssnwum}.

CONDITION 5.1 (Restricted eigenvalue condition).
We say restricted eigenvalue condition with (I, 3, k)
holds if 0 < k— =x_(I',3,k) <k (I,3,k) =4 <
0.

Condition 5.1 is a form of the localized restricted
eigenvalue condition (Fan et al., 2018). Moreover, we
assume that the true precision matrix @* lies in the fol-
lowing class of matrices:

U(s,M)={SZeRdXd:SZ=SZT,SZ>O,

10 < M. Y 1( Qe £ 0) SS}.

k,¢

A similar class of precision matrices has been stud-
ied in the literature; see, for example, Zhang and Zou
(2014), Cai, Ren and Zhou (2016) and Sun et al.
(2018). Recall the definition of V in Theorem 3.1. We
are ready to present the main result, with the proof de-
ferred to the Supplementary Material.

THEOREM 5.3. Assume that ®* = X7 € U(s,
M). Let T € R¥*4 pe as in Theorem 3.1 and let ) sat-

isfy

2logd +logs—!
[n/2]
Assume Condition 5.1 is fulfilled with k = s and T

specified above. Then with probability at least 1 — 28,
we have

for some C > M.

A :4C||V”max\/

2logd +logs—!
ln/2]

REMARK 5. The nonasymptotic probabilistic
bound in Theorem 5.3 is established under the assump-
tion that Condition 5.1 holds. It can be shown that Con-
dition 5.1 is satisfied with high probability as long as
the coordinates of X have bounded fourth moments.
The proof is based on an argument similar to the proof
of Lemma 4 in the work of Sun, Zhou and Fan (2019),
and thus is omitted here.

|® — @, <6Ck=! ||V||maxs1/2\/

6. NUMERICAL STUDY

In this section, we assess the numerical performance
of proposed tail-robust covariance estimators. We con-
sider the elementwise truncated covariance estimator
fr defined in (3.3), the spectrumwise truncated co-
variance estimator f; defined in (3.6), the Huber-type
M -estimator /E\TL given in (3.13) and the adaptive Hu-
ber M -estimator f;—[ in Section 4.2.

Throughout this section, we let {tip}1<k<q = 7
for f? To compute sz and ’2\’1{, the robustification
parameter 7 is selected by five-fold cross-validation.
The robustification parameters {tx¢}1 <k ¢<q for )A:T are
tuned by solving the equation (4.2), and thus is an
adaptive elementwise-truncated estimator. To imple-
ment the adaptive Huber M -estimator f? we cali-
brate {ti¢}1<k ¢<a and estimate {ok¢}1<k ¢<q Simulta-
neously by solving the equation system (4.3) as de-
scribed in Algorithm 1.
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We first generate a data matrix Y € R"*¢ with rows
being i.i.d. vectors from a distribution with mean 0 and
covariance matrix I;. We then rescaled the data and set
X = YX!/2 as the final data matrix, where ¥ € R?*4
is a structured covariance matrix. We consider four dis-
tribution models outlined below:

(1) (Normal model). The rows of Y are i.i.d. gener-
ated from the standard normal distribution.

(2) (Student’s t model). Y =7/ V3, where the en-
tries of Z are i.i.d. with Student’s distribution with 3
degrees of freedom.

(3) (Pareto model). Y =4Z/3, where the entries of
Z are i.i.d. with Pareto distribution with shape parame-
ter 3 and scale parameter 1.

(4) (Log-normal model). Y = exp{0.5 + Z}/(e3 —
¢2), where the entries of Z are i.i.d. with standard nor-
mal distribution.

The covariance matrix X has one of the following
three forms:

(a) (Diagonal structure). ¥ =1y;

(b) (Equal correlation structure). oxe = 1 for k = ¢
and o3y = 0.5 when k # ¢;

(c) (Power decay structure). ox¢ = 1 for k = £ and
ore = 0.5% ¢ when k # ¢.

In each setting, we choose (n,d) as (50, 100),
(50,200) and (100, 200), and simulate 200 replica-
tions for each scenario. The performance is assessed
by the relative mean error (RME) under spectral, max
or Frobenius norm:

RME = 2imt 1% = Zlo.max ¥

2122(1 ”Zi - X ||2,max,F’

where X ; 1s the estimate of X in the ith simulation us-
ing one of the four robust methods and ¥, denotes the
sample covariance estimate that serves as a benchmark.
The smaller the RME is, the more improvement the ro-
bust method achieves.

Tables 1-3 summarize the simulation results, which
indicate that all the robust estimators outperform the
sample covariance matrix by a visible margin when
data are generated from a heavy-tailed or an asym-
metric distribution. On the other hand, the proposed
estimators perform almost as well as the sample co-
variance matrix when the data follows a normal dis-
tribution, indicating high efficiencies in this case. The
performances of the four robust estimators are compa-
rable in all scenarios: the spectrumwise truncated co-

variance estimator f;— has the smallest RME under
spectral norm, while the other three estimators perform

better under max and Frobenius norms. This outcome
is inline with our intuition discussed in Section 3. Fur-
thermore, the computationally efficient adaptive Huber
M -estimator f;{ performs comparably as the Huber-

type M -estimator /E\? where the robustification param-
eters are chosen by cross-validation.

7. DISCUSSION

In this paper, we surveyed and unified selected re-
cent results on covariance estimation for heavy-tailed
distributions. More specifically, we proposed elemen-
twise and spectrumwise truncation techniques to ro-
bustify the sample covariance matrix. The robustness,
referred to as the rail robustness, is demonstrated
by finite-sample deviation analysis in the presence
of heavy-tailed data: the proposed estimators achieve
exponential-type deviation bounds under mild moment
conditions. We emphasize that the tail robustness is
different from the classical notion of robustness that is
often characterized by the breakdown point (Hampel,
1971). Nevertheless, it does not provide any informa-
tion on the convergence properties of an estimator,
such as consistency and efficiency. Tail robustness is
a concept that combines robustness, consistency, and
finite-sample error bounds.

We discussed three types of procedures in Section 3:
truncation-based methods, their M -estimation counter-
parts and the median-of-means method. Truncated esti-
mators have closed-form expressions and therefore are
easy to implement in practice. The corresponding M -
estimators achieve comparable sub-Gaussian-type er-
ror bounds, which are of the order +/log(d/8)/n under
the max norm and of order /r(¥)log(d/§)/n under
the spectral norm, but with sharper moment-dependent
constants. Computationally, M-estimators can be effi-
ciently evaluated via gradient descent method or iter-
atively reweighted least squares algorithm. Both trun-
cated and M -estimators involve robustification param-
eters that need to be calibrated to fit the noise level of
the problem. Adaptation and tuning of these param-
eters are discussed in Section 4. The MOM estima-
tor proposed in Section 3.4 is tuning-free because the
number of blocks depends neither on noise level nor
on confidence level. Following the terminology pro-
posed by Devroye et al. (2016), truncation-based es-
timators are §-dependent estimators as they depend on
the confidence level 1 — § at which one aims to con-
trol, while the MOM estimator achieves sub-Gaussian
error bounds simultaneously at all confidence levels in
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TABLE 1
RME under diagonal structure

Normal 13 Pareto Log-normal
2 max F 2 max F 2 max F 2 max F
n =50, p=100
f?fl 0.97 0.95 0.98 0.37 0.39 0.65 0.27 0.21 0.47 0.27 0.21 0.51
i? 0.97 0.90 0.96 0.37 0.36 0.59 0.29 0.24 0.45 0.24 0.19 0.49
fr 0.97 0.91 0.96 0.40 0.38 0.62 0.27 0.23 0.42 0.25 0.18 0.50
fz— 0.96 0.99 0.98 0.34 0.41 0.67 0.26 0.25 0.44 0.25 0.26 0.56
n =50, p =200
f?ﬁ 0.98 0.95 0.98 0.32 0.29 0.60 0.29 0.23 0.41 0.24 0.20 0.43
fz-[ 0.98 0.96 0.97 0.31 0.26 0.54 0.27 0.20 0.42 0.24 0.19 0.38
fz— 0.97 0.95 0.96 0.33 0.29 0.63 0.26 0.19 0.39 0.23 0.18 0.42
)A:z— 0.95 0.98 0.95 0.31 0.33 0.65 0.24 0.26 0.48 0.22 0.23 0.48
n =100, p =200
)A:?{ 0.99 0.98 0.99 0.40 0.47 0.58 0.46 0.49 0.51 0.32 0.20 0.47
)A:?5 0.95 0.99 0.98 0.39 0.47 0.59 0.45 0.45 0.48 0.28 0.21 0.49
f? 0.97 0.94 0.97 0.38 0.45 0.57 0.46 0.49 0.51 0.26 0.27 0.47
fz 0.94 1.01 0.95 0.33 0.51 0.64 0.42 0.53 0.61 0.28 0.27 0.58

Mean relative errors of the the four robust estimators f?{, 23{, f;r and fz— over 200 replications when the true covariance matrix has a

diagonal structure. 2, max and F denote the spectral, max and Frobenius norms, respectively.

TABLE 2
RME under equal correlation structure

Normal 13 Pareto Log-normal
2 max F 2 max F 2 max F 2 max F
n =50, p =100
EZ{ 0.97 0.94 0.97 0.68 0.12 0.68 0.68 0.23 0.59 0.58 0.27 0.46
fg-l 0.96 0.95 0.96 0.69 0.15 0.64 0.62 0.21 0.59 0.52 0.27 0.44
217’ 0.97 0.96 0.97 0.67 0.14 0.67 0.64 0.22 0.57 0.59 0.28 0.47
fz— 0.95 0.99 1.02 0.56 0.26 0.71 0.62 0.27 0.60 0.50 0.33 0.51
n =50, p =200
f?’f 0.97 0.94 0.98 0.77 0.21 0.76 0.67 0.34 0.50 0.69 0.23 0.67
f;’f 1.00 0.97 0.98 0.77 0.22 0.73 0.63 0.31 0.50 0.70 0.23 0.68
f? 0.99 0.97 0.96 0.78 0.24 0.71 0.63 0.33 0.46 0.70 0.23 0.68
f; 0.95 0.98 1.00 0.74 0.35 0.80 0.61 0.34 0.51 0.66 0.31 0.72
n =100, p =200
f?i 1.00 0.96 0.99 0.79 0.23 0.78 0.63 0.46 0.57 0.53 0.21 0.47
fg-t 0.98 0.98 0.97 0.79 0.24 0.79 0.69 0.48 0.58 0.57 0.22 0.48
fz— 1.00 1.00 0.99 0.78 0.21 0.77 0.65 0.45 0.57 0.55 0.23 0.50
fz— 0.97 1.02 1.03 0.73 0.32 0.83 0.62 0.54 0.61 0.50 0.29 0.55
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TABLE 3
RME under power decay structure

Normal 3 Pareto Log-normal
2 max F 2 max F 2 max F 2 max F
n=>50, p =100
f;H 0.98 0.95 0.98 0.58 0.30 0.71 0.48 0.29 0.57 0.69 0.39 0.79
EZ{ 0.95 0.95 0.93 0.58 0.28 0.72 0.48 0.26 0.58 0.70 0.39 0.78
217— 0.97 0.98 0.96 0.59 0.30 0.71 0.49 0.26 0.57 0.72 0.39 0.77
)A:Z— 0.98 0.98 0.99 0.52 0.33 0.77 0.47 0.31 0.60 0.66 0.45 0.81
n =50, p =200
)A:?L 0.98 0.95 0.97 0.58 0.30 0.71 0.48 0.29 0.57 0.69 0.39 0.79
f;‘ 0.96 0.93 0.95 0.56 0.29 0.66 0.49 0.26 0.55 0.72 0.38 0.77
f? 0.98 0.97 0.97 0.59 0.27 0.71 0.48 0.26 0.58 0.70 0.36 0.80
fz 0.98 0.98 1.01 0.54 0.24 0.76 0.41 0.31 0.60 0.68 0.42 0.82
n =100, p =200
fz{ 0.99 0.98 1.00 0.45 0.25 0.66 0.42 0.31 0.54 0.48 0.35 0.62
f;t 0.98 0.98 0.99 0.47 0.26 0.68 0.41 0.30 0.53 0.47 0.34 0.61
fz— 1.00 0.99 1.00 0.50 0.30 0.68 0.41 0.34 0.56 0.49 0.38 0.64
EZ' 0.99 1.04 1.01 0.41 0.31 0.70 0.40 0.39 0.59 0.43 0.43 0.69

a certain range but requires slightly stronger assump-
tions, namely, the existence of sixth moments instead
of fourth.

Three examples discussed in Section 5 illustrate that
both elementwise and spectrumwise truncated covari-
ance estimators can serve as building blocks for a vari-
ety of estimation problems in high dimensions. A nat-
ural question is whether one can construct a single
robust estimator that achieves exponentially fast con-
centration both elementwise and spectrumwise, that is,
satisfies the results in Theorems 3.1 and 3.2 simulta-
neously. Here we discuss a theoretical solution to this
question. In fact, one can arbitrarily pick one element,
denoted as fT, from the collection of matrices

7—[={SeRdXd:S=ST,

~ log(2d) + log§~—1
HEZT—SH2§ZU\/ 0g(2d) +logd” 4
m

2logd +logs—! }
~ :

127 = 8] e < 2||V||max\/

Due to Theorems 3.1 and 3.2, with probability at least
1 — 34, the set H is nonempty since it contains the true
covariance matrix X. Therefore, it follows from the the

triangle inequality that the inequalities

-1
157 5], < 4v\/log(2d) +logs

m

and

[Z7 = 2y <

max —

4Vl max

\/210gd+log8—1

hold simultaneously with probability at least 1 — 33.
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1214/19-STS711SUPP; .pdf). In this supplement, we
provide proofs of all the theoretical results in the main
text. In addition, we investigate robust covariance esti-
mation and inference under factor models, which might
be of independent interest.
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