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Abstract: In this paper we analyze the equilibrium properties of a large
class of stochastic processes describing the fundamental biological process
within bacterial cells, the production process of proteins. Stochastic models
classically used in this context to describe the time evolution of the num-
bers of mRNAs and proteins are presented and discussed. An extension of
these models, which includes elongation phases of mRNAs and proteins, is
introduced. A convergence result to equilibrium for the process associated
to the number of proteins and mRNAs is proved and a representation of this
equilibrium as a functional of a Poisson process in an extended state space
is obtained. Explicit expressions for the first two moments of the number of
mRNAs and proteins at equilibrium are derived, generalizing some classical
formulas. Approximations used in the biological literature for the equilib-
rium distribution of the number of proteins are discussed and investigated
in the light of these results. Several convergence results for the distribution
of the number of proteins at equilibrium are in particular obtained under
different scaling assumptions.
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1. Introduction

The gene expression is the process by which the genetic information is synthe-
sized into a functional product, the proteins. These macro-molecules are the
crucial agents of functional properties of cells. They play an important role in
most of the basic biological processes within the cell, either directly, or as a
component of complex macro-molecules such as polymerases or ribosomes. The
information flow from DNA genes to proteins is a fundamental process, common
to all living organisms.

We analyze this fundamental process in the context of prokaryotic cells, like
bacterial cells or archaeal cells. The cytoplasm of these cells is not as struc-
tured as eukaryotic cells, like mammalian cells for example, so that most of the
macro-molecules of these cells can potentially collide with each other. This key
biological process can be, roughly, described as resulting of multiple encoun-
ters/collisions of several types of macro-molecules of the cell: polymerases with
DNA, ribosomes with mRNAs, or proteins with DNA, . . . . An additional feature
of this process is that it is consuming an important fraction of energy resources
of the cell, to build chains of amino-acids or chains of nucleotides in particular.

The fact that the cytoplasm of a bacterial cell is a disorganized medium has
important implications on the internal dynamics of these organisms. Numer-
ous events are triggered by random events associated to thermal noise. When
the external conditions are favorable, these cells can nevertheless multiply via
division at a steady pace. In each cell, around 4000 different types of proteins
are produced, with different concentrations: from 5 elements per cell for some
rare proteins to 100,000 per cell for some ribosomal proteins. Despite of the
noisy environment, the protein production process can handle such exponential
growth with these constraints. The cost of the translation phase, the last step
of the protein production process, is estimated to account for 50% of the energy
consumption of a rapidly growing bacterial cell, see Russell and Cook [34] for
example.

An important question in this context is of understanding and quantifying
the role of the parameters of the cell in the production of proteins when large
fluctuations may occur, as in the case of abundant proteins. Given the high level
of energy consumed by protein production, these large stochastic fluctuations
should be, at least, “controlled” to avoid a shortage of resources for example.
Note nevertheless that, outside “pure” fluctuations, random events involving
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macro-molecules with low copy-numbers may play an important role in the time
evolution of cells, in the case of change of environment of the cell for example so
that the cells may adapt. Some components of the “noise” in the gene expression
may thus have a functional role. See Eldar and Elowitz [10], Lestas et al. [22]
and Norman et al. [28].

From the point of view of the design, the cell can be seen as a system where the
processing power is expressed in terms of numerous chemical reactions occurring
in a noisy environment. An important difference with classical, non-biological,
systems, like computer networks, the possibility of explicitly storing information
used to regulate the production process is not as clear as for these systems. See
Burrill and Silver [7] on this topic. This is a really challenging aspect of these
biological systems.

1.1. The protein production process

We give a quick, simplified, sketch of the steps involved in the production of
proteins. See Watson et al. [41] for a much more detailed description of these
complex processes.

— Gene Activation/Deactivation.
A gene is a contiguous section of the DNA associated to a functional
property of the cell. When a gene is active, a macro-molecule of the cell, an
RNA polymerase, one of the macro-molecules moving in the cytoplasm, can
possibly bind to the DNA at the promoter, i.e. the beginning of the section
of DNA for the gene. The binding to the gene is subject to the various
(random) fluctuations of the medium. The gene may also be inactive and in
this case no binding is possible. The reason is that some macro-molecules,
like proteins or mRNAs, of the cell can “block”, via chemical bonds, the
gene so that polymerases cannot access it. This is one of the regulation
mechanisms of the cell. When random perturbations break these bindings,
the gene becomes again active.

— Transcription.
When an RNA polymerase is bound to an active gene, it starts to make
a copy of this gene. The product which is a sequence of nucleotides is a
messenger RNA, or mRNA. The time during which nucleotides are added
sequentially is the elongation phase of the production of the mRNA. When
the full sequence of nucleotides of the mRNA has been successively assem-
bled, the mRNA is released in the cytoplasm. It has a finite lifetime, being
degraded by other macro-molecules.

— Translation.
The step is achieved through another large macro-molecule: the ribosome.
A ribosome is also moving within the cytoplasm. When it encounters an
mRNA, it can also bind to it via chemical reactions. In this case it builds
a chain of amino-acids using the mRNA as a template to produce a pro-
tein. This is the elongation phase of the production of the protein. As for
mRNAs, proteins have also a finite lifetime. See Figure 1.
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Fig 1. A Simplified View of the Protein Production Process.

1.2. Mathematical models

The above description of the protein production process is clearly simplified.
The processes associated to actions of polymerases and ribosomes are composed
of several steps. The way ribosomes bind to mRNAs in particular, see Chap-
ter 14 of Watson et al. [41] for example. Once a polymerase binds to the gene,
the messenger RNA chain is built through a series of specific stages, in which
the polymerase recruits one of the four nucleotides in accordance to the DNA
template. Additionally, a dedicated proof reading mechanism takes place during
this process. There is a similar description for the translation step. The bind-
ing events of polymerases to gene or of ribosomes to mRNAs are also due to a
sequence of specific steps.

Because of the disorganized medium of the bacteria, the protein production
process is a highly stochastic process. The randomness is partially due to the
thermal excitation of the environment. It drives the diffusion of the main com-
ponents, mRNAs and ribosomes within the cytoplasm and it also impacts the
pairing of cellular components diffusing through the cytoplasm. It can cause the
spontaneous rupture of such pairs, before either transcription or translation can
start.

The problem is of understanding the mechanisms used by the cell to produce
a large number of proteins with very different concentrations in such a random,
“noisy”, context. The main goals of a mathematical analysis in the biological
literature are generally the following.

1. Estimate impact on variance of the number of proteins of assumptions on

— Activation/Deactivation rates of the gene;

— Transcription/Translation rates. Polymerases may bind more easily
to some genes. A similar phenomenon holds for ribosomes and mR-
NAs. This is generally mathematically represented via a “rate” of
binding: transcription rate for polymerases on gene and translation
rate for ribosomes on mRNAs, k1 and k2 in the following;
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— The distributions of lifetimes of mRNAs and proteins, the death rate
of mRNAs, (resp., proteins), is denoted by γ1, (resp., γ2).

DNA mRNA Protein

∅∅

k1 k2

γ1 γ2

Fig 2. Basic Chemical Reactions.

2. Determine the parameters which achieve minimal variance of concentra-
tion of a type of protein with a fixed average concentration. When an ana-
lytical formula for the variance is available, one can determine, in principle,
the parameters that minimize it, with the constraint of that its average is
fixed. The general idea is of determining if the current parameters of the
cell are adjusted, depending of the environment, to minimize this variance.

3. Estimate biological parameters for experiments. Analytical formulas for
the average and the variance of the number of proteins can also be used
to estimate some biological parameters. See Taniguchi [37].

The protein production process is a fundamental biological process, a process at
the basis of “life”, justifying the extensive efforts to understand and to quantify,
via mathematical models, the role of its different components: polymerases,
ribosomes, mRNAs and proteins. It also serves as a generic example of a typical
biological process: a component of type A is produced with components of type
B, but via the creation of another component of type C, which may also be
used in the regulation of the process.

As a general remark, the mathematician should always keep in mind that
she/he is studying an incredibly complex system, the molecular biology of gene
expression. It has evolved over a time span of four billion years. A mathematical
model may take into account only partial aspects of the sophisticated mecha-
nisms into play. In this presentation we focus on the basic parameters of the
transcription and translation phases.

Some history.

The basic principles of molecular biology, starting with Crick and Watson [42],
Brenner et al. [5] and Jacob and Monod [15], have been discovered in the 1950–
1960’s. At that time, measuring concentrations of different types of macro-
molecules within the cell was not really possible with the experimental tools
available. Efficient methods to estimate these concentrations, like the fluores-
cence microscopy, have been available much later at the beginning of the 1990’s.
This is probably the main motivation of mathematical models at the end the
1970’s in the pioneering works Berg [2] and Rigney [32] to study the fluctuations
of the concentration of proteins within the cell. Analytical expressions for the
mean and the variance of the number of proteins in a cell have been derived
for some simplified models. These results were later extended in the context of
Markov chain theory. They are recalled in Section 2. The formulas obtained can
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give some insight on the role of the parameters of the cell like the transcrip-
tion rate of the gene or the average lifetime of some macro-molecules on these
fluctuations. Interestingly, this is one of the few examples in applied mathemat-
ics when mathematical models have been used before measurements could be
done. There is a huge literature on the stochastic analysis of this process using a
large range of mathematical methods. For a detailed review of these works, see
Paulsson [29]. We focus here on exact formulas that can be obtained for specific
stochastic models.

State space of the production process.
In most mathematical analyses, the production process of proteins of a fixed gene
is investigated. There is an implicit assumption in this case that the cell allocates
a fixed fraction of its resources to the production of the mRNAs, proteins of
this gene, independently of the production process of other proteins. With this
hypotheses the production process of this type of protein can be analyzed in
isolation of the other processes within the cell. This is a convenient given the
complexity of the interactions. In this case, the production process is usually
described as a three-dimensional Markov process (I(t),M(t), P (t)) where, for
t≥0,

— I(t)∈{0, 1} describes the state of the gene at time t, active or inactive;
— M(t) is the number of mRNAs at this instant;
— P (t) is the number of proteins.

For these models, the duration of elongation of mRNAs or of proteins is not
taken into account. For example, the transition M(t)→M(t)+1, the production
of an mRNA, is, implicitly, associated to the binding of a polymerase to the
gene. This amounts to neglect the elongation time of an mRNA. A glance at
the numbers of Section A reveals that, in average, the time to build an mRNA
of 3000 nucleotides is 35 seconds, which is not small compared to its lifetime,
of the order of 2 minutes. For different types of mRNAs, the average length is
1000, see Figure 5 of Section A in the Appendix.

Another assumption, the price of the Markov property, is that the duration
of the transitions have an exponential distribution. This hypothesis for the du-
ration of time to have a binding polymerase-gene or ribosome-mRNA can be
justified with the current parameters of the cell. The assumption is more ques-
tionable for lifetimes of mRNAs and, in particular, of proteins. The lifetimes of
proteins are comparable to the duration of time between divisions of the cell.
The interpretation of death/degradation is more difficult in such a case. See the
discussion on the assumptions on the distribution of lifetimes.

The Markovian description of the protein production process gives the pos-
sibility of using classical results of Markov theory, for the convergence to equi-
librium as well as for an analytical characterization of equilibrium points.

Numbers of copies or concentration?
The representation of the levels of proteins and mRNAs by numbers, i.e. integers,
is convenient for the mathematical analysis, in particular to investigate the
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stochastic fluctuations. For some aspects, it is nevertheless more natural to
express the various quantities in terms of concentrations rather than numbers.
For example, ifR,M and P denotes respectively the chemical species ribosomes,
mRNAs and proteins, the production and destruction of a protein is expressed
as, using notations from chemistry,{

M+R −→ P+M+R,

P −→ ∅.

Let [A](t) denote the concentration of species A, A∈{R,M,P}, at time t≥0.
This quantity is the ratio of the number of macro-molecules in the cell of type A
to the volume of the cell at time t. The law of mass action of chemical physics
gives the associated Michaelis-Menten kinetics equations for the concentration
of the various macro-molecules, they are analytically expressed by a determin-
istic differential equation,

d

dt
[P ](t) = kon[M](t)[R](t)− ν[P ](t).

See van Kampen [40] and Chapter 6 of Murray [26] for example. The parameter
kon is the rate at which a given ribosome binds to a given mRNA and ν is
the exponential growth rate of the volume of the cell. The concentration of
proteins decreases mostly because of volume growth. This is the dilution effect.
In a Markovian context, see Section 2, the number of copies of a given type of
protein is used rather than its concentration. In this case the parameter ν is
interpreted as a death rate of proteins, which is less natural in some way. In this
presentation, we will nevertheless use the discrete representation with numbers.
It is more convenient to describe stochastic phenomena involving a finite, but
not too large, number of macro-molecules, like for mRNAs. See Anderson and
Kurtz [1] for an introduction on stochastic modeling of biological systems.

Organization of the paper.
Due to its historical importance, the analysis of the first moments of the equi-
librium of Markovian models is presented in Section 2. Section 3 introduces a
fundamental marked Poisson point process used to describe the whole protein
production process. It is an extension based on the model of Fromion et al. [13].
A result of convergence to equilibrium is proved via a “coupling from the past”
method. An important representation of the number of mRNAs and proteins in
terms of the Poisson process is established. See Theorem 3.1.

It should be noted that we do not include negative/positive feedback mech-
anisms in the models of gene expression, i.e. when proteins/mRNAs, or some
other macro-molecules, may lock/unlock the gene of some proteins under some
circumstances. We are here mainly focused on the “historical” model of gene
expression. The main technical reason is that the marked Poisson point process
approach presented in this paper does not seem to work for this class mod-
els. They are generally investigated via scaling methods. See Mackey [25] for
example.
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In Section 4, (resp., Section 5), general formulas for the mean and variance
of the number of mRNAs (resp., of proteins), at equilibrium are established,
generalizing the classical formulas of Markovian models. An important part of
the biological literature is devoted to the analysis of these first moments, this is
the main motivation of these two sections. The results obtained are an extension,
with somewhat simpler technical arguments, of results of Fromion et al. [13].
When the gene is always active, the equilibrium of the detailed description
of the state of mRNAs is characterized by Proposition 4.4. A formula for the
generating function of the equilibrium distribution of the number of proteins is
established in Proposition 5.2. The joint distribution of the number of mRNAs
and of proteins at equilibrium is also investigated in Section 5.

In Section 6 the various approximations used in the biological literature are
revisited in the light of the results proved in the previous sections. They are
formulated as new scaling results when one of the parameters goes to infinity:
switching rate of the state of the gene, average lifetime of proteins, translation
rate, . . . generally under the constraint that the average number of proteins is
fixed. Several convergence results for the equilibrium distribution of the num-
ber of proteins are obtained in this way. The methods rely on the results of
Section 5, probabilistic arguments and some technical estimates. A central limit
theorem, which seems to be new, is established in Proposition 6.1. A study on
the impact of the elongation phase of proteins on the variability of the pro-
tein production process concludes this section. This topic is rarely addressed in
mathematical models of the biological literature. It is shown that, under some
statistical assumptions, increasing the variability of the elongation phase in a
stochastic model may have the surprising effect of reducing the variance of the
equilibrium distribution of the number of proteins. A consequence of this ob-
servation is that the choice of exponential distribution for the distribution of
the duration of the elongation phase of proteins, as it would be natural in a
Markovian context, may lead to underestimate the “real” variance.

The central result of this approach is Theorem 3.1, it gives an explicit repre-
sentation of the number of proteins at equilibrium in terms of a functional of a
marked Poisson point process. The main advantages are that

1. it is not necessary to solve invariant measure equations as in the Markovian
approaches;

2. Formulas for Poisson processes, recalled in the Appendix, give additional
insight on the equilibrium distribution of the number of proteins;

3. General distributions, instead of exponential distributions, for the dura-
tion of elongation times and lifetimes of mRNAs and proteins can be
included in the model.

Mathematical notations and conventions.

Throughout this presentation, for the sake of clarity, we will frequently do the
following abuse of notations. If X is some integrable random variable on R+

1. X(dx) will denote its distribution on R+;
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2. (Xn) an i.i.d. sequence of random variables with this distribution;
3. FX a random variable whose distribution has density

x �→ P(X≥x)

E(X)
,

with respect to Lebesgue’s measure on R+. We denote by (FX,n) an i.i.d.
sequence with this distribution.

Note that, with Fubini’s Theorem, for a≥0,

E
(
(X−a)+

)
=

∫ +∞

a

P(X≥u) du = E(X)P(FX≥a), (1.1)

where b+=max(b, 0), b∈R. Additionally, a simple calculation of the Laplace

transform shows that the relation FX
dist
= X holds if and only if the law of X is

exponential.

Throughout the paper, we will use the following notation:

— For mRNAs, L1(dw) is the distribution of their lifetimes and E1(dv) the
distribution of their elongation times.

— For proteins, L2(dz) is the distribution of their lifetimes and E2(dy) the
distribution of their elongation times.

The index 1 refers to mRNAs and 2 to proteins. With our convention, items (1)
and (2) above, (L1) and (E1), (resp. (L1,n) and (E1,n)), denote random variables,
(resp. i.i.d. sequences of random variables) associated to the distribution L1(dw),
(resp. E1(dv)). And similarly for proteins, for the random variables (L2) and
(E2) and the i.i.d. sequences (L2,n) and (E2,n).

2. The classical Markovian three-step model

In this section, Markovian models of the protein production process are pre-
sented. Although these models have some limitations in terms of modeling this
is an important class of models to study the stochastic fluctuations associated to
gene expression. This is in fact the main stochastic model of gene expression used
in the biological literature from the early works of Rigney [32], Berg [2] to more
recent studies Thattai and van Oudenaarden [38], Shahrezaei and Swain [35].
See Paulsson [29] for a survey. See also Chapter 6 of Bressloff [6] and Chapter 4
of Mackey et al. [25]. These models are still popular in the biological literature.

A more general modeling of the stochasticity of gene expression is presented
and discussed in Section 3. It is analyzed in the rest of the paper. In this section
we will consider the time evolution of the number of mRNAs and of proteins
associated to a gene G0 in a given cell (bacterium). The statistical assumptions
are the following:
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Fig 3. Classical Three-Step Model for Protein Production.

1. If the gene is inactive, in state 0 say, (resp., active, in state 1), it becomes
active, (resp., inactive) after an exponentially distributed amount of time
with parameter k+ (resp., k−).

2. If the gene is active, the mRNAs of G0 are produced according to a Poisson
process with parameter k1 and their lifetimes are exponentially distributed
with parameter γ1.

3. During its lifetime an mRNA of G0 produces proteins according to a Pois-
son process with parameter k2 and the lifetime of a protein is exponentially
distributed with parameter γ2.

For this model, the parameter k1 can be seen as the rate at which a polymerase
binds on an active gene, but also the rate at which an mRNA is produced.
The steps of binding and elongation are thus reduced to a single step. The same
remark holds for the production of proteins. The model of Section 3 distinguishes
these two steps.

For t≥0, we denote I(t)∈{0, 1} the state of gene at time t andM(t)∈N, (resp.,
P (t)∈N), is the number of mRNAs, (resp., of proteins), at this instant. It is easily

checked that the process (Z(t))
def
=(I(t),M(t), P (t)) is an irreducible Markov

process in the state space S0
def
= {0, 1}×N

2. The non-zero elements of its Q-matrix
Q=(q(z, z′), z, z′∈S0) outside the diagonal are given by, for z=(i, x, y)∈S0,⎧⎪⎨

⎪⎩
q(z, z+e1)=k+1{i=0}, q(z, z−e1)=k−1{i=1},

q(z, z+e2)=k11{i=1}, q(z, z−e2)=γ1x,

q(z, z+e3)=k2x, q(z, z−e3)=γ2y,

where ei, i=1, 2, 3, are the unit vectors of S0. See Figure 3. As a functional
operator Q, it can be defined as

Q(f)(z) =
∑
z′∈S0

q(z, z′)f(z′) =
∑

z′∈S0\{z}
q(z, z′)(f(z′)−f(z)), z∈S0,

for some function f on S0. The starting point of analyses of the literature is
always the classical system of Kolmogorov’s equations associated to this Markov
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process
d

dt
E
[
f(Z(t))

]
= E

[
Q(f)(Z(t))

]
,

for some set of test functions f , like the indicator function of x, for x∈S0. They
are generally referred to as the master equation in this literature. Its fixed point
is the invariant distribution of the Markov process.

Proposition 2.1. The Markov process (I(t),M(t), P (t)) has a unique invariant
distribution (π(z), z∈S0) with finite second moments

∑
(i,x,y)∈S0

(
x2+y2

)
π(i, x, y) < +∞.

Proof. The proof is skipped. This result is in fact established in the next sections
in a much more general context. See the proofs of Propositions 4.2 and 5.1.

This result on the first two moments is used in the following to derive an
explicit expression of them. A much more general result holds in fact since the
equilibrium of both variables (M(t)) and (P (t)) has a finite exponential moment,
i.e. there exists η>0 such that∑

(i,x,y)∈S0

(eηx+eηy)π(i, x, y) < +∞.

See Gupta et al. [14] for example.
There does not seem that there exists a closed form expression for the in-

variant distribution (π(i, x, y)) of the equilibrium equations. See Relation (2.2)
below for the generating function of P when the gene is always active. It turns
out that, nevertheless, one can get explicit expressions for the moments of this
distribution. Related formulas of the kind have been the main and essentially,
the only, rigorous results of mathematical models of gene expression starting
from the first studies in 1977. They are still used in the quantitative analyses of
the biological literature. See the supplementary material of Taniguchi et al. [37]
for example.

Proposition 2.2. If (I,M, P ) is a random variable whose law is the invariant
distribution of the Markov process (I(t),M(t), P (t)), then

E(I)=δ+
def
=

k+
k++k−

, E(M)=δ+
k1
γ1

and E(P )=δ+
k1k2
γ1γ2

,

and, for the variances, if Λ=k++k−,

Var(M)

E(M)
= 1+(1−δ+)

k1
Λ+γ1

,

Var(P )

E(P )
=1+

k2
γ1+γ2

+(1−δ+)
k1k2
γ1+γ2

Λ+γ1+γ2
(Λ+γ1)(Λ+γ2)

. (2.1)
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The ratio of the variance and of the mean given for M and P is called the
Fano factor, it can be seen as a measure of the dispersion of the probability
distribution. In the biological literature it is interpreted as a measure of devi-
ation from the Poisson distribution. Recall that the Fano factor of a Poisson
distribution is 1.

Proof. The proofs in the literature are generally based on the differential equa-
tions satisfied by the generating function of the distribution of the three-dimen-
sional process. See Leoncini [21]. A simple approach, avoiding manipulations of
generating functions, is presented, it is based on some natural flow equations at
equilibrium.

The equilibrium equations for the invariant distribution π of the Markov
process (I(t),M(t), P (t)) can be expressed as∫

S0

Q(f)(i, x, y) dπ(i, x, y) = E[Q(f)(I,M, P )] = 0,

for any function on S0 such thatQ(f) is integrable with respect to π. If, for z∈S0,
by taking f the indicator function of z, this gives the usual balance equations.

We will use the class of functions f(i, x, y)=iaxbyc, with i∈{0, 1}, a, b∈{0,1,2}
to get an appropriate system of linear equations to get these moments. Propo-
sition 2.1 shows that Q(f) is integrable for any function f of this class.

The equations

k+E(1−I)−k−E(I) = 0, f(i, x, y) = i,

k1E(I)−γ1E(M) = 0, f(i, x, y) = x,

k2E(M)−γ2E(P ) = 0, f(i, x, y) = y

give immediately the formulas for the first moments.
A second system of linear equations

k1E((2M+1)I)+γ1E(M(1−2M)) = 0, f(i, x, y) = x2,

k2E(M(2P+1))+γ2E(P (1−2P )) = 0, f(i, x, y) = y2,

k1E(IP )−γ1E(MP )+k2E(M
2)−γ2E(MP ) = 0, f(i, x, y) = xy,

k+E((1−I)M)−k−E(IM)+k1E(I)−γ1E(IM) = 0, f(i, x, y) = ix,

k+E((1−I)P )−k−E(IP )+k2E(IM)−γ2E(IP ) = 0, f(i, x, y) = iy,

for the variables E(M2), E(P 2), E(MP ), E(IM) and E(IP ) gives the second
moments of M and P . The proposition is proved.

As it will be seen in a more general framework, when the gene is always
active, i.e. k−=0, the distribution of M is Poisson. This explains in particular
the identity Var(M)=E(M) of Proposition 2.2 in this case. See Proposition 4.4
of Section 4. Note that it is not the case for P since

Var(P )

E(P )
>1,
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by Proposition 2.2. This is usually interpreted in the biological literature as the
fact that the distribution of P is more variable than a Poisson distribution.

The above results, the first and second moments of the number of proteins
at equilibrium, are essentially the main mathematical results of the current bi-
ological literature in this domain. As an example of application of the methods
presented in this paper, we state several results which give some additional in-
sight on the properties of the equilibrium distribution of the number of proteins.
They are simple applications of general results which are proved in Section 3
and 6.

An explicit representation of the generating function of P is in fact available.

Proposition 2.3. If the gene is always active, the generating function of the
equilibrium distribution of the number of proteins, for z∈(0, 1), is given by

E
(
zP

)
= exp

(
−k1

∫
R+

[
1−e−(1−z)k2(1−e−γ2u)/γ2

]
e−γ1u du

−k1

∫
R

2
+

[
1−e−(1−z)k2e

−γ2u(1−e−γ2w)/γ2

]
γ1e

−γ1w du dw

)
. (2.2)

Bokes et al. [3] gives, via an analytic approach with the master equation, an
alternative representation of the generating function in terms of an hypergeo-
metric function.

The classical relation (2.1) for the variance shows that when the gene is
always active, i.e. δ+=1, and the average lifetime 1/γ2 of proteins gets large,
then

VarP

E(P )
=E

⎛
⎝(

P − E(P )√
E(P )

)2
⎞
⎠ ∼ 1+

k2
γ1

.

The following proposition gives a more precise result, when lifetimes of proteins
goes to infinity. It is a consequence of a general convergence theorem, Theo-
rem 6.1 of Section 6.

Proposition 2.4. If the gene is always active, for the convergence in distribu-
tion, the relation

lim
γ2→0

P−E(P )√
E(P )

= N (σ) ,

holds, where N (σ) is a centered Gaussian random variable whose standard de-
viation is

σ =
√
1+k2/γ1.

This proposition gives a Gaussian approximation result for the distribution
of P as E(P )+

√
E(P )N (σ). The result will hold for protein types with a large

number of copies in the cell.
The following proposition establishes a convergence in distribution when the

death rate of mRNAs is going to infinity with the constraint that the transcrip-
tion rate k2 is sufficiently large so that each mRNA produces a fixed average
number of proteins.
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Proposition 2.5. If the gene is always active, then, for a>0, the relation

lim
γ1→+∞
k2/γ1=a

P = N(a),

holds for the convergence in distribution, where N(a) is random variable whose
distribution is given by, for n∈N,

P(N(a)=n) =
1

(a+1)k1/γ2

Γ(k1/γ2+n)

n! Γ(k1/γ2)

(
a

1+a

)n

,

where Γ is the classical Gamma function.

The distribution of N(a) is the negative binomial distribution with param-
eters k1/γ2 and a. See Chapter 5 of Johnson et al. [16]. This distribution is
frequently mentioned in the approximations of the literature, Bokes et al. [3],
Friedman et al. [12] and Shahrezaei and Swain [35] for example. It is also some-
times used to fit measurements of concentration of proteins. Its advantage com-
pared to a simple Poisson distribution may be due to the fact that it is more
flexible with its two parameters.

Proof. This is a straightforward application of Proposition 6.3 of Section 6. The
elongation time of proteins is null, i.e. E2≡0, so that the generating function of
the limit N(a) is given

E

(
zN(a)

)
= exp

(
−k1

∫ +∞

0

(1−z) ae−γ2u

1+ (1−z) ae−γ2u
du

)
=

(
1

1+a−az

)κ

,

with κ=k1/γ2. Relations (B.3) and (B.4) of the Appendix give the representation
of this distribution.

3. A general stochastic model

We introduce in this section the stochastic processes which will be studied for
the analysis of the time evolution of the number of proteins.

The distributions of lifetimes of mRNAs and proteins are general, in partic-
ular they are not assumed to be exponentially distributed as in the Markovian
model of Section 2. The general distributions of the duration of elongations of
mRNAs and proteins are also incorporated in the stochastic model. Once the
polymerase/ribosome is bound to the gene/mRNA, the elementary components,
nucleotides for mRNAs and amino-acids for proteins, are progressively added
to build these components. As it can be seen in Figure 5 in the Appendix, the
number of these elements can vary from ∼20 elements up to several thousands
depending on the gene considered. This, of course, incurs delays which cannot be
really neglected. This presentation is an extension of the framework of Fromion
et al. [13]. See also Leoncini [21].

As it will be seen, a representation of the equilibrium of the protein production
process in terms of marked Poisson point processes is established.
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Contrary to a Markovian analysis, the resolution of the linear system of bal-
ance equations for the equilibrium, is not necessary in this case. More general
assumptions on the distributions of some of the steps of the process can there-
fore be considered as mentioned before. It should be noted however, that even
in the Markovian context of the classical three-step model, this representation
simplifies much the analysis of the equilibrium. For example, asymptotic results
concerning the equilibrium distribution of the number of proteins are simpler to
obtain than the approach using analytic tools with hypergeometric functions.
See Bokes et al. [3] and Section 6.2 for example.

3.1. Gene activation

The state of the gene for the type of protein is either active or inactive. It is
activated at rate k+ and inactivated at rate k−. Time duration of these states
are assumed to be exponentially distributed.

The process of activation of the gene is a Markov process (I(t), t ∈ R) with
values in {0, 1} and whose Q-matrix RI is given by rI(0, 1)=k+ and rI(1, 0)=k−.
Without loss of generality, it will be assumed to be stationary. For this reason
(I(t)) is defined on the whole real line, in some sense, the activation/inactivation
process has started at t=−∞. As it will be seen, this is a convenient formulation
to describe properly the equilibrium of the protein production process.

This process can be represented as a marked point process ((ti, Xi), i∈Z)
where (ti) is the increasing sequence of instants of change of state of the gene,
with the convention that t0≤0<t1. The marks (Xi) in the set {0, 1} indicate
the state of the gene at these instants. In particular, for i∈Z, conditionally on
the event {Xi=0}, (resp., on the event {Xi=1}), the random variable ti+1−ti
is exponentially distributed with rate k+, (resp., with rate k−). Because of our
assumption on stationarity of the activation/deactivation process, the sequence
of activation instants of the gene, (ti1{Xi=1}), is a stationary renewal point
process. See Section 11.5 of Robert [33]. We denote

δ+=
k+
Λ

and Λ
def
= k++k−,

in particular P(I(t)=1)=δ+, for all t∈R.

3.2. Transcription and translation: a fundamental Poisson process

When a gene is active, a polymerase can be bound to it according to a Poisson
process with rate k1>0. The transcription phase can start. An mRNA is then
being built up by a process of aggregation of a specific sequence of nucleotides
which are present in the cytoplasm. This is the elongation phase of an mRNA.
Its duration has a distribution E1(dx) on R+. Similarly a ribosome is bound to a
given mRNA according to a Poisson process with parameter k2. The translation
phase starts. A chain of amino-acids is created as the ribosome progresses on the
mRNA. This is the elongation phase of a protein. Its duration has a distribution
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E2(dx) on R+. Both mRNAs and proteins have a finite lifetime. The distribution
of the lifetime of an mRNA (resp., a protein) is L1(dy) (resp., L2(dy)) on R+.
Throughout the paper, it is assumed that all these distribution have a finite
first moment.

The fundamental Poisson process.
These two steps are represented by a marked Poisson point process. See Sec-
tion B of the Appendix.

P def
= (un, E1,n, L1,n,N2,n, n∈Z), (3.1)

on the state space

S def
= R×R

2
+×Mp(R×R

2
+),

where Mp(R×R
2
+) is the space of Radon point measures on R×R

2
+, see Daw-

son [9] for example, and

1. (un) is a Poisson process on R with parameter k1, this is the sequence of
possible instants when a polymerase can be bound to the gene. For n∈Z,
un is indeed an instant of binding only if the gene is active at time un. The
sequence (un, n∈Z) is assumed to be non-decreasing and indexed with the
convention u0≤0<u1.

2. (E1,n, n∈Z) is the sequence of the duration of the elongation for these
mRNAs, it is an i.i.d. sequence whose common distribution is E1.

3. (L1,n) is the i.i.d. sequence of associated lifetimes of these mRNAs, its
common law is L1.

4. (N2,p) is an i.i.d. sequence with the same distribution as N2, a marked
Poisson point process on R×R

2
+ with intensity k2 dx⊗E2⊗L2.

For n∈Z, N2,n=(xn
2,j , E

n
2,j , L

n
2,j , j∈Z) is the process associated with the

protein production for the mRNA with index n.

(a) (xn
2,j , j∈Z) is a Poisson process on R with parameter k2, this is the

sequence of possible instants when a ribosome can be bound to the
mRNA with index n. Only the instants occurring during the lifetime
of this mRNA matter.

(b) (En
2,j) is the sequence of the duration of the elongation of proteins

by this mRNA, it is an i.i.d. sequence whose common distribution is
E2.

(c) (Ln
2,j) is the i.i.d. sequence of associated lifetimes of associated pro-

teins, its common law is L2.

The coordinates of P(du, dv, dw, dm) are associated to the potential instants
u of the binding of a polymerase on the gene, the variable v is the elongation
time of the mRNA and the variable w is its lifetime. The last component m is
the marked point process associated to the protein production process of this
mRNA. The coordinates of m(dx, dy, dz) are, x is associated to binding instants
of ribosomes on this mRNA, y is the elongation time of the corresponding protein
and z its lifetime.
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Fig 4. A General Model for Protein Production.

The intensity measure of P is

νP
def
= k1 du⊗E1⊗L1⊗Q2, (3.2)

where Q2, Q2(dm)=P(N2∈ dm), is the distribution on S of the random variable
N2, a Poisson point process on R×R

2
+ with intensity k2 dx⊗E2⊗L2.

Equivalently, if F is a non-negative Borelian function on S, then∫
S
F (u, v, w,m)νP(du, dv, dw, dm)

=

∫
S
F (u, v, w,m)k1 duE1(dv)L1(dw)Q2(dm)

=

∫
R

E(F (u,E1, L1,N2))k1 du,

where, with a slight abuse of notations, E1, L1 and N2 are independent random
variables with respective distributions E1(dv), L1(dw) and Q2(dm).

Examples. If the gene is always active and the system starts empty at time 0,
the formula ∑

n≥1

1{un+E1,n≤t} =

∫
R+×R

2
+

1{u+v≤t}P(du, dv, dw)

gives the total number of mRNAs created up to time t. The following notation
has been used∫

S
f(u, v, w)P(du, dv, dw) =

∫
S
f(u, v, w)P(du, dv, dw, dm),

if f is non-negative Borelian function on R×R
2
+, i.e. P(du, dv, dw) is the mar-

ginal distribution of P with respect to the three first coordinates, i.e. it stands
for P(du, dv, dw,Mp(R×R

2
+)).
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Similarly, still with a permanently active gene,

∑
n≥1

1{un+E1,n≤t<un+E1,n+L1,n} =

∫
R+×R

2
+

1{u+v≤t<u+v+w}P(du, dv, dw)

is the number of mRNAs present at time t≥0.
If we include the gene dynamics into the formula, the number of messengers

present at time t is

∑
n≥1

I(un)1{un+E1,n≤t<un+E1,n+L1,n}

=

∫
R+×R

2
+

I(u)1{u+v≤t<u+v+w}P(du, dv, dw)

If the mRNA with index n is created at time v=un+E2,n and if its lifetime is
w then

N2,n([v, v+w)×R
2
+) =

∫
[v,v+w)×R

2
+

N2,n(dx, dy, dz)

is the total number of proteins created by such an mRNA during its lifetime.

Comments on the model.
As a mathematical model, the above representation simplifies several aspects of
the protein production process but the key steps of protein production are in-
cluded. Furthermore, its main parameters have a clear biological interpretation.

1. Expression Rates. The parameter k1 is the affinity of polymerases, or the
transcription rate for the gene considered. The larger this rate is, the
more likely polymerases will bind to this gene rather than to some other
genes with a lower affinity. The same remark applies for k2, the affinity of
ribosomes, the translation rate, for the corresponding mRNAs.
It should be stressed that if mRNAs and proteins are specific to a gene,
polymerases and ribosomes are not. They can be used to create any type
of mRNA and any type protein respectively. Polymerases and ribosomes
can be seen as a kind of resources of the cell. The genes are, in some sense,
competing to have access to polymerases. This approach with the param-
eters k1 and k2 considers that a specific gene receives a fixed portion of
resources of the cell in terms of polymerases and ribosomes. In particu-
lar, it does not include the competition for access to resources between
the different genes. Alternative stochastic models have to be considered
to analyze these aspects.

2. Elongation Times. An mRNA being a sequence of N nucleotides, the
elongation time E1 of an mRNA is represented as a sum of N independent
random variables, each of them corresponding to the duration of time
required to get each of the nucleotides within the cytoplasm. A similar
situation holds for E2 for the number of amino-acids of the protein. See
Figure 5 in the Appendix.
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3. Lifetimes. The lifetimes of mRNAs are generally smaller than the lifetimes
of proteins, mRNAs can be indeed degraded by other RNAs in the cyto-
plasm after a couple of minutes. This is one of the mechanisms used by
the cell to regulate the protein production process. The situation is quite
different for proteins, their lifetime may exceed the duration of time for
cell division, of the order of 40mn for bacterium. At cell division, macro-
molecules are assumed to be allocated at random into one of the two
daughter cells. In this case, if one follows a specific path of cells in the as-
sociated binary tree of successive cell divisions, proteins “vanish” simply
because they have been allocated in the daughter cell. This is referred to
as the dilution phenomenon.

4. Multiple Copies of the Gene. In a favorable environment, cells grow and
divide very quickly. In particular a copy of the DNA is always on the way in
the cell, and, therefore, another copy of the gene is present at some stage.
In principle this may double the transcription rate of the gene when the
corresponding part of the DNA has been duplicated. The rate is reduced
at the division time. This aspect has been omitted in our model, mainly for
the sake of simplicity. The main change would be that the process (I(t))
should have at least three values, depending on the number of copies of the
gene which are active at a given time. See Paulsson [29] in a Markovian
context.

The classical Markovian model of Section 2 corresponds to the case when the
elongation times of mRNAs and proteins are null and that their respective
lifetimes are exponentially distributed.

How to handle functionals of P.
We will use repeatedly several possible representations in the calculations of
expected values of functionals of P . We give a quick sketch of the general ap-
proach. Let f be a non-negative Borelian function on R×R

2
+×R×R

2
+ and let,

for (u, v, w,m)∈S,

F (u, v, w,m)
def
=

∫
R×R

2
+

f(u, v, w, x, y, z)m(dx, dy, dz).

When the gene is always active, most of random variables of interest can be
expressed under the form

X= 〈P , F 〉 def=
∫
S
F (u, v, w,m)P(du, dv, dw, dm).

As it will be seen, the variable activity of the gene adds some technical compli-
cations.

1. Calculation of the mean. Relation (B.1) of the Appendix gives that

E(X) =

∫
S
F (u, v, w,m)νP(du, dv, dw, dm)
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=

∫
S
F (u, v, w,m)k1 duE1(dv)L1(dw)Q2(dm)

=k1

∫
R

E(F (u,E1, L1,N2)) du,

with the same slight abuse of notations as before. For (u, v, w)∈R3
+, since

the Poisson process N2 has intensity measure k2 dx⊗E2⊗L2 on R×R
2
+,

E(F (u, v, w,N2)) = E

(∫
R×R

2
+

f(u, v, w, x, y, z)N2(dx, dy, dz)

)

=

∫
R×R

2
+

f(u, v, w, x, y, z)k2 dxE2(dy)L2(dz)

= k2

∫
R

E(f(u, v, w, x,E2, L2)) dx,

hence

E(X) = k1k2

∫
R2

E(f(u,E1, L1, x, E2, L2)) du dx.

For calculation of variances, the approach is similar, via Relation (B.2) of
the Appendix and an additional trick. See the proof of Relation (4.6) for
example.

2. Exponential Moments of X. For more precise results on the distribution of
X, one has to express E(exp(−ξX)), for some ξ≥0, the Laplace transform
of X at ξ. Proposition B.1 of the Appendix gives the relation

E

(
e−ξ〈P,F 〉

)
= exp

(
−
∫
S

(
1−e−ξF (u,v,w,m)

)
νP(du, dv, dw, dm)

)

= exp

(
−ξ

∫
S

(
1−e−ξF (u,v,w,m)

)
k1 duE1(dv)L1(dw)Q2(dm)

)

= exp

(
−k1

∫
R×R

2
+

(
1−E

(
e−ξF (u,v,w,N2)

))
duE1(dv)L1(dw)

)
.

By using again Proposition B.1 for the Poisson process N2, with the same
arguments as before, we get, for (u, v, w)∈R×R

2
+,

E

(
e−ξF (u,v,w,N2)

)
= exp

(
−
∫
R

(
1−E

(
e−ξf(u,v,w,x,y,z)

))
k2 dxE2(dy)L2(dz)

)

= exp

(
−k2

∫
R

(
1−E

(
e−ξf(u,v,w,x,E2,L2)

))
dx

)
.

This expression for E(exp(−X)) though explicit is not simple to handle. It
is nevertheless usable to get several limit results in Section 6. The trick of
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using independent random variables Ea, La, a∈{1, 2} or their distributions
Ea(ds), La(dt) is used throughout this paper. Its main advantages are of
simplifying the calculations and the expressions of the formulas obtained.

We state a simple result on some invariance properties of the Poisson process
P . For m∈Mp(R×R

2
+) and f is a Borelian function on R×R

2
+, the measure m̌

is defined by

〈m̌, f〉=
∫
R×R

2
+

f(x, y, z)m̌(dx, dy, dz) =

∫
R×R

2
+

f(−x, y, z)m(dx, dy, dz).

Proposition 3.1. If P is the marked Poisson point process on S defined by
Relation (3.1) and F is some non-negative Borelian function on {0, 1}×S then

∫
S
F (I(u), u, v, w,m)P(du, dv, dw, dm)

dist.
=

∫
S
F (I(−u),−u, v, w, m̌)P(du, dv, dw, dm)

Proof. This is a simple consequence of

— the reversibility of (I(t)). It is easily checked that (I(−t)) is a Markov
process with the same Q-matrix, and with same distribution at t=0 as
(I(t)). See Kelly [18] for example.

— If (tn) is a Poisson process on R with rate λ>0, then (−tn) is a Poisson
process with the same rate.

— The independence of (I(t)) and P .

Consequently, we have the identity

(I(un), un, L1,n,N2,n)
dist
= (I(−un),−un, L1,n, Ň2,n),

and, therefore, our proposition.

3.3. Convergence to equilibrium

As before we denote by M(t), (resp., P (t)) the number of mRNAs, (resp., of
proteins) at time t≥0. It is assumed that the initial state is as follows: there are

— M(0) mRNAS with respective remaining lifetimes L0
1,k, k=1, . . . ,M(0);

— P (0) proteins with respective remaining lifetimes L0
2,k, k=1, . . . , P (0). The

marked Poisson process associated to the creation of proteins by the kth
mRNA present at time 0 is denoted by N 0

2,k.

For simplicity it is assumed that, initially, there are no mRNAs or proteins in
their elongation phase. The proof of convergence in distribution does not change
if the initial state includes components in their elongation phase.

The following theorem is the key result concerning the equilibrium distribu-
tion of the number of mRNAs and proteins.
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1. It shows the convergence to equilibrium without having a Markovian
framework which is, usually, the classical approach to prove such a con-
vergence. As a consequence, the distribution of elongation times, lifetimes
of mRNAs and proteins can be general.

2. The equilibrium of the number of mRNAs and of proteins are expressed
in terms of functionals of the marked Poisson process P . The closed form
expressions of averages and variances are obtained with this representa-
tion.

Theorem 3.1 (Number of mRNAs and Proteins at Equilibrium). As t goes to
infinity, the random variable (M(t), P (t)) converges in distribution to (M,P )
defined by

M =

(∫
S
I(u)1{v≤u<v+w}P(du, dv, dw)

)
(3.3)

and the variable P is defined as(∫
S
I(u)

(∫
R×R

2
+

1{x+v≤u<x+v+w
y≤x<y+z

}m(dx, dy, dz)

)
P(du, dv, dw, dm)

)
, (3.4)

where P is the marked Poisson point process on S defined by Relation (3.1).

The proof of the convergence relies on coupling from the past arguments. The
idea consists in starting the process at time −t and to study its state at time
0, which will have the same distribution as the original process at time t. If the
process has convenient properties, of monotonicity for example, it may happen
that the state at time 0 of the shifted process converges almost surely as t goes
to infinity. This gives then the convergence in distribution of (I(t),M(t), P (t))
when t goes to infinity. This method applies in our case. One of the earliest works
using this method seems to be Loynes [24] (1962). Its use has been popularized
later by Propp and Wilson [30] to study the Ising Model. See Levin at al. [23]
for a survey.

Proof. We first express the variablesM(t) and P (t) in terms of the point process
P .

The variable M(t) is the sum of the number of initial mRNAs still alive at
time t and of the number of mRNAs born before time t and still alive at time
t. This gives the following formula,

M(t) =

M(0)∑
k=1

1{L0
2,k>t} +

∫
S
I(u)1{0<u+v≤t<u+v+w}P(du, dv, dw).

Similarly, P (t) is the sum of three quantities corresponding to the number of

1. the number of proteins present at time 0 and still alive at time t,

P (0)∑
k=1

1{L0
2,k>t};
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2. the number of proteins created before time t by one of the mRNAs present
at time 0 and still alive at time t,

M(0)∑
k=1

∫
R×R

2
+

I(u)1{0<u<L0
1,k,u+v≤t<u+v+w}N

0
2,k(du, dv, dw);

3. proteins created before time t by new mRNAs and still alive at time t,

P1(t)
def
=

∫
S
I(u)1{u∈(0,t)}(∫
R×R

2
+

1{u+v≤x<u+v+w
x+y≤t<x+y+z

}m(dx, dy, dz)

)
P(du, dv, dw, dm).

For simplicity of presentation, we will prove the convergence in distribution of
(P (t)). The convergence in distribution of (M(t), P (t)) is similar. Clearly, the
two first terms converge almost surely to 0 when t goes to infinity. We have thus
only to take care of P1(t).

The stationarity of the process P with respect to translation by −t, Proposi-

tion 3.1, the identity (I(s−t))
dist
= (I(s)), and the fact that (I(s)) is independent

of P give that P1(t) has the same distribution as P2(t) with

P2(t)
def
=

∫
S
I(u)1{u∈(−t,0)}(∫

R×R
2
+

1{u+v≤x<u+v+w
x+y≤0<x+y+z

}m(dx, dy, dz)

)
P(du, dv, dw, dm).

The quantity P2(t) can be seen the number of proteins at time 0 when the
process starts empty at time −t, i.e. without mRNAs or proteins. This is a
non-decreasing function of t converging almost surely to P2(∞) defined by∫

S
I(u)1{u<0}

(∫
R×R

2
+

1{u+v≤x<u+v+w
x+y≤0<x+y+z

}m(dx, dy, dz)

)
P(du, dv, dw, dm).

Proposition 3.1 gives that the quantity P2(∞) has the same distribution as∫
I(u)1{u>0}

(∫
1{x+v≤u<x+v+w

y≤x<y+z

}m(dx, dy, dz)

)
P(du, dv, dw, dm),

it is easy to see that this last term is the second coordinate of (3.4). The theorem
is proved.

4. Transcription

Relation (3.3) gives that the distribution of the number of mRNAs at equilibrium
is given by the law of the random variable M defined by

M =

∫
R×R

2
+

I(u)G1(u, v, w)P(du, dv, dw), (4.1)
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with
G1(u, v, w)

def
=1{v≤u<v+w}. (4.2)

The process of activation/deactivation of the gene complicates significantly
the derivation of the mathematical expressions for the mean and variance of M .
Formulas are much more simple when the gene is always active. We will need
some technical results on this process. We denote by FI the σ-field generated
by the stochastic process (I(t)),

FI = σ 〈I(t), t∈R〉 .

A representation of the distribution of M in terms of a marked Poisson point
process conditioned on the σ-field FI is the main tool used. For the calculation
of the variance an additional work has then to be done to “remove” this condi-
tioning. It turns out that the correlation structure of the process (I(t)) plays a
role at this stage.

Lemma 4.1 (Correlation Function of (I(t))). For t≥0, E(I(t))=δ+ and

P(I(t)=1|I(0)=1) = δ+ + (1−δ+)e
−Λt,

where Λ=k++k− and δ+=k+/Λ.

Proof. Let p(t)=P(I(t)=1|I(0)=1), then Kolmogorov’s forward equations give
the ODE

p′(t) = k+(1−p(t))−k−p(t)

which is easily solved.

Define PI the marked point process by, for a non-negative Borelian function

on the space Sdef
=R×R

2
+×Mp(R×R

2
+),

〈
PI , f

〉
=

∫
S
I(u)f(u, v,m)P(du, dv, dm). (4.3)

The following proposition gives the intuitive, but important, result that, con-
ditionally on FI , the point process PI is a marked Poisson point process with
intensity measure

νIP(du, dv, dm) = I(u)k1 duL1(dv)Q2(dm). (4.4)

See Relation (3.2) for the unconditional case.

Proposition 4.1. For any non-negative Borelian function f on the state space
S, the relation

E
(
exp

(
−
〈
PI , f

〉)∣∣FI
)

= exp

(
−
∫
S
I(u)

(
1−e−f(u,v,w,m)

)
νP (du, dv, dw, dm)

)
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= exp

(
−k1

∫
S
I(u)

(
1−e−f(u,v,w,m)

)
duE1(dv)L1(dw)Q2(dm)

)

holds almost surely.

Proof. For the sake of rigor, despite of its intuitive content, a proof is given.
The (formal) difficulty is of expressing rigorously the conditioning with respect
to FI . We use the notations of Section 3.1 where the process (I(t)) is defined
by the doubly infinite sequence (ti, Xi). Denote, for N≥1,

FI
N

def
= σ 〈(ti, Xi),−N≤i≤N〉 ,

since the distribution of the finite marginals of the sequence ((ti, Xi), i∈Z) de-
termine its distribution, we have

lim
n→+∞

↑ FI
N = FI .

Let f a non-negative Borelian function on S with compact support in the follow-
ing sense: there exists some K> 0 such that f(z)=0 if z=(u, v, w,m)∈S when
u �∈[−K,K]. On the event {t−N≤−K, tN≥K},

〈
PI , f

〉
=

N∑
i=−N

1{Xi=1}

∫
S

1{u∈[ti,ti+1)}f(u, v, w,m)P(du, dv, dw, dm).

By independence of (ti, Xi) and P and by using Proposition B.1, it is easily
checked that, almost surely on this event,

E
(
exp

(
−
〈
PI , f

〉)∣∣FI
N

)
= exp

(
−

N∑
i=−N

1{Xi=1}

∫
S

1{u∈[ti,ti+1)}

(
1−e−f(u,v,w,m)

)
νP (du, dv, dw, dm)

)
.

Indeed, one has to multiply both sides of this relation by some non-negative
Borelian function of ((ti, Xi),−N≤i≤N), take the expected value of these ex-
pressions. By using the independence of ((ti, Xi),−N≤i≤N) and P , and the
expression of the Laplace transform of a Poisson process, see Proposition B.1, it
is easy to check the equality of these two terms. Consequently, for N sufficiently
large, almost surely,

E
(
exp

(
−
〈
PI , f

〉)
|FI

N

)
= exp

(
−
∫
S
I(u)

(
1−e−f(u,v,w,m)

)
νP (du, dv, dw, dm)

)
.

A classical result from martingale theory gives the almost sure convergence

lim
N→+∞

E
(
exp

(
−
〈
PI , f

〉)∣∣FI
N

)
= E

(
exp

(
−
〈
PI , f

〉)∣∣FI
)
.

See Williams [44]. Hence the proposition holds for these class of functions f
with compact support in the sense defined above. We conclude with the fact
that any positive Borelian function can be expressed as a (monotone) limit of
such functions.
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4.1. Mean and variance of the number of mRNAs at equilibrium

Proposition 4.2 (The first moments of the number of mRNAs). If M is the
number of mRNAs at equilibrium, then

E(M) =
k+
Λ

k1E(L1), (4.5)

and
Var(M)

E(M)
= 1+E(M)

k−
k+

E

(
e−Λ|FL1,1−FL1,2+E1,1−E1,2|

)
, (4.6)

where Λ=k++k−, and E1,1 and E1,2 are independent random variables with
distribution E1, and FL1,1 and FL1,2 are independent random variables with
density P(L1≥u)/E(L1) on R+.

Recall that the distribution of the elongation time of an mRNA is E1 and the
duration of its lifetime is L1. Note that when the lifetimes L1 of an mRNA is ex-

ponentially distributed with parameters γ1, then FL1

dist
= L1, and if the elongation

time of an mRNA is null, i.e. E1≡0, the above relation gives

Var(M)

E(M)
−1 = E(M)

k−
k+

E

(
e−Λ|L1,1−L1,2|

)
=

k−
Λ

k1
γ1

E
(
e−ΛL1

)
=

k−
Λ

k1
Λ+γ1

,

since |L1,1−L1,2|dist= L1, due to the exponential assumption. This is the relation
for the variance of M in Proposition 2.2.

Proof. Proposition 4.1 gives that, almost surely,

E
(
M |FI

)
=

∫
S
I(u)1{v≤u<v+w}ν

I
P(du, dv, dw, dm) (4.7)

=

∫
R×R

2
+

I(u)1{v≤u<v+w}k1 duE1(dv)L1(dw)

= k1

∫
R

I(u)P(E1≤u<E1+L1) du,

by integrating this identity, we get from Lemma 4.1,

E(M) = δ+

∫
R×R

2
+

1{v≤u<v+w}k1 duE1(dv)L1(dw) = δ+k1E(L1). (4.8)

From Representation (4.1) of M and Relation (B.2) of Corollary B.1, we obtain

E
(
M2|FI

)
=
(
E
(
M |FI

))2
+

∫
R×R

2
+

I(u)1{v≤u<v+w}k1 duE1(dv)L1(dw),

and, after integration,

E
(
M2

)
= E

(
E
(
M |FI

)2)
+ E(M). (4.9)
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Define
ΔI(M)

def
= E

(
E(M |FI)2

)
− E(M)2,

so that Var(M)=ΔI(M)+E(M). Relations (4.7) and (4.8) give

ΔI(M) = E

((
E(M |FI)− E(M)

)2)

= E

[(
k1

∫
R

(I(u)−δ+)P(E1≤u<E1+L1) du

)2
]
.

We can rewrite the square of the integral as a double integral in the following
way,

(∫
R

(I(u)−δ+)P(E1≤u<E1+L1) du

)2

=

∫
R2

(I(u)−δ+)(I(u
′)−δ+)P(E1,1≤u<E1,1+L1,1)P(E1,2≤u′<E1,2+L1,2) du du

′,

where the variables E1,i, i=1, 2, and L1,i, i=1, 2, are independent. The quantity
ΔI(M) can be expressed as

ΔI(M) = k1
2

∫
R2

E

[
(I(u)−δ+)(I(u

′)−δ+)
]

×P(E1,1≤u<E1,1+L1, E1,2≤u′<E1,2+L1,2) du du
′.

From Lemma 4.1 we get, for u, u′∈R+,

E[(I(u)−δ+)(I(u
′)−δ+)] = E(I(u)I(u′))−δ2+ = δ+(1−δ+)e

−Λ|u−u′|, (4.10)

hence the quantity ΔI(M)/(k1
2δ+(1−δ+)) is given by∫

R2

e−Λ|u−u′|
P(E1,1<u<E1,1+L1,1, E1,2≤u′<E1,2+L1,2) du du

′

= E

(∫
R

2
+

e−Λ|u+E1,1−(u′+E1,2)|P(u≤L1,1, u
′<L1,2) du du

′

)

= E(L1
2)E

(
e−Λ|FL1,1+E1,1−(FL1,2+E1,2)|

)
.

If we gather these results into Relation (4.9), we obtain the identity

Var(M)

E(M)
= 1+E(M)

1−δ+
δ+

E

(
e−Λ|FL1,1+E1,1−(FL1,2+E1,2)|

)
,

which is the desired formula.

We now turn to a more detailed analysis of the invariant distribution of
(M(t)) in the case when the gene is always active.
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4.2. The equilibrium distribution of the state of mRNAs

It is now assumed that the process (I(t)) is constant and equal to 1. In particular
δ+=1. We introduce a random measure that describes precisely the state of the
mRNAs,

Λ1(t)
def
=

M(t)∑
k=1

δRi(t) and

where Ri(t) is the residual lifetime of the ith mRNA present at time t. The
measure Λ1(t) is the empirical distribution associated to the residual lifetimes.

Proposition 4.3 (Convergence to Equilibrium of the number of mRNAs).
When the gene is always active, the process (Λ1(t)) converges in distribution
to a random measure (Λ∗

1) defined by, for f a continuous function with compact
support on R+,

〈Λ∗
1, f〉 =

∫
S
f(v+w−u)1{v≤u<v+w}P(du, dv, dw).

Proof. The proof is similar to the proof of Theorem 3.1. Theorem 3.26 of Daw-
son [9] is used, it is enough to show that for the convergence in distribution

lim
t→+∞

〈Λ1(t), f〉 = 〈Λ∗
1, f〉 ,

for every non-negative continuous function f with compact support on R+. By
definition of the vector (Ri(t)),

〈Λ1(t), f〉 =
∑
n

f(un+E1,n+L1,n−t)1{0<un,un+E1,n≤t<un+E1,n+L1,n}

=

∫
S
f(u+v+w−t)1{0<u,u+v≤t<u+v+w}P(du, dv, dw)

dist
=

∫
S
f(u+v+w)1{−t<u,u+v≤0<u+v+w}P(du, dv, dw),

by invariance of the Poisson point process with respect to translation by −t, see
Proposition 3.1. We conclude that (Λ1(t)) converges in distribution to Λ defined
by

〈Λ, f〉=
∫
S
f(u+v+w)1{u+v≤0<u+v+w}P(du, dv, dw)

dist
=

∫
S
f(v+w−u)1{−u+v≤0<−u+v+w}P(du, dv, dw) = 〈Λ∗

1, f〉 ,

by invariance with respect to the mapping (u, v, w) �→(−u, v, w), again by using
Proposition 3.1. The proposition is proved.

This proposition states that at equilibrium the number of mRNAs is Poisson
with parameter k1E(L1) and the residual lifetimes of the mRNAs are indepen-
dent and distributed as Fσ1 .
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Proposition 4.4 (Equilibrium of the state of mRNAs). When the gene is al-
ways active,

1. the distribution of the variable M , the number of mRNAs at equilibrium,
is a Poisson distribution with parameter E(M) given by

E(M) = k1E(L1).

2. The residual lifetimes of the mRNAs are i.i.d. with common distribution

FL1(dx) =
P(L1>x)

E(L1)
dx.

Proof. We calculate the Laplace transform of Λ∗
1, by using Proposition B.1 of

the Appendix and the fact that νP defined by Relation (3.2) is the intensity
measure of the Poisson process P , we have

E

(
e−〈Λ∗

1 ,f〉
)
= exp

[
−
∫
S

(
1− e−f(v+w−u)

)
νP(du, dv, dw)

]

= exp

[
−k1

∫
S

(
1−e−f(v+w−u)

)
1{v≤u<v+w} duE1(dv)L1(dw)

]

= exp
[
−k1E(L1)

(
1−E

(
e−f(FL1

)
))]

By taking f ≡ − log(z) for some fixed z∈(0, 1), we obtain that

E
(
zM

)
= exp [−k1E(L1) (1−z)] ,

the distribution of M is Poisson with parameter E(M)=k1E(L1). Additionally,
since

E

(
e−〈Λ∗

1 ,f〉
)
=

+∞∑
n=0

E(M)n

n!
e−E(M)

(
E

(
e−f(FL1

)
))n

,

we have that Λ∗
1 has the same Laplace transform, and therefore the same dis-

tribution, as the random measure

M∑
i=1

δFL1,i
,

where (FL1,i) is an i.i.d. sequence of random variables with distribution FL1

independent of M . The proposition is proved.

5. Translation

Theorem 3.1 shows that the distribution of the number of proteins at equilibrium
has the same distribution as the random variable

P =

∫
S
I(u)G2(u, v, w,m)P(du, dv, dw, dm), (5.1)
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recall that S=R×R
2
+×Mp(R×R

2
+), and

G2(u, v, w,m)
def
=

∫
R×R

2
+

1{x+v≤u<x+v+w
y≤x<y+z

}m(dx, dy, dz) (5.2)

where P is the marked Poisson point process on S defined by Relation (3.1).

5.1. Mean and variance of the number of proteins at equilibrium

We have an explicit representation of the variance of the number of proteins
at equilibrium given by the following proposition. This is an extension of the
results of Fromion et al. [13], see also Leoncini [21].

Proposition 5.1 (The two first moments of the number of proteins). If P is
the number of proteins at equilibrium, then

E(P ) =
k+
Λ

k1E(L1)k2E(L2), (5.3)

and

Var(P )

E(P )
= 1+k2E(L2)P

(
FL1≥|E2,1−E2,2+FL2,1−FL2,2|

)

+
k−
k+

E(P )E
(
e−Λ|FL1,1−FL1,2+FL2,1−FL2,2+E1,1−E1,2+E2,1−E2,2|

)
, (5.4)

where Λ=k++k− and, for a=1 and 2, the random variables Ea,1 and Ea,2 are
independent with distribution Ea, and FLa,1 and FLa,2 are independent random
variables with density P(La≥u)/E(La) on R+.

The proof is given in Section C of Appendix. It follows the same arguments
as in the proof of Proposition 4.2 but with a more technical framework due to
the mark m, in the space Mp(R×R

2
+), of the Poisson process P .

If the average of P does not depend on the distributions of elongation times of
mRNAs and of proteins, the second moment does depend on these distributions,
and also on the distributions of lifetimes. Note however that if Λ is large, i.e. at
least one of the states of the gene is changing rapidly, Relation (5.4) shows that
the dependence of the distribution of the elongation time of an mRNA on the
variance is small in this case.

When the elongation times are null, i.e. E1≡0 and E2≡0 and the lifetimes
L1 and L2 are exponentially distributed with respective parameters γ1 and γ2,

in this case, for a∈{1, 2}, the variable FLa is also exponential since FLa

dist
= La, a

simple calculation gives the classical formula (2.1) of the Markovian model.
Outside the Fano parameter, the biological literature defines the noise as-

sociated to the production of proteins as the variance of P/E(P ), the quantity
Var(P )/E(P )2. The above formulas and Relation (4.5) give that it can be rep-
resented as
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Var(P )

E(P )2
=

1

E(P )
+

1

E(M)
P

(
FL1≥|E2,1−E2,2+FL2,1−FL2,2|

)

+
k−
k+

E

(
e−Λ|FL1,1−FL1,2+FL2,1−FL2,2+E1,1−E1,2+E2,1−E2,2|

)
.

5.2. The equilibrium distribution of the number of proteins

When the gene is always active, an explicit expression of the generating function
of P can be obtained. As it will be seen, its form depends on the whole distri-
bution of the lifetimes and elongation times. Nevertheless, by using appropriate
scalings, it can be used to get limit results for its distribution and therefore
some insight. This is the purpose of Section 6.

Note that for classical Markovian models, without elongation times in partic-
ular, Relation (26) of Bokes et al. [3] gives, via an analytic approach, an explicit
expression of the joint generating function of M in terms of an hypergeometric
function.

Proposition 5.2 (Generating Function of P ). If the gene is always active,
i.e. the process (I(t)) is constant and equal to 1, and P is the random variable
defined by Relation (3.4), the distribution of P is given by, for z∈[0, 1],

E
(
zP

)
= exp

(
−
∫
R

2
+

[
1−e−(1−z)k2E(L2)P(FL2

+E2∈(u−w,u))
]
k1 duL1(dw)

)
,

where FL2 and L2 are two independent random variables and the distribution of
FL2 has density P(L2≥u)/E(L2) on R+.

Proof. Relations (5.1) and (5.2) defining P and (B.1) of Appendix for the
Laplace transform of Poisson point processes give

E (exp (−ξP )) = E

(
exp

(
−ξ

∫
S
G2(u, v, w,m)P(du, dv, dw, dm)

))

= exp

(
−
∫
S

[
1−e−ξG2(u,v,w,m)

]
νP(du, dv, dw, dm)

)

=

∫
S

(
1−E

(
e−ξG2(u,v,w,N2)

))
k1 duE1(dv)L1(dw),

where, as before, N2 is a Poisson process whose distribution is Q2.
For (u, v, w)∈R×R

2
+, by using again Relation (B.1) for the Laplace transform

of the Poisson process N2,

E

(
e−ξG2(u,v,w,N2)

)
(5.5)

= E

(
exp

(
−ξ

∫
R×R

2
+

1{x+v≤u<x+v+w
y≤x<y+z

}N2(dx, dy, dz)

))

= exp

(
−
(
1−e−ξ

) ∫
R×R

2
+

1{x+v≤u<x+v+w
y≤x<y+z

}k2 dxE2(dy)L2(dz)

)
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= exp

(
−
(
1−e−ξ

) ∫
R+

P
(
x+E2+v<u<x+E2+v+w

0≤x<L2

)
k2 dx

)

= exp
(
−
(
1−e−ξ

)
k2E(L2)P (FL2+E2+v≤u<FL2+E2+v+w)

)
,

with the same arguments as in the proof of Relation (4.6). Hence,

∫
S

[
1−e−ξG2(u,v,w,m)

]
νP(du, dv, dw, dm)

=

∫
S

[
1− exp

(
−
(
1−e−ξ

)
k2E(L2)P (u−v−w≤FL2+E2<u−v)

)]
k1 duE1(dv)L1(dw)

=

∫
S

[
1− exp

(
−
(
1−e−ξ

)
k2E(L2)P (u−w≤FL2+E2<u)

)]
k1 duL1(dw),

which gives the desired formula for the generating function.

The explicit expression of the generating function of P for Markovian models
is detailed in Proposition 2.3 of Section 2.

5.3. The joint distribution of the numbers of mRNAs and proteins

This topic is investigated in few references of the literature such as Bokes et
al. [3] and Taniguchi et al. [37]. Its motivation lies in the fact that it could be
useful if some information on the number of mRNAs could be extracted from
knowledge on the number of proteins.

We begin to study the covariance function of M and P . Relations (4.1)
and (5.1) give the representations⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩
M =

∫
S
I(u)G1(u, v, w)P(du, dv, dw),

P =

∫
S
I(u)G2(u, v, w,m)P(du, dv, dw, dm),

(5.6)

where the functions G1 and G2 are defined by Relations (4.2) and (5.2). By
using Proposition 4.1 as before on the conditional distribution of (M,P ) with
respect to FI , the σ-field associated to the state of the gene. See Section 4.
Relation (B.2) for the covariance of functionals of Poisson processes gives the
formula

CI def
= E

(
MP |FI

)
−E

(
M |FI

)
E
(
P |FI

)
=

∫
S
I(u)G1(u, v, w,m)G2(u, v, w,m)νP(du, dv, dw, dm).
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By integrating this identity and Relations (4.2) and (5.2) defining G1 and G2,
we obtain that E(CI) is equal to∫

S
E(I(u))1{v≤u<v+w}

∫
R×R

2
+

1{x+v≤u<x+v+w
y≤x<y+z

}m(dx, dy, dz)νP(du, dv, dw, dm)

=δ+

∫
S

1{v≤u<v+w}E

(∫
R×R

2
+

1{x+v≤u<x+v+w
y≤x<y+z

}N2(dx, dy, dz)

)

k1 duE1(dv)L1(dw)

= δ+k1k2E

(∫
1{0≤u<L1}

∫
R2

1{ x≤u<x+L1
E2≤x<E2+L2

} dxdu

)

= δ+k1k2E(L2)E
(
(L1−FL2 − E2)

+
)
,

hence, with Relation (1.1),

E(CI) = E(P )P (FL1≥FL2+E2) .

Concerning the product of conditional expectations in the definition of CI , the
following identities have established in the proof of Propositions 4.2 and 5.1,

E
(
M |FI

)
= k1

∫
R

I(u)P(E1<u<E1+L1) du,

E
(
P |FI

)
= k1k2

∫
R

I(u)E

(∫
R

1{x+E1≤u<x+E1+L1
E2≤x<E2+L2

} dx

)
du.

Using the same argument as before to express a product of integrals as a double
integral, this gives the identity

E
(
E
(
M |FI

)
E
(
P |FI

))
/(k21k2)

=

∫
R3

E (I(u)I(u′))E

(
1{E1,1≤u<E1,1+L1,1}1

{
x+E1,2≤u′<x+E1,2+L1,2

E2≤x<E2+L2

}
)
dxdu′ du.

By using Corollary 4.1 again, E[I(u)I(u′)]=δ+(δ++(1−δ+) exp(Λ|u−u′|), for u,
u′≥0, the last expression is the sum of two terms,

δ2+

∫
R3

E

(
1{0≤u<L1,1}1

{
0≤u′<L1,2

0≤x<L2

}
)
dxdu′ du = δ2+E(L1)

2
E(L2),

and

δ+(1−δ+)

∫
R3

e−Λ|u−u′|

E

(
1{E1,1≤u<E1,1+L1,1}1

{
x+E1,2≤u′<x+E1,2+L1,2

E2≤x<E2+L2

}
)
dxdu′ du,



310 Ph. Robert

which is, after the same manipulations as in the proof of Proposition 5.1,

δ+(1−δ+)E(L1)
2
E(L2)E

(
e−Λ|FL1,2−FL1,1+FL2

+E2+E1,2−E1,1)|
)
.

We have therefore proved the following proposition.

Proposition 5.3 (Covariance of M and P ). If M and P are the random vari-
ables defined by Relation (3.3) and (3.4), then the covariance of M and P is
given by

Cov(M,P )

E(P )
= P (FL1≥FL2+E2)+E(M)

+
k−
k+

E(M)E
(
e−Λ|FL1,2−FL1,1+E1,2−E1,1+FL2

+E2|
)
, (5.7)

for E1,1 and E1,2, are independent random variables with distribution E1, and
FL1,1 and FL1,2 are independent random variables with density P(L1≥u)/E(L1)
on R+, FL2 is a random variable with density P(L2≥u)/E(L2) on R+.

The lifetime L1 of the mRNAs is usually much smaller than the lifetime L2 of
proteins, this implies that the same property also holds for the variables FL1 and
FL2 . If, additionally, the average number of mRNAs E(M) is small, the right-
hand-side of Relation (5.7) is small, so that Cov(M,P ) should be close to 0.
This property has already been noticed in some measurements, see Taniguchi et
al. [37] for example. We conclude this section with an explicit representation of
the generating function of the random variable (M,P ) when the gene is always
active.

Proposition 5.4 (Joint Distribution of M and P ). When the gene is always
active, for z1 and z2∈(0, 1),

E
(
zM1 zP2

)
= exp

[
−k1E(L1)

∫
R+

(
1−z1 exp

[
− (1−z2) k2E(L2)P (FL2+E2≤u)

])
FL1(du)

+k1

∫
R

2
+

(
1− exp

[
− (1−z2) k2E(L2)P (FL2+E2∈(u, u+w))

])
duL1(dw)

]
, (5.8)

where FL1 , FL2 and E2 are independent random variables and, for a∈{1, 2}, the
random variable FLa has the density P(La≥u)/E(La) on R+.

Proof. For a1, a2>0, Relation (5.6) gives that

a1M+a2P =

∫
S
F (u, v, w,m)P(du, dv, dw, dm)

where
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F (u, v, w,m)
def
= a1G1(u, v, w) + a2G2(u, v, w,m)

= a11{v≤u<v+w}+a2

∫
R×R

2
+

1{x+v≤u<x+v+w
y≤x<y+z

}m(dx, dy, dz).

We have, by Relation (B.1) of the Appendix,

E
(
e−a1M−a2P

)
=exp

(
−
∫
S

(
1−e−F (u,v,w,m)

)
νP(du, dv, dw, dm)

)
,

hence,

− log
(
E
(
e−a1M−a2P

))
=

∫
R×R

2
+

(
1−e−a1G1(u,v,w)

E

(
e−a2G2(u,v,w,N2)

))
k1 duE1(dv)L1(dw),

and, if we use Relation (5.5),

E(
(
e−a2G2(u,v,w,N2))

)
=exp

(
−
(
1−e−a2

)
k2E(L2)P (FL2+E2∈(u−v−w, u−v))

)
,

hence

− log
(
E
(
e−a1M−a2P

))
=

∫
R×R

2
+

(
1− exp

[
−a11{v≤u<v+w}

−
(
1−e−a2

)
k2E(L2)P (FL2+E2∈(u−v−w, u−v))

])
k1 duE1(dv)L1(dw).

We conclude the proof with standard calculations.

6. Convergence results

The purpose of this section is of revisiting, via rigorous convergence theorems,
several classical research topics of the literature on the stochasticity of the gene
expression. Most of studies in this domain take place in the Markovian setting of
Section 2 without the elongation of mRNAs and proteins. Kolmogorov’s equa-
tions associated to the Markov process, the “master equation” as it is usually
presented, are the starting point of these studies.

As the equilibrium equations cannot be solved explicitly, several scenarios are
investigated, via scalings, to get insight on the equilibrium distribution of the
number of proteins: Fast Switching rates between active and inactive states, mR-
NAs with short lifetimes, proteins with long lifetimes, gene with large expression
rates, . . . . See Friedman et al. [12], Raj et al. [31], Shahrezaei and Swain [35],
Swain et al. [36] and Thattai and van Oudenaarden [38]. See Bokes et al. [3] for a
quite extensive analysis of the Markovian model. We will look at three different
scaling situations in the light of the results derived in the previous sections.
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1. Long-Lived Proteins.
The distribution of lifetimes of proteins is an exponential distribution with
parameter γ2, and its mean is converging to infinity. A central limit theo-
rem is proved for the equilibrium of the number P of proteins. It is shown
that, in distribution, P∼E(P )+

√
E(P )N , where N is a centered Gaussian

random variable.
2. Short-Lived mRNAs and Long-Lived Proteins.

The distribution of lifetimes of mRNAs and proteins are exponential with
respective parameters γ1 and γ2, the mean lifetime 1/γ1 of mRNAs is con-
verging to 0 and the death rate γ2 of proteins is fixed so that k1k2/(γ1γ2),
the mean number of proteins at equilibrium, is fixed.

3. Short-Lived mRNAs and High Expression Rate of Proteins.
The distribution of lifetimes of mRNAs and proteins are exponential with
respective parameters γ1 and γ2. The mean lifetime of mRNAs is converg-
ing to 0 and the translation rate k2 of proteins is fixed so that the quantity
k2/γ1, the average number of proteins produced by an mRNA, is fixed.

For several of these regimes, in a Markovian setting, convergence results of this
section can be seen in the context of a stochastic averaging principle: the system
is driven by a fast process, associated with the mRNAs (for example), and by
a slow process describing the time evolution of proteins. In the limit, the time
evolution on finite time intervals of proteins can be described as if the fast
process is at equilibrium at any time. A typical result states that this picture
also holds for the equilibrium of the slow process, but this is a more difficult
result to prove in general. See Kurtz [20] for example. A similar observation
could also be done for the central limit theorem 6.1, see Chapter 4 of Anderson
and Kurtz [1]. A direct approach is used here to prove convergence results by
taking advantage of the explicit representation of equilibrium of Theorem 3.1.

In most cases, the gene will be assumed to be always active. The reason is
that, if some results could be obtained on the distribution of P , we have not been
able to get usable expressions to get some insight in the scaling regimes analyzed
here. The next result shows that, in practice, a model with a permanently active
gene is reasonable, provided some parameters are adjusted. This is a folk result of
the biological literature: if the state of the gene switches more and more rapidly,
then, in the limit, the model is equivalent to a model with a permanently active
gene but with a reduced transcription rate.

6.1. Fast switching rates of gene between active and inactive states

Proposition 4.3 shows that when the gene is always active then the equilibrium
distribution of the number of mRNAs is Poisson. This is minimal from the point
of view of the Fano factor in this class of models. If the gene switches quickly
between the two states active/inactive, one can expect an averaging effect. The
following proposition establishes this intuitive result.

Proposition 6.1. If PN is the random variable defined by Relation (3.4) with
the activation/deactivation rates are respectively given by k+N and k−N for
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some scaling parameter N≥1, then, for the convergence in distribution,

lim
N→+∞

PN = P,

where the distribution of P is the equilibrium distribution of the number of pro-
teins for a model of gene expression for which the gene is always active and with
the same parameters except for k1 which is replaced by k1k+/(k++k−).

Proof. The stationary activation/deactivation process (IN (t)) can clearly be
expressed as (I(Nt)) where (I(t)) is a stationary process with switching rates
k+ and k−

Let f be an integrable function on R+ and

XN
def
=

∫
R+

I(Nu)f(u) du,

we now prove the convergence in distribution

lim
N→+∞

XN = δ+

∫
f(u) du,

with δ+
def
= k+/(k++k−). Note that the convergence is certainly true for the first

moment of XN , since E(I(t))=δ+ for all t≥0.
By writing the square of XN as a double integral, with Proposition 2.2 we

obtain the relation

E(X2
N ) = E

(∫
R

2
+

I(Nu)I(Nu′)f(u)f(u′) du du′

)

=

(
δ+

∫
f(u) du

)2

+ δ+(1−δ+)

∫
R

2
+

e−N(k++k−)|u−u′|f(u)f(u′) du du′.

Therefore,

lim
N→+∞

E
(
(XN−E(XN ))2

)
= lim

N→+∞
E
(
X2

N

)
− (E(XN ))

2
= 0,

in particular, (XN ) converges in distribution to the limit of the sequence
(E(XN )).

Denote by FIN the filtration associated to the process (I(Nt)). Relations (5.1)
and (5.2) for PN , and (B.1) of the Appendix for the Laplace transform of Poisson
point processes give

E

(
exp (−ξPN )

∣∣FIN
)

= E

(
exp

(
−ξ

∫
S
I(Nu)G2(u, v, w,m)P(du, dv, dw, dm)

))

= exp

(
−
∫
S
I(Nu)

[
1−e−ξG2(u,v,w,m)

]
νP(du, dv, dw, dm)

)
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= exp

(
−
∫
R

I(Nu)
[
1−E

(
e−ξG2(u,E1,L1,N2)

)]
k1 du

)
,

where N2 is a Poisson process whose distribution is Q2 defined by Relation (3.2).
By using the convergence result, we obtain that

lim
N→+∞

E (exp (−ξPN )) = exp

(
−
∫
R

[
1−E

(
e−ξG2(u,E1,L1,N2)

)]
δ+k1 du

)
,

which is the Laplace transform of the variable P associated to a Poisson process
with the same characteristics as P except that the transcription rate is δ+k1
and that the gene is always active.

6.2. Asymptotic behavior of the equilibrium distribution

In this section, the invariant distribution of the number of proteins when the
gene is always active is analyzed under some scaling conditions. Several of them
rely on the fact that the average lifetime of a protein is much larger than the
lifetime of an mRNA, which is of the order of 2 mn for an mRNA, where, for a
protein, it is at least 30 mn. See the numbers of Section A of the Appendix. This
approach is used in the literature to get a further insight on the distribution of
P , i.e. with more information than the first two moments that have an explicit
expression. It is usually done via approximations on the equation satisfied by the
generating function of P . See Bokes et al. [3] or Shahrezaei and Swain [35] where
this is done via an expansion of an hypergeometric function. The representation
of Proposition 5.2 of the generating function of P will allow to get convergence
results for the distribution of P in a quite general case and without too much
technicality.

A limiting Gaussian distribution for the number of proteins.
The scaling considered here assumes that the average lifetime of proteins goes to
infinity and the other parameters are fixed. In particular these proteins should
be numerous within the cell. This setting is well suited for protein types having a
large number of copies, of the order at least of 10,000 for example. The following
result shows that a central limit theorem holds in this context.

Theorem 6.1 (Central Limit Theorem). Under the conditions

1. the gene is always active;
2. the distribution L2 of lifetimes of proteins is exponential with parameter

γ2;
3. the parameters k1, k2 are fixed as well as the distribution L1 of the lifetimes

of mRNAs and the respective distributions E1 and E2 of the elongation
times of mRNAs and proteins. The distribution L1 of lifetimes of mRNAs
has a finite third moment, E(L3

1)<+∞,

if P is the random variable defined by Relation (3.4), then for the convergence
in distribution,

lim
γ2→0

√
γ2 (P−E(P )) = N (σ) ,
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where

σ=
√
k1E(L1)k2

(
1+k2

∫
R+

P (FL1≥|E2,1−E2,2+x|) dx
)1/2

,

and, for a>0, N (a) is a centered Gaussian random variable with standard de-
viation a.

Despite this framework is quite natural, curiously it does not seem to have
been investigated in the biological literature, even for the classical Markovian
three-step model. It gives in fact a Gaussian approximation for the number of
proteins at equilibrium when the average lifetime 1/γ2 of proteins is large. It
should be noted that, in this scaling regime, the second order does depend on
the distribution of the elongation times of proteins.

Proof. By using Proposition 5.2, the relation FL2

dist
= L2 due to the exponential

assumption for L2, and the calculation of the proof of Relation (5.3) of Propo-
sition 5.1, we get that, for ξ>0,

log
[
E

(
exp

(
−√

γ2ξ(P−E(P ))
))]

= −
∫
R

2
+

Iγ2(u,w)k1 duL1(dw),

with, for (u,w)∈R2
+,

Iγ2(u,w)
def
=1−e−(1−e−

√
γ2ξ) k2

γ2
P(L2+E2∈(u−w,u))−ξ

k2√
γ2

P (L2+E2∈(u−w, u)) .

The elementary inequality∣∣∣∣1−e−x−x+
x2

2

∣∣∣∣ ≤ x3

6
, for x=

(
1−e−ξ

√
γ2

) k2
γ2

P (L2+E2∈(u−w, u)) (6.1)

gives the relation

∣∣∣∣∣ Iγ2(u, v)−
(
1−e−ξ

√
γ2−ξ

√
γ2+

1

2
ξ2γ2

)
k2
γ2

P (L2+E2∈(u−w, u))

+
1

2
ξ2γ2

k2
γ2

P (L2+E2∈(u−w, u)) +
1

2

(
1−e−ξ

√
γ2

)2
(
k2
γ2

)2

P(L2+E2∈(u−w, u))2

∣∣∣∣∣
≤ 1

6

(
1−e−ξ

√
γ2

)3
(
k2
γ2

)3

P (L2+E2∈(u−w, u))
3
. (6.2)

After integration with respect to the measure k1 duL1(dw) on R
2
+ and by using

the relation ∣∣∣∣1−e−ξ
√
γ2−ξ

√
γ2+

1

2
ξ2γ2

∣∣∣∣ ≤ 1

6
ξ3γ

3/2
2 ,
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we get the inequality

∣∣∣log [E(exp(−√
γ2ξ(P−E(P ))

))]
−A1−A2(γ2)

∣∣∣
≤ k1

6

(
k32B1(γ2)+k2ξ

3B2(γ2)
)
, (6.3)

with

A1
def
=

1

2
k1k2ξ

2

∫
R

2
+

P (L2+E2∈(u−w, u)) duL1(dw),

A2(γ2)
def
=

1

2
k1

(
1−e−ξ

√
γ2

)2
(
k2
γ2

)2 ∫
R

2
+

P (L2+E2∈(u−w, u))
2
duL1(dw),

B1(γ2)
def
=

(
1−e−ξ

√
γ2

)3 1

γ3
2

∫
R

2
+

P (L2+B2∈(u−w, u))
3
duL1(dw),

B2(γ2)
def
=

√
γ2

∫
R

2
+

P (L2+E2∈(u−w, u)) duL1(dw).

We now study the behavior of each of these four terms when γ2 goes to 0. For
the first term A1, this is is straightforward since

A1 =
1

2
k1k2ξ

2

∫
R

2
+

P (L2+E2≤u≤L1+L2+E2) du =
1

2
k1k2ξ

2
E(L1). (6.4)

The second term A2(γ2) is handled in the same way as in the derivation of
Relation (5.4) of Proposition 5.1. First note that∫

R
2
+

P (L2+E2∈(u−w, u))
2
duL1(dw)

=

∫
R+

E

(
(w−|L2,1−L2,1+E2,2−L2,2|)+

)
duL1(dw)

= E(L1)P (FL1≥|L2,1−L2,1+E2,2−L2,2|)

= E(L1)

∫ +∞

0

P (FL1≥|x+E2,1−E2,2|) γ2e−γ2x dx,

with the help of the symmetry E2,1−E2,2
dist
= E2,2−E2,1. Note that

∫ +∞

0

P (FL1≥|x+E2,1−E2,2|) dx ≤
∫ +∞

0

P (x≤FL1+|E2,1−E2,2|) dx

≤ E (FL1)+2E(E2) =
E(L2

1)

2E(L1)
+2E(E2)<+∞,

Lebesgue’s Theorem gives therefore the relation
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lim
γ2→0

A2(γ2) =
1

2
ξ2k1E(L1)k

2
2 lim

γ2→0

∫ +∞

0

P (FL1≥|x+E2,1−E2,2|) e−γ2x dx

=
1

2
ξ2k1E(L1)k

2
2

∫ +∞

0

P (FL1≥|x+E2,1−E2,2|) dx. (6.5)

We now analyze the upper bound of Relation (6.3) expressed with the terms
B1(γ2) and B2(γ2). The last one is easy to handle

B2(γ2) =
√
γ2

∫
R

2
+

P (L2+E2∈(u−w, u)) duL1(dw) = E(L1)
√
γ2,

it converges to 0 as γ2 goes to 0.
For the term B1(γ2), Jensen’s Inequality and Fubini’s Theorem give∫

R
2
+

P (L2+E2∈(u−w, u))
3
duL1(dw)

=

∫
R

2
+

(
E

(
e−γ2(u−w−E2)

+−e−γ2(u−E2)
+
))3

duL1(dw)

≤
∫
R

2
+

E

((
e−γ2(u−w−E2)

+−e−γ2(u−E2)
+
)3
)
duL1(dw)

=

∫
R

2
+

(
e−γ2(u−w)+−e−γ2u

)3

duL1(dw).

With simple calculations, we get that, for w>0, the quantity∫
R+

(
e−γ2(u−w)+−e−γ2u

)3

du

is the sum of two terms, C1 and C2, with

C1
def
=

∫ ∞

w

(
e−γ2(u−w)−e−γ2u

)3

du =
(1−e−wγ2)

3

3γ2
,

C2
def
=

∫ w

0

(
1−e−γ2u

)3
du =

2e−3wγ2−9e−2wa+6wγ2+18e−wγ2−11

6γ2
.

The elementary inequality (6.1) gives the relations

C1 ≤ γ2
2

w3

3
and |C2| ≤ 4γ2

2w
3.

By using the fact that L1 has a finite third moment, we deduce the relation

lim
γ2→0

(
1−e−ξ

√
γ2

)3
(
k2
γ2

)3 ∫
R

2
+

P (L2+E2∈(u−w, u))
3
duL1(dw) = 0.

Relations(6.3), (6.4) and (6.5) give therefore the convergence
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lim
γ2→0

log
[
E

(
exp(−√

γ2ξ(P−E(P )))
)]

=
ξ2

2
k1k2E(L1)

(
1+k2

∫ +∞

0

P (FL1≥|x+E2,1−E2,2|) dx
)
.

The theorem is proved.

Short-lived mRNAs and long-lived proteins.
For the scaling considered in this section the death rate γ2 of proteins goes to
0 and with the constraint that the death rate γ1 of mRNAs is such that the
average number of proteins is kept fixed and equal to a>0,

k1E(L1)k2E(L2) =
k1
γ1

k2
γ2

= a.

In particular the average lifetime 1/γ1 of an mRNA goes to 0.

Proposition 6.2. Under the conditions

1. the gene is always active;
2. the distribution of lifetimes of mRNAs and proteins are exponential with

respective parameters γ1 and γ2;
3. the transcription and translation parameters k1 and k2>0 are fixed as well

as the distributions of the elongation times,

if P is the random variable defined by Relation (3.4), then for a>0, the conver-
gence in distribution,

lim
γ1→+∞

γ1γ2=k1k2/a

P = Pois(a),

where Pois(a) is the Poisson distribution with parameter a.

Note that Proposition 2.2 gives readily that

lim
γ1→+∞

γ1γ2=k1k2/a

Var(P )

E(P )
= 1.

From the point of view of the Fano factor, the fluctuations of the number of
proteins are minimal. A (rough) picture of that is that short-lived mRNAs and
almost permanent proteins minimize fluctuations of gene expression. The propo-
sition is more precise since it states that the number of proteins at equilibrium
is in fact asymptotically Poisson.

Proof. In view of Proposition 5.2 and, since L2 is exponentially distributed,

L2
dist
= FL2 , all we have to do is that the quantity

Δ
def
=

∫
R

2
+

[
1− exp

(
− (1−z) k2E(L2)P

(
L2+E2∈((u−w)+, u)

))]
k1 duL1(dw)

converges to (1−z)a, as γ1 goes to infinity, with the constraint γ1γ2=k1k2/a.
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With the elementary inequality (6.1), we get

|Δ−(1−z)k1k2Δ1|≤
(1−z)2k1k

2
2

2
Δ2,

with

Δ1
def
=

∫
R

2
+

1

γ2
P
(
L2+E2∈((u−w)+, u)

)
duγ1e

−γ1w dw

and

Δ2
def
=

∫
R

2
+

(
P (L2+E2∈((u−w)+, u))

γ2

)2

duγ1e
−γ1w dw.

We now take care of these two quantities. By invariance by translation, we have

Δ1=
1

γ2
E

(∫ (
e−γ2(u−E2−w)+−e−γ2(u−E2)

+
)
duγ1e

−γ1w dw

)

=
1

γ2
E

(∫ (
e−γ2(u−w)+ − e−γ2u

)
duγ1e

−γ1w dw

)
=

1

γ1γ2
.

The Cauchy-Shwartz Inequality gives for the second term

Δ2
def
=

∫
R

2
+

[
1

γ2
E

((
e−γ2(u−E2−w)+−e−γ2(u−E2)

+
))]2

duγ1e
−γ1w dw

≤ E

(∫
R

2
+

1

γ2
2

(
e−γ2(u−w)+−e−γ2u

)2

duγ1e
−γ1w dw

)
=

1

γ1γ2(γ1+γ2)

hence it converges to 0 as γ1 goes to infinity with γ1γ2 being constant. The
proposition is proved by gathering these results.

The above result can be explained quite simply as follows. We assume that
the elongation times are null for simplicity. With the “coupling from the past”
approach of Section 3.3, if (un) denotes the non-decreasing sequence of instants
of binding instants before time 0, since the distribution of the sequence of life-
times (L1,n) of mRNAs is converging to 0, with high probability there should
at most one protein created by the mRNA with index n, so that

P ∼ R
def
=

∑
n<0

1{N2([un+E1,n,un+E1,n+L1,n]) �=0,un+E1,n+L2,n>0},

and a simple calculation gives

E
(
zR
)
= exp

(
−(1− z)

k2k1
γ2(γ1+k2)

)
∼ exp

(
−(1− z)

k2k1
γ2γ1

)
,

as γ2 goes to 0 with γ1γ2 constant. The distribution of the variable R is asymp-
totically Poisson with parameter k2k1/(γ2γ1). It is not difficult to see that, with
convenient estimates, a rigorous proof could be obtained by using this observa-
tion.
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Short-lived mRNAs and high expression rate of proteins.

In this section the death rate γ1 of proteins goes to infinity but it is assumed in
addition that the quantity k2/γ1, the average number of proteins translated by
an mRNA, is constant. In particular k2, the expression rate of proteins, is large
and the average number of proteins is fixed.

Proposition 6.3. Under the conditions

1. the gene is always active;
2. the distribution of lifetimes of mRNAs and proteins are exponential with

respective parameters γ1 and γ2;
3. the parameters k1 and γ2>0 are fixed as well as the distributions of the

elongation times,

if P is the random variable defined by Relation (3.4), then for a>0, the relation

lim
γ1→+∞
k2/γ1=a

P = N(a),

holds for the convergence in distribution, where N(a) is a discrete random vari-
able whose generating function is given by, for z∈(0, 1),

E

(
zN(a)

)
= exp

⎛
⎝−k1

∫ +∞

0

(1−z) aE
(
e−γ2(u−E2)

+

1{u>E2}

)
1+ (1−z) aE

(
e−γ2(u−E2)+1{u>E2}

) du
⎞
⎠ .

The distribution of the random variable N(a) belong to the class of generalized
Neyman Type A distributions. See Section 9 of Chapter 9 of Johnson et al. [16]
for example. In the Markovian case of Section 2, this is a negative binomial
distribution. See Proposition 2.5.

Proof. For z∈(0, 1), the quantity − log(E(zP ))/k1 is, since FL2

dist
= L2,

H(z)
def
=

∫
R

2
+

[
1−e−(1−z)k2E(L2)P(L2+E2∈(u−w,u))

]
duγ1e

−γ1w dw

=

∫
R

2
+

[
1−e

−(1−z)k2E(L2)E
(
e−γ2(u−w/γ1−E2)+−e−γ2(u−E2)+

)]
due−w dw. (6.6)

With similar arguments as in the proof of Proposition 6.2 and Lebesgue’s The-
orem, we obtain the relation

lim
γ1→+∞
k2/γ1=a

H(z) =

∫
R

2
+

[
1−e

−(1−z)aγ2E(L2)wE

(
e−γ2(u−E2)+1{u>E2}

)]
due−w dw.

The proposition is proved.
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6.3. The impact of elongation on variability

In this section we discuss the impact of the elongation of proteins on the vari-
ability of the protein production process. This aspect has been rarely considered
in the mathematical models of the literature. Note that the first moments of M
and P do not depend on the distributions of the elongation times. The distri-
bution of the random variable M and the second moment of P do not depend
on the distribution of the elongation phase of mRNAs when the gene is always
active.

To simplify the presentation, we assume in this section that the lifetimes of
mRNAs and proteins are exponentially distributed with respective parameters
γ1 and γ2 and that the gene is always active.

If the protein is composed of N amino-acids, it is natural to assume that
the average of the elongation time is proportional to N , i.e. given by N/α
for some α>0. An index N is added to the variables E2 and P defined by
Relation (3.4). Relation (5.4) of Proposition 5.1 gives that the variance of the
number of proteins at equilibrium is given by,

Var(PN )− k1k2
γ1γ2

=
k1k

2
2

γ1γ2
2

E

(
e−γ1|SN

2 +Y2|
)
, (6.7)

by the equality in distribution FLa

dist
= La for a∈{1, 2} due to the exponential

distribution assumption, with SN
2 =EN

2,1−EN
2,2 and Y2=L2,1−L2,2.

Two assumptions on the distribution of the elongation time of a protein are
now considered.

1. Markov model. The variable EN
2 is an exponential random variable

given by EN
2,M with

EN
2,M

def
= NVα,

where Vα is an exponential random variable with parameter α.
A similar assumption can be done for the elongation of mRNAs, i.e. that
its distribution is also exponential. If M0(t), (resp., P 0(t)), denotes the
number of mRNAs, (resp., proteins), being built at time t≥0, then the
process

(I(t),M0(t),M(t), P 0(t), P (t))

has clearly the Markov property. This is a natural Markovian extension of
the classical Markovian model including elongation.

2. Additive Model. The variable EN
2 is given by EN

2,A with

EN
2,A

def
=

N∑
k=1

Vα,i,

where (Vα,i) is an i.i.d. sequence of exponential random variables with
parameter α. This is also a natural assumption since it considers that it
takes a random amount of time with an exponential distribution to find
each amino-acid of the protein within the cytoplasm.
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The variable P defined by Relation (3.4) is denoted as PN
M for the Markov

model and PN
A for the additive model. Similarly for the variable SN

2 of Rela-
tion (6.7), we define the corresponding variables SN

2,M and SN
2,A.

A non-intuitive phenomenon.
A simple calculation gives

Var(EN
2,M ) =

N2

α2
and Var(EN

2,A) =
N

α2
.

As it can be seen the variability of the elongation time is larger for the Markov
model. Intuitively, this could suggest that the same property holds for the num-
ber of proteins, that the variance of PN

M is larger than the variance of PN
A . But

a glance at Relation (6.7) suggests in fact the contrary. Indeed, the variable
SN
2 +Y2 will be more variable for the Markov model and, therefore, due to this

relation, the variance should be smaller. The next proposition gives a more for-
mal formulation of this observation. See also Leoncini [21] for related numerical
results of this kind.

Proposition 6.4 (Variance for a Large Number of Amino-Acids). Under the
conditions

1. the gene is always active;
2. the number of amino-acids of the protein is N , the mean elongation time

of a protein is N/α for α>0;
3. the distribution of lifetimes of mRNAs and proteins are exponential with

respective parameters γ1 and γ2;

the variable P defined by Relation (3.4) is denoted as PN
M for the Markov model

and PN
A for the additive model, then⎧⎪⎨

⎪⎩
E
(
PN
M

)
=E

(
PN
A

)
=
k1k2
γ1γ2

def
= a,

lim
N→+∞

Var
(
PN
M

)
= lim

N→+∞
Var

(
PN
A

)
=a.

Furthermore, if γ1<γ2, there exists α0>0 such that if α>α0 then there exist
constants C>c>0 such that the relations{

c ≤ N
(
Var(PN

M )−a
)
≤ C,

c ≤
√
N
(
Var(PN

A )−a
)
≤ C,

hold for any N≥1.

This proposition shows that, if the second moment of P depend on the dis-
tribution of the elongation times, its dependence is somewhat limited for both
models, Markov and additive. It converges to some constant as the average (and
the variance) of the elongation time goes to infinity. Recall that the average
number of proteins does not depend at all on the distribution of the elongation
time.
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The inequalities of the proposition show that the convergence rate of the
variance to a, as N gets large, is of the order of 1/

√
N for the additive model,

and 1/N for the Markov model.

Proof. With the notations of Relation (6.7), for B∈{A,M}, the elementary
relations

E

(
e−γ1|Y2|

)
E

(
e−γ1|SN

2,B|
)
≤ E

(
e−γ1|SN

2,B+Y2|
)
≤ E

(
e−γ1|SN

2,B|
)
E

(
eγ1|Y2|

)
hold. Since γ1<γ2, one has

E

(
eγ1|Y2|

)
<+∞,

hence, one has only to take care of the limiting behavior of E
(
exp

(
−γ1|SN

2 |
))

as N goes to infinity.
For the Markov model, a simple calculation gives that |SN

2,M | is exponentially
distributed with parameter α/N ,

E

(
e−γ1|SN

2,M |
)
=

α

α+γ1N
, so that lim

N→+∞
NE

(
e−γ1|SN

2,M |
)
=

α

γ1
,

For the additive model, SN
2,A is a sum of N i.i.d. centered random variables

SN
2,A =

N∑
k=1

(V 1
α,i−V 2

α,i),

where (V 1
α,i) and (V 2

α,i) are independent i.i.d. sequences of exponential random
variables with parameter α. Let

σ
def
=

√
Var(V 1

α,1−V 2
α,1) =

√
2

α
and ρ

def
= E

(∣∣V 1
α,1−V 2

α,1

∣∣3) =
6

α3
,

Berry-Esseen’s theorem, See Feller [11] for example, gives that, for all N∈N,

sup
x∈R+

∣∣∣∣∣P
(
|SN

2,A|
σ
√
N

≤x

)
−P(|N (1)|≤x)

∣∣∣∣∣ ≤ 6ρ

σ3
√
N

=
18√
2N

, (6.8)

where N (1) is a centered Gaussian random variable with standard deviation 1.
From Fubini’s Theorem, we have

E

(
e−γ1|SN

2,A|
)
= γ1

∫ +∞

0

P
(∣∣SN

2,A

∣∣≤x
)
e−γ1x dx,

and, with Relation (6.8), this gives∣∣∣∣E(e−|SN
2 |
)
−γ1

∫ +∞

0

P

(
|N (1)|≤ x

σ
√
N

)
e−γ1x dx

∣∣∣∣ ≤ 18√
2N

. (6.9)
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Let aN=γ1σ
√
N , then

γ1

∫ +∞

0

P

(
|N (1)|≤ x

σ
√
N

)
e−γ1x dx = E (exp (−aN |N (1)|))

=
1

aN

√
2

π

∫ +∞

0

e−x2/(2a2
N )e−x dx.

With Lebesgue’s Theorem, we obtain

lim
N→+∞

√
Nγ1

∫ +∞

0

P

(
|N (1)|≤ x

σ
√
N

)
e−γ1x dx =

1

γ1σ

√
2

π
=

α

γ1
√
π
.

If α is such that

α>18γ1

√
π

2
,

Inequality (6.9) gives the relations

0< lim inf
N→+∞

√
NE

(
e−|S

N
2 |
)
≤ lim sup

N→+∞

√
NE

(
e−|S

N
2 |
)
< +∞.

This concludes the proof of the proposition.

Appendix A: Some numbers for Escherichia coli bacterial cells

We give some numbers and some statistics for a single cell, to give an idea of the
orders of magnitude of the different elements of this production process. It is also
used to justify some of the assumptions in the mathematical models introduced.
The sources of these numbers can be found at the address www.bioNumbers.org.
The references Bremer and Dennis [4] and Chen et al. [8] have also been used.

1. Global Parameters.

— Diameter of bacteria: ∼2·10−6 m.

— Water content of a cell: 50–70%.

— Dry content of a cell: ∼55% proteins, 20% mRNAs, 10% lipids.

2. Polymerases and Ribosomes.

A ribosome is a complex macro-molecule composed of ribosomal proteins,
of the order of 50 units, and ribosomal RNAs corresponding to a total
of ∼3000 nucleotides. Polymerases and ribosomes can be seen, for the
production process, as resources of the cell. They are used by all types of
genes of the cell, in some way, genes (resp., the mRNAs) of all types are
competing to have access to polymerases (resp., ribosomes) to produce
mRNAs (resp., proteins).

— Number of polymerases: 1500–11400.

— Number of ribosomes: 6800–72000.

www.bioNumbers.org
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Fig 5. Distributions of Sizes for Escherichia coli. Sources of Data: Karp et al. [17] and
Valgepea et al. [39].

— Rate of transcription by an RNA polymerase ∼85 nucleotides/sec.

— Rate of translation by a ribosome ∼20 amino-acids/sec.

Note that the range of variations of these numbers depends on the growth
rate of the cells, i.e. of the environment.

3. mRNAs and Proteins.

— Number of mRNAs in a cell: ∼7800.

— Average lifetime of an mRNA: ∼2 mn.

— Size of protein: ∼2·10−9 m.

— Number of proteins in a cell: ∼2.36·106.
— Diffusion coefficient of a protein: ∼10−2 sec to cross cell.

Appendix B: Poisson point processes

The main results concerning Poisson processes used in this chapter are briefly
recalled, in the following H is a separable locally compact metric space. See
Kingman [19], Neveu [27], or Robert [33].

Definition B.1. If λ>0, μ is a probability distribution on H, a marked Poisson
process on R×H with intensity λ dx⊗μ is a sequence Nλ=((tn, Xn), n∈Z) of
elements of R×H where

— (tn, n∈Z) is a (classical) Poisson process on R with rate λ, with the con-
vention that tn≤tn+1 for any n∈Z and t0≤0<t1.

— (Xn, n∈Z) is an i.i.d. sequence of random variables with values in H and
whose distribution is X(dx).
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The sequence Nλ can also be seen as a marked point process on R×H, if F
is a non-negative Borelian function on R×H, then

〈Nλ, F 〉 =
∫
R×H

F (u, x)Nλ(du, dx) =
∑
n∈Z

F (tn, Xn).

The following important proposition characterizes marked Poisson point pro-
cesses.

Proposition B.1 (Laplace Transform of a Poisson Process). The marked point
process Nλ = (tn, Xn) is a Poisson point process with intensity λ du⊗X(dx) if
and only if the relation

E

(
exp (−〈Nλ, F 〉)

)
= exp

(
−λ

∫
R×H

(
1− e−F (s,x)

)
dsX(dx)

)

holds for any non-negative continuous function F on R×H.

Corollary B.1. If F and G are non-negative functions in L2∩L1(du⊗X), then

E

(∫
R×H

F (s, x)Nλ(ds, dx)

)
=

∫
R×H

F (s, x)λ dsX(dx) (B.1)

and

Cov

(∫
R×H

F (s, x)Nλ(ds, dx),

∫
R×H

G(s, x)Nλ(ds, dx)

)

=

∫
R×H

F (s, x)G(s, x)λ dsX(dx) (B.2)

Negative binomial distribution.
For a, b>0, let G be a random variable whose distribution has the density

ba

Γ(a)
xa−1e−bx

on R+, where Γ is the classical Gamma function

Γ(a) =

∫ +∞

0

ua−1e−u du.

See Whittaker and Watson [43] for example. Let N1 be a Poisson process on R+

with rate 1, then, for z∈[0, 1],

E

(
zN ([0,G])

)
= E

(
e−G(1−z)

)
=

∫ +∞

0

ba

Γ(a)
xa−1e−(b+1−z)x dx =

(
b

1+b−z

)a

, (B.3)
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additionally, for n∈N,

P(N ([0, G])=n) =
ba

n!Γ(a)

∫ +∞

0

xa+n−1e−(b+1)x dx

=

(
b

b+1

)a
Γ(a+n)

n!Γ(a)

1

(1+b)n
. (B.4)

Appendix C: Proof of Proposition 5.1

As in section 4, FI denotes the σ-field generated by the stochastic process (I(t)),
by using again Proposition 4.1, we have

E
(
P |FI

)
=

∫
S
G2(u, v, w,m)I(u)νP(du dv, dw, dm),

= k1

∫
S
I(u)G2(u, v, w,m) duL1(dv)Q2(dm)

= k1

∫
R

I(u)E (G2(u,E1, L1,N2)) du,

by definition of Q2, see Relation (3.2), and G2 is defined by Relation (5.1). The
integration of this identity gives

E(P ) = δ+k1E

(∫
R

∫
R×R

2
+

1{x+E1≤u<x+E1+L1
y≤x<y+z

}N2(dx, dy, dz) du

)

= δ+k1E

(∫
R2

1{x+E1≤u<x+E1+L1
E2≤x<E2+L2

}k2 dxdu
)

= δ+k1E(L1)k2E(L2),

where δ+=k+/Λ. The first identity of the proposition is proved.

From Representation (5.1) of P , Proposition 4.1 and Relation (B.2) of Corol-
lary B.1, we obtain

E
(
P 2|FI

)
=
(
E
(
P |FI

))2
+

∫
S
I(u)G2(u, v, w,m)2νP(du, dv, dw, dm) (C.1)

=
(
E
(
P |FI

))2
+ k1

∫
R

I(u)E
[
G2 (u,E1, L1,N2)

2
]
du.

We now take care successively of the two terms of the right hand side of the last

equality. First we study E

[
G2 (u,E1, L1,N2)

2
]
.

For u, v, w∈R+, the distribution of the random variable

G2 (u, v, w,N2) =

∫
R×R

2
+

1{x+v≤u<x+v+w
y≤x<y+z

}N2(dx, dy, dz)
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is Poisson with parameter

κ(u, v, w)
def
= k2

∫
R×R

2
+

1{x+v≤u<x+v+w
y≤x<y+z

} dxE2(dy)L2(dz)

= k2E

(∫
R

1{x+v≤u<x+v+w
E2≤x<E2+L2

} dx

)
.

By using again Relation (B.2) of Corollary B.1, we obtain that

k1E

(∫
R+

I(u)E
[
G2 (u,E1, L1,N2)

2
]
du
)

= δ+k1

∫
R

[
E (κ(u,E1, L1))+E

(
κ(u,E1, L1)

2
)]

du

= E(P ) + δ+k1

∫
R×R

2
+

κ(u, v, w)2 duE1(dv)L1(dw).

For i=1, 2, as before (E2,i) and (L2,i are independent random variables with
the same distribution as E2 and L2 respectively. By rewriting κ(u, v, w)2 as a
double integral, we obtain∫

R×R
2
+

κ(u, v, w)2 duE1(dv)L1(dw)

=k2
2

∫
R×R

2
+

E

(∫
R2

1{ x+v≤u<x+v+w
E2,1≤x<E2,1+L2,1

, x
′+v≤u<x′+v+w

E2,2≤x<E2,2+L2,2

} dxdx′

)
duE1(dv)L1(dw)

=k2
2

∫
R

2
+

E

(∫
R2

(w+x∧x′−x∨x′)
+ 1{ E2,1≤x<E2,1+L2,1

E2,2≤x′<E2,2+L2,2

} dxdx′

)
E1(dv)L1(dw),

after integration with respect to u, the translation invariance of Lebesgue’s
measure on R and Relation (1.1) give the relation∫
R×R

2
+

κ(u, v, w)2 duE1(dv)L1(dw)

=k2
2
E(L1)E

(∫
R

2
+

P(FL1≥|E2,1+x−(E2,2+x′)|)P(L2≥x)P(L2≥x′) dxdx′

)

=E(L1)(k2E(L2))
2
P(FL1≥|E2,1+FL2,1−(E2,2+FL2,2)|),

hence

1

E(P )
k1

∫
R

I(u)E
[
G2 (u,E1, L1,N2)

2
]
du

= 1+k2E(L2)P
(
FL1≥|E2,1+FL2,1−(E2,2+FL2,2)|

)
(C.2)
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We now investigate the term E
(
E(P |FI)2

)
of Relation (C.1). As for the

variable M of the last section, observe that

ΔI(P )
def
= E

(
E(P |FI)2

)
−E(P )2 = E

((
E(P |FI)−E(P )

)2)

= E

((
k1

∫
R

(I(u)−δ+)E (G2(u,E1, L1,N2)) du

)2
)
.

We can rewrite the square of the integral as(∫
R

(I(u)−δ+)E (G2(u,E1, L1,N2)) du

)2

=

∫
R2

(I(u)−δ+)(I(u
′)−δ+)E (G2(u,E1, L1,N2))E (G2(u

′, E1, L1,N2)) du du
′

=

∫
R2

(I(u)−δ+)(I(u
′)−δ+)

×
∫
R2

P

(
x+E1,1≤u<x+E1,1+L1,1

E2,1≤x<E2,1+L2,1
, x

′+E1,2≤u′<x′+E1,2+L1,2

E2,2≤x′<E2,2+L2,2

)
k2

2 dxdx′ du du′

By using Relation (4.10) and the translation invariance of Lebesgue’s measure
on R, we get

E
(
ΔI(P )

)
= δ+(1−δ+)k1

2

∫
R4

e−Λ|u−u′|

×P

(
x+E1,1≤u<x+E1,1+L1,1

E2,1≤x<E2,1+L2,1
, x

′+E1,2≤u′<x′+E1,2+L1,2

E2,2≤x′<E2,2+L2,2

)
k2

2 dxdx′ du du′

= δ+(1−δ+)k1
2k2

2

∫
R4

e−Λ|u+x+E1,1+E2,1−(u′+x′+E1,2+E2,2)|

× P

(
0≤u<L1,1

0≤x<L2,1
, 0≤u′<L1,2

0≤x′<L2,2

)
dxdx′ du du′,

which gives the identity

E
(
ΔI(P )

)
=
1−δ+
δ+

E(P )2

×E

(
e−Λ|FL1,1+FL2,1+E1,1+E2,1−(FL1,2+FL2,2+E1,2+E2,2)|

)
(C.3)

By plugging the identities (C.2) and (C.3) into Relation (C.1), we obtain the
desired result.
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https://pastel.archives-ouvertes.fr/pastel-00924232.

[22] Lestas, I., Vinnicombe, G., and Paulsson, J. (2010). Fundamental
limits on the suppression of molecular fluctuations. Nature 467, 7312, 174.

[23] Levin, D. A., Peres, Y., and Wilmer, E. L. (2009). Markov chains
and mixing times. American Mathematical Society, Providence, RI.

[24] Loynes, R. (1962). The stability of queues with non independent inter-
arrival and service times. Proc. Cambridge Ph. Soc. 58, 497–520.

[25] Mackey, M. C., Santillán, M., Tyran-Kamińska, M., and Zeron,
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