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Abstract: The so-called polynomial chaos expansion is widely used in
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1. Introduction

Computer models simulating physical phenomena and industrial systems are
commonly used in engineering and safety studies. They often take as inputs a
high number of numerical and physical variables. For the development and the
analysis of such computer models, the global sensitivity analysis methodology
is an invaluable tool that allows to rank the relative importance of each input
of the system [22, 20]. Referring to a probabilistic modeling of the model input
variables, it accounts for the whole input range of variation, and tries to explain
output uncertainties on the basis of input uncertainties. Thanks to the so-called
functional ANOVA (analysis of variance) decomposition [3], the Sobol’ indices
give, for a square integrable non-linear model and stochastically independent
input variables, the parts of the output variance due to each input and to each
interaction between inputs [36, 17]. In addition, the total Sobol’ index provides
the overall contribution of each input [18], including interactions with other
inputs. More generally, we recall that a Sobol’ index associated to a subset
of variables I is the ratio of the ANOVA index (that is the L2 norm of the
contribution associated to I in the ANOVA decomposition), and the variance
of the output (see Section 2 for the precise definition).

Many methods exist to accurately compute or statistically estimate the first-
order Sobol’ indices. For a general overview on these methods, we refer to [20]
and references therein. One of the most popular and powerful method is poly-
nomial chaos (PC) expansion [14, 40]. It consists in approximating the response
onto the specific basis made by the orthonormal polynomials built on the in-
put distributions. Its strength stands on the fact that, once the expansion is
computed, the Parseval formula gives directly all the ANOVA indices (in par-
ticular the total Sobol’ indices) [40, 8]. Of course in practice the PC expansion is
truncated. An obvious but important fact is that this truncated PC expansion
provides a lower bound for the true ANOVA index.

Now, some improvements in sensitivity analysis can be done when the deriva-
tives of the function are used. Such information on derivatives can be obtained
by computing finite differences or is sometimes directly provided. Indeed, in
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many physical models the so-called adjoint method allows at weak extra cost
the evaluation of the derivatives of the model (see for example the recent re-
view [2]). Then, DGSM (Derivative-based Global Sensitivity Measures, see [38]),
computed from some integral of the squared derivatives of the model output,
can give upper and lower bounds for total Sobol’ indices [25, 24] at a small com-
putational cost. This is desirable since the estimation of the total Sobol’ indices
(and other ANOVA indices) suffers from the curse of dimensionality (number
of inputs) and can be too costly in terms of number of model evaluations [31].
Concerning upper bounds, optimal and general (for any distribution type of
the input) results are obtained in [33]. This was used to screen out the non-
influential variables. For lower bounds, only special cases (uniform, Normal and
Gamma) have been investigated in [41, 26] (see [24] for a review). The bounds
given in [26] are quite rough as they are smaller than the first-order Sobol’
indices.

In this paper, we follow the tracks opened by [41] using PC expansions,
but for both much more general distributions and expansions. Firstly, we con-
sider general tensor Hilbert basis called generalized chaos (GC). As for PC
expansions, this automatically produces general lower bounds (see Section 3)
by truncating Parseval equalities (Parseval inequalities). Notice that special
GC expansions based on the diagonalization of reproducing kernels has been
recently studied and used for global sensitivity purposes in [32]. Secondly, a
smart choice of GC expansions can be done when derivatives are available or
computed. In that case, we choose the special Hilbert basis obtained by diag-
onalizing the Poincaré differential operators (PDO), associated with the input
distributions (this operator is related to Poincaré inequality, see [4] or [6]).
Roughly speaking, this “transforms” dot products involving the function of in-
terest to dot products involving its derivatives. Parseval inequalities then involve
derivatives, and can be much thinner, especially when the function is varying
smoothly.

Notice that the diagonalization of PDO used here, leads to orthogonal poly-
nomial only for the Gaussian distribution (see [4] and [5]). Indeed, the PDO
considered in this paper only involves the integration with respect to the input
distribution of the squared derivatives (and not a reweighted input distribu-
tion). Apart from this particular probability distribution, orthogonal polyno-
mials cannot be interpreted, in general, as eigenfunctions of a PDO. Conse-
quently, in general the Hilbert basis built by diagonalizing a PDO is not a
polynomial basis. For example, for the uniform distribution, it is the Fourier
basis.

The paper is structured as follows. Section 2 recalls the required mathemat-
ical tools for global sensitivity analysis (ANOVA decomposition and DGSM).
Section 3 rephrases the ANOVA decomposition with Hilbert spaces, and intro-
duces the generalized chaos expansion. Section 4 then focuses on PDO expan-
sions, and their link to PC expansions. Section 5 gives an alternative proposition
of orthonormal functions which lead to weight-free DGSM. Section 6 gives an-
alytical examples. Section 7 illustrates on real life applications. Section 8 gives
some perspectives for future works.
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2. Background on sensitivity analysis

To begin with, let X = (X1, . . . , Xd) denotes the vector of independent input
variables with distribution μ = μ1 ⊗ · · · ⊗ μd. Here the μi’s are continuous
probability measures on R. Let further h be a multivariate function of interest
h : Δ ⊆ Rd → R. We assume that h(X) ∈ H := L2(μ), and we denote by 〈·, ·〉
the usual dot product.

One of the main tool in global sensitivity analysis is the Sobol’-Hoeffding
decomposition of h, (see [17, 12, 3, 36]). It provides a unique expansion of h as

h(X) = h0 +

d∑
i=1

hi(Xi) +
∑

1≤i<j≤d

hi,j(Xi, Xj) + · · ·+ h1,...,d(X1, . . . , Xd)

with E[hI(XI)|XJ ] = 0 for all I ⊆ {1, . . . , d} and all J � I (with the notation
XI := (Xi : i ∈ I)). Furthermore, h0 = E[h(X)] and

hI(XI) = E[h(X)|XI ]−
∑
J�I

hJ(XJ) =
∑
J⊆I

(−1)|I|−|J|E[h(X)|XJ ].

Notice that the condition

E[hI(XI)|XJ ] = 0 for all J � I,

warrants both the uniqueness of the decomposition and the orthogonality of
hI(XI) to any square integrable random variables depending only on XJ with
J ∩ I � I.

This last property leads to the so-called ANOVA decomposition for the vari-
ance of h(X)

D := var(h(X)) =
∑

I⊆{1,...,d}
var(hI(XI)). (2.1)

Notice further that the Sobol’-Hoeffding decomposition is a particular case of
the multivariate decomposition built on a finite family of commuting projectors
P1, . . . , Pd and obtained by expanding the following product (see [27]),

Id = (P1 + (Id − P1)) . . . (Pd + (Id − Pd))

=
∑

I⊆{1,...,d}

∏
j /∈I

Pj

∏
k∈I

(I − Pk)

︸ ︷︷ ︸
ΠI

.

Obviously, ΠI is also a projector. In the Sobol’-Hoeffding decomposition the
projection Pjh is

∫
h(x)dμj(xj).

In sensitivity analysis, one classically considers the Sobol’ indices. These in-
dices are defined, for I ⊆ {1, . . . , d}, as SI = DI/D where DI := var(hI(XI)).
From (2.1) one directly obtains

D =
∑
I

DI , 1 =
∑
I

SI .
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Another interesting index is the total Sobol’ one that includes all the contribu-
tions on the total variance of a variable group. In this paper, the total index
associated to one variable is the object under study. For I ⊆ {1, . . . , d}, the total
Sobol’ index associated to I is defined as Stot

I :=
Dtot

I

D with

Dtot
I :=

∑
J⊇{I} DI .

To end this section, we recall the other popular global sensitivity index that
will appear in our bounds. This is the so-called Derivative Global Sensitivity
Measure (DGSM) introduced and studied in [37] and [25]. It is defined, for
I ⊆ {1, . . . , d}, under smoothness and integrability assumptions on h as

νI =

∫ (
∂|I|h(x)

∂xI

)2

μ(dx).

Here, |I| is the cardinal of the set I, and ∂|I|

∂xI
denotes the partial derivative of

order |I| with respect to all the variables xi with i ∈ I.

3. Generalized chaos expansions

In order to present the generalized chaos expansions, it is convenient to first
rephrase the classical functional ANOVA decomposition presented in the previ-
ous section as a Hilbert space decomposition. The next proposition is devoted
to this task. In particular, we emphasize that the operator giving one ANOVA
term is an orthogonal projection. Then, we discuss the construction of Hilbert
basis tailored to ANOVA decomposition. Part of the material is inspired from
[42] and [3]. About general results on Hilbert spaces, we refer to the classical
book [16].

Proposition 1 (Hilbert space decomposition for ANOVA). For all subset I of
{1, . . . , d}, the map ΠI : h ∈ H 	→ hI is an orthogonal projection. The image
spaces HI = ΠI(H) = {h ∈ H, ΠI(h) = h}, called ANOVA spaces, are Hilbert
spaces that form an orthogonal decomposition of H:

H =
⊥
⊕

I⊆{1,...,d}
HI (3.1)

Corollary 1 (Hilbert space decomposition for total effects). Let I be a subset
of {1, . . . , d}. Then the map Πtot

I : h ∈ H 	→ htot
I =

∑
J⊇I hJ is an orthogo-

nal projection. The image space Htot
I = Πtot

I (H) = {h ∈ H, Πtot
I (h) = h} is the

Hilbert space

Htot
I =

⊥
⊕

J⊇I
HJ . (3.2)

Proof. Observe that Πtot
I =

∑
J⊇I ΠJ . As the ΠJ are commuting orthogonal

projections, Πtot
I is an orthogonal projection. The remainder is straightfor-

ward.
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We now exhibit Hilbert bases of H that are adapted to the ANOVA decom-
position, in the sense that each element belongs to one ANOVA space HI . This
provides Hilbert bases for all HI and Htot

I .

Definition 1 (Generalized chaos). For i = 1, . . . , d, let (ei,n)n∈N be a Hilbert
basis of L2(μi), with ei,0 = 1. For a multi-index � = (�1, . . . , �d) ∈ Nd, the
generalized chaos of order � is defined as the following L2(μ) function:

e�(x) :=

(
⊗

i=1,...,d
ei,�i

)
(x) = e1,�1(x1)× · · · × ed,�d(xd).

Remark 1. To alleviate the notations, we will forget the tensor product symbol
in expressions such as e1,�1 ⊗ · · · ⊗ ed,�d , by simply writing e1,�1 . . . ed,�d .

The so-called polynomial chaos introduced by [43], built with the orthogo-
nal polynomials associated to the Gaussian distribution (Hermite polynomials
(Hn)), is a special case of the previous definition (with ei,n = Hn). Similarly, this
is also the case for the generalized polynomial chaos corresponding to orthog-
onal polynomials associated to other probability distributions. For history on
polynomial chaos and generalized polynomial chaos, we refer to the introduction
of [13]. Other examples of generalized chaos in the context of sensitivity analysis
are the Fourier bases, investigated in [9], and the Haar systems originally used
by Sobol’ [35].

Proposition 2.

1. The whole set of generalized chaos T := (e�)�∈Nd is a Hilbert basis of H,
and each e� belongs to (exactly) one HI , where I is the set containing the
indices of active variables: I = {i ∈ {1, . . . , d} : �i ≥ 1}.

2. For all I ⊆ {1, . . . , d},
• The subset of basis functions that involve exactly the variables in I,

TI := {e�, with �i ≥ 1 if i ∈ I and �i = 0 if i /∈ I} is a Hilbert basis
of HI .

• The subset of basis functions that involve at least the variables in I,
T tot
I := {e�, with �i ≥ 1 if i ∈ I} is a Hilbert basis of Htot

I .

Notice that in the definition of TI and T tot
I , the index ni is non zero, which

means that xi is active.

Proof. The fact that T is a Hilbert basis of H is well known. Let us see that
e� belongs to HI , with I = {i ∈ {1, . . . , d} : �i ≥ 1}. For that, we need to
check that the ANOVA decomposition of e� consists of only one non-zero term
corresponding to the subset I and equal to e�. As e� is a function of xI , it
remains to check the non-overlapping condition. Let J be a strict subset of I
(possibly empty). Then,

E

[∏
i∈I

ei,�i(XI)|XJ

]
=

∏
j∈J

ej,�j (Xj)
∏

i∈I\J
E [ei,�i(XI)]
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Let us choose i ∈ I \ J . Then, �i ≥ 1, implying that E [ei,�i(XI)] = 0 (as ei,�i is
orthogonal to ei,0 = 1). Finally e� belongs to HI . Now let us fix a subset I of
{1, . . . , d}, and consider for instance TI (the proof is similar for T tot

I ). Clearly, as
a subset of T , the set TI is a collection of orthonormal functions. Furthermore,
by the proof above, each e� of TI belongs to HI . To see that TI is dense in HI ,
let us choose h ∈ HI . Since T is a Hilbert basis of H, then h can be written as

h =
∑
�∈Nd

c�e� =
∑
e�∈TI

c�e� +
∑
e� /∈TI

c�e�

where (c�)�∈Nd is a squared integrable sequence of real numbers. Recall that
each e� belongs to HJ , with J = {i ∈ {1, . . . , d} s.t. �i ≥ 1}. Thus, if e� /∈ TI ,
then J �= I. Hence, e� ∈ H⊥

I (as HJ ⊥ HI). Since h ∈ HI , it implies that∑
e� /∈TI

c�e� = 0.

The previous results imply that the variance DI (resp. Dtot
I ) of the output

explained by a set I (resp. supersets of I) of input variables, is equal to the
squared norm of the orthogonal projection onto HI (resp. Htot

I ). Hence, lower
bounds can be obtained by projecting onto smaller subspaces.

Corollary 2. Let I be a subset of {1, . . . , d} and let h ∈ H. Then:

• For all subset G of HI , DI = ‖ΠI(h)‖2 ≥ ‖PG(h)‖2, with equality iff h
has the form h = g + f with g ∈ G and f ∈ H⊥

I ,
• For all subset G of Htot

I , Dtot
I = ‖Πtot

I (h)‖2 ≥ ‖PG(h)‖2, with equality iff
h has the form h = g + f with g ∈ G and f ∈ (Htot

I )⊥.

Here, PG denotes the orthogonal projector onto G.

In practice, the subset G on which to project may be finite dimensional. For
instance, it can be chosen by picking a finite number of orthonormal functions
from the Hilbert basis obtained in Proposition 2. We illustrate this on the com-
mon case where I correspond to a single variable. Without loss of generality, we
assume that I = {1}.
Corollary 3. Let φ1, . . . , φN be orthonormal functions.

• If φ1, . . . , φN lie in Htot
1 , then:

Dtot
1 (h) ≥

N∑
n=1

(∫
h(x)φn(x)μ(dx)

)2

.

Furthermore, equality holds iff h(x) =
∑N

n=1 αnφn(x) + g(x2, . . . , xN ),
where g ∈ L2( ⊗

i=2,...,d
μi).

• If φ1, . . . , φN lie in H1, then:

D1(h) ≥
N∑

n=1

(∫
h(x)φn(x)μ(dx)

)2

.
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Proof. This is a direct application of Corollary 2 with G = span{φ1, . . . , φN}.
The equality case is obtained by remarking that (Htot

1 )⊥ is formed by functions
of H that do not involve x1: (Htot

1 )⊥ = ⊕
J⊆{2,...,d}

HJ .

4. Poincaré differential operator expansions

Generalized chaos expansions are defined from d Hilbert bases associated to
probability measures on the real line μi (i = 1, . . . , d). Here, each μi is as-
sumed to be absolutely continuous with respect to the Lebesgue measure. In
this section, we exhibit a class of Hilbert basis which is well tailored to perform
sensitivity analysis based on derivatives. They consist of eigenfunctions of an
elliptic differential operator. More precisely, we choose the differential operator
associated to a 1-dimensional Poincaré inequality (assuming it holds)

varμ1(h) ≤ C

∫
R

h′(x)2μ1(dx), (4.1)

as it was successfully used to obtain accurate bounds for DGSM [33].
Before defining the so-called PDO expansions, we first recall the spectral

theorem related to Poincaré inequalities. In what follows, for any positive integer
�, we denote by H�(μ1) the Sobolev space of order �:

H�(μ1) := {h ∈ L2(μ1) such that for all k ≤ �, h(k) ∈ L2(μ1)}, (4.2)

where the derivatives are defined in the weak sense (see e.g. [1]).

Proposition 3 (Spectral theorem for Poincaré inequalities, [4, 33]). Let μ1(dt)=
ρ(t)dt be a continuous measure on a bounded interval I = (a, b) of R, where
ρ(t) = e−V (t). Assume that V is continuous and piecewise C1 on Ī = [a, b].
Then consider the differential operator

Lh = h′′ − V ′h′ (4.3)

defined on H′ = {h ∈ H2(μ1) s.t. h
′(a) = h′(b) = 0}. Then L admits a spectral

decomposition. That is, there exists an increasing sequence (λn)n≥0 of non-
negative values that tends to infinity, and a set of orthonormal functions en
which form a Hilbert basis of L2(μ1) such that Len = −λnen. Furthermore, all
the eigenvalues λn are simple. The first eigenvalue is λ0 = 0, and the corre-
sponding eigenspace consists of constant functions (we can choose e0 = 1). The
first positive eigenvalue λ1 is called spectral gap, and equal to the inverse of the
Poincaré constant CP(μ1), i.e. the smallest constant satisfying Inequality (4.1).

Remark 2. The assumptions of Proposition 3 guarantee that L admits a spec-
tral decomposition, and correspond to a continuous probability distribution de-
fined on a compact support, whose density is continuous and does not vanish.
However, the spectral decomposition can exist for more general cases. For in-
stance, it exists for the Normal distribution on R: the corresponding eigenfunc-
tions consist of Hermite polynomials and eigenvalues to non-negative integers.
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On the other hand, the spectral decomposition does not exist for the Laplace
(double-exponential) distribution on the whole R. For more details, the inter-
ested reader will have a look to [4], Chapter 4.

The key property in our context is given by the equation

〈h′, e′n〉 = λn〈h, en〉, (4.4)

corresponding to the weak formulation of the spectral problem Len = −λnen
associated to the Poincaré inequality, and holding for all n ≥ 0, and all h ∈
H1(μ1). It implies that geometric quantities involved in PDO expansions can
be rewritten with derivatives. In particular, for a centered function h, we have:

‖h‖2 =
∞∑

n=1

〈h, en〉2 =
∞∑

n=1

1

λ2
n

〈h′, e′n〉2. (4.5)

Let us come back to the d-dimensional situation, where μ = ⊗
i=1,...,d

μi. For

each measure μi, we make the assumptions of Proposition 3 (see also Remark 2
for alternative conditions). We denote by Li the corresponding operator and
λi,n, ei,n (n ≥ 0) its eigenvalues and eigenfunctions. We define H1(μ) similarly
to H1(μ1) (Equation 4.2) by square integrable functions such that all partial
derivatives, defined in the weak sense, are square integrable. That space contains
functions which are piecewise C1 on the support of μ, and continuous on its
closure (see e.g. [1]). We can now define the PDO expansion and then state the
main result.

Definition 2 (PDO expansions). We call Poincaré differential operator (PDO)
expansion the generalized chaos expansion corresponding to the Hilbert bases
formed by the eigenfunctions of L1, . . . , Ld.

Proposition 4 (Poincaré-based lower bounds). For all h in H1(μ), we have

Dtot
1 (h) =

∑
�1≥1,�2,...,�d

〈h, e1,�1 . . . ed,�d〉2 (4.6)

=
∑

�1≥1,�2,...,�d

1

λ2
1,�1

〈 ∂h
∂x1

, e′1,�1e2,�2 . . . ed,�d〉
2. (4.7)

In particular, limiting ourselves to the first eigenfunction in all dimensions, and
to first and second order tensors involving x1, we obtain the lower bound

Dtot
1 (h) ≥ 〈h, e1,1〉2 +

d∑
i=2

〈h, e1,1ei,1〉2 (4.8)

= CP(μ1)
2

(
〈 ∂h
∂x1

, e′1,1〉2 +
d∑

i=2

〈 ∂h
∂x1

, e′1,1ei,1〉2
)
. (4.9)
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Remark 3 (weighted DGSM). Notice that the integral form of Eq. (4.7) in-
volves the (signed) weight function w(x) = e′1,�1(x1)e2,�2(x2) . . . ed,�d(xd), as

〈 ∂h
∂x1

, e′1,�1e2,�2 . . . ed,�d〉 =
∫

∂h

∂x1
wdμ.

The next section will propose a way to get rid off this weight.

Proof. By Proposition 2, the subset of (e�) corresponding to �1 ≥ 1 is a Hilbert
basis of Htot

1 . Using Eq. (4.5) for Πtot
1 (h), we obtain (4.6). Now, for �1 ≥ 1:

〈h, e1,�1 . . . ed,�d〉 =
1

λ1,�1

〈 ∂h
∂x1

, e′1,�1e2,�2 . . . ed,�d〉

This is obtained by applying Eq. (4.4) to x1 	→ h(x) and integrating with respect
to x2, . . . , xd:

〈h, e1,�1 . . . ed,�d〉 =

∫
〈h(•, x2, . . . , xd), e1,�1〉L2(μ1)

d∏
i=2

ei,�iμi(dxi)

=
1

λ1,�1

∫
〈∂h(•, x2, . . . , xd)

∂x1
, e′1,�1〉L2(μ1)

d∏
i=2

ei,�iμi(dxi)

=
1

λ1,�1

〈 ∂h
∂x1

, e′1,�1e2,�2 . . . ed,�d〉

This gives (4.7). The remainder is straightforward, knowing that CP(μ1) =
1/λ1,1.

Case of uniform distributions: Fourier expansion Let us assume that
μ1 is uniform on [−1/2, 1/2]. Then, the differential operator L is the usual
Laplacian, and its eigenfunctions correspond to Fourier basis. More precisely,
using the Neumann boundary conditions h′(a) = h′(b) = 0, one can check
that the eigenvalues are λ� = �2π2, (� = 0, 1, . . . ), and a set of orthonormal
eigenfunctions is given by e0 = 1 and

e�(x1) =
√
2cos(π�(x1 + 1/2))

for � > 0. Denote by |�|0 the number of non-zero coefficients of the multi-index
� = (�1, . . . , �d). When the other μi’s are also uniform on [−1/2, 1/2], we obtain
a multivariate Parseval formula for Dtot

1 :

Dtot
1 (h) =

∑
�1≥1,�2,...,�d

2|�|0〈h,
d∏

i=1

cos(π�i(xi + 1/2))〉2

=
∑

�1≥1,�2,...,�d

2|�|0
1

π2�21
〈 ∂h
∂x1

, sin(π�1(x1 + 1/2))
d∏

i=2

cos(π�i(xi + 1/2))〉2
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Limiting for instance the sum to first terms, we obtain the lower bounds

Dtot
1 (h) ≥ 2〈h, sin(πx1)〉2 + 4

d∑
i=2

〈h, sin(πx1) sin(πxi)〉2 (4.10)

=
2

π2

(
〈 ∂h
∂x1

, cos(πx1)〉2 + 2

d∑
i=2

〈 ∂h
∂x1

, cos(πx1) sin(πxi)〉2
)

Extension of PDO expansions to weighted Poincaré inequalities PDO
expansions correspond to diffusion operators associated to Poincaré inequalities.
They can be extended to weighted Poincaré inequalities

varμ1(h) ≤ C

∫
R

h′(x)2w(x)μ1(dx), (4.11)

defined for some suitable positive weight w. Such inequalities have recently been
used in sensitivity analysis [39]. They are also useful when a probability distri-
bution does not admit a Poincaré inequality such as the Cauchy distribution [6].
The weighted Poincaré inequality (4.11) corresponds to the differential operator

Lh = wh′′ + (w′ − wV ′)h′. (4.12)

Similarly to (4.4), rewriting geometrical quantities with derivatives can be done
with the formula:

〈h′, e′n〉w = λn〈h, en〉, (4.13)

where 〈., .〉w is the weighted dot product 〈f, g〉w :=
∫
f(x)g(x)w(x)μ(dx).

Proposition 4 can be adapted accordingly.

When PDO expansions coincide with PC expansions There are exactly
three cases where PDO expansions coincide with PC expansions, even when
considering their extension to weighted Poincaré inequalities. Indeed, it can
be shown that orthogonal polynomials are eigenfunctions of diffusion operators
only for the Normal, Gamma and Beta distributions, corresponding respectively
to Hermite, Laguerre and Jacobi orthogonal polynomials ([4], § 2.7). These
differential operators correspond to weighted Poincaré inequalities with weight
w(x) = x for the Gamma distribution dμ1(x) ∝ xα−1e−αx on R+, and weight
w(x) = 1−x2 for the Beta distribution dμ1(x) ∝ (1−x)α−1(1+x)β−1 on [−1, 1].
Notice that in [39], w is chosen such that the eigenfunction associated to λ1 is
a first-order polynomial. Except for the three cases mentioned above, the other
eigenfunctions cannot be all polynomials.

Numerical computations In practice, the lower bounds given by Parseval
inequalities must be computed numerically. For general GC expansions, this im-
plies computing the sum of squared integrals. For PDO expansions, one must,
in addition, compute the eigenvalues and eigenfunctions of the Poincaré differ-
ential operator, and their derivatives. We briefly describe the method used for
these two problems.
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About squared integral estimation, let I =
(∫

g(x)dμ(x)
)2

= [E(g(X)]2

where X ∼ μ and g ∈ L2(μ). As an example, g can be a function of the

form he1,�1 . . . ed,�d in Equation (4.6). A naive estimator of I is T =
[
g(X)

]2
,

with g(X) = 1
n

∑n
i=1 g(Xi) where X1, . . . , Xn ∼

i.i.d.
μ. A direct computation

shows that E(T ) = I + 1
nσ

2, where σ2 = var(g(X)). Thus T is positively bi-
ased. The bias can be removed by using an unbiased estimator of the variance,

i.e. V = 1
n−1

∑n
i=1

(
g(Xi)− g(X)

)2

. Finally, the estimator T0 = T − 1
nV is

an unbiased estimator of I. Equivalently, one can see that T0 is a U-statistics
[34]: T0 = 1

n(n−1)

∑
i 
=j g(Xi)g(Xj). This is the estimator that we have used.

Notice further that, before squaring, other estimators could be considered. For
example, regression methods may be used to jointly estimate all the projections
coefficients (see [40] for a general overview). Nevertheless, as in the crude Monte
Carlo case, after squaring, some process has to be performed to remove the bias
and this is not generally an obvious task.

About PDO computations, recall that the PDO operator is defined for each
probability distribution μi of the input variables, assumed to be compactly
supported. A numerical method has been described in [33] to compute both
eigenvalues and eigenfunctions. It is based on 1-dimensional finite elements,
by using a fine discretization of the compact support of μi. The functional
spectral problem then comes down to a matricial spectral problem, i.e. matrix
diagonalization. The eigenfunctions derivatives are obtained as a by-product
by computing numerical derivatives. Here it is possible to simply compute fi-
nite differences of the eigenfunctions values at the grid, as they are smooth
enough.

5. Weight-free derivative global sensitivity measures

The lower bounds of total indices obtained with generalized chaos expansions
may involve weighted DGSM (see Remark 3). The presence of weight can be a
drawback when the integral has to be estimated with a small sample size, as
it can increase the variance of the Monte Carlo estimator. In this section, we
show how to choose the first orthonormal functions of GC expansions in order
to obtain weight-free DGSM. Interestingly, this is related to Fisher information
and Cramér-Rao bounds.

Proposition 5 (Lower bounds with weight-free DGSM, for pdf vanishing at the

boundaries). Assume that ∂h(x)
∂x1

is in L2(μ), and that the probability distribu-
tions μi are absolutely continuous on their support (ai, bi) with −∞ ≤ ai < bi ≤
+∞. For each i, denote by pi the corresponding probability density function.
Assume that pi belongs to H1(μi), do not vanish on (ai, bi) but vanishes at the
boundaries: pi(ai) = pi(bi) = 0. Finally, assume that p′i is not identically zero,
and that p′i/pi is in L2(μi). Define Zi(xi) = (ln pi)

′(xi) and Ii = var(Zi(Xi)).
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Then, we have the inequality:

Dtot
1 ≥ I−1

1 c21 + I−1
1

d∑
j=2

I−1
j c21,j (5.1)

with

c1 =

∫
h(x)Z1(x1)μ(dx) = −

∫
∂h(x)

∂x1
μ(dx)

c1,j =

∫
h(x)Z1(x1)Zj(xj)μ(dx) = −

∫
∂h(x)

∂x1
Zj(xj)μ(dx)

Furthermore, if all the cross derivatives ∂2h(x)
∂x1∂xj

are in L2(μ), then

c1,j =

∫
∂2h(x)

∂x1∂xj
μ(dx)

The cases of equality correspond to functions h of the form

h(x) = α1Z1(x1) +

d∑
j=2

αjZ1(x1)Zj(xj) + h(x2, . . . , xd). (5.2)

Proof. For i = 1, . . . , d, let ei,1(xi) := I
−1/2
i Zi(xi). Then define

φ1(x) = e1,1(x1), and for j = 2, . . . , d : φj(x) = e1,1(x1)ej,1(xj).

By definition, the norm of each ei,1 is equal to 1. Furthermore, Zi is centered,
since

E[Zi] =

∫ bi

ai

p′i(xi)dxi = [pi(xi)]
bi
ai

= 0.

This implies that ei,1 is orthogonal to ei,0 = 1. By Proposition 2, the φi’s are
then orthonormal functions of Htot

1 . The inequality is then given by Corollary 3,
with first expressions of c1 and c1,j . The other ones are obtained by integrating
by part, using that the values at the boundaries of the pj ’s are zero.

The proposition can be adapted when the probability density functions do
not vanish at the boundaries of their support, by modifying the definition of
the Zj ’s. Notice that the expressions of c1 and c1,j that involve derivatives then
contain corrective terms, and are of limited practical interest. For instance,
denoting [h]

b1
a1

= h(b1)− h(a1) and h0 =
∫
h(x)μ(dx), we have:

c1 =

[(∫
h(x1, x−1)μ−1(dx−1)− h0

)
p1(x1)

]b1
a1

−
∫

∂h(x)

∂x1
μ(dx).

Nevertheless, the first expressions of c1 and c1,j remain valid and, by analogy
to Proposition 5, have a close connection to derivative-based lower bounds.
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Proposition 6 ([Lower bounds with weight-free DGSM, general case). Assume

that ∂h(x)
∂x1

is in L2(μ), and that the probability distributions μi are absolutely con-
tinuous on their support (ai, bi) with −∞ ≤ ai < bi ≤ +∞. For each i, denote
by pi the corresponding probability density function. Assume that pi belongs to
H1(μi) and do not vanish on (ai, bi). Finally, assume that p′i is not identically

zero, and that p′i/pi is in L2(μi). Define Zi(xi) = (ln pi)
′(xi) − [pi(xi)]

bi
ai

and

Ii = var(Zi(Xi)). Then Inequality (5.1) holds with c1 =
∫
h(x)Z1(x1)μ(dx) and

c1,j =
∫
h(x)Z1(x1)Zj(xj)μ(dx). The equality case is the same as in Proposi-

tion 5, and given by (5.2).

Remark 1. The expressions of Zi and Ii in Proposition 6 correspond respec-
tively to the score and to the Fisher information at θ = 0 of a parametric family
of probability distributions obtained by translation pi,θi(xi) = pi(xi+ θi). In this
framework, the lower bound (5.1) corresponds to the Cramér-Rao lower bound.

Examples First consider the case of normal distributions μi ∼ N (mi, vi)
(i = 1, . . . , d). Applying Inequality (5.1) gives

Dtot
1 ≥ v1

(∫
∂h(x)

∂x1
μ(dx)

)2

+ v1

d∑
j=2

vj

(∫
∂2h(x)

∂x1∂xj
μ(dx)

)2

. (5.3)

Here, the inequality is equivalent to Inequality (4.9) obtained with the Poincaré
differential operator of Section 4, since Zi is a first-order polynomial, and thus
equal to the first eigenvector of L (Hermite polynomial). The case of equality
corresponds to functions of the form

h(x) = α1(x1 −m1) +

m∑
j=2

αj(x1 −m1)(xj −mj) + g(x2, . . . , xd).

Other inequalities can be established for standard probability distributions.
Table 1 summarizes the results for some of them. Notice that the equality case
does not always correspond to polynomials (see the form of Z). Interestingly,
an inequality is obtained for the Cauchy distribution, whereas the theory of
Section 4 does not apply as this distribution does not admit a Poincaré con-
stant. On the other hand, some probability distributions for which Section 4 is
applicable, do not satisfy the assumptions of Proposition 6, such as the uniform
(p′i is identically zero) or the triangular distributions (p′i/pi does not belong to
L2(μi)).

Link to other works Here, we briefly compare our lower bounds to those
presented in the recent review [24].

For the uniform distribution on [0, 1], we can obtain both a better upper
bound and a description of the equality case. For that, we apply Corollary 3 to
the orthonormal function obtained from xm

1 , i.e. φ(x1) = (xm
1 − m1)/s1 with

m1 = 1/(m + 1) and s21 =
(

m
m+1

)2
1

2m+1 . Then after some algebra and an
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Table 1

Useful quantities for derivative-based lower bounds. For readability, we have removed the
subscript j for p, Z, I. The parameter s is a scale parameter, and can be different from the

standard deviation.

Dist. name Support p Z I

Normal R 1
s
√
2π

exp
(
− 1

2
(x−m)2

s2

)
−(X −m)/s2 1/s2

Laplace R 1
2s

exp
(
− |x−m|

s

)
−sgn(X −m)/s 1/s2

Cauchy R 1
π

s
(x−x0)2+s2

−2(x−x0)

(x−x0)2+s2
1/(2s2)

integration by part, we obtain

Dtot
1 ≥ 2m+ 1

m2

(∫
(h(1, x−1)− h(x))dx− w

(m+1)
1

)2

where w
(m+1)
1 =

∫ ∂h(x)
∂x1

xm+1
1 dx. This improves on the lower bound found in

[24], Theorem 2, which has the same form, but with the smaller multiplicative
constant 2m+1

(m+1)2 . Furthermore, the lower bound above is attained when h has the

form h(x) = α1x
m
1 +g(x2, . . . , xd). However, notice that these two lower bounds

are only a lower bound for D1 ≤ Dtot
1 , and can be improved by considering

additional orthonormal functions belonging to Htot
1 \ H1.

For normal distributions, Inequality (5.3) improves the lower bound given by
[26], i.e.

Dtot
1 ≥ v1

(∫
∂h(x)

∂x1
μ(dx)

)2

.

Here also, this latter lower bound is only a lower bound of D1 ≤ Dtot
1 since it

corresponds to the case in Corollary 3 where the φj ’s (here φ1(x) = Z1(x1)/I
1/2
1 )

only depend on x1.

Discussion on PDO and Cramér-Rao lower bounds As noticed before,
the lower bounds (4.9) and (5.1) coincide in the Gaussian case. In general, the
two approaches, PDO expansion or weight-free DGSM (Cramér-Rao), appear
to be complementary for computing the first term in the Parseval inequality.
On one hand, when dealing with compactly-supported distributions, the PDO
approach can be easily put in action (see [33] for the effective computations of the
spectral decomposition), whereas the Cramér-Rao approach involves undesirable
boundary effects (see Prop. 6). On the other hand, for unbounded supports, the
Cramér-Rao bounds can be computed even when the direct Poincaré approach
fails (for example, Laplace and Cauchy distributions, where eigenfunctions do
not exist).

6. Examples on analytical functions

This section briefly illustrates PDO expansions for the uniform distribution on
benchmark functions from sensitivity analysis. We assess the accuracy of the
lower bounds of total indices, when only the two first eigenvalues are used.
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6.1. A polynomial function with interaction

Example 1. Let us consider g(x1, x2) = x1 + ax1x2, and let μ be the uniform
distribution on [−1/2, 1/2]2. The inequalities obtained by truncating the PDO
expansions to the first eigenvalue are:

D1 =
1

12
≈ 0.0833 ≥ 0.0821 ≈ 8

π4

Dtot
1 =

1

12
+

a2

144
≈ 0.0833 + 0.0069 a2

≥ 0.0821 + 0.0067 a2 ≈ 8

π4
+

64

π8
a2

We can see that for a polynomial function of degree 1 with respect to x1, the
lower bound obtained by restricting the PDO expansion to the first eigenvalue
is very accurate. Hence, we do not loose a lot of information by ignoring that
the function is a polynomial. This is an ideal situation for polynomial chaos.

Let us give some computing details on the previous inequalities. It is easy to
check that the two terms x1, ax1x2 correspond to the main effect and second
order interaction respectively. The partial variances are given by D1 = 1/12 and
D1,2 = a2/144. Hence, Dtot

1 = 1/12 + a2/144. Restricting the PDO expansion
to the first term, a lower bound is given by Inequality (4.11):

Dtot
1 ≥ 2

π2

(
〈 ∂g
dx1

, cos(πx1)〉2 + 2〈 ∂g
dx1

, cos(πx1) sin(πx2)〉2
)
.

The two terms of the lower bound above correspond to a lower bound of D1

and D1,2 respectively. A direct computation gives:

LB1 :=
2

π2
〈 ∂g
dx1

, cos(πx1)〉2 =
2

π2

(
2

π

)2

=
8

π4

LB1,2 :=
2

π2
2〈 ∂g

dx1
, cos(πx1) sin(πx2)〉2 =

2

π2
.2.

(
4a

π3

)2

=
64a2

π8

The result follows.

6.2. A separable function

Example 2. Consider the g-Sobol’ function on [−1/2, 1/2] defined by

g(x) =
d∏

i=1

(1 + hi(xi))

with hi(xi) = (4|xi| − 1)/(1 + ai) (i = 1, . . . , d), and let μ be the uniform
distribution on [−1/2, 1/2]d. The inequalities obtained by truncating the PDO
expansions to the first two eigenvalues are:

Di =
1

3

1

(1 + ai)2
≥ 32

π4

1

(1 + ai)2
:= LBi (6.1)
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Dtot
i = Di

d∏
j 
=i

(1 +Dj) ≥ LBi.

d∑
j 
=i

LBj (6.2)

Notice that 32/π4 ≈ 0.328 is very close to 1/3. Hence, the lower bound for Di

is very accurate. Obviously, a very sharp inequality Dtot
i ≥ LBi

∏d
i 
=j(1 + LBj)

could have been deduced, but this is unrealistic in practice, since the separable
form of the function is unknown. The lower bound (6.2) for Dtot

i is actually a
very good approximation of the variance explained by second-order interactions
involving xi, equal to Di.

∑d
j 
=i Dj . Hence, Inequality (6.2) will be less fine in

presence of higher order interactions, (tuned by the values of the aj ’s). Then,
more than two eigenvalues in PDO expansions must be considered.

Let us give some computing details on the previous inequalities. Without loss
of generality, we write the proof for i = 1. Let us first recall the computation of
Sobol’ indices for the g-Sobol’ function. As all the hi are centered, the Sobol’-
Hoeffding decomposition is given by gI(xI) =

∏
i∈I hi(xi). In particular D1 =∫

h2
1dμ1 = 1

3
1

(1+a1)2
. Furthemore, the variance of a second order interaction is,

for i �= 1:
D1,i = E(h1(x1)

2hi(xi)
2) = D1Di, (6.3)

and variance explained by second-order interactions containing x1 is equal to

d∑
i=2

D1,i = D1

d∑
i=2

Di.

Finally the total effect is the variance of
∑

I⊇{1}
∏

i∈I hi, equal to

Dtot
1 =

∑
I⊇{1}

∏
i∈I

Di = D1

d∏
i=2

(1 +Di).

Let us now consider lower bounds. To obtain accurate lower bounds, we
need to consider the first two non-zero eigenvalues. Indeed, the first non-zero
eigenvector is even and all the dot products are 0. By using Equation (4.7) and
the results about uniform distributions presented in Section 4, we obtain:

Dtot
1 (g) ≥ 1

λ2
2

(
〈 ∂g
dx1

, e′1,2〉2 +
d∑

i=2

〈 ∂g
dx1

, e′1,2ei,2〉2
)
, (6.4)

with ei,2 =
√
2 cos(2πxi) (we omit the ‘−’ sign) and λ2 = 4π2. We could have

also used (4.6), but using derivatives simplifies the computations here.
The first term gives a lower bound for D1. We have:

∂g

dx1
(x) =

4

1 + a1
sgn(x1)

∏
i≥2

(1 + hi(xi)).

Due to the tensor form of the g-Sobol’ function partial derivative, the dot prod-
uct is expressed as a product of one-dimensional dot-products. Furthermore, as
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all the h′
is are centered, the dot-products in dimensions 2, . . . , d are equal to 1.

Finally,

〈 ∂g
dx1

, e′1,2〉 = 〈h′
1, e

′
1,2〉1 =

4

1 + a1

∫ 1/2

−1/2

sgn(x1)e
′
1,2(x1)dx1

=
4

1 + a1

√
2.2

∫ 1/2

0

2π sin(2πx1)dx1 =
16

√
2

1 + a1
.

This gives the announced lower bound for the main effect (Equation (6.2)):

LB1 =
1

λ2
2

〈 ∂g
dx1

, e′1,2〉2 =
1

(4π2)2

(
16

√
2

1 + a1

)2

=
32

π4

1

(1 + a1)2
. (6.5)

Now, let us compute the second term in (6.4). Notice that it is a lower bound
for the variance explained by second-order interactions involving x1, as com-
puted in (6.3). As above, exploiting the tensor form, we have:

〈 ∂g
dx1

, e′1,2ei,2〉 = 〈h′
1, e

′
1,2〉1.〈(1 + hi), ei,2〉i.

The first term has already been computed above. For the second one, we use
the property of eigenvectors (4.4):

〈(1 + hi), ei,2〉i =
1

λ2
〈h′

i, e
′
i,2〉i

and we recognize the quantity computed above where we replace 1 by i, equal

to
1

λ2

16
√
2

1 + ai
=

√
LBi. Finally, plugging this result in (6.4) together with (6.5)

gives the announced lower bound (6.2).

7. Applications

In this section, two numerical models representing real physical phenomena are
used in order to illustrate the usefulness of the lower bounds of total Sobol’ in-
dices provided by PDO expansions. More precisely, we restrict ourselves to the
simplest lower bound provided by considering only the first eigenfunctions in
all dimensions, given by the two equivalent Equations (4.8) and (4.9). The first
equation gives a derivative-free lower bound of the total index, here called PDO
lower bound. The second one gives a derivative-based version, here called PDO-
der lower bound. Whereas the PDO and PDO-der lower bounds are theoretically
equal, their estimated values will differ. Estimation of squared integrals (dot
products) has been performed via crude Monte Carlo samples , using the unbi-
ased estimate presented at the end of Section 4. We have centered the function
f . It does not change the value of sensitivity indices but reduces the estimation
error. The use of Monte Carlo samples allows to provide confidence intervals on
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the estimates by the way of a bootstrap resampling technique. Boxplots will be
used to graphically represent these estimation uncertainties. Finally, the com-
putation of eigenvalues, eigenfunctions and eigenfunction derivatives has been
done with the numerical method presented in [33] (see also Section 4).

7.1. A simplified flood model

Our first model simulates flooding events by comparing the height of a river
to the height of a dyke. It involves the characteristics of the river stretch, as
already studied in [28, 33]. The model has 8 input random variables (r.v.), each
one follows a specific probability distribution (truncated Gumbel, truncated
normal, triangular or uniform). When the height of a river is over the height of
the dyke, flooding occurs. The model output is the cost (in million euros) of the
damage on the dyke which writes:

Y = 1S>0+
[
0.2 + 0.8

(
1− exp−

1000
S4

)]
1S≤0+

1

20
(Hd1Hd>8 + 81Hd≤8) , (7.1)

where 1A(x) is the indicator function which is equal to 1 for x ∈ A and 0 oth-
erwise, Hd is the height of the dyke (uniform r.v.) and S is the maximal annual
overflow (in meters). The expression of S is based on a crude simplification of
the 1D hydro-dynamical equations of Saint-Venant under the assumptions of
uniform and constant flowrate and large rectangular section. S is calculated as

S =

⎛
⎝ Q

BKs

√
Zm−Zv

L

⎞
⎠0.6

+ Zv −Hd − Cb , (7.2)

where all the variables are described in Table 2. For this model, the first-order
and total Sobol’ indices, also given in Table 2, have been estimated with high
precision (getting around 1% of relative error by using large sample size) via
a Monte-Carlo based algorithms (pick-freeze efficient estimator of [23]). Notice
that the two functions Y and S are respectively piecewise C1 and C1 on the
support of the probability measure μ defined by the input variables, and con-
tinuous on its closure. Hence they belong to H1(μ) (see [1]), and the theory
applies.

Fig. 1 shows the PDO lower bounds. By looking at the values of first-order
and total Sobol’ indices (horizontal straight lines), we notice that rather large
interaction effects are present between four inputs of the model (Q, Ks, Zv and
Hd). First, the bounds estimated with the sample size n = 100 have large un-
certainties. It shows that this sample size is too small for this complex model
(it includes non-linear and interaction effects). Secondly, concerning the estima-
tion of the bounds, the convergence is reached, with very small uncertainties
on the estimates from n = 10 000. From this sample size, we can visually check
(e.g. looking at the third quartile) that estimated lower bounds are smaller
than the corresponding true Sobol’ indices. Moreover, for smaller sample sizes
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Table 2

For each input variable of the flood model: description, probability distribution, first order
and total Sobol’ index estimates.

Input Description Unit Probability distribution Si Stot
i

X1 = Q Maximal annual m3/s Gumbel G(1013, 558) 0.358 0.483
flowrate truncated on [500, 3000]

X2 = Ks Strickler coefficient – Normal N (30, 82) 0.156 0.252
truncated on [15,+∞[

X3 = Zv River downstream level m Triangular T (49, 51) 0.167 0.223
X4 = Zm River upstream level m Triangular T (54, 56) 0.003 0.008
X5 = Hd Dyke height m Uniform U [7, 9] 0.119 0.177
X6 = Cb Bank level m Triangular T (55, 56) 0.029 0.040
X7 = L River stretch m Triangular T (4990, 5010) 0 0
X8 = B River width m Triangular T (295, 305) 0 0

as n = 1000, results for all the inputs show sufficient accuracies (easy discrim-
ination between the bounds). Finally, except for Ks and Hd, the bounds are
informative because:

• The PDO bounds are very close to the theoretical values of total Sobol’
indices, which is remarkable as only the first eigenvalue was used.

• The PDO lower bounds for total indices are larger than their respective
first-order Sobol’ indices.

Fig. 2 shows that the PDO-der lower bounds give significantly better results
than the PDO bounds, especially for small sample sizes. In particular, when
the Sobol’ indices are close to zero, the bounds perfectly match their respective
Sobol’ indices from n = 100. This result clearly favors the use of derivative-based
lower bounds for the screening step when model derivatives can be computed.

7.2. An aquatic prey-predator chain

This application is related to the modeling of an aquatic ecosystem called
MELODY (MESocosm structure and functioning for representing LOtic DY-
namic ecosystems). This model simulates the functioning of aquatic mesocosms
as well as the impact of toxic substances on the dynamics of their populations.
Inside this model, the Periphyton-Grazers sub-model is representative of pro-
cesses involved in dynamics of primary producers and primary consumers, i.e.
photosynthesis, excretion, respiration, egestion, mortality, sloughing and preda-
tion [7]. It contains a total number of d = 20 uncertain input variables. In order
to conduct sensitivity analysis, [7] has defined that each of these input variables
are random following a uniform distribution law, defined by their minimal and
maximal values.

The PDO-der upper bound of total Sobol’ indices [38] was then applied in [21]
on one model output (the periphyton biomass) at only one reference time, day 60
of simulations, which corresponds to the period of maximum periphyton biomass
and a growth phase for grazers, according to experimental data. A design of
experiments of size n = 100 was then provided, and simulated with MELODY.
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Fig 1. PDO bounds for the 8 inputs of the flood model application for four different sample
sizes n (102, 103, 104 and 105). Red (resp. gray) boxplots are lower bounds of total (resp.
first-order) Sobol’ indices. Horizontal lines indicate the ‘true’ values of the Sobol’ indices.

Fig 2. PDO-der bounds for the 8 inputs of the flood model application. The legend details are
the same as Figure 1.
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Fig 3. PDO bounds for the 20 inputs of the prey-predator model. Gray, black and red boxplots
are respectively the lower bounds of the first-order Sobol’ indices, the estimates of the first-
order Sobol’ indices and the lower bounds of the total Sobol’ indices.

A model output vector of size 100 is obtained, as well as the derivatives of the
output with respect to each input at each point of the design (matrix of size
100 × 20). In this section, we analyze the same data that has been studied in
[21].

Fig. 3 shows the PDO lower bounds, as well as the first-order Sobol’ indices
estimates (via the local polynomials sample based technique [11]). Good results
are obtained on the first-order lower bounds which have reduced estimation un-
certainties and are always smaller than the estimated first-order Sobol’ indices.
Less accurate estimates are obtained for the lower bounds of total indices. They
remain informative because they are clearly larger than the first-order Sobol’
indices. This last result proves that large interactions between inputs dominate
in this prey-predator model, which confirms the first analysis of [21] (the sum
of all the first-order Sobol’ indices is much smaller than one). The new results
of Fig. 3 prove the strong influence of some inputs which have large total lower
bounds. For example, 5 inputs have total lower bound median values larger than
20%: Maximum photosynthesis rate (n◦1), Maximum consumption rate (n◦2),
Rate of change per 10◦C (n◦9), Grazers preference for periphyton (n◦11) and
Intrinsic mortality rate (n◦16). This result cannot be found from the first-order
Sobol’ indices which are rather small (except for the Maximum photosynthesis
rate).

Fig. 4 shows the PDO-der lower bounds, as well as the PDO-der upper bounds
of the total Sobol’ indices (see [21]) whose confidence intervals are also obtained
by bootstrap. In this figure lower and upper bounds of total Sobol’ indices have
been truncated to one in order to only consider realistic values. Indeed, values
larger than one are theoretically impossible but can sometimes be found due to
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Fig 4. PDO-der bounds for the 20 inputs of the prey-predator model. As in Figure 3, gray
and red boxplots are respectively lower bounds of the first-order and total Sobol’ indices. The
additional pink boxplots correspond to the upper bound of the total Sobol’ indices.

numerical estimation errors. First, some partial checks can be done by looking at
the median of the estimated values, e.g. by observing that the lower bounds are
smaller than the upper bounds for each input. Second, several PDO-der lower
bounds estimates are much less accurate than the (derivative-free) PDO lower
bounds, especially when their values are large, for example the inputs n◦1 and
n◦11. Even in this case of large values, informative results can be deduced by
taking their median values: the total Sobol’ indices of the input n◦1 (resp. n◦11)
approximately lie in [0.85, 1] (resp. [0.4, 1]). From these total lower bounds, a
coarse importance hierarchy can then be proposed between the most influential
inputs.

Finally, we observe the excellent results for non influential inputs which have
all their PDO-der lower and upper bounds close to zero (inputs 2, 5, 7, 8, 10,
13, 15, 18, 19, 20). This is not the case with the PDO lower bounds (see Fig. 3)
which are more difficult to exploit. A convenient usage would be to estimate
both derivative-free and derivative-based lower bounds, and to keep the smallest
value. Indeed, the PDO bound is more accurate when the Sobol’ index is much
larger than zero, whereas the PDO-der bound is much smaller when the Sobol’
index is close to zero.

7.3. Conclusion on the applications

On the two previous applications, we have tested the simplest PDO and PDO-
der lower bounds, obtained by keeping only the first eigenvalue in all dimensions,
for real-world models involving non-linear and interaction effects. Several con-
clusions can be made:
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• Lower bounds can be easily computed for any probability distribution of
the inputs;

• The estimation error can be large for small sample sizes. Estimating some
boostrap confidence intervals is essential to evaluate the quality of the
estimates;

• The lower bounds of the total Sobol’ indices are most of the times infor-
mative, i.e. larger than the (estimated) first order Sobol’ indices;

• Using derivatives (then DGSM) is sometimes preferable to obtain lower
bounds, especially for the screening step (identification of non influential
inputs with negligible total Sobol’ indices). With DGSM, excellent results
are obtained for screening, even for small sample size cases.

8. Further works

In this paper, we revisit the so-called chaos expansion method for the evalua-
tion of Sobol’ indices. We summarize in a compact way the role played by the
functional basis and the associated projection operators for evaluating by be-
low these indices through a truncated Parseval formula. Generalized chaos basis
built on the Poincaré diferential operator associated to the input distribution
leads to very interesting new lower bounds for the total Sobol’ index in terms
of DGSM. This bound appears to be sharp both on toy and real life models,
allowing a fast screening of the model input based on the energy of the function
derivatives. This opens some challenging problems in mathematical statistics.
First, the bounds obtained by the brute force truncation method could certainly
been merely improved considering accurate model selection methods as adap-
tive thresholding or l1 regularization. Second, the statistical estimation of the
lower bound is a non linear semi-parametric problem. By non linear, we mean
that the quantity to be estimated depends in a non linear way (here quadratic),
of the infinite dimensional parameter (the function of interest). The estimation
of a quadratic functional have been addressed in [29, 30, 15, 10]. It involves U -
statistics theory, and offers an excellent source of inspiration for further works
in mathematical statistics having concrete computational applications. For ex-
ample, the unbiased estimation of such quantity for small sample appears to be
an interesting challenging issue. As ending remark, notice that the use of PDO
also opens challenging questions concerning the construction of such operators
(and eigenbasis). First, one may be interested to build a PDO that provides a
lower bound involving weighted DGSM. Secondly, one may wish to consider the
case of heavy tail input distributions (as the Cauchy one for example).
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