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Abstract: The paper considers reduction problems and deformation ap-
proaches for nonstationary covariance functions on the (d− 1)-dimensional
spheres, Sd−1, embedded in the d-dimensional Euclidean space. Given a
covariance function C on Sd−1, we chase a pair (R,Ψ), for a function
R : [−1,+1] → R and a smooth bijection Ψ, such that C can be reduced to
a geodesically isotropic one: C(x,y) = R(〈Ψ(x),Ψ(y)〉), with 〈·, ·〉 denoting
the dot product.

The problem finds motivation in recent statistical literature devoted to
the analysis of global phenomena, defined typically over the sphere of R3.
The application domains considered in the manuscript makes the problem
mathematically challenging. We show the uniqueness of the representation
in the reduction problem. Then, under some regularity assumptions, we
provide an inversion formula to recover the bijection Ψ, when it exists, for
a given C. We also give sufficient conditions for reducibility.
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1. Introduction and statement of the problem

Positive definite functions are fundamental to mathematics, probability and
statistics. Their use has become ubiquitous in many areas of applied sciences,
and we refer the reader to Porcu et al. (2018) and Porcu et al. (2019) for recent
overviews as well as for collections of open problems and statistical implications.
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Recently, the advent of massive data sets distributed over the whole planet Earth
has motivated several scientists to study modeling strategies for random fields
defined over the sphere of R3 representing our planet. The natural metric on the
sphere is the geodesic or great circle distance, which defines the length of the
shortest arc joining any pair of points located over the sphere. The increasing
interest in modeling stochastic processes over spheres or spheres cross time with
an explicit covariance function is reflected in works in areas as diverse as math-
ematical analysis, spatial and space-time statistics, and we refer the reader to
the recent reviews by Gneiting (2013), Jeong et al. (2017), Porcu et al. (2018)
and Porcu et al. (2019) for a comprehensive account.

We recall that, for a non empty set X, a mapping C : X ×X → R is called
positive definite if, for any N -dimensional collection {ai}Ni=1 ⊂ R and points
{xxxi}Ni=1 ⊂ X, we have

N∑
i=1

N∑
j=1

aiC(xxxi,xxxj)aj ≥ 0.

A well known fact is that C : X ×X → R is a positive definite function if and
only if C is the covariance function of a Gaussian random field Z on X.

This paper considers essentially the case X = S
d−1 = {xxx ∈ R

d : |xxx| = 1},
that is, the unit sphere of Rd and where | · | is the Euclidean distance. Covariance
functions on d-dimensional spheres are denoted C throughout. The covariance
function C : Sd−1×S

d−1 → R is called geodesically isotropic (Porcu et al., 2018)
if there exists a function R : [−1,+1] → R such that

C(xxx,yyy) = R(〈xxx,yyy〉), xxx,yyy ∈ S
d−1, (1.1)

where 〈·, ·〉 denotes the dot product in R
d. In view of the geodesic isotropy

assumption, the function C in (1.1) depends exclusively on the geodesic (great
circle) distance dGC(xxx,yyy) = angle[xxx,yyy] ∈ [0, π] between points. Thus, we have
C(xxx,yyy) = R

(
cos(dGC(xxx,yyy))

)
.

Characterization of covariance functions being geodesically isotropic on Sd−1

has been available thanks to Schoenberg (1942). Recently, covariance functions
became popular after the essays by Gneiting (2013) and Berg and Porcu (2017).
Characterization of covariances of the type (1.1) has been proposed by Pinkus
(2004) and the reader is referred to Menegatto (1994) and Guella and Menegatto
(2016) for deep results in this direction. The following result of Schoenberg
(1942) will illustrate some of our findings.

If C is geodesically isotropic on S
d−1, then the function R in (1.1) admits the

representation

R(u) =

∞∑
n=0

bn,d−1
P

(d−1)/2
n (u)

P
(d−1)/2
n (1)

, u ∈ [−1,+1], (1.2)

where Pλ
n are the n-th Gegenbauer polynomials of order λ ≥ 0, and {bn,d−1}∞n=0

is a sequence of nonnegative coefficients that additionally satisfy
∑∞

n=0 bn,d−1 =
σ2 < ∞.
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1.1. Motivation and statement of the problem

Recent applications regarding space or space-time data over the whole planet
Earth have shown how global data typically exhibit nonstationarities over space,
time, or both. This fact has been argued by several authors, and we refer the
reader to Cressie et al. (2010); Kang et al. (2010); Castruccio and Guinness
(2017) and Nguyen et al. (2014).

For random fields defined over small portions of the sphere and projected
on the plane, the problem was noted by Sampson and Guttorp (1992), who
suggested a space deformation approach: finding a pair (R,Φ), with R being a
stationary covariance and Φ a bijection, such that a nonstationary covariance
defined in Rd × Rd can be transformed into a stationary one. Solutions to this
problem have been provided by Perrin and Senoussi (1999), Perrin and Senoussi
(2000) and Genton and Perrin (2004). Thus, it becomes natural to adapt this
problem to the case where the nonstationary covariance is defined over Sd−1 ×
S
d−1. We state this formally for the convenience of the reader.

Problem 1. Let C : S
d−1 × S

d−1 → R be a differentiable covariance func-
tion. Chase, whenever it exists, a pair (R,Ψ), with a differentiable mapping
R : [−1,+1] → R, and a diffeomorphism Ψ, such that

C(xxx,yyy) = R (〈Ψ(xxx),Ψ(yyy)〉) , xxx,yyy ∈ S
d−1. (1.3)

The covariance functions C : S
d−1 × S

d−1 → R satisfying (1.3) for some
pair (R,Φ) are called geodesically isotropic reducible thrughout. Apparenty, the
geodesically isotropic case defined in Equation (1.1) is attained under the special
case Ψ = Id, with Id being the identity mapping. A collection of facts makes
Problem 1 difficult. First, the set of positive definite functions on spheres is
too large to be investigated if no regularity and/or smoothness conditions are
assumed. Yet, even under such conditions, differential calculus on manifolds,
such as spheres, is somewhat tricky.

Problem 1 can be simplified by consider an analogue within a more convenient
domain extension: for any ε ≥ 0, let us define the ε-extension of the sphere Sd−1

by
Dε = {xxx ∈ R

d : |xxx| > ε}. (1.4)

Note that D0 = Rd
∗, the punctured space. Next, we call a positive definite

function Cε, defined on the product space Dε × Dε, geodesically isotropic if
there exists a mapping Rε : R → R such that

Cε(xxx,yyy) = Rε(〈xxx,yyy〉) xxx,yyy ∈ Dε.

This paper shows that solutions to a reducibility problem for covariance func-
tions Cε defined over Dε × Dε provide solutions to Problem 1. Clearly this
implies that the functions C and Cε must be related, and this fact is carefully
explained in Section 3.

The rest of this section is devoted to two examples illustrating how nonsta-
tionarity can arise from some simple parametric spatial deformations. Section 2
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provides the necessary mathematical background as well as some auxiliary re-
sults. Section 3 contains our main results, related to recovering all solutions to
Problem 1 from the covariance function itself when it is geodesically isotropic re-
ducible. Some examples will illustrate our findings. Section 4 provides sufficient
conditions to the solution of Problem 1.

1.2. Examples of isotropic fields undergoing parametric
deformations

We introduce a simple family of functions allowing for sphere deformations,
specifically to model locations and forms of dilation/contraction at punctual
nodes (e.g., poles) and/or lines (e.g., latitudes, longitudes) on the sphere sur-
faces.

Let Fα,β denote the beta probability distribution, defined as Fα,β(t) =
1

B(α,β)

∫ t

0
sα−1(1 − s)β−1ds, t ∈ [0, 1] for α and β being strictly positive. Let

us define a smooth bijection of the interval [−1, 1] as follows (see the top-left
graph of Figure 1):

F̃α,β(t) =

{
−Fα,β(−t) if t ∈ [−1, 0],
Fα,β(t) if t ∈ (0, 1].

(1.5)

1.2.1. The case of the circle

Using the parametric representation t 	→ uuu(t) = (cos(πt), sin(πt))�, t ∈ [−1, 1)
of S1, with 
 denoting transpose, we consider the transform xxx = Ψ−1(uuu) given
by the following parameterization (see top-right of Figure 1)

t 	→ xxx(t) = uuu(F̃α,β(t)), t ∈ [−1, 1), (1.6)

so that the deformation can be written as Ψ(xxx(t)) = xxx(F̃−1
α,β(t)).

Regarding the choice of a geodesically isotropic covariance function on the
circle, we make use of a truncated version of Schoenberg representation (Schoen-
berg, 1938), to define the covariance function:

R(u) = b0 + b1 cos(πu) + b4 cos(4πu) + b9 cos(9πu) + b50 cos(50πu), u ∈ [−1, 1].
(1.7)

Figure 1 shows a simulated path of a geodesically isotropic Gaussian random
field Z(uuu(t)) on S

1 and the same realization undergoing a spatial dilation at
point t = ±1 and a contraction at the opposite point (t = 0), that is the path
of Z(xxx(t)).

1.2.2. The case of the sphere S
2

We now propose a more elaborated transformation that intermingles coordi-
nates, using a parameter change for the classical spherical coordinates:

(t1, t2) 	→ uuu�(t1, t2) = (cos(2πt1) cos(πt2), sin(2πt1) cos(πt2), sin(πt2)),
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Fig 1. Random field on the circle. Top-left: graph of the coordinate change F̃α,β according to
Equation (1.5) with α = 3, β = 1. Right: representation of the corresponding circle bijection.
Bottom-left: a path of a Gaussian geodesically isotropic field Z(uuu(t)) with covariance function
(1.7) defined by the coefficients b0 = b1 = b4 = b9 = b50 = 0.2. Right: The same path
undergoing the space deformation Ψ given by Equation (1.6), that is the path of Z(xxx(t))
transform.

where t1, t2 ∈ [−1, 1]. To define the S2 deformation xxx = Ψ−1(uuu), we first trans-
form each coordinate ti independently through the function F̃αi,βi(ti) in Equa-
tion (1.5), i = 1, 2 and then intermingle them via the following bijection (see
top of Figure 2):

θ1(t1, t2) =
(
F̃α1,β1(t1) + 1

)(
1− (1−F̃α2,β2

(t2))
√

1−F̃α1,β1
(t1))

2
√
2

)
− 1,

θ2(t1, t2) =
(
F̃α2,β2(t2) + 1

)(
1− (1−F̃α1,β1

(t1))
√

1−F̃α2,β2
(t2)

2
√
2

)
− 1.

(1.8)
Rephrased, Ψ−1 is obtained via the parameterization

(t1, t2) 	→ xxx�(t1, t2) = Ψ−1(uuu(t1, t2)) = uuu�(θ1(t1, t2), θ2(t1, t2)). (1.9)
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To build a geodesically isotropic covariance function on S
2, we invoke again a

truncated version of Schoenberg representation for d = 3 (Schoenberg, 1938),
choosing precisely the first four Legendre polynomials

R(u) = b0 + b1u+ b2(3u
2 − 1)/2 + b3(5u

3 − 3u)/2, u ∈ [−1, 1], (1.10)

with constraints bj ≥ 0, j = 0, . . . , 3 and
∑3

0 bj = 1. The bottom-left of Figure
2 shows a sample path of a geodesically isotropic Gaussian field Z(uuu(t1, t2)) on
S
2 and on the right, the same realization after the spatial deformation, that is

a path realization of Z(xxx(t1, t2)).

2. Notations and auxiliary results

2.1. Adapting differential tools to S
d−1

We start with some notations concerning matrix and differential calculus. Let d
be a positive integer. For a d× d matrix Γ we denote its jth row vector by Γj,•
and its jth column vector by Γ•,j , j = 1, . . . , d.

A vector xxx = (x1, . . . , xd)
� of Rd is always assumed to be a column vector. In

particular, eeej , j = 1, . . . , d denotes the unit column vectors of a standard basis
of Rd. We equivalently use 〈xxx,yyy〉 or xxx�yyy for the dot product. The differential
(or gradient) of a real valued function F : D → R, where D is an open domain
of Rd, is always assumed to be the row vector DxxxF = (∂x1F, . . . , ∂xd

F ). For a
univariate function R, the differential is denoted R′. For a differentiable real-
valued function G : D × D → R, the same row notations will hold for partial
differentials:

DG(xxx,yyy) = D(xxx,yyy)G(xxx,yyy) = (DxxxG(xxx,yyy), DyyyG(xxx,yyy)), xxx,yyy ∈ D.

Consistently, differentials are considered as linear forms, e.g., for uuu,vvv ∈ Rd,

DG(xxx,yyy)(uuu,vvv) := DxxxG(xxx,yyy) uuu+DyyyG(xxx,yyy) vvv.

For a transformation Φ = (φ1, . . . , φd)
� : D ⊂ R

d → R
d, we will make large use

of the following notations related to its Jacobian matrix JΦ = [∂xjφi]i,j(xxx), as
well as to the inner product and projectors associated to Φ: i.e., for xxx,yyy ∈ D,

βΦ(xxx,yyy) =
Φ�(xxx)Φ(yyy)

|Φ(xxx)||Φ(yyy)| , and PΦ(xxx) =
Φ(xxx)Φ�(xxx)

|Φ(xxx)||Φ(xxx)| ,

where |·| denotes the Euclidean norm.

When Φ is the identity function Id, we simply write β(xxx,yyy) and Pxxx.

In this paper, the domain D ⊂ R
d refers almost always to the ε-extension

(1.4) of S
d−1. The result below will be largely used in the sequel to convert

differential calculus on spheres into calculus on R
d.
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Fig 2. Random fields on the unit sphere. Top-left: uniform grid of the square used for usual
spherical coordinates. Right: the same square undergoing deformation θ(t1, t2) described by
Equation (1.8) with parameters α1 = 0.55, β1 = 0.55, α2 = 1.5, β2 = 1.5. Middle: points
of the sphere corresponding to the respective previous square grids on the top line. Bottom-
left: a simulation of a geodesically isotropic Gaussian field Z(uuu(t1, t2)) on S2, according to
covariance function (1.10) with parameters b0 = 0.2, b1 = 0.3, b2 = 0.3, b3 = 0.2. Right: The
same realization undergoing spatial deformation Ψ given by (1.9), that is the realization of
Z(xxx(t1, t2)).

Proposition 1. Let Φ : Dε → R
d be differentiable. Then,

DxxxβΦ(xxx,yyy) =
1

|Φ(xxx)|
Φ�(yyy)

|Φ(yyy)|
(
IIId − PΦ(xxx)

)
JΦ(xxx).
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In particular, for Φ being the identity mapping, we have

Dxxxβ(xxx,yyy) =
1

|xxx|
yyy�

|yyy|
(
IIId − Pxxx

)
. (2.1)

Proof. Apply the differential rules to the following function composition chain
(xxx,yyy) 	−→ (uuu = Φ(xxx), vvv = Φ(yyy)) 	−→ (www = uuu/|uuu|, zzz = vvv/|vvv|) 	−→ www�zzz, to obtain
the corresponding results.

2.2. Suitable diffeomorphism extensions

Let Ψ : Sd−1 → S
d−1 be a bijective and continuously differentiable deformation

(i.e., a manifold diffeomorphism) with differential (also termed Jacobian) JΨ(xxx)
acting on the tangent space at point xxx. Clearly, Ψ−1 is also a diffeomorphism,
with Jacobian JΨ−1 satisfying JΨ−1(yyy) = (JΨ(xxx))

−1 = J−1
Ψ (xxx), where xxx =

Ψ−1(yyy).
There exist many ways of extending Ψ to domains of Rd containing Sd−1.

For our purpose, we can however restrict to domains Dε, ε > 0 and we consider
candidates Φ extending the diffeomorphic mapping Ψ to Dε in the following
form

Ψε
α(xxx) = |xxx|αΨ

(
xxx

|xxx|

)
, α ≥ 0. (2.2)

A differentiable mapping Φ : D ⊂ R
d → R

d, α ≥ 0, is called positively homoge-
neous of order α if Φ(λxxx) = λαΦ(xxx), for λ ≥ 0 and such that xxx, λxxx ∈ D. Lemma
3 in Appendix B asserts that the condition

J�
Φ (xxx)Φ(xxx) = αxxx/|xxx|2(1−α)

is necessary and sufficient to preserve norms and thus leaves spheres invariant.
Lemma 3 explains why caution is needed when differential calculus concerns

space transformations of manifolds, such as S
d−1, since transformations of Rd

that coincide on S
d−1 may have very different Jacobians on S

d−1. For example,
even if the common restriction of Ψ over S

d−1 is a diffeomorphism, JΨε
0
(xxx) is

everywhere singular on S
d−1 whereas JΨε

1
(xxx) is not.

Finally, as the differential calculus simplifies a bit with α = 1, when referring
to a diffeomorphism extension Φ = (φ1, . . . , φd)

�, we imply throughout

Φ = Ψε
1. (2.3)

2.3. Orthogonal matrices

Some facts about the dot product operation xxx�yyy in Euclidean space Rd are now
needed. The dot product is not invariant under general space transformations.
Actually, the unique set of transformations leaving the dot product invariant is
the so-called orthogonal group within linear transformations. Let us recall the
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definition of orthogonal transformations while leaving to Appendix A their full
characterization within the context of complex spaces Cd as well as examples.

An orthogonal transformation Φ is given via an invertible real valued matrix
O such that O� = O−1, and Φ(xxx) = Oxxx, so that Φ�(xxx)Φ(yyy) = xxx�yyy. The
mostly used orthogonal transformations are rotations but other types, such as
reflexions, are namely available. In this context we say that an invertible d× d
matrix Γ is uniquely defined up to orthogonality if there exist an invertible
matrix d× d matrix Γ0, and an orthogonal matrix O, such that Γ = OΓ0.

3. Restatement of Problem 1 within the space Dε

3.1. Extending C to Dε

Let C : Sd−1×S
d−1 → C be positive definite. C can be used as a building block

to construct positive definite functions over Dε ×Dε. For example,

Cε(xxx,yyy) = C

(
xxx

|xxx| ,
yyy

|yyy|

)
, xxx,yyy ∈ Dε, (3.1)

coincides with C on S
d−1 and is clearly positive definite on Dε×Dε. This exten-

sion has a straightforward interpretation in terms of any underlying random field
Z = {Z(xxx), xxx ∈ S

d−1} with covariance function C. Indeed, direct inspection
shows that the random field extension

Zε(xxx) = Z

(
xxx

|xxx|

)
, xxx ∈ Dε,

has covariance function Cε.
A wealth of examples can be obtained. For instance, take a positive definite

function C̃(·, ·) on R+×R+ satisfying C̃(x, x) = 1, and define the product kernel

Cε(xxx,yyy) = C
(

xxx
|xxx| ,

yyy
|yyy|

)
C̃(|xxx|, |yyy|). This model can also be physically related to

another extension of the underlying random field Z on S
d−1 by considering the

product

Zε(xxx) := Z

(
xxx

|xxx|

)
Z̃(|xxx|), xxx ∈ Dε,

where Z̃ is any independent Gaussian field defined over R+ with covariance

function C̃.
Actually, Extension (3.1) (i.e., constant on radii) is sufficient for our concern.

The following technical result allows to takle properly the initial Problem 1 by
working on Dε.

Proposition 2. Let C : Sd−1 × S
d−1 → R be differentiable. Then,

Cε(xxx,yyy) = C

(
xxx

|xxx| ,
yyy

|yyy|

)
, xxx,yyy ∈ Dε,

if and only if

DxxxC
ε(xxx,yyy)xxx = 0 and DyyyC

ε(xxx,yyy)yyy = 0, ∀xxx,yyy ∈ Dε.
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The proof of Proposition 2 is a direct consequence of the following lemma.

Lemma 1. Let F be a differentiable scalar function on Dε. Then,

F (xxx) = F

(
xxx

|xxx|

)
if and only if DxxxF (xxx)xxx = 0.

Proof. (⇒) We first note that

∂xj

(
xl

|xxx|

)
=

1

|xxx|

(
δjl −

xjxl

|xxx|2
)
,

with δjl denoting the Kronecker delta. Thus, DxxxF (xxx) = (1/|xxx|)DxxxF (xxx/|xxx|)×
(IIId − Pxxx). We thus get

(IIId − Pxxx)xxx = 0, xxx ∈ Dε.

(⇐) Consider the spherical coordinate system xxx = xxx(uuu), uuu(r, θ1, . . . , θd−1) and

define the function F̃ (uuu) = F (xxx(uuu)). Differentiation with respect to the radius
r gives ∂rxl(uuu) = xl/r. Thus, we get

∂rF̃ =
∑
l

F (xxx(uuu))∂rxl(uuu) =
1

r
DxxxF (xxx(uuu))xxx(uuu) = 0.

The last equality implies that F does not depend on the radius r. The proof is
completed.

3.2. Rephrasing Problem 1 within the domain Dε

Problem 2. Let Cε : Dε ×Dε → R be a differentiable covariance function that
satisfies

DxxxC
ε(xxx,yyy)xxx = 0 or DyyyC

ε(xxx,yyy)yyy = 0, ∀xxx,yyy ∈ Dε.

Chase, if it exists, a pair (R,Φ), with Φ a diffeomorphism on Dε satisfying

JΦ(xxx)xxx = Φ(xxx) and J�
Φ (xxx)Φ(xxx) = xxx, xxx ∈ Dε,

and R a differentiable function on [−1,+1] such that

Cε(xxx,yyy) = R (βΦ(xxx,yyy)) , xxx,yyy ∈ Dε. (3.2)

Proposition 3. A solution (R,Ψ) to C in Sd−1 (Problem 1) exists if and only
if a solution (R,Φ) to Cε exists in Dε (Problem 2).

Proof. (⇒) Taking the extensions Φ = Ψε
1 and Cε of Ψ and C respectively

defined by Equations (2.3) and (3.1), we get, for any xxx,yyy ∈ Dε,

Cε(xxx,yyy) = C

(
xxx

|xxx| ,
yyy

|yyy|

)
= R

(
Ψ�

(
xxx

|xxx|

)
Ψ

(
yyy

|yyy|

))
= R

(
Φ�(xxx)

|xxx|
Φ(yyy)

|yyy|

)
= R

(
Φ�(xxx)Φ(yyy)

|Φ(xxx)||Φ(yyy)|

)
.

(⇐) Equation (3.2) clearly reduces to Equation (1.3) when xxx,yyy ∈ S
d−1.
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3.3. Uniqueness of the solution (R,Φ)

We first turn to the problem of uniqueness in the representation (3.2). Provided
such a pair (R,Φ) exists, is it unique? Apparently, the answer is not: if the pair
(R,Φ) is a solution to Problem 2, then any orthogonal matrix O will provide
a new distinct solution (R,OΦ), since orthogonal matrices preserve norms and
inner products. Consequently, if some uniqueness principle holds, it should be
defined up to orthogonal transformations, and this will be actually the case
under mild regularity conditions.

Since Φ can be defined up to an orthogonal transformation, and since it is a
norm preserving and 1-order positively homogeneous diffeomorphisms, we are
allowed to consider the following

Assumption 1. Φ(eee1) = eee1 with inverse Jacobian J−1
Φ (eee1) = Λ satisfying

eee1 = Λeee1 = Λ�eee1, i.e., Λ1,• = Λ•,1 = eee1.

Then, let us observe that the projector (IIId − PΦ(eee1)) and Λ can be written

IIId − eee1eee
�
1 =

[
0 000�d−1

000d−1 IIId−1

]
and ΛΛΛ =

[
1 000�d−1

000d−1 Λ̃ΛΛ

]
. (3.3)

Next result states what kind of uniqueness can be achieved within Problem
2.

Theorem 1. For i = 1, 2, let Φi be norm preserving and positively homogeneous
diffeomorphisms of order 1 on Dε. Let Ri be continuously differentiable real-
valued functions on R with almost everywhere (a.e.) non vanishing derivatives,
and such that

R1

(
βΦ1(uuu,vvv)

)
= R2

(
βΦ2(uuu,vvv)

)
, uuu,vvv ∈ Dε. (3.4)

Then R1 = R2 and Φ2 = OΦ1, for some orthogonal matrix O.

Proof. Let Φ := Φ2 ◦ Φ−1
1 . We note that Φ preserves norms, and that Φ is a

positively homogeneous diffeomorphism of order 1. Then, setting xxx = Φ1(uuu) and
yyy = Φ1(vvv) implies Equation (3.4) to be equivalent to

R1

(
β(xxx,yyy)

)
= R2

(
βΦ(xxx,yyy

)
, xxx,yyy ∈ Dε. (3.5)

Differentiation with respect to xxx yields

R′
1

(
β(xxx,yyy)

) 1

|xxx|
yyy�

|yyy|
(
IIId − Pxxx

)
= R′

2

(
βΦ(xxx,yyy)

) 1

|Φ(xxx)|
Φ�(yyy)

|Φ(yyy)|
(
IIId − PΦ(xxx)

)
JΦ(xxx),

∀xxx,yyy ∈ Dε.

Since β(xxx,yyy) and βΦ(xxx,yyy) are non constant functions, and since R′
1, R

′
2 are a.e.

non vanishing, we have, for almost all xxx and yyy

ρ(xxx,yyy) =
R′

1

(
β
(
xxx,yyy

))
R′

2

(
βΦ(xxx,yyy)

) �= 0.
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Taking into account norm preservation, we get for almost all xxx,yyy ∈ Dε,(
IIId − PΦ(xxx)

)
Φ(yyy) = ρ(xxx,yyy)

(
J−1
Φ

)�
(xxx)

(
IIId − Pxxx

)
yyy. (3.6)

We now use Assumption 1 and Equation (3.3) to write yyy and Φ(yyy) ∈ R
d as

yyy = (y1, ỹyy) and Φ(yyy) = (φ1(yyy), Φ̃(yyy)) with ỹyy, Φ̃(yyy) ∈ R
d−1, and set xxx = eee1 in

Equation (3.6), to get

Φ̃(yyy) = ρ(eee1, yyy)Λ̃
�ỹyy, with ρ(eee1, yyy) =

R′
1 (y1/|yyy|)

R′
2 (φ1/|Φ(yyy)|)

. (3.7)

The rest of the proof is structured into four steps:

1. We first show that ρ(eee1, yyy) actually depends only on y1/|yyy|.
Setting xxx = eee1 in Equation (3.5) yields R1 (y1/|yyy|) = R2 (φ1/|Φ(yyy)|). The

fact that R2 has a a.e. non vanishing derivative, implies the inverse R−1
2 to be

a.e. well defined. Thus,

φ1/|Φ(yyy)| = R−1
2 ◦R1 (y1/|yyy|) ≡ G (y1/|yyy|) .

Consequently, we have

ρ(eee1, yyy) = R′
1 (y1/|yyy|) /R′

2 (G(y1/|yyy)|) ≡ H(y1/|yyy|).

2. We now prove that Λ̃ is, up to a scalar, an orthogonal matrix on Rd−1.
Let us notice that |yyy|2 = |Φ(yyy)|2 = φ2

1(yyy) + ρ2(eee1, yyy)|Λ̃�ỹyy|2 can be written as

1 = G2

(
y1
|yyy|

)
+H2

(
y1
|yyy|

) ∣∣∣Λ̃� ỹyy

|yyy|

∣∣∣2.
In other words, we have∣∣∣∣∣Λ̃� ỹyy

|yyy|

∣∣∣∣∣
2

=
1−G2

(
y1

|yyy|

)
H2

(
y1

|yyy|

) ≡ F 2

(
y1
|yyy|

)
.

Next, for any yyy such that y1 = 0, we have |ỹyy| = |yyy| and therefore for any unit
vector ũuu = ỹyy/|ỹyy| ∈ R

d−1, we get |Λ̃�ũuu|2 ≡ F 2(0). This implies that the matrix
Λ̃�/F (0) preserves norms in R

d−1. Therefore, it is orthogonal and thus satisfies
Λ̃� = F 2(0)Λ̃−1 with |det(Λ̃)| = ±F (0).

3. We now determine Φ1(yyy).

We first determine the function F by setting s = y1/|yyy|. Since Λ̃�/F (0) is
orthogonal, we get

F 2(0) = |Λ̃� ỹyy

|ỹyy| |
2 =

|yyy|2
|ỹyy|2 |Λ̃

� ỹyy

|yyy| |
2 =

|yyy|2
|ỹyy|2F

2(
y1
|yyy| ) =

1

1− s2
F 2(s),

that is F 2(s) = F 2(0)(1− s2).



902 E. Porcu et al.

On the other hand, one can easily prove that functions G and H satisfy a.e.
G′(s) = H(s), s ∈ [−1, 1], and consequently we get

G′ 2(s)

1−G2(s)
=

1

F 2(0)(1− s2)
, that is

G′(s)√
1−G2(s)

=
1

F (0)

1√
1− s2

,

s ∈ [−1, 1].

Since G(1) = 1, using the change of variable formula for integration over
interval [s, 1], yields arccos(G(s)) = arccos(s)/F (0). Since Φ is a diffeomorphism
and G(y1/|yyy|) = φ1(yyy)/|Φ(yyy)|, we have

arccos(φ1(yyy)/|Φ(yyy)|) = arccos(y1/|yyy|))/F (0) ∈ [−π, 0]. (3.8)

We now prove that F (0) = ±1.
Without loss of generality, let us assume that F (0) ≥ 0 and consider the two

cases.
If F (0) < 1, we can choose yyy = (−1,0d−1) that is s = −1 and get

arccos(G(−1)) = −π/F (0) < −π. Similarly, if F (0) > 1, we can also choose
yyy∗, |yyy∗| = 1 such that Φ(y∗y∗y∗) = (−1,0d−1)

� that is G(s) = −1, and get
arccos(y∗1) = −πF (0) < −π. Since both cases contraddict Equation (3.8), we
necessarily have F (0) = 1, i.e., Φ1(yyy) = y1, implying ρ(eee1, yyy) = ±1.

We have thus proved that Φ(yyy) = Φ2 ◦Φ−1
1 (yyy) = Λ�yyy with Λ orthogonal, and

thus setting yyy = Φ1(vvv) yields Φ1(vvv) = Λ−1Φ2(vvv). Actually, one can replace any
orthogonal matrix O for the orthogonal matrix Λ.

4. To conclude the proof, we notice that R1 = R2 by Equation (3.4) since
βΦ1(uuu,vvv) = βΦ2(uuu,vvv).

3.4. Recovering R and Φ from Cε (or C)

We now prove how one can recover, under mild identifiability conditions, a
solution (R,Φ), provided it exists, from the knowledge of the covariance function
and the inverse Jacobian at a single point of the sphere, say eee1.

Theorem 2. Let Cε : Dε ×Dε → R be a covariance function such that

Cε(xxx,yyy) = R
(
βΦ̂(xxx,yyy)

)
, xxx,yyy ∈ Dε,

for some continuously differentiable function R on [−1,+1] with a.e. non vanish-
ing derivative, and for a positively homogeneous of order 1 and norm preserving
diffeomorphism, Φ̂, on Dε. Then,

1. the unique solution Φ = (φ1, . . . , φd)
� satisfying Assumption 1 is given

by:

φj(yyy) =

⎧⎨⎩
|yyy| cos (α(yyy)) for j = 1

|yyy| sin (α(yyy)) DxxxC
ε(eee1,yyy)Λ•,j

|DxxxCε(eee1,yyy)Λ| for 2 ≤ j ≤ d,
(3.9)
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where

α(yyy) = −
(∫ 1

0

DyyyC
ε(eee1, γyyy(t))

|DxxxCε(eee1, γyyy(t))Λ|
dt

)(
yyy − eee1), (3.10)

with
γyyy(t) = (1− t)eee1 + tyyy, t ∈ [0, 1] . (3.11)

2. R is uniquely defined by R(u) = C(eee1, yyy(u)), where yyy(u) = Φ−1(vvv(u)),
u ∈ [−1, 1], and vvv�(u) =

(
u,

√
1− u2, 0, . . . , 0

)
∈ S

d−1.

Proof. To favor neater exposition, we have divided the proof into four steps.

a. Differentiation with respect to xxx gives

DxxxC
ε(xxx,yyy) = R′(βΦ(xxx,yyy)

) 1

|Φ(xxx)|
Φ�(yyy)

|Φ(yyy)|
(
IIId − PΦ(xxx)

)
JΦ(xxx).

By symmetry, we get DyyyC
ε(xxx,yyy) = DxxxC

ε(yyy,xxx), that is

DyyyC
ε(xxx,yyy) = R′(βΦ(xxx,yyy)

) 1

|Φ(yyy)|
Φ�(xxx)

|Φ(xxx)|
(
IIId − PΦ(yyy)

)
JΦ(yyy).

As a consequence of Lemma 1, we notice that Cε(xxx,yyy) depends only on xxx/|xxx|
and yyy/|yyy|, since DxxxC

ε(xxx,yyy)xxx = DyyyC
ε(xxx,yyy)yyy = 0. This is because Φ is positively

homogeneous of order 1.
Using Assumption 1 and Equation (3.3), we obtain βΦ(eee1, yyy) = φ1(yyy)/|Φ(yyy)|

and therefore

DxxxC
ε(eee1, yyy)Λ = R′

(
φ1(yyy)

|Φ(yyy)|

)
1

|Φ(yyy)|
(
0, φ2(yyy), . . . , φd(yyy)

)
.

For simplicity, put θj(yyy) =
φj(yyy)
|Φ(yyy)| , j = 1, . . . , d. Since R′ is continuous and

a.e. non vanishing, the following relation holds a.e.:

θj(yyy) =
DxxxC

ε(eee1, yyy)Λ•,j
R′
(
θ1(yyy)

) , j = 2, . . . , d.

Then, taking into account that Σd
j=1θ

2
j (yyy) = 1, we get(

R′(θ1(yyy)))2(1− θ21(yyy)
)
=
∣∣∣DxxxC

ε(eee1, yyy)Λ
∣∣∣2,

that is

R′(θ1(yyy)) = ±|DxxxC
ε(eee1, yyy)Λ|√

1− θ21(yyy)
. (3.12)

b. Identification of ΦΦΦ. By a continuity argument, the ± sign in Equation (3.12)
can be removed, so to get

φj(yyy) =
DxxxC

ε(eee1, yyy)Λ•,j
|DxxxCε(eee1, yyy)Λ|

√
|Φ(yyy)|2 − φ2

1(yyy), j ≥ 2. (3.13)
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Since |Φ(yyy)| = |yyy|2, the components φj , j ≥ 2 are therefore determined by
the differentials of Cε as soon as φ1 is known.

c. Identification of φ1. Using Equation (3.2), we obtain

DyyyC
ε(eee1, yyy) = R′(θ1(yyy))Dyyyθ1(yyy) =

|DxxxC
ε(eee1, yyy)Λ|√

1− θ21(yyy)
Dyyyθ1(yyy).

Now, for H(yyy) = arccos
(
θ1(yyy)

)
, we have

DyyyH(yyy) = − Dyyyθ1(yyy)√
1− θ21(yyy)

.

This implies that

DyyyH(yyy) = − DyyyC
ε(eee1, yyy)

|DxxxCε(eee1, yyy)Λ|
.

We can now determine H from Cε: consider the segment [eee1, yyy] in Dε and
the scalar function h(t) = H(γyyy(t)), where γyyy(·) has been defined in Equation
(3.11). We have that h satisfies

h′(t) = DyyyH
(
γyyy(t)

)
γ′
yyy(t) = DyyyH

(
γyyy(t)

)(
yyy−eee1) = − DyyyC

ε(eee1, γyyy(t))

|DxxxCε(eee1, γyyy(t))Λ|
(
yyy−eee1).

Therefore, direct inspection shows that

H(yyy)−H(eee1) = h(1)− h(0) =

∫ 1

0

h′(t)dt

= −
(∫ 1

0

DyyyC
ε(eee1, γyyy(t))

|DxxxCε(eee1, γyyy(t))Λ|
dt

)(
yyy − eee1).

Since θ1(eee1) = 1, H(eee1) = 0 we get the solution

θ1(yyy) = cos

(
−
(∫ 1

0

DyyyC
ε(eee1, γyyy(t))

|DxxxCε(eee1, γyyy(t))Λ|
dt

)(
yyy − eee1)

)
= cos (α(yyy)) .

Using the fact that |Φ(yyy)| = |yyy|, we have

φ1(yyy) = |yyy| cos (α(yyy)) . (3.14)

d. Identification of R. Let us consider on the “semi-circle” {vvv(u) = (u,
√
1− u2,

0, . . . , 0), u ∈ [−1, 1]} whose preimage by the diffeomorphism Φ, is the curve
{yyy(u) = Φ−1(vvv(u))u ∈ [−1, 1]}. Since φ1(yyy(u)) = u, we get R(u) =
R(φ1(yyy(u))) = R

(
Φ�(eee1)Φ(yyy(u))

)
= C (eee1, yyy(u)), which implies that R is en-

tirely determined by C and the knowledge of the inverse of Φ on a semi-circle.
The proof is completed.
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3.5. Some remarks

Remark 1. Let d > 1. We note that, for xxx and yyy ∈ S
d−1, βΦ becomes

βΦ(xxx,yyy) = cos
(
α(xxx)

)
cos

(
α(yyy)

)
+ sin

(
α(xxx)

)
sin

(
α(yyy)

) DxxxC
ε(eee1,xxx)Λ

|DxxxCε(eee1,xxx)Λ|

(
DxxxC

ε(eee1, yyy)Λ
)�

|DxxxCε(eee1, yyy)Λ|
.

This is actually the Viete formula called Spherical Law of Cosines (resp. Sines)
in spherical trigonometry in S2. Since the points e1e1e1, Φ(xxx) and Φ(yyy) of Sd−1

actually lie in a submanifold equivalent to S
2, Viete law states that βΦ(xxx,yyy) =

cos(angle[Φ(xxx),Φ(yyy)]) is expressed via the cosine and sine of α(xxx) =
angle[eee1,Φ(xxx)] and α(yyy) = angle[eee1,Φ(yyy)] and the cosine of the angle between
the unit vectors τ(xxx) and τ(yyy) stemming at eee1 = Φ(eee1), and tangent to the great
circles in S2 leading respectively to Φ(xxx) and Φ(yyy) with τ(www) = DwwwC

ε(eee1,www)Λ/
|DwwwC

ε(eee1,www)Λ|.
Remark 2. Theorem 2 assumes the matrix J−1

Φ (eee1) = Λ (or rather Λ̃ in Equa-
tion (3.3), depending on (d − 1)2 parameters) as known, although this is not
the case in general. To effectively determine Λ̃, we recall that it is defined up a
(d−1)-dimensional orthogonal matrix ÕOO (see Appendix A) whose (d−1)(d−2)/2
parameters can be set arbitrarily. The remaining (d − 1)d/2 unknown param-
eters have to be determined by imposing constraints that ensure the solution
(3.9) to be a sphere diffeomorphism. Among other possibilities, one can make
use of the different forms of the Spherical Law of Cosines on spheres (see Re-
mark 1), or of other simpler constraints being specific to the case under study.
Alternatively, one can use the following type of constraints involving a change
of variable formula for moments of the Lebesgue measure over the unit ball
Bd(0, 1) ⊂ R

d:

αd,n =

∫
Bd(0,1)

un
i duuu =

∫
Bd(0,1)

|Φi(yyy)|n|det(JΦ(yyy)| dyyy, n ≥ 0, (3.15)

with

αd,n =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 if n odd,

4
n+2Wn if n even and d = 2,

2d+1

n+d
Γ((n+1)/2)Γ((d−1)/2)

Γ((n+d)/2) W0W1 . . .Wd−3 if n even and d ≥ 3,

(3.16)

with Wn =
∫ π/2

0
sinn(u)du, n ≥ 0 and Γ(·) is the Gamma function.

Note that the integrals αd,n are independent of the index i of the coordinates.
For example, in the case of S1 we may need the single constraint related to
α2,0 = π, while for S2, we may need α3,0 = 4π/3, α3,1 = 0 and α3,2 = 16π/15.
Of course, one can use as well integral formulas related to the mixed moments
for higher dimensions.
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Remark 3. If R is known and R′ is almost everywhere non vanishing, R is lo-
cally monotonic. Thus, from the relation Cε(eee1, yyy) = R(φ1(yyy)) for yyy ∈ S

d−1, one
can locally calculate φ1(yyy) = R−1(C(eee1, yyy)). Starting from equality R(φ1(eee1)) =
R(1) = 1, by a continuity argument we can therefore extend local identification
to a global identification of φ1 on S

d−1. Thus, the knowledge of R can spare the
computation of the integral (3.10).

Remark 4. Using the homogeneity property of Cε, Equation (3.10) can be
simplified, by replacing (γyyy(t)− eee1)/t for (yyy − eee1), so that

α(yyy) = −
∫ 1

0

∂yyy1C
ε(eee1, γyyy(t))

|DxxxCε(eee1, γyyy(t))Λ|
dt

t
. (3.17)

Remark 5. The assumption that R′ is continuous and non vanishing a.e. is
satisfied for many isotropic correlation functions (refer to Equation (1.2)). We
start with a counterexample and then provide some examples:

1. R(u) ≡ 1 i.e., R′(u) ≡ 0 does not satisfy our assumption. Of course, any
deformation Φ of Sd−1 is a solution for C(xxx,yyy) = R(βΦ(xxx,yyy) ≡ 1 on S

d−1.
2. R(u) = u gives R′(u) ≡ 1 and R−1(u) = u.

3. R(u) = b2,d−1P
(d−1)/2
2 (u)/P

(d−1)/2
2 (1) = ((d+ 1)u2 − 1)/d (see Equation

(1.2)) yields R′(u) = 2(d+ 1)/du, that vanishes at u = 0. By continuity,
we can determine which of the branch of R−1(u) = ±

√
(du+ 1)/(d+ 1)

is adapted for inversion.
4. Any truncation of order N in representation (1.2): R(u) =∑N

n=0 bn,d−1P
(d−1)/2
n (u)/P

(d−1)/2
n (1) satisfies our assumption. This is be-

cause R is a polynomial of degree N and thus R′ has at most N−1 distinct
zeros by the fundamental theorem of algebra. Thus, R is locally invertible.

3.6. An example of reducibility in S
1

We start by choosing a specific geodesically isotropic correlation function ρ on
the circle. According to Theorem 1 of Gneiting (2013), taking bn = e−ννn/n!,
n ≥ 0 we obtain ρ(θ) =

∑
n≥0 bn cos

n(θ) = exp (ν(cos(θ)− 1)), θ ∈ [−π, π],
being positive definite on every d-dimensional sphere.

Equivalently, the Euclidean coordinate system xxx = (x1, x2)
�, yyy = (y1, y2)

� ∈
S
1, provides the geodesically isotropic covariance function C(xxx,yyy) =

exp
(
ν(xxx�yyy − 1)

)
= exp (ν(x1y1 + x2y2 − 1)), that can be written as C(xxx,yyy) =

R(xxx�yyy), with R(u) = exp(ν(u− 1)) with positive derivative R′(u) =
ν exp(ν(u− 1)), u ∈ [−1, 1].

Second, let us now define a circle diffeomorphism Ψ : S1 −→ S
1 using the

spherical coordinate system: xxx = xxx(θ) = (cos(θ), sin(θ))� and Ψ(xxx) = Ψ(xxx(θ)) =

(cos(η(θ)), sin(η(θ))
�
where η(θ) = π/2

∫ θ

0
| cos(s)|ds. Since η′(θ) = π/2| cos(θ)|

is nonnegative and continuous, η is a diffeomorphism of [−π, π] with fixed points
η(0) = 0, η(π/2) = π/2, η(±π) = ±π, i.e., Ψ preserves e1,−e1, e2 and −e2.
Actually, η(θ) is a linearly periodic diffeomorphism on the whole real line.
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Moreover, note that for θ ∈ (−π/2, π/2) and xxx ∈ S
1, we have

η(θ) =
π

2
sin(θ) =

π

2
sin (arctan (x2/x1)± τπ) ,

with τ = 0 if x1 > 0, τ = 1 if x1 < 0, x2 > 0, and τ = −1 if x1 <
0, x2 < 0. In other words, we have η(θ) = sign(x1)πx2/2, with inverse θ =
sign(x1) arctan (x2/x1). One can meticulously ensure that similar formulas hold
for θ ∈ [−π, π], and therefore write the extension Φ of Ψε to R

2 as φ1(xxx) =
|xxx| cos (πx2/(2|xxx|)), φ2(xxx) = sign(x1)|xxx| sin (πx2/(2|xxx|)), so that

βΦ(xxx,yyy) =
Φ�(xxx)Φ(yyy)

|Φ(xxx)||Φ(yyy)| = cos

(
π

2

(
x2

|xxx| −
y2
|yyy|

))
.

Third, let us finally consider the non-geodesically isotropic correlation function

Cε(xxx,yyy) = R(Φ�(xxx)Φ(yyy)) = eν(cos(
π
2 (

x2
|xxx|−

y2
|yyy| )−1), (3.18)

and show how to recover R and Ψ.

According to Theorem 2, let us set J−1
Φ (eee1) = Λ =

[
1 0
0 λ2,2

]
, where according

to Remark 2, the parameter λ2,2 has to be determined according to one of the
constraints (3.15).

First, we show that
DxxxC

ε(eee1, yyy)Λ•,2
|DxxxCε(eee1, yyy)Λ|

= ±1. (3.19)

Set θxxx,yyy = π
2

(
x2

|xxx| −
y2

|yyy|

)
and observe that

DxxxC
ε(xxx,yyy) =

νπ

2|xxx|3C
ε(xxx,yyy) sin(θxxx,yyy)

(
x1x2,−x2

1

)
; (3.20)

DyyyC
ε(xxx,yyy) =

νπ

2|yyy|3C
ε(xxx,yyy) sin(θxxx,yyy)

(
−y1y2, y

2
1

)
. (3.21)

In particular,

DxxxC
ε(eee1, yyy) =

νπ

2
Cε(eee1, yyy) sin(θeee1,yyy) (0,−1) ,

so that DxxxC
ε(eee1, yyy)Λ•,1 = 0, and DxxxC

ε(eee1, yyy)Λ•,2 = −λ2,2νπ2C
ε/

(eee1, yyy) sin(θeee1,yyy), which clearly imply Equation (3.19).

Let us now establish the analytic form of the integral α(yyy) of Equation (3.10),
for any given yyy.

Here, γyyy(t) = (1− t)eee1+ tyyy with derivative γ′
yyy(t) = yyy−eee1, and norm |γyyy(t)| =√

(1− t(1− y1))2 + t2y22 satisfying

|DxxxC
ε(eee1, γyyy(t))Λ| = |λ2,2νπ

2
Cε(eee1, γyyy(t)) sin(θeee1,γyyy(t))|.
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Similarly, we obtain

DyyyC
ε(eee1, γyyy(t))(yyy − eee1) =

νπ

2
Cε(eee1, γyyy(t)) sin(θeee1,γyyy(t))

y2(1 + t(y1 − 1))

|γyyy(t)|3
,

(3.22)

and then

α(yyy) = −
(∫ 1

0

DyyyCε(eee1, γyyy(t))

|DxxxCε(eee1, γyyy(t))Λ|
dt

)(
yyy − eee1)

= ± 1

λ2,2

∫ 1

0

y2(1 + t(y1 − 1)

(1− t(1− y1))2 + t2y22)
3/2

dt.

We notice that H(t) = ty2/
√
(1 + t(y1 − 1)))2 + t2y22 has derivative

y2(1+t(y1−1)
(1−t(1−y1))2+t2y2

2)
3/2 . Thus, α(yyy) = ± 1

λ2,2
(H(1)−H(0)) = ± 1

λ2,2

y2

|yyy| , implying

φ1(yyy) = |yyy| cos
(

1

λ2,2

y2
|yyy|

)
and φ2(yyy) = ±|yyy| sin

(
1

λ2,2

y2
|yyy|

)
.

The Jacobian satisfies det (JΦ(yyy)) = y1/λ2,2|yyy|.
Next, if we take the single 0-order moment constraint (3.15), we get λ2,2 =

2/π, since

α2,0 = π =

∫
Bd(0,1)

|det(JΦ(yyy)| dyyy =
1

λ2,2

∫ 1

0

rdr

∫ 2π

0

|cos(v)|dv =
2

λ2,2
,

which indeed leads to the hidden transformation Ψ.
The isotropic correlation function is finally given by Theorem 2: since yyy(u) =

Φ−1((u,
√
1− u2)) is a unit vector with component y2(u) =

2
π arccos(u), we have

R(u) = C(eee1, yyy(u)) = eν(cos(
π
2 y2(u))−1) = eν(u−1).

3.7. An example of reducibility in S
2

Even if more sophisticated models can be handled by Theorem 1, Theorem 2 and
Remark 2 with more tedious calculus, we only show here how the machinery of
uniqueness and identification can be carried out in S

2, taking the simple example
of an ellipsoidal diffeomorphism Ψ(xxx) = Ωxxx/|Ωxxx| with Ω = diag(ω1, ω2, ω3)
and xxx ∈ S

2. Regarding the geodesically isotropic correlation function, we take
R(u) = au2 + b where a = (d+ 1)/d and b = −1/d (see Gneiting, 2013). In
other words, we have to show the reducibility of the correlation function

Cε(xxx,yyy) = a
(
∑3

i=1 ω
2
i xiyi)

2

(
∑3

i=1 ω
2
i x

2
i )(
∑3

i=1 ω
2
i y

2
i )

+ b, xxx, yyy ∈ R
3.

1. First, let Λ = J−1
Φ (eee1), or rather Λ̃ as in (3.3), yyy� = (y1, ỹyy

�) with ỹyy� =

(y2, y3), and Ω̃ = diag(ω2, ω3). The matrix Λ̃ =
(
λi,j

)
2≤i,j≤3

has 4 unknowns

entries, but since it is defined up to a 2×2 orthogonal matrix defined by a single
parameter ν, we can assume without loss of generality that λ3,2 = 0.
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Indeed, for any 2 × 2 invertible matrix M̃ =
(
mi,j

)
2≤i,j≤3

, if we choose the

2× 2 orthogonal matrix

Õ =

(
ν −

√
1− ν2√

1− ν2 ν

)
,

with ν = m2,2/
√
m2

2,2 +m2
3,2, then Λ̃ = ÕM̃ satisfies λ3,2 = 0.

The remaining 3 parameters are to be determined through Cε itself.
2. Equation (2.1) yields

DxxxC
ε(xxx,yyy) = 2a

xxx�Ω�

|Ωxxx|
Ωyyy

|Ωyyy|
yyy�Ω�

|Ωyyy|
(
IIId −

Ωxxx

|Ωxxx|
xxx�Ω�

|Ωxxx|
) Ω

|Ωxxx| .

A symmetric relation holds as well for DyyyC
ε(xxx,yyy), and we get the following:

DxxxC
ε(eee1, yyy) = ±2a

y1∑3
i=1 ω

2
i y

2
i

(
0, ỹyy�Ω̃�Ω̃

)
,

DxxxC
ε(eee1, yyy)Λ = ±2a

y1∑3
i=1 ω

2
i y

2
i

(
0, ỹyy�Ω̃�Ω̃Λ̃

)
,

which imply
DxxxC

ε(eee1, yyy)Λ•,j
|DxxxCε(eee1, yyy)Λ|

= ± ỹyy�Ω̃�Ω̃Λ̃•,j

|ỹyy�Ω̃�Ω̃Λ̃|
, j = 2, 3. (3.23)

3. Next, to calculate α(yyy), let us observe that γyyy(t) = (1 − t)eee1 + tyyy =(
γyyy,1(t), γ̃yyy(t)

)T
has components γyyy,1(t) = 1 + t(y1 − 1) and γ̃yyy(t) = tỹyy, so

that we obtain

DxxxC
ε(eee1, γyyy(t))Λ = 2a

γyyy,1(t)

|Ωγyyy(t)|2
(
0, tỹyy�Ω̃�Ω̃Λ̃

)
.

Similar calculations, using equality yyy − eee1 = (γyyy(t)− eee1)/t, lead to

DyyyC
ε(eee1, γyyy(t))

(
yyy − eee1

)
= −2ta

ω2
1γyyy,1(t)

|Ωγyyy(t)|2
|Ω̃ỹyy|2

|Ωγyyy(t)|2
,

and imply

α(yyy) = ± |Ω̃ỹyy|
|ỹyy�Ω̃�Ω̃Λ̃|

∫ 1

0

ω2
1 |Ω̃ỹyy| dt

ω2
1(1− t(1− y1))2 + t2|Ω̃ỹyy|2

.

The change of variable v(t) = A/(B − t) with A = |Ω̃ỹyy|/
(
|ω1|C2

)
, B =

(1− y1) /C
2, and C2 =

(
ω2
1(1− y1)

2 + |Ω̃ỹyy|2
)
/|ω1|2, and the use of the identity

arctan(v1)− arctan (v0) = arctan ((v1 − v0)/(1 + v1v0)), yield

α(yyy) = ± ω1|Ω̃ỹyy|
|ỹyy�Ω̃�Ω̃Λ̃|

arctan

(
|Ω̃ỹyy|
ω1y1

)
.

4. We now prove that cos(α(yyy)) = ω1y1/|Ωyyy|. Since arctan
(
|Ω̃ỹyy|/ω1y1

)
=

arccos
(
ω1y1/|Ωyyy|

)
, we only need to prove that ω1|Ω̃ỹyy| = |ỹyy�Ω̃�Ω̃Λ̃|.
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For that purpose, let us apply the Spherical Law of Sines for the three unit
vectors eee1, vvv = Ωyyy/|Ωyyy|, and www = Γyyy/|Γyyy| of S2, where Γ = ΛTΩTΩ. Again
let us denote vvv =

(
v1, ṽvv

)
, www =

(
w1, w̃ww

)
, so that we have v1 = ω1y1/|Ωyyy|, w1 =

ω2
1y1/|Γyyy|, ṽvv = Ω̃ỹyy/|Ωyyy|, and w̃ww = Γ̃ỹyy/|Γyyy|, with Γ̃ = Λ̃T Ω̃T Ω̃.
We note that a = |www − eee1| =

√
2
√
1− v1, and b = |vvv − eee1| =

√
2
√
1− w1.

Considering the angles A (resp. B) between eee1 and vvv (resp. between eee1 and www)
satisfying sin(A) = |ṽvv| (resp. sin(B) = |w̃ww|), according to the sine law we have
sin(B) = b

a sin(A):

|Ω̃ỹyy|
|Γ̃ỹyy|

=

√
|Ωyyy|
|Γyyy|

√
|Ωyyy| − ω1y1
|Γyyy| − ω2

1y1
. (3.24)

Then, using the equality U1/V1 = U2/V2 = (U1 − U2)/(V1 − V2), we get(
|Ω̃ỹyy|
|Γ̃ỹyy|

)2

=
|Ω̃ỹyy|2 + (ω1y1)

2 − ω1y1|Ωyyy|
|Γ̃ỹyy|2 + (ω2

1y1)
2 − ω2

1y1|Γyyy|
=

(ω1y1)
2 − ω1y1|Ωyyy|

(ω2
1y1)

2 − ω2
1y1|Γyyy|

=
1

ω1

ω1y1 − |Ωyyy|
ω2
1y1 − |Γyyy| ,

that is

|Ω̃ỹyy|
|Γ̃ỹyy|

=
1√
ω1

√
|Ωyyy| − ω1y1
|Γyyy| − ω2

1y1
. (3.25)

Equations (3.24) and (3.25) therefore yield,

ω1|Ωyyy| = |Γyyy|, and ω1|Ω̃ỹyy| = |Γ̃ỹyy| = |ỹyy�Ω̃�Ω̃Λ̃|. (3.26)

5. We now identify the transformation Φ(yyy) and the isotropic correlation func-
tion, R.

Since Equation (3.23) can be written as

DxxxC
ε(eee1, yyy)Λ

|DxxxCε(eee1, yyy)Λ|
=

(
0,

Γ̃ỹyy

|Γ̃ỹyy|

)
,

using previous findings and Equation (3.9), we finally obtain

φ1(yyy) = |yyy|ω1y1
|Ωyyy| = |yyy|ω

2
1y1
|Γyyy| , and Φ̃(yyy) = |yyy| |Ω̃ỹyy||Ωyyy|

Γ̃ỹyy

|Γ̃ỹyy|
= |yyy| Γ̃ỹyy|Γyyy| .

Rephrased, we have

Φ(y) = |yyy| Γyyy|Γyyy| , with Γ =

⎛⎝ω2
1 0 0
0 λ2,2ω

2
2 , 0

0 λ2,3ω
2
2 λ3,3ω

2
3

⎞⎠ .

To identify Λ, instead of using the moment constraints given in Remark 2 in-
volving the Jacobian

JΦ(yyy) =
Γyyy

|Γyyy|
yyy�

|yyy| + |yyy|
(
I− Γyyy

|Γyyy|
yyy�Γ�

|Γyyy|
) Γ

|Γyyy| ,
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Equation (3.26) is apparently more efficient. Indeed, (3.26) corresponds to the
equality of the two quadratic functions, namely

ω4
1y

2
1 + ω2

1ω
2
2y

2
2 + ω2

1ω
2
3y

2
3 = ω4

1y
2
1 +

(
λ2
2,2 + λ2

2,3

)
ω4
2y

2
2 + λ2

3,3ω
4
3y

2
3

+ 2λ2,3λ3,3ω
2
2ω

2
3y2y3,

which implies that

λ2,2 = ±ω1/|ω2|, λ2,3 = 0, λ3,3 = ±ω1/|ω3|,

and leads to the hidden ellipsoidal transformation Ψ.
Without loss of generality, one can remove the ± sign everywhere, as reversing

axis direction corresponds to particular orthogonal transformations that do not
change the form of Cε, and then obtain

Γ = ω1Ω and Λ = diag

(
1,

ω2

ω1
,
ω3

ω1

)
.

To conclude our illustration, it sufficient to observe that Φ−1(uuu) = |uuu|Ω−1uuu/
|Ω−1uuu|, so that according to Theorem 2, for u ∈] − 1, 1[, uuu� = (u,

√
1− u2, 0)

and yyy(u) = Φ−1(uuu), we obtain

R(u) = Cε(eee1, yyy(t))) = au2 + b.

4. Sufficient conditions for local reducibility

Given a covariance function C on S
d−1 × S

d−1, one may ask for sufficient con-
ditions on C to be reducible to geodesic isotropy. If C is regular and smooth
enough, sufficient conditions are to be sought in terms of C and of its differen-
tials. In any case, previous findings show that it is equivalent and much easier
to seek for a set of sufficient conditions on its extension Cε.

Theorem 3. Let Cε : Dε×Dε → R, be a continuously differentiable covariance
function such that the following assumptions hold:

H1- DxxxC
ε(xxx,yyy)xxx ≡ 0, ∀xxx,yyy ∈ Dε.

H2- DxxxC
ε(xxx,yyy) is non vanishing for almost all xxx,yyy ∈ Dε.

H3- The vector function Φ = (φ1, . . . , φd)
�, defined by Equations (3.9)–(3.10),

through the Cε differentials, is a diffeomorphism on Dε for some invertible
matrix Λ satisfying (3.3).

H4- The scalar function R(u) = Cε
(
eee1, yyy(u)

)
, where yyy(u) = Φ−1(uuu), uuu =

(u,
√
1− u2,000) ∈ S

d−1, with u ∈ [−1, 1], has a continuous and almost
everywhere non vanishing derivative.

Then, Cε(xxx,yyy) = R(βΦ(xxx,yyy)) + κ with some constant κ ∈ R, if

|xxx||yyy| DxxxC
ε(xxx,yyy) = R′(βΦ(xxx,yyy)

)
Φ�(yyy)

(
IIId − PΦ(xxx)

)
JΦ(xxx). (4.1)

Proof. Again we divide the proof into three steps to favor a neater exposition.
We first notice that, since Cε is symmetric, we have DyyyC

ε(xxx,yyy) = DxxxC
ε(yyy,xxx)



912 E. Porcu et al.

and thus Assumptions H1 and H2 hold as well for DyyyC
ε(xxx,yyy), and also entail

that κ(xxx) = Cε(xxx,xxx) is a constant function.

1. In concert with Proposition 2, H3 implies that Cε is positively homogeneous
of order 0 with respect to xxx and yyy. Thus it is entirely defined by its values on
S
d−1.

2. The function α(yyy), given by Equation (3.10) is well defined in virtue of
assumption H3, and thus it is positively homogeneous of order 0. Indeed, since
Cε is homogeneous of order 0, its differentials DxxxC

ε and DyyyC
ε are positively

homogeneous of order 1. Thus, the integral α(·) in Equation (3.10) is positively
homogeneous of order 0. This also means that Φ is positively homogeneous of
order 1.

Next, using orthogonal transformations, one may assume under H2 that
DxxxC

ε(eee1, yyy) �= 0. Therefore, DxxxC
ε(eee1, yyy)Λ �= 0, and DxxxC

ε(eee1, yyy)Λ•,1 = 0. Thus,

|DxxxC
ε(eee1, yyy)Γ|2 =

∑
j≥2

(
DxxxC

ε(eee1, yyy)Λ•,j
)2
, that is |Φ(yyy)|2 = |yyy|2

(
cos2(α(yyy))+

sin2(α(yyy))
)
= |yyy|2. This means that the transformation Φ preserves norms.

Next, according to Proposition 1, Equation (4.1) can be written as

DxxxC
ε(xxx,yyy) = R′(βΦ(xxx,yyy)

)
DxxxβΦ(xxx,yyy).

Since a similar result holds for DyyyC
ε(xxx,yyy), setting www = (xxx,yyy) ∈ S

d−1 × S
d−1,

one can summarize these latter equations into

DwwwC
ε(www) = R′(βΦ(www)

)
DwwwβΦ(www). (4.2)

3. For a small ε, there exists, for any couple www = (xxx,yyy) of Sd−1, at least an unit
vector zzz ∈ S

d−1 such that, the segment γwww(t) = (1 − t)www0 + twww ∈ Dε × Dε for
all t ∈ [0, 1], where www0 = (zzz,zzz). One can take for example zzz = (xxx+ yyy)/|xxx+ yyy| if
yyy �= −xxx, and zzz being any unit vector orthogonal to xxx otherwise.

Next, let us observe that the functions c(t) = Cε(γwww(t)) and p(t) =
R
(
βΦ

(
γwww(t))

)
satisfy

c′(t) = DwwwC
ε(γwww(t))γ

′
www(t) and p′(t) = R′(βΦ(γwww(t))DwwwβΦ(γwww(t))γ

′
www(t).

Then, using Equation (4.2), we obtain

Cε(www)− Cε(www0) =

∫ 1

0

c′(s)ds =

∫ 1

0

R′(βΦ(γwww(s))
)
DwwwβΦ(γwww(s))γ

′
www(s)ds

=

∫ 1

0

p′(s)ds = p(1)− p(0) = R
(
βΦ(www)

)
−R

(
βΦ(www0)

)
,

that is Cε(xxx,yyy) = R
(
βΦ(xxx,yyy)

)
+
[
Cε(zzz,zzz) − R

(
βΦ(zzz,zzz))

]
= R

(
βΦ(xxx,yyy)

)
+ κ,

since Cε(zzz,zzz) is constant and βΦ(zzz,zzz) = 1.

Remark 6. The attentive reader might argue on whether the assumptions in
Theorem 3 are sharp. For example, the covariance function C(xxx,yyy) ≡ 1 can be
reduced to isotropy with any diffeomorphism Φ although H2 is not satisfied.
One can also notice that Assumption H4 (related to R) is subordinate to H3
(related to Φ) and thus can be partially redundant. This can be seen through
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Equation (4.2): if R′ vanishes on a whole segment of [−1, 1], then DwwwC
ε vanishes

as well and Φ can not be well defined at all by Equations (3.9)–(3.10). Our set of
assumptions is however not far from the optimal ones ensuring the reducibility
of C for smooth and regular covariance functions as it can be seen through the
results of Theorem 2.

Further, since the differentials are local indicators, one can rely on local Sd−1

diffeomorphisms and thus weaken this set of assumptions.

Last but not least, this work does not deapen into differentiability of co-
variance functions on spheres, for which detailed results can be found in Ziegel
(2014) and Trübner and Ziegel (2017).

References

Berg, C. and Porcu, E. (2017). From Schoenberg coefficients to Schoenberg
functions. Constructive Approximation, 45(2):217–241. MR3619442

Castruccio, S. and Guinness, J. (2017). An evolutionary spectrum approach to
incorporate large-scale geographical descriptors on global processes. Journal
of the Royal Statistical Society: Series C (Applied Statistics), 66(2):329–344.
MR3611690

Cressie, N., Shi, T., and Kang, E. L. (2010). Fixed rank filtering for spatio-
temporal data. Journal of Computational and Graphical Statistics, 19(3):724–
745. MR2732500

Gantmacher, F. R. (1960). Theory of Matrices. 2V. Chelsea publishing company.
MR0107649

Genton, M. G. and Perrin, O. (2004). On a time deformation reducing nonsta-
tionary stochastic processes to local stationarity. Journal of Applied Proba-
bility, 41(1):236–249. MR2036285

Gneiting, T. (2013). Strictly and non-strictly positive definite functions on
spheres. Bernoulli, 19(4):1327–1349. MR3102554

Guella, J. and Menegatto, V. (2016). Strictly positive definite kernels on
a product of spheres. Journal of Mathematical Analysis and Applications,
435(1):286–301. MR3423396

Jeong, J., Jun, M., and Genton, M. G. (2017). Spherical process models for
global spatial statistics. Statist. Science, 32(4):501–513. MR3730519

Kang, E. L., Cressie, N., and Shi, T. (2010). Using temporal variability to im-
prove spatial mapping with application to satellite data. Canadian Journal
of Statistics, 38(2):271–289. MR2682762

Menegatto, V. A. (1994). Strictly positive definite kernels on the Hilbert sphere.
Applicable Analysis, 55(1–2):91–101. MR1379646

Nguyen, H., Katzfuss, M., Cressie, N., and Braverman, A. (2014). Spatio-
temporal data fusion for very large remote sensing datasets. Technometrics,
56(2):174–185. MR3207845

Perrin, O. and Senoussi, R. (1999). Reducing non-stationary stochastic pro-
cesses to stationarity by a time deformation. Statistics & Probability Letters,
43(4):393–397. MR1707949

http://www.ams.org/mathscinet-getitem?mr=3619442
http://www.ams.org/mathscinet-getitem?mr=3611690
http://www.ams.org/mathscinet-getitem?mr=2732500
http://www.ams.org/mathscinet-getitem?mr=0107649
http://www.ams.org/mathscinet-getitem?mr=2036285
http://www.ams.org/mathscinet-getitem?mr=3102554
http://www.ams.org/mathscinet-getitem?mr=3423396
http://www.ams.org/mathscinet-getitem?mr=3730519
http://www.ams.org/mathscinet-getitem?mr=2682762
http://www.ams.org/mathscinet-getitem?mr=1379646
http://www.ams.org/mathscinet-getitem?mr=3207845
http://www.ams.org/mathscinet-getitem?mr=1707949


914 E. Porcu et al.

Perrin, O. and Senoussi, R. (2000). Reducing non-stationary random fields to
stationarity and isotropy using a space deformation. Statistics & probability
letters, 48(1):23–32. MR1767607

Pinkus, A. (2004). Strictly hermitian positive definite functions. Journal
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Appendix A: Characterization of orthogonal matrices

Since uniqueness of the diffeomorphism is only defined up to orthogonal trans-
formations, we give here for sake of completeness, some existing results regard-
ing their characterization and parametrization issues. A full characterization of
orthogonal transformations can be provided only within complex spaces, and
for that purpose, let us recall that the adjoint of a complex matrix A is the

conjugate transpose A∗ = A
�
.

A complex (or real) valued matrix A is called unitary if A∗ = A−1. Ap-
parently, real-valued orthogonal matrices are unitary. Thus, the concept of real
orthogonal matrices extends naturally to a complex unitary matrix A via the
property (Axxx)∗Ayyy = xxx∗A∗Ayyy = xxx∗yyy for any xxx,yyy ∈ C

d.

We similarly need the extension of the notion of antisymmetry. A matrix B
is called antihermitian if B∗ = −B. Rephrased, an antihermitian matrix B has
the form:

B =

⎡⎢⎢⎢⎢⎣
b1,1 b1,2 . . . b1,d

−b1,2
. . .

...
... bd−1,d

−b1,d . . . −bd−1,d bd,d

⎤⎥⎥⎥⎥⎦ .
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Note that the diagonal coefficients bj,j , j = 1, . . . , d are therefore vanishing or
pure imaginary numbers. Finally, let us recall that the exponential matrix A of
any matrix B is defined through the series:

A = eB =

∞∑
k=0

Bk

k!
.

A useful fact is that B antisymmetric implies eB orthogonal. This is due to

the fact that B� = −B, so that A−1 = e−B = eB
�
= (eB)� = A. However, the

converse proposition is only true in the complex context. The following result
will turn to be the useful one for parametrization purpose.

Lemma 2. A complex valued matrix A is unitary if and only if there exists an
antihermitian matrix B such that A = eB.

Proof. The proof of the if part is analogous to the real case. Le B be antihermi-
tian. If A = eB , then A∗ = eB

∗
= e−B = A−1. To show the necessary part of the

assertion, notice that any unitary matrix A is invertible and diogonalizable, so
that A = UΛU∗, with U unitary and Λ = diag(λj) with λjλj = 1, j = 1, . . . , d
(Gantmacher, 1960). The last equalities imply that Λ is also unitary. Invert-
ibility implies that there exists possibly many matrices B such A = eB . Thus,
we only need prove that we can always choose a matrix B that is antihermi-
tian. Among solutions B of equation A = eB , we can choose B = U log(Λ)U∗,
where log(Λ) = diag(log(λj)). Now, we notice that (log(Λ))∗ = − log(Λ) because
λjλj = 1, for all j. Consequently, B∗ = −U log(Λ)U∗ = −B.

Remark 7. Lemma 2 describes how the set of d × d unitary matrices is in
bijection with (ıR)d × Cd(d−1)/2. Thus, d + 2d(d − 1)/2 = d2 real parameters
are needed to uniquely define a unitary matrix. However, for A = eB to be real
valued when B is antihermitian (complex valued in general), the components
bij of B are necessarily real or complex conjugates Gantmacher (1960) so that
a real orthogonal matrix A can be identified by d(d− 1)/2 parameters at most.

Remark 8. The group of orthogonal transformations includes the classical
set of space rotations, but also other useful transformations, such the space
reflexions.

Appendix B: Positively homogeneous transformations leaving
spheres invariant

A part of the lemma below was used to establish the results obtained in this
paper. The other part, of potential interest, is given for sake of completeness as
we think that parallel approaches can be taken as well to shed new light on the
issue.

Lemma 3. Let α ≥ 0, and let Φ : D ⊂ R
d → R

d be any differentiable and
positively homogeneous of order α. Then, for xxx ∈ D,
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1.- |Φ(xxx/|xxx|)| = 1 if and only if J�
Φ (xxx)Φ(xxx) = αxxx/|xxx|2(1−α);

2.- In particular, if ΦA is of order 0 and ΦB of order 1, then

2.1.- J�
ΦA

(xxx)ΦA(xxx) = 0 and J�
ΦB

(xxx)ΦB(xxx) = xxx;

2.2.- If ΦA ≡ ΦB on Sd−1, then for xxx �= 0,

JΦB
(xxx) = |xxx|JΦA

(xxx) + 1
|xxx|ΦA(xxx)xxx

� and JΦA
(xxx) = 1

|xxx|

(
JΦB

(xxx) +

1
|xxx|2ΦB(xxx)xxx

�
)
.

Proof. Let xxx ∈ Dε. Let Φ be a positively homogeneous function of order α.
Thus, we have

|Φ(xxx)| =
∣∣∣∣∣Φ
(
|xxx| · xxx

|xxx|

) ∣∣∣∣∣ = |xxx|α
∣∣∣∣∣Φ
(

xxx

|xxx|

) ∣∣∣∣∣.
To prove Assertion 1., we call ρ(xxx) =

∑d
i=1 φ

2
i (xxx)− (

∑d
i=1 x

2
i )

α and we note

that ∂xjρ(xxx) =
∑d

i=1

(
2∂xjφi(xxx)φi(xxx)

)
−2αxj(

∑d
i=1 x

2
i )

α−1. This in turn implies
that, if |Φ(xxx/|xxx|)| = 1, then |Φ(xxx)| = |xxx|α. Thus, ρ(xxx) = 0. Consequently,
∂xjρ(xxx) = 0, j = 1, . . . , d, and J�

Φ (xxx)Φ(xxx) = xxx. The sufficient part of the
assertion is proved. To prove the necessary part, let r ≥ 0 and define, for uuu =
(r, θ1, . . . , θd−1), the usual spherical coordinates xxx = xxx(uuu), so that |xxx(uuu)| = r;
we have x1(uuu) = r cos(θ1), . . . , xd−1(uuu) = r sin(θ1) sin(θ2) · · · sin(θd−1). Then,

consider the function ρ̃(uuu) =
∑d

i=1 φ
2
i (xxx(uuu)). The partial derivatives with respect

to θj , j = 1, . . . , d− 1, yield

∂θj ρ̃(uuu) = 2

d∑
l=1

(
d∑

i=1

∂xl
φi(xxx(uuu))φi(xxx(uuu))

)
∂θjxl(uuu),

which can be rewritten as
d∑

i=1

∂xl
φi(xxx(uuu))φi(xxx(uuu)) = αxl(uuu)r

2(α−1),

since ∂θj ρ̃(uuu) =
∑d

l=1 2∂θjxl(uuu)αxl(uuu)r
2(α−1). Thus, we also have that

∂θj

(
d∑

l=1

x2
l (uuu)

)
αr2(α−1) = ∂θj (r

2)αr2(α−1) = 0,

because r and θj are independent variables. Consequently, ρ̃ is independent of
each θj . Thus, we can use to abuse of notation ρ̃(uuu) = ρ̃(r). Next, a similar
calculus shows that ∂rρ̃(uuu) = ∂r(r

2)αr2(α−1) = ∂r(r
2α) and this proves that

|Φ(xxx)| = |xxx|α.
Assertion 2.1. can be easily proved on the basis of previous arguments.
As for Assertion 2.2., it is equivalent to prove that ΦB(xxx) = |xxx|ΦA(xxx). By

noticing that Dxxx(|xxx|) = xxx/|xxx|, we get

∂xjφB,i(xxx) =
xj

|xxx|φA,i(xxx) + |xxx|∂xjφA,i(xxx).

The proof is complete.
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