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Abstract: Bandwidth selection is crucial in the kernel estimation of den-
sity level sets. A risk based on the symmetric difference between the esti-
mated and true level sets is usually used to measure their proximity. In this
paper we provide an asymptotic Lp approximation to this risk, where p is
characterized by the weight function in the risk. In particular the excess
risk corresponds to an L2 type of risk, and is adopted to derive an optimal
bandwidth for nonparametric level set estimation of d-dimensional density
functions (d ≥ 1). A direct plug-in bandwidth selector is developed for
kernel density level set estimation and its efficacy is verified in numerical
studies.
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1. Introduction

For a density function f on R
d, d ≥ 1, its (upper) level set at a given level c is

defined as

Lc = {x ∈ R
d : f(x) ≥ c}.

With a given random sample from f , it is often of interest to estimate Lc.
Density level set estimation has been useful in many areas, such as clustering
(Rinaldo and Wasserman, 2010), classification (Steinwart et al., 2005), tests for
multimodality (Müller and Sawitzki, 1991), and topological data analysis (Fasy
et al., 2014). A plug-in estimator of Lc using kernel density estimation is given by

L̂c = {x ∈ R
d : f̂(x) ≥ c},

where f̂(x) is the kernel estimator of f(x) (see (2.1)). It is well-known that
the choice of bandwidth plays a crucial role in the performance of kernel-type

∗Partially supported by NSF grants DMS 1821154 and FET 1900061, and a Jeffress Memo-
rial Trust Award.

302

http://projecteuclid.org/ejs
https://doi.org/10.1214/19-EJS1668
mailto:wqiao@gmu.edu


Optimal bandwidth for level sets 303

estimators. In this paper we derive an asymptotically optimal bandwidth for
L̂c. We take the level c as a fixed value and denote L = Lc and L̂ = L̂c for
simplicity.

The optimal bandwidth selection for f̂ has been studied extensively in the
literature, usually based on ISE, MISE, or MIAE (see Wand and Jones, 1995).

These criteria measure the proximity between f̂ and f over Rd. We emphasize
here that the target of our estimation L is a set rather than a density function;
this has a critical impact on the optimal bandwidth, since the quality of density
estimation should be prioritized regionally rather than over the entire domain.
Figure 1 is an illustration, which shows that the overall closeness of density func-
tions is not equivalent to the closeness of their level sets. Therefore, the criteria
used for optimal bandwidth should be tailored specifically for nonparametric
level set estimation.

Fig 1. Three density functions on R are shown on the graph: f (red curve), f1 (blue curve)
and f2 (green curve). The level sets with c = 0.2 (dotted line) of the three density functions
are considered. The thick horizontal lines underneath the density curves represent the level
sets. Overall, the density function f2 is closer than f1 to f . However, the level set of f1 is
closer to that of f .

A usual loss function used to measure the closeness between L and L̂ is
based on their symmetric difference. For any two sets A and B, let AΔB be
their symmetric difference, i.e., AΔB = (A∩B�)∪ (B ∩A�), where we use � to
denote the complement of a set. For any nonnegative integrable function g on
R

d and any Lebesgue measurable subset A of Rd, denote λg(A) =
∫
A
g(x)dx. In

the literature λg(L Δ L̂) has been well accepted as a measure of the proximity

between L and L̂, due to its natural geometric interpretation. Examples of g(x)

include f(x) and |f(x)− c|q for some q ≥ 0. The asymptotics of λg(L Δ L̂) has
been studied, e.g., in Báıllo et al. (2000), Báıllo (2003), Cadre (2006), Cuevas
et al. (2006), Biau et al. (2008), and Mason and Polonik (2009).
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We use the risk Eλg(L Δ L̂) to study the problem of optimal bandwidth for
density level set estimation for d ≥ 1. A critical step is to obtain the asymptotic
expression for this risk, which is one of the main results in this paper and is first
described below.

Let M = {x ∈ R
d : f(x) = c}, which is the boundary of L (i.e., M = ∂L)

under a mild assumption (e.g., see our assumption (F1) below). Let Vold−1 be
the natural (d − 1)-dimensional volume measure that M inherits as a subset
of R

d, and d(x,M) be the distance from any x ∈ R
d to M. Suppose g(x)

is approximately pth power of d(x,M) for x in a small neighborhood of M.
Then under regularity conditions the following approximation holds asymptot-
ically:

Eλg(L Δ L̂) = E

∫
M

|f̂(x)− f(x)|p+1wg(x)dVold−1(x){1 + o(1)}, (1.1)

where wg is a positive function on M. Here we approximate a risk describing
horizontal variations with the one constructed with vertical variations. A rigor-
ous statement with appropriate assumptions for (1.1) is given in Theorem 3.1

below. Using the above expression we can interpret Eλg(L Δ L̂) asymptotically
as a weighted Lp+1 risk for density estimation, in the form of an integration
over the boundary of L with respect to the (d−1)-dimensional volume measure.
When g ≡ 1, λg is the Lebesgue measure. In this case, p = 0 and the above ap-
proximation corresponds to the L1 risk called Mean Integrated Absolute Error
(MIAE), which has been used as a measure of proximity for optimal bandwidth
selection for kernel density estimation (See Devroye and Györfi (1985), Devroye
(1987), Hall and Wand (1988), Holmström and Klemelä (1992), and Devroye
and Lugosi (2001)). Alternatively, Mean Integrated Squared Error (MISE) is
more tractable than MIAE. This motivates us to use the choice of g with p = 1
for optimal bandwidth, specifically g(x) = |f(x)− c|. In this case, Eλg(L Δ L̂)
corresponds to the excess risk (or regret) in the classification literature. In fact
the excess risk has been used to find the optimal tuning parameter for non-
parametric classifier, where the excess risk can be asymptotically decomposed
into a squared bias term and a variance term (Hall and Kang 2005, Hall et al.
2008, Samworth 2012, Cannings et al. 2017). The results in this paper provide
a way of understanding the excess risk as an L2 risk, in a more general setting.
In addition to the asymptotic approximation for the risk Eλg(L Δ L̂), we also
show the asymptotic approximation for the error

λg(L Δ L̂) =
∫
M

|f̂(x)− f(x)|p+1wg(x)dVold−1(x){1 + op(1)}, (1.2)

under some extra assumptions on the convergence rate of the bandwidth.
Some of the important work on level set estimation includes Hartigan (1987),

Polonik (1995), Tsybakov (1997), Walther (1997), Cadre (2006), Rigollet and
Vert (2009), among many others. Also see Mason and Polonik (2009) for a com-
prehensive review of the literature for level set estimation. Confidence regions
for level sets have recently been studied in Mammen and Polonik (2013), Som-
merfeld et al. (2015), Chen et al. (2017), and Qiao and Polonik (2019). In Jang
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(2006), plug-in level set estimation is applied to two-dimensional astronomi-
cal sky survey data, where the selection of bandwidth is based on the classical
plug-in and cross validation approaches for density estimation.

When the level c is not explicitly given but determined by a probability value
τ ∈ (0, 1) through c = inf{y ∈ (0,∞) :

∫
f(x)≥y

f(x)dx ≤ 1− τ}, we denote c =

c(τ) and Lc(τ) is called the 100(1− τ)% highest density region (HDR) of f (see

Hyndman, 1996). The corresponding plug-in estimator is L̂ĉ(τ), where ĉ(τ) =

inf{y ∈ (0,∞) :
∫
f̂(x)≥y

f̂(x)dx ≤ 1 − τ}. In the case of f being a univariate

density (i.e., d = 1), the bandwidth selection problem for estimating HDR was

studied in Samworth and Wand (2010). They chose Eλg(Lc(τ) Δ L̂ĉ(τ)) with
g = f as the risk function to minimize for bandwidth selection. The extension
of their approach to the multivariate case is far from trivial and has been recently
studied in Doss and Weng (2018).

The work in Doss and Weng (2018) also considers the bandwidth selection
problem of the estimation of density level sets. The comparison of their work
with an earlier arXiv version of the present paper (see Qiao, 2018) has been
discussed in Doss and Weng (2018). In particular, the risk criterion they use for

bandwidth selection for level set estimation is Eλg(L Δ L̂) with g = f , which
is an L1 type of risk as a special case of (1.1). See Remark 3.4 for Corollary 3.1
as well as the Discussion section for more detailed comparisons.

The rest of the paper is organized as follows. We first introduce some no-
tation and geometric concepts in Section 2. In Section 3, after discussing the
assumptions that we will use, we derive some asymptotic results for the Lp type
of risks introduced above and an optimal bandwidth for density level set esti-
mation. Specifically, Theorems 3.1 and 3.2 formulate the ideas given in (1.2)
and (1.1), respectively. Corollary 3.1 gives an exact asymptotic expression for

Eλg(L Δ L̂) when p = 0. The excess risk as an asymptotic L2 type of risk,
is used to find the optimal bandwidth with the result given in Theorem 3.3.
Simulation results are presented in Section 4, where we show the efficacy of our
bandwidth selector in finite samples. We leave all the proofs to Section 5, while
some miscellaneous results are put in the appendix.

2. Notation and some geometric concepts

Let X1, · · · , Xn be i.i.d. from the d-dimensional density function f . Denote the
bandwidth vector h = (h1, h2, · · · , hd)

T and h−1 = (h−1
1 , h−1

2 , · · · , h−1
d )T . We

consider a kernel density estimator

f̂(x) =
1

nΠd
j=1hj

n∑
i=1

K
(
h−1 	 (x−Xi)

)
, (2.1)

where K is a kernel function on R
d and 	 is used to denote the Hadamard

or element-wise product between two vectors of the same size. Here we assign
a bandwidth value for each of the variables in the density estimation. This
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corresponds to a diagonal bandwidth matrix, which is a compromise between
flexibility (by using a full bandwidth matrix) and simplicity (by using only
a scalar bandwidth). See Wand and Jones (1994) for more discussion on the
impact of the form of bandwidth matrix on multivariate density estimation. We
use a product kernel for K, i.e., we can write

K
(
h−1 	 (x−Xi)

)
=

d∏
j=1

K̃

(
xj −Xij

hj

)
,

where K̃ is a univariate kernel function, Xi = (Xi1, · · · , Xid)
T , for i = 1, · · · , n,

and x = (x1, · · · , xd)
T . The order of a kernel is determined by its first nonzero

moment. We call K a νth (ν ≥ 2) order kernel if
∫
R
|uνK̃(u)|du < ∞ and

∫
R

ulK̃(u)du =

⎧⎪⎨⎪⎩
1, if l = 0,

0, if l = 1, · · · , ν − 1,

κν 
= 0, if l = ν.

It is obvious that ν is always even if K̃ is symmetric. When d = 1, we also
denote h = h and write f̂(x) = 1

nh

∑n
i=1 K(h−1(x−Xi)).

Notation: Let Hd−1 be the (d−1)-dimensional normalized Hausdorff measure
on R

d (cf. Evans and Gariepy, 1992). It agrees with the (d − 1)-dimensional
volume measure Vold−1 on nice sets. For d = 1, H0 is the cardinality of a set,
such that for A = {a1, · · · , am} ⊂ R and a function g : R �→ R,

∫
A
g(x)dH0(x) =∑m

i=1 g(ai). For simplicity, we usually omit the subscript d−1 of Hd−1 and write
H = Hd−1 if the value of d is clear in the context. Let λ be the d-dimensional
Lebesgue measure (d ≥ 1). Recall that λ and Hd are equal on R

d. Let I be the
indicator function.

For a positive integer p, let Zp
+ be the set of all the p-dimensional vectors of

positive integers. For any i = (i1, · · · , ip)T ∈ Z
p
+, let max(i) = max(i1, · · · , ip).

Denote Z
p,d
+ = {i ∈ Z

p
+,max(i) ≤ d}. For any function g : Rd �→ R with pth

(partial) derivatives (p ≥ 1), and for i ∈ Z
p,d
+ , denote g(i)(x) = g(i1,··· ,ip)(x) =

∂p

∂xi1 ···∂xip
g(x) with the convention g(i)(x) = g(x) for i ∈ Z

0
+. For example,

g(k,l)(x) = ∂2

∂xk∂xl
g(x) for 1 ≤ k, l ≤ d. If i1 = · · · = ip = i for 1 ≤ i ≤ d,

we denote g(i∗p)(x) = g(i1,··· ,ip)(x). For x ∈ R
d and i ∈ Z

p,d
+ , denote x(i) =

xi1 × · · · × xip . For d ≥ 2, we denote the gradient and Hessian matrix of g
by ∇g and ∇2g, respectively. With slight abuse of notation, we also use ∇g
to denote the first derivative g′ when d = 1. For any Borel set A ⊂ R, let
g−1(A) = {x ∈ R

d : g(x) ∈ A}. Let ‖g‖q = (
∫
Rd |g(x)|qdx)1/q for q > 0

and ‖g‖∞ = supx∈Rd |g(x)|. For sequences an, bn ∈ R, we denote an � bn
if 0 < lim infn→∞ |an/bn| ≤ lim supn→∞ |an/bn| < ∞. For a sequence an =
(a1,n, · · · , ad,n)T ∈ R

d, d ≥ 2, denote an � bn if ai,n � bn, i = 1, · · · , d.
Next we introduce some geometric concepts. For any set A ⊂ R

d and ε > 0,
we denote the ε-enlargement of A by A⊕ ε =

⋃
x∈A Bx(ε), where Bx(ε) = {y ∈
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R
d : ‖x− y‖ ≤ ε}. For any two sets A,B ⊂ R

d, let dH(A,B) be the Hausdorff
distance between A and B, i.e.,

dH(A,B) = max

{
sup
x∈B

d(x,A), sup
x∈A

d(x,B)

}
,

where d(x,A) = infy∈A ‖x − y‖. Let πA(x) be the set of the closest points in
A to x, i.e. πA(x) = {y ∈ A : ‖x − y‖ = d(x,A)}, which is called the normal
projection of x onto A.

Let A and B be two (d− 1)-dimensional smooth submanifolds embedded in
R

d (d ≥ 2). Then the normal projections πA : B �→ A and πB : A �→ B define
two maps between A and B. The two manifolds A and B are called normal
compatible if the projections πA and πB are homeomorphisms. See Chazal et al.
(2007) and Figure 2 for a graphical illustration.

We will also use the concept of reach of a manifold. For a p-dimensional
manifold S embedded in R

d (p < d), the reach of S, denoted by ρ(S), is the
largest δ such that the normal projection from every point in S ⊕ δ onto S
is unique. See Federer (1959). A positive reach corresponds to the notion of
bounded curvature of a manifold. See Niyogi et al. (2008) and Genovese et al.
(2012).

Fig 2. Two normal compatible curves S and S′. (a) represents the normal projection from
S′ to S. (b) represents the normal projection from S to S′.

3. Main results

3.1. Assumptions and their discussion

We introduce the assumptions that will be used in this paper. Let R
d
+ be the

set of vectors in R
d with positive coordinates. With the requirement of C2

smoothness of the kernel function K, define the class of functions

K =
{
K(i)(h

−1 	 (x− ·)) : h ∈ R
d
+, x ∈ R

d, i ∈ Z
p
+, p ∈ {0, 1, 2},max(i) ≤ d

}
.

Let B be the Borel σ-algebra on R
d. For any probability measure Q on (Rd,B)

and ε > 0, let N(K, L2(Q), ε) be the ε-covering number for K using the L2 norm
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with respect to Q, i.e., the minimal number of balls {g :
∫
Rd |g − g̃|2dQ ≤ ε}

needed to cover K. Denote the envelope function F (x) = supg∈K |g(x)|. For
δ > 0, denote I(δ) = f−1([c−δ/2, c+δ/2]). For any x ∈ R

d such that ∇f(x) 
= 0
and s ∈ R, denote

ζx(s) = x+
∇f(x)

‖∇f(x)‖s.

Note that ζx(s) = x + sign(f ′(x)) × s when d = 1. For 1 ≤ p ≤ ∞, denote the
Lp space of Lebesgue measurable functions on R

d by Lp.

Assumptions:
(F1) f is a ν times continuously differentiable pdf for some ν ≥ 2. The

density function and all of its first to ν-th derivatives are bounded on R
d. We

also assume C� < c < Cu, where C� = infx∈Rd f(x) and Cu = supx∈Rd f(x), and
that there exist δ0 > 0 and ε0 > 0 such that ‖∇f(x)‖ > ε0 for all x ∈ I(2δ0).

(G1) g is a non-negative continuous function on R
d and there exist p ≥ 0

and a bounded positive function g(p)(x) on M such that as s → 0,

sup
x∈M

∣∣∣∣g(ζx(s))|s|p − g(p)(x)

∣∣∣∣ = o(1).

(K1) K is a symmetric product kernel function of νth order for some ν ≥ 2.
Also K ∈ L1 ∩ L∞.

(K2) K is two times continuously differentiable. We require that ‖F‖∞ < ∞
and for some C0 > 0 and η > 0,

sup
Q

N(K, L2(Q), ε‖F‖∞) ≤ C0ε
−η,

for 0 < ε < 1, where the supremum is taken over all the probability measures Q
on (Rd,B).

Remark 3.1.

a) In assumption (F1), the global smoothness requirement for f can be weak-
ened to only hold regionally on I(2δ0), if we choose to use a kernel func-
tion K with bounded support. Conditions similar to ‖∇f(x)‖ > ε0 for
x ∈ I(2δ0) in assumption (F1) have appeared in Cadre (2006), Cuevas
et al. (2006), Mammen and Polonik (2013), among others. It excludes the
possibility of “flat parts” around the level set. In particular, it implies that
M = ∂L, which is a compact (d − 1)-dimensional C1 submanifold in R

d

(see Theorem 2 in Walther (1997)). In the case d = 1, M is a collection
of separated points, i.e., there exist x1, · · · , xN for some positive integer
N such that M = {xi : i = 1, 2, · · · , N}.

b) An assumption similar to (G1) has appeared in Mason and Polonik (2009).
Below we give the specific forms of g(p) for some usual functions g.

(i) If g is a continuous function with positive values on M, then p = 0
and g(p)(x) = g(x), x ∈ M. Examples include g(x) ≡ 1 and g(x) =
f(x).
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(ii) If g(x) = f(x)r|f(x)− c|q for some q > 0 and any r ≥ 0, then p = q
and g(q)(x) = cr‖∇f(x)‖q, x ∈ M. This is because for x ∈ M, as
s → 0,

g(ζx(s))

=[f(x+ s×∇f(x)/‖∇f(x)‖)]r × |f(x+ s×∇f(x)/‖∇f(x)‖)− c|q

=[c+ o(s)]r × |s‖∇f(x)‖+ o(s)|q

=cr|s|q‖∇f(x)‖q + o(|s|q).

c) For assumption (K1), it is known that using higher order kernels (i.e.
ν > 2), together with higher order smoothness assumptions can reduce
the bias in kernel density estimation. But higher order kernels are avoided
sometimes because it is possible that density estimators have negative
values (see, e.g., Silverman, 1986, page 69). However, this should be of
less concern for level set estimation, because the negative values of the
density estimate are not (directly) involved in our level set estimator for
c > 0.

d) Assumption (K2) is imposed to uniformly control the stochastic variation
of the kernel density estimator and their derivatives around the expecta-
tions. Similar assumptions have appeared in Giné and Guillou (2002), and
Einmahl and Mason (2005). Also see Chen et al. (2017). For sufficient con-
ditions for (K2) to hold, see e.g., Nolan and Pollard (1987). In particular,
the Gaussian kernel and many usual kernels with bounded support satisfy
assumption (K2).

3.2. Asymptotic expressions of Eλg(L Δ L̂) and λg(L Δ L̂)

For x ∈ M, let

tn(x) = argmin
t

{
|t| : ζx(t) ∈ M̂

}
.

For d ≥ 2, once we establish the normal compatibility between M̂ and M, the
inverse mapping of the normal projection πM will be well defined and is denoted
by Pn. Namely, for any x ∈ M, we have Pn(x) ∈ M̂ and Pn(x)−x is orthogonal

to the tangent space of M at x. We also write M̂ = Pn(M). Since ∇f(x) is a
normal vector of M at x, we can write

Pn(x) = ζx(tn(x)), (3.1)

for some unique tn(x) ∈ R. For d = 1, Pn is set to be equivalent to πM̂, i.e. it

maps points in M to their closest points in M̂.
Let {Ai : i = 1, 2, · · · , Nd} be a partition of M and ai be a point on Ai.

Since pointwisely tn is small when n is large, the following approximation is
heuristic when the partition is fine enough:

λ(L Δ L̂) ≈
Nd∑
i=1

|tn(ai)|H(Ai) ≈
∫
M

|tn(x)|dH(x).
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The more precise form of the above idea is given in the following theorem, where
we need the assumption on n and h as below.

(H1) The bandwidth (vector) h ∈ R
d
+ is dependent on n such that

(logn)−1nh1 · · ·hd‖h‖4 → ∞ and log(1/‖h‖)/(log logn) → ∞,

as n → ∞. When d ≥ 2, we assume hi � hj , for 1 ≤ i, j ≤ d.

Theorem 3.1. Under assumptions (K1), (K2), (F1), (G1) and (H1), we have

λg(L Δ L̂) = 1

p+ 1

∫
M

g(p)(x)

‖∇f(x)‖p+1
|f̂(x)− f(x)|p+1dH(x){1 + op(1)}. (3.2)

Remark 3.2.

a) This result is related to but different from Theorem 2.1 in Cadre (2006),

where assumptions are imposed to ensure that
√
nhdλg(L Δ L̂) → μg in

probability for some μg > 0 as n → ∞. In particular the bandwidth is
assumed to be small enough that the bias in the kernel density estimation
can be ignored. In contrast, our focus is on revealing the asymptotic ex-
pression of λg(L Δ L̂) for the purpose of finding the optimal bandwidth,
for which both the variance and bias in the kernel density estimation are
involved.

b) The assumption (log n)−1nh1 · · ·hd‖h‖4 → ∞ in this theorem is used to

guarantee the normal compatibility between M and M̂ for d ≥ 2, and can
in fact be relaxed and replaced with (log n)−1nh3 → ∞ for d = 1, which is
required for the uniform consistency of the kernel estimation for the first
derivative of the density. As indicated in Section 2, H0 is the cardinality
measure. For d = 1, with M = {xi : i = 1, 2, · · · , N} (see the discussion
after the assumptions), the result (3.2) becomes

λg(L Δ L̂) = 1

p+ 1

N∑
i=1

|f̂(xi)− f(xi)|p+1

|f ′(xi)|p+1
g(p)(xi){1 + op(1)}.

The required assumption of (logn)−1nh1 · · ·hd‖h‖4 → ∞ is critical in the

above theorem. However, if we only consider the expectation of λg(L Δ L̂), it
is in fact not needed. We modify (H1) into the following weaker assumption.

(H2) The bandwidth (vector) h ∈ R
d
+ is dependent on n such that

(log n)−1nh1 · · ·hd → ∞ and log(1/‖h‖)/(log logn) → ∞,

as n → ∞. When p ≥ 4 where p appears in assumption (G1), we further
assume that (logn)−(p−2)nh1 · · ·hd → ∞. When d ≥ 2, we assume hi �
hj , for 1 ≤ i, j ≤ d.

Let sn > 0 be such that

s2n =
1

nh1 · · ·hd
‖K‖22c, (3.3)
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and βh(x) =
1

ν!
κν

d∑
k=1

hν
kf(k∗ν)(x). (3.4)

Notice that βh(x) = O(‖h‖ν) if the boundedness of the ν-th derivatives of f is
assumed (see F1). It is known (see, e.g., Wand and Jones, 1995; also see (6.15)
and (6.16) in the proof) that under regularity conditions the bias for kernel
density estimator at x ∈ M is

Ef̂(x)− f(x) = βh(x) + o(‖h‖ν), (3.5)

and variance is

Var(f̂(x)) = s2n(1 + o(1)). (3.6)

We have the following theorem.

Theorem 3.2. Under assumptions (K1), (K2), (F1), (G1), (H2), we have

Eλg(L Δ L̂)

=
1

1 + p
E

∫
M

g(p)(x)

‖∇f(x)‖p+1
|sn Z + βh(x)|p+1

dH(x) + o(sp+1
n + ‖h‖ν(p+1)),

(3.7)

=
1

1 + p
E

∫
M

g(p)(x)

‖∇f(x)‖p+1
|f̂(x)− f(x)|p+1dH(x) + o(sp+1

n + ‖h‖ν(p+1)). (3.8)

where Z is a standard normal random variable.

Remark 3.3. Using the symmetry of Z’s distribution, we have

E |sn Z + βh(x)|p+1
= E |sn Z + |βh(x)||p+1 ≥ max[sp+1

n E(|Z|p+1), |βh(x)|p+1].

Also see (6.28) in the proof for a lower bound. So the first terms on the right-
hand sides of (3.7) and (3.8) are indeed leading terms, if |βh(x)|/‖h‖ν is not
zero for all x ∈ M.

Notice that g ≡ g(p) when p = 0 in assumption (G1). By observing the fact
for any a ∈ R,

E|Z − a| = |a|P(|Z| ≤ |a|) +
√

2

π
e−a2/2 = γ(|a|), (3.9)

where

γ(u) =

√
2

π

(
u

∫ u

0

e−t2/2dt+ e−u2/2

)
, u ≥ 0,

we have the following corollary which gives an exact asymptotic expression of
Eλg(L Δ L̂) when p = 0, the example including g ≡ 1 and g = f . The result is
comparable to Theorem 1 in Devroye and Györfi (1985, page 78), where they
considered the MIAE as the risk for kernel density estimation.
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Corollary 3.1. Suppose p = 0 in assumption (G1). Under assumptions (K1),
(K2), (F1), (G1), (H2), we have

Eλg(L Δ L̂) =
∫
M

snγ(|βh(x)|/sn)
‖∇f(x)‖ g(x)dH(x) + o

(
‖h‖ν +

1√
nh1 · · ·hd

)
.

(3.10)

Remark 3.4.

a) One can obtain asymptotic lower and upper bounds for the risk in (3.10),
following similar arguments as in the proof of Theorem 2 in Devroye and
Györfi (1985, page 79), or in Holmström and Klemelä (1992, page 257).
For example, for the upper bound, since γ(u) ≤ u+

√
2/π, u ≥ 0, we have

Eλg(L Δ L̂)

≤
[∫

M

|βh(x)| g(x)
‖∇f(x)‖ dH(x) +

√
2

π
sn

∫
M

g(x)

‖∇f(x)‖dH(x)

]
+ o(‖h‖ν + sn).

(3.11)

The minimization of the upper bound leads to an approximation to the
asymptotically optimal bandwidth, as the closed form of the minimizer for
the leading term in (3.10) is difficult to obtain. See Devroye and Györfi
(1985, page 107) for a similar suggestion. In the case h1 = · · · = hd = h,
the leading term in the above upper bound can be analytically mini-
mized with respect to h. Using a numerical method following the ideas
in Hall and Wand (1988), where minimizing the MIAE of kernel density
estimation is considered, it is also possible to find an asymptotic opti-
mal bandwidth selector tailored for the level set estimation by minimizing

E
∫
M

|f̂(x)−f(x)|
‖∇f(x)‖ dH(x).

b) If we specifically choose g = f and ν = 2, then the result in this corollary is
similar to Theorem 2.1 in Doss and Weng (2018), where they consider the
selection of a bandwidth matrix for level set estimation. In fact Theorem
2.1 in Doss and Weng (2018) can be understood as a special case of this
corollary, if their bandwidth matrix is restricted to be diagonal. In this
corollary we approximate Eλf (L Δ L̂) as an L1 type of risk, which is a
special case of a more general result in Theorem 3.2.

In addition to the case p = 0 covered in Corollary 3.1, another interest-
ing scenario is p = 1 in assumption (G1), which holds when g(x) = gr(x) :=
f(x)r|f(x) − c| for some r ≥ 0. Note that the choice of r only impacts up to a

constant in the asymptotic form of Eλg(L Δ L̂) in Theorem 3.2 when g = gr.

This is because g
(1)
r (x) = cr‖∇f(x)‖ (see the calculation in Remark 3.1 b)(ii)).

We call the quantity Eλgr(L Δ L̂) the “excess risk”, for r ≥ 0. This is
closely related to the concept of excess risk frequently used in the classification
literature (see, e.g. Samworth, 2012). Suppose we have a random pair (X,Y ) ∈
R

d × {0, 1}, where Y is the class label of X. Then the Bayes optimal classifier
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is ψ(x) := I(η(x) ≥ 1
2 ), where η(x) = E(Y |X = x). The misclassification risk is

R(ψ) := P(ψ(X) 
= Y ). Given an i.i.d. sample X with the same distribution as
(X,Y ), suppose one can find an estimator η̂(x) for η(x) and build an empirical

classifier ψ̂(x) := I(η̂(x) ≥ 1
2 ). Then the misclassification risk for ψ̂ is ER(ψ̂) =

P(ψ̂(X) 
= Y ). The difference ER(ψ̂) − R(ψ) is called the excess risk in this
binary classification problem and it is well-known that one can write

ER(ψ̂)−R(ψ) =
1

2
E

∫
Sη̂ΔSη

∣∣∣∣η(x)− 1

2

∣∣∣∣ dx, (3.12)

where Sη = {x ∈ R
d : η(x) ≥ 1

2} and Sη̂ = {x ∈ R
d : η̂(x) ≥ 1

2} are level sets
of η and η̂ at the level 1

2 , respectively. Note that the above expression has the

same form as Eλg0(L Δ L̂).

3.3. Optimal bandwidth using excess risk

We use the excess risk defined above to find the asymptotic optimal bandwidth
for density level set estimation, motivated by the connection to the classification
literature. In fact, the excess risk is also studied in the literature of density level
set estimation (see, e.g. Rinaldo and Wasserman, 2010). For any measurable
set A ⊂ R

d, the excess mass functional is defined as E(A) = P(A) − cλ(A). It
is known that E(A) is maximized when A = L. Then it is easy to show that

E(L)−E[E(L̂)] = Eλg0(L Δ L̂). In other words, minimizing the risk Eλg0(L Δ L̂)
is equivalent to maximizing E[E(L̂)]. The excess risk Eλg0(L Δ L̂) is “cost-
sensitive” (Scott and Davenport, 2006) in the sense that the weight function

g0(x) = |f(x) − c| penalizes more heavily at a point x ∈ L Δ L̂, if its density
value deviates more from the level c.

One can also understand the excess risk for density level set estimation from
a binary classification perspective. Given a random vector X ∼ f , which is
independent of X1, · · · , Xn, suppose that we would like to find a set A, such
that we claim f(X) ≥ c when X ∈ A and f(X) < c when X ∈ A�, where A� is
the complement of A. Define the loss function

eA(x) = [c− f(x)][I(x ∈ A)− I(x ∈ A�)], x ∈ R
d. (3.13)

Notice that this loss function is related to the excess mass functional through∫
Rd eA(x)dx = E(A�) − E(A). Also it is clear that A = L minimizes the risk
function R(A) := E[eA(X)]. Note that

ER(L̂)−R(L) = 2Eλg1(L Δ L̂),
which has a form similar to (3.12). The weight function on the right-hand side

of the above equation is g1, but as indicated below Remark 3.4, Eλgr(L Δ L̂)
has the same asymptotic form for all r ≥ 0 up to a constant. The risk ER(L̂)
has an “empirical” form

R̂n(L̂) =
1

n

n∑
i=1

eL̂(Xi), (3.14)
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which can be used to evaluate the performance of a density level set estimator.
Note that eL̂(Xi) still depends on the unknown f , unlike its counterparts for
classification or regression level set (see Willett and Nowak, 2007). Nonetheless,
we still use this “empirical” risk function as one of performance metrics in our
simulation study, because the density functions are known there.

Our optimal bandwidth for level set estimation is based on the excess risk
Eλgr(L Δ L̂) for a r ≥ 0, which is shown to resemble MISE for kernel density

estimation in Theorem 3.2, where we take p = 1 and g
(p)
r (x) = cr‖∇f(x)‖ (see

Remark 3.1 b)(ii)). The following proposition provides another way of under-
standing this notion.

Proposition 3.1. When g(x) = f(x)r|f(x)− c| for some r ≥ 0, under assump-
tions (K1), (K2), (F1), (H2), as δ ↘ 0 we have

2δc−r
Eλg(L Δ L̂)

E
∫
I(δ) |f̂(x)− f(x)|2dx

→ 1. (3.15)

Following this result we can interpret the excess risk as a limit of the MISE
for kernel density estimation constrained in a neighborhood of M. As discussed
in the remark after Corollary 3.1, the risk Eλg(L Δ L̂) with g ≡ 1 or g = f is
analogous to MIAE used for kernel density estimation. In comparison with this
L1 type of risk, using the excess risk (which is L2 type) for bandwidth selection
in level set estimation enjoys some mathematical simplicity, similar to MISE for
kernel density estimation (see page 16, Wand and Jones, 1995).

In what follows we denote

m(h) = E

∫
M

|f̂(x)− f(x)|2
‖∇f(x)‖ dH(x), (3.16)

and m̃(h) = s2n

∫
M

1

‖∇f(x)‖dH(x) +

∫
M

βh(x)
2

‖∇f(x)‖dH(x). (3.17)

The assumptions in Theorem 3.2 guarantee that when g(x) = f(x)r|f(x)− c|
for some r ≥ 0,

Eλg(L Δ L̂) = 1

2
crm(h) + o(‖h‖2ν + s2n) =

1

2
crm̃(h) + o(‖h‖2ν + s2n).

Therefore the excess risk can be asymptotically minimized by minimizing m̃(h).
Note that

m̃(h) =
1

(ν!)2
κ2
ν

d∑
k=1

d∑
l=1

hν
kh

ν
l

∫
M

f(k∗ν)(x)f(l∗ν)(x)

‖∇f(x)‖ dH(x)

+
1

nΠd
j=1hj

‖K‖22
∫
M

c

‖∇f(x)‖dH(x)

=
1

(ν!)2
κ2
ν(h

ν)TA(f)hν +
cb(f)‖K‖22

n

1

(hν
1h

ν
2 · · ·hν

d)
1/ν

, (3.18)
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where we denote hν = (hν
1 , h

ν
2 , · · · , hν

d)
T , b(f) =

∫
M ‖∇f(x)‖−1dH(x) and

A(f) = [akl]1≤k,l≤d with akl =

∫
M

f(k∗ν)(x)f(l∗ν)(x)

‖∇f(x)‖ dH(x).

For u = (u1, u2, · · · , ud)
T , define the function

Q(u;M, a, ν) =
1

(ν!)2
uTMu+

a

(u1u2 · · ·ud)1/ν
. (3.19)

Then from (3.18) we can write

m̃(h) = Q

(
hν ;κ2

νA(f),
cb(f)‖K‖22

n
, ν

)
. (3.20)

To ensure the uniqueness of the minimizer of m̃(h), we impose the following
assumption.

(F2) For d = 1, we require A(f) > 0; for d ≥ 2, we require that A(f)
is positive semi-definite and infu∈R̄

d
+,‖u‖�=0 u

TA(f)u/‖u‖2 > 0, where R̄
d
+

denotes the set of vectors in R
d with non-negative coordinates.

An assumption similar to (F2) in the kernel regression setting appears in
Yang and Tschernig (1999). A density function with linearly dependent νth
partial derivatives {f(k∗ν)(x) : k = 1, · · · , d} does not satisfy this assumption.
See Yang and Tschernig (1999) for more discussions on the similar assumption.

Let u(M, a, ν) be the vector u which minimizes Q(u;M, a, ν). Denote the
d × d identity matrix by Id. We have the following optimization result for
m̃(h).

Theorem 3.3. Under assumptions (K1), (F1), and (F2), m̃(h) is uniquely
minimized by a bandwidth given by

h̃opt =

(
cb(f)‖K‖22

κ2
νn

)1/(d+2ν)

u1/ν(A(f), 1, ν). (3.21)

In addition, assume that f has bounded and continuous (ν + 2) times deriva-

tives and
∫
R
|uν+2K̃(u)|du < ∞. Then as n → ∞, the bandwidth hopt which

minimizes m(h) satisfies

h̃opt =
{
Id +O

(
n−2ν/(d+2ν)

)}
hopt, (3.22)

and

m̃(h̃opt) =
{
1 +O

(
n−2ν/(d+2ν)

)}
m(hopt). (3.23)
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Remark 3.5.

a) The result (3.21) also contains the case d = 1, which we state explicitly
below. For d = 1, we write

m(h) =

N∑
i=1

E|f̂(xi)− f(xi)|2
|f ′(xi)|

, (3.24)

and m̃(h) =
‖K‖22c
nh

N∑
i=1

1

|f ′(xi)|
+

h2ν

(ν!)2
κ2
ν

N∑
i=1

f (ν)(xi)
2

|f ′(xi)|
, (3.25)

where f (ν) is the νth derivative of f . Then m(h) = m̃(h) + o( 1
nh + h4).

The asymptotic optimal bandwidth is given by

h̃opt = Cn− 1
1+2ν with C =

(
c(ν!)2‖K‖22

∑N
i=1 |f ′(xi)|−1

2νκ2
ν

∑N
i=1[f

(ν)(xi)]2|f ′(xi)|−1

) 1
1+2ν

.

(3.26)

b) If we have the restriction h1 = h2 = · · ·hd for h, then h̃opt = (h̃opt, · · · ,
h̃opt)

T has a closed form with

h̃opt =

(
cd(ν!)2b(f)‖K‖22

2nνκ2
ν

∑d
k=1

∑d
l=1 akl

)1/(d+2ν)

.

c) In general, for the multivariate case, (3.21) has an analytical expression

only when d = 2, given by h̃opt = (h̃opt,1, h̃opt,2)
T , where

h̃opt,1 =

(
c(ν!)2b(f)‖K‖22a

(ν+1)/(2ν)
22

2nνκ2
νa

(ν+1)/(2ν)
11 (a

1/2
11 a

1/2
22 + a12)

)1/(2+2ν)

,

and h̃opt,2 =

(
a11
a22

)1/(2ν)

h̃opt,1.

For d ≥ 3, one has to use numerical methods to find the solution. See
Wand and Jones (1994).

Since (3.21) contains unknown quantities, in practice we need to find estima-

tors b̂(f) and Â(f) for b(f) and A(f). Then the asymptotic risk function m̃(h)
is estimated by

m̂(h) = Q

(
hν ;κ2

νÂ(f),
cb̂(f)‖K‖22

n
, ν

)
. (3.27)

Correspondingly, the plug-in optimal bandwidth becomes

ĥopt =

(
cb̂(f)‖K‖22

κ2
νn

)1/(d+2ν)

u1/ν(Â(f), 1, ν). (3.28)
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For simplicity, below we assume ν = 2 in (3.20) and (3.21), but our method-
ology applies to general ν ≥ 2. Note that b(f) and A(f) involve the unknowns
M, ∇f and f(k,k)f(j,j) for 1 ≤ k, j ≤ d, which need to be estimated. Below we
discuss our choices of estimators and the relatively rates of convergence of our
plug-in bandwidth selectors for d = 1 and d ≥ 2 separately, because the case
d ≥ 2 involves estimation of surface integrals on level sets, whereas the case
d = 1 only requires point estimation.

We first consider d = 1. Recall that M = {xi : i = 1, 2, · · · , N} for d = 1

(see the discussion after the assumptions). Let M̂ = {x : f̂(x) = c} = {x̂i : i =

1, 2, · · · , N̂}, where N̂ is the cardinality of M̂. Also let b̂(f) =
∑N̂

i=1 |f̂ ′(x̂i)|−1

and Â(f) =
∑N̂

i=1[f̂
′′(x̂i)]

2|f̂ ′(x̂i)|−1. For d = 1 and ν = 2, the estimated risk
function in (3.27) is

m̂(h) =
‖K‖22c
nh

N̂∑
i=1

1

|f̂ ′(xi)|
+

h2ν

(ν!)2
κ2
ν

N̂∑
i=1

[f̂ ′′(xi)]
2

|f̂ ′(xi)|
, (3.29)

and the plug-in estimator in (3.28) is

ĥopt = Ĉn− 1
5 with Ĉ =

(
c‖K‖22

∑N̂
i=1 |f̂ ′(x̂i)|−1

κ2
2

∑N̂
i=1[f̂

′′(x̂i)]2|f̂ ′(x̂i)|−1

) 1
5

. (3.30)

Note that in the above estimator we are essentially estimating f , f ′ and
f ′ using f̂ , f̂ ′ and f̂ ′′. The kernel function K may be replaced by a different
one in these estimators. However, for simplicity of notation, we keep using K
in what follows. The bandwidths used in the estimators f̂ , f̂ ′ and f̂ ′′ can be
chosen separately, for which we denote as h(0), h(1) and h(2), respectively. We
propose to use the direct plug-in bandwidths for the kernel density and its first
two derivatives as the pilot bandwidths h(0), h(1) and h(2), respectively. See
Wand and Jones (1994, 1995), Duong and Hazelton (2003), and Chacón et al.
(2011) for details of the direct plug-in strategies. In fact, our pilot bandwidths for
d = 1 can be chosen following the exact procedure given in Samworth and Wand
(2010, page 1777). The following theorem gives the relative rates of convergence
of estimating our optimal bandwidth for d = 1. Recall that m̃ given in (3.25)
is an asymptotic approximation to the excess risk when g(x) = |f(x) − c| and
h̃opt given in (3.26) is a minimizer of m̃.

Theorem 3.4. Suppose d = 1 and assumptions (F1), (F2), (K1) and (K2)
hold with ν = 2. In addition, assume that f has bounded continuous fourth
derivatives and K has bounded continuous third derivatives of bounded variation.
If h(0) � n−1/5, h(1) � n−1/7 and h(2) � n−1/9, then for ĥopt in (3.30) and m̂
in (3.29) we have

ĥopt = h̃opt

{
1 +Op

(
n−2/9

)}
, (3.31)

and m̂(ĥopt) = m̃(h̃opt)
{
1 +Op

(
n−2/9

)}
. (3.32)
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Remark 3.6.

It is clear from the proof of the above theorem that the relative rates of
convergence in (3.31) and (3.32) are mainly determined by the choice of

h(2) for the estimator f̂ ′′. If we choose h(0) = h(1) = h(2) � n−1/9, then
the conclusion in Theorem 3.4 still holds.

Next we consider d ≥ 2. The asymptotics for ĥopt when d ≥ 2 involves
the estimation of integrals on level sets, which is studied in Qiao (2019). In
the literature, estimating the volume of manifolds or surface integrals has been
studied in, e.g., Cuevas et al. (2007) and Jiménez and Yukich (2011). We consider

plug-in estimators b̂(f) =
∫
M̂ ‖∇f̂(x)‖−1dH(x) and Â(f) = [âkl]1≤k,l≤d, where

M̂ = {x ∈ R
d : f̂(x) = c} and

âkl =

∫
M̂

‖∇f̂(x)‖−1f̂(k,k)(x)f̂(l,l)(x)dH(x). (3.33)

Similar to the case d = 1, we can still use different bandwidths for the esti-
mation of derivatives of different orders in b̂(f) and Â(f). Here for simplicity

we choose to use a common bandwidth hpilot in b̂(f) and Â(f) for the reason
given in the remark after Theorem 3.4. The following theorem is a consequence
of Theorem 3.1 in Qiao (2019) by noticing that h̃opt and m̃(h̃opt) are smooth

functions of b(f) and A(f), where m̃ and h̃opt are given in (3.17) and (3.21),
respectively.

Theorem 3.5. Suppose d ≥ 2 and assumptions (F1), (F2), (K1) and (K2) hold
with ν = 2. In addition, assume that both f and K have continuous four times
derivatives, and K has bounded support. Let hn be a sequence such that hn → 0
and (logn)−1nhd+4

n → ∞ as n → ∞. If hpilot � hn, then

ĥopt = h̃opt {1 +Op (αn)} , (3.34)

and m̂(ĥopt) = m̃(h̃opt) {1 +Op (αn)} , (3.35)

where αn = 1√
nh5

n

+ 1
nhd+4

n
+ h2

n.

Remark 3.7.

a) To minimize αn, we choose hpilot � n−1/(max{9,d+6}), i.e., hpilot � n−1/9

when d = 2; and hpilot � n−1/(d+6) when d ≥ 3. If so, then correspondingly
we have αn � n−2/(max{9,d+6}). In practice, we can use h(1) as hpilot, which
is the direct plug-in optimal bandwidth for estimating the gradient of f ,
because h(1) � n−1/(d+6). If so, then we have αn � n−3/16 when d = 2;
and αn � n−2/(d+6) when d ≥ 3.

b) When d ≥ 3, the computation of the surface integrals in b̂(f) and Â(f)
might be quite challenging. Alternatively, for a sequence εn > 0, we can
replace b̂(f) and âkl in ĥopt by the following two types of estimators using

integration over small neighborhoods of M̂, where we still use hpilot as
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the pilot bandwidth:

(i)

{
b̂∗(f) = 1

2εn
λ(f̂−1[c− εn, c+ εn])

â∗kl =
1

2εn

∫
f̂−1[c−εn,c+εn]

f̂(k,k)(x)f̂(l,l)(x)dx
,

or

(ii)

{
b̂†(f) = 1

2εn

∫
M̂⊕εn

‖∇f̂(x)‖−1dx

â†kl =
1

2εn

∫
M̂⊕εn

‖∇f̂(x)‖−1f̂(k,k)(x)f̂(l,l)(x)dx
.

Here εn controls the width of tubes around M̂ as domains of integration
in these estimators. If we use these two types of estimators, then αn is
replaced by αn + ε2n in Theorem 3.5 under the same condition. Again this
is a consequence of Theorem 3.1 in Qiao (2019). Using εn of the same
order of hn does not increase the previous relative rates of convergence
Op(αn). For example, if hpilot is chosen to be h(1) as in a), then we can
use min(h(1)), max(h(1)), or the average of the individual bandwidths in
h(1) as εn.

4. Simulation results

A simulation study was run to assess the performance of our bandwidth selector
ĥopt tailored for level set estimation. We compared the performance of our
bandwidth selector with the least square cross validation method (see Rudemo,
1982, and Bowman, 1984), which is an ISE-based selector denoted by hLSCV, as
well as the direct plug-in bandwidth selector (see e.g. Wand and Jones, 1994)
denoted by hDPI. Note that both hLSCV and hDPI are bandwidth selectors
for kernel density estimation. In order to make a fair comparison with ĥopt,
hLSCV and hDPI are also d-dimensional vectors, which correspond to diagonal
bandwidth matrices.

We first compared the performance of the three bandwidth selectors by con-
sidering a Gaussian mixture model with the distribution

2

3
N

((
0
0

)
,

(
1/4 0
0 1

))
+

1

3
N

((
0
0

)
,
1

50

(
1/4 0
0 1

))
, (4.1)

which has a sharp mode and was constructed to represent a bivariate analog
to density 4 in Marron and Wand (1992). The levels of the density functions
in our analysis were chosen corresponding to the 20%, 50% and 80% HDRs,
respectively, that is, c = c(τ), where τ = 0.2, 0.5, and 0.8 (see Section 1 for
the definition of HDRs). 500 samples were drawn from this distribution, and for

each sample we used the error e(h) = λg0(LΔL̂), where g0(x) = |f(x) − c|, to
evaluate the performance of a density level set estimator with bandwidth h and
the Gaussian kernel.

Figure 3 show the simulation results for the model in (4.1) with sample size

n = 1000. It can be seen that our bandwidth selector ĥopt performed better than
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hLSCV and hDPI in terms of the error e(h) for most of the samples. The im-

provement of ĥopt was statistically significant at the 0.1% level for τ = 0.2, 0.5,
and 0.8 when the Wilcoxon tests were applied to the ratio of errors given by
e(hLSCV)/e(ĥopt) and e(hDPI)/e(ĥopt). For each τ value, among the 500 sam-

ples, we chose the one with the ratio of errors e(hDPI)/e(ĥopt) closest to the
median as a representative.

Fig 3. Graphical comparison of the performance between ĥopt and hLSCV and between ĥopt

and hDPI for τ = 0.2, 0.5, 0.8 for the model in (4.1), with sample size of n = 1000 for 500

replications. The graphs in the first row show the scatter plots of the errors e(h) for ĥopt and
hLSCV, and the graphs in the second row show the kernel density estimates of the common
logarithm of ratios between the errors using hLSCV and the errors using ĥopt. The third and

fourth rows are similar comparisons between ĥopt and hDPI.
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Figure 4 visually compares the level set estimations between the three band-
width selectors for the representative samples for τ = 0.2, 0.5, and 0.8. It can be
seen that when ĥopt or hDPI were used, the level sets were estimated reasonably

well, with ĥopt slightly better, while using hLSCV only captured the level sets

for τ = 0.8. When we decreased the sample size to n = 500, ĥopt still performed
better than hLSCV for τ = 0.2, 0.5 and 0.8, and better than hDPI for τ = 0.2
and 0.8 but not for τ = 0.5. With this smaller sample size M̂ using the pilot
bandwidth had about 17% chance to be an empty set in the replications for
τ = 0.8, which corresponds to a relatively high density level, and in these cases
our bandwidth selector was not computable and so we had set e(h) = λg(L).
This issue arises because the kernel density estimator underestimates the den-
sity in a neighborhood of the modes on average, when a second order kernel is
used (see the expansion of the bias in (3.5)). When the level c is relatively high
and the sample size n is small, we suspect that using a higher order kernel or
a more sophisticated pilot bandwidth in the pilot density estimate might make
an improvement on this issue.

Fig 4. Comparisons among the estimated level sets using hLSCV (upper panels), hDPI (middle

panels) and ĥopt (lower panels) for τ = 0.2, 0.5, 0.8 for the model in (4.1). Estimated level
sets are represented by the gray areas, and the true level sets are enclosed by the red curves.
The samples were chosen such that the ratios between the errors using hDPI and the errors
using ĥopt are closest to their medians in the 500 replications.

In addition, we also considered 12 bivariate Gaussian mixture models used in
Wand and Jones (1993), which cover from unimodal to quadrimodal models. We
further extended these density functions to their trivariate counterparts in our
simulation study as specified below. Denote a bivariate Gaussian mixture model
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with k ≥ 1 components by
∑k

i=1 wiN(μi,Σi), where for some −1 < ρi < 1,

μi =

(
μi1

μi2

)
, and Σi =

(
σ2
i1 ρiσi1σi2

ρiσi1σi2 σ2
i2

)
.

Its trivariate extension is
∑k

i=1 wiN(μ̃i, Σ̃i), where

μ̃i =

⎛⎝μi1

μi2

μi2

⎞⎠ , and Σ̃i =

⎛⎝ σ2
i1 ρiσi1σi2 ρiσi1σi2

ρiσi1σi2 σ2
i2 ρiσi2σi2

ρiσi1σi2 ρiσi2σi2 σ2
i2

⎞⎠ .

In other words, the third marginal means and variances replicate the second
ones for all the components and the correlation coefficients remain the same. If
Σ̃i is not positive definite by this extension, we replaced ρi by its half, which
makes the covariance matrices of all the components positive definite.

These 12 models and their extensions are used to compare the performance
of the three bandwidth selectors in the following four cases, where case 1 can
be viewed as a base case, and in cases 2–4 we consider the variation of the risk
criteria, the dimensions d, and the orders of the kernel function ν, respectively.
Recall that e(h) denotes a error metric for density level set estimation with
bandwidth h.

Case 1: d=2, ν = 2, using e(h) = λg0(LΔL̂);
Case 2: d=2, ν = 2, using e(h) = R̂n(L̂) as defined in (3.14);

Case 3: d=2, ν = 4, using e(h) = λg0(LΔL̂);
Case 4: d=3, ν = 2, using e(h) = λg0(LΔL̂).
Before we show the simulation results, we give some details in the implemen-

tation. The Gaussian kernel was used for cases 1, 2, and 4 (i.e., ν = 2). For case

3, the fourth-order kernel function is chosen to be K(x1, x2) = K̃(x1)K̃(x2)

with K̃(v) = 1
2 (3 − v2)φ(v), v ∈ R, where φ is the pdf of a standard normal

distribution. We used h(1) as the pilot bandwidth hpilot for ν = 2, which has
been discussed in Remark 3.7 a). For ν = 4, while we still use h(1) to estimate

f̂ and ∇f̂ , we use h(2) as the pilot bandwidth to estimate the fourth derivatives
of f , where h(2) is the direct plug-in optimal bandwidth for estimating the Hes-
sian of f . Our bandwidth selector ĥopt involves the calculation of line/surface
integrals. The numerical approximation to line integrals on curves when d = 2
are straightforward (for cases 1, 2, and 3). For case 4, we generated meshes with
fine triangulation and used the corresponding Riemann sums to approximate the
surface integrals. As indicated in Remark 3.7 b), these surface integrals can also
be approximated by integration over some small neighborhoods of the surfaces.

For each of the distributions, random sampling was replicated for 500 times.
Again we used c = c(τ) with τ = 0.2, 0.5, and 0.8 as the levels of the density func-
tions. For each case, we have 36 combinations of the τ values and models. The
sample sizes were chosen to be n = 1,000, n = 2,000, and n = 10,000. We applied
the one-sided Wilcoxon tests to the ratios of errors given by e(hLSCV)/e(ĥopt)

and e(hDPI)/e(ĥopt), respectively. Table 1 below summarizes the counts of sce-

narios when the improvement of ĥopt was not statistically significant at the 0.1%
levels for τ = 0.2, 0.5, and 0.8.
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Table 1

Simulation results

ĥopt vs. hLSCV ĥopt vs. hDPI

τ = 0.2 τ = 0.5 τ = 0.8 Total τ = 0.2 τ = 0.5 τ = 0.8 Total

case 1
n=1000 4 3 2 9 10 8 2 20
n=2000 3 3 2 8 9 8 0 17
n=10000 3 1 1 5 6 2 1 9

case 2
n=1000 3 3 1 7 10 8 1 19
n=2000 2 3 1 6 9 8 1 18
n=10000 3 1 1 5 7 3 0 10

case 3
n=1000 6 4 3 13 7 5 1 13
n=2000 4 3 2 9 7 3 0 10
n=10000 3 1 0 4 3 1 0 4

case 4
n=1000 11 10 4 25 11 11 2 24
n=2000 6 5 1 12 7 7 0 14
n=10000 3 3 1 7 7 3 1 11

Overall we find our bandwidth selector ĥopt performs better than hLSCV

and hDPI for density level set estimation, especially when the sample size is
moderately large. Between the two competitors hLSCV and hDPI, in general a
larger sample size is needed for ĥopt to outperform the latter, though the needed
sample size can be reduced by using higher order kernels as shown in case 3.
Also it appears ĥopt performs well for high density levels, while we need larger

sample sizes for the asymptotics for ĥopt to show effect when the levels are low.
Note that data of large sample sizes are available for many application areas
of density level set estimation, such as flow cytometry (Naumann and Wand,
2009) and astronomical survey (Jang, 2006).

5. Discussion

In this paper we give asymptotic Lp approximations of λg(L Δ L̂) and

Eλg(L Δ L̂), where p is determined by the local behavior of g around M. In par-

ticular, when g(x) = f(x)r|f(x)− c| for some r ≥ 0, the excess risk Eλg(L Δ L̂)
has an L2 approximation and is used to select bandwidth for density level set
estimation. Numerical results verify that our bandwidth selectors tailored for
level set estimation outperforms the lease square cross validation and the di-
rect plug-in bandwidth selectors for density estimation, when the sample size is
moderately large.

As indicated in the Introduction section, the work in Doss and Weng (2018)
is related to some of the results in this paper, and they have given a comparison
between their work with an earlier arXiv version of this paper. When focusing
on the level set estimation, they only consider g = f in the asymptotic ap-
proximation for Eλg(L Δ L̂) (which is an L1 type of risk as interpreted in our
Corollary 3.1), and use it as a risk function for bandwidth selection for density
level set estimation. We give the expressions of the asymptotic forms of both
λg(L Δ L̂) and Eλg(L Δ L̂) for a general class of g, which allows us to inter-
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pret them as asymptotic Lp type of loss and risk, depending on a property of
g given in assumption (G1). In these approximations higher order kernel func-
tions are also allowed if higher smoothness of the density function is assumed.
Our bandwidth selection is based on an L2 type of risk (the excess risk), which
corresponds to a specific choice of g in our general result. The excess risk resem-
bles the MISE for kernel density estimation, and is more tractable than the L1

type of risk. Note that in order to study the theory for the minimization of the
L1 type of risk (when g = f), Doss and Weng (2018) assume that the density
function f is unimodal and symmetric (see their Corollary 2.1). By contrast,
the minimization of the excess risk does not require such assumptions on the
shape of the density functions, and our optimal bandwidth can have analytical
forms, depending on the structure of the bandwidth matrix (see Remark 3.5).
Also as indicated in Remark 3.4, if one uses the L1 type of risk (e.g. g = f
or g ≡ 1) for bandwidth selection, minimizing one of its upper bounds is an
alternative approach, which can give closed-form solutions (again depending on
the structure of the bandwidth matrix).

Note that g(x) = f(x)r|f(x) − c| for r ≥ 0 is chosen to be used mainly
because its close connection to the excess risk in the classification literature
and its interpretation as local MISE given in Proposition 3.1. One can also
use g(x) = ‖∇f(x)‖ f(x)r|f(x) − c|, which adds the norm of the gradient
as a weight into the integrand. If so then we have a simple approximation
Eλg(L Δ L̂) ≈ 1

2c
r
E
∫
M |f̂(x) − f(x)|2dH(x) by Theorem 3.2. Using this risk,

the asymptotic optimal bandwidth has a simpler form because b(f) and akl
in m̃(h) in (3.18) will be replaced by H(M) and

∫
M f(k∗ν)(x)f(l∗ν)(x)dH(x),

respectively. In other words, one does not need to estimate the first deriva-
tives in the plug-in bandwidth selector. With this form of the surface integrals,
one may use U-statistic type estimators to improve the relative rates of con-
vergence given in Theorem 3.5. See Theorem 2.1 and Corollary 3.1 in Qiao
(2019).

In this paper we focus on the selection of bandwidth vectors, which cor-
respond to diagonal bandwidth matrices. We expect that our results can be
extended to full unconstrained bandwidth matrices, which might work better
for level set estimation. See, e.g. Chacón and Duong (2010). A closely related
question is to select bandwidths for the estimation of HDR. Here the risk crite-
rion can be set as Eλg(Lc(τ) Δ L̂ĉ(τ)) (see the Introduction section). Doss and
Weng (2018) use g = f and thus obtain an L1 approximation of this risk cri-
terion. It is expected that one can have an L2 approximation to this risk using
g(x) = f(x)r|f(x) − c| for r ≥ 0 and select bandwidths using similar ideas in
this paper. We leave the exploration of this idea to future work.

6. Proofs

Proof of Theorem 3.1.

We first present the proof for the case d ≥ 2. The case d = 1 is briefly
discussed at the end.
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By Theorem 2 of Cuevas et al. (2006), we have

dH(M,M̂) = O
(
‖f̂ − f‖∞

)
. (6.1)

With a slight generalization of Theorem 1 of Einmahl and Mason (2005)
to the case of individual bandwidth for each dimension in the kernel density
estimator, it follows from assumptions (K1), (K2), (F1) and (H1) that

lim sup
n→∞

√
nh1 · · ·hd

logn
sup
x∈Rd

|f̂(x)− Ef̂(x)| ≤ η1, a.s. (6.2)

for some constant η1. Following a standard derivation for kernel density estima-
tion, we can show that, there exists a constant η2 > 0 such that

sup
x∈Rd

|Ef̂(x)− f(x)| ≤ η2‖h‖ν . (6.3)

Combining (6.1), (6.2) and (6.3), we have that there exists a positive constant
η3 such that with

εn = η3

(√
logn

nh1 · · ·hd
+ ‖h‖ν

)
, (6.4)

we have L Δ L̂ ⊂ M ⊕ εn for n large enough with probability one, and as a
result,

λg(L Δ L̂) =
∫
Rd

I(x ∈ L Δ L̂)g(x)dx =

∫
M⊕εn

I(x ∈ L Δ L̂)g(x)dx. (6.5)

By the definition of reach for a manifold, for any ε with 0 < ε < ρ(M), we can
write M⊕ ε = {ζx(s) : x ∈ M, |s| ≤ ε}. Then for large n, the map ζ(x, s) :=
ζx(s) is a diffeomorphism from M× [−εn, εn] to M⊕ εn.

The following derivation uses integration on manifolds, the theory of which
can be found in e.g., Guillemin and Pollack (1974, page 168) and Gray (2004,
Theorems 3.15 and 4.7). Denote Sn = M × [−εn, εn]. For any (x, s) ∈ Sn,
let ψ : U �→ Sn be a local parameterisation of Sn around (x, s), where U
is an open subset of R

d. Denote function composition η = ζ ◦ ψ, which is
a local parameterisation of M ⊕ εn around ζx(s). Note that both ψ and η
depend on (x, s) and this dependence has been suppressed in our notation.
Let Dψ and Dη be the Jacobian matrices of ψ and η, respectively. Define the
derivative Dζ(x,s) : T(x,s)Sn �→ R of ζ at (x, s) by Dζ(x,s) = Dη ◦ (Dψ)−1, where
T(x,s)Sn = TxM×R is the tangent space of Sn at (x, s). Following Proposition
6 in Cannings et al. (2017), we have

Dζ(x,s)(v1, v2) = (I + sB(x))

(
v1 +

∇f(x)

‖∇f(x)‖v2
)
, (6.6)
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for v1 ∈ Tx(M) and v2 ∈ R, where B(x) = 1
‖∇f(x)‖

(
I − ∇f(x)∇f(x)T

‖∇f(x)‖2

)
∇2f(x) is

also known as the shape operator on level sets (see Qiao, 2019). It then follows
from (6.5), (6.6), and the derivation in Section 7.3 of Cannings et al. (2017) that
with probability one for n large enough we have

λg(L Δ L̂) =
∫
M

∫ εn

−εn

det(I + sB(x)) g(ζx(s)) I(ζx(s) ∈ L Δ L̂)dsdH(x).

(6.7)

Since det(I + sB(x)) = 1 + o(1) as n → ∞, uniformly in s ∈ [−εn, εn] and
x ∈ M, we obtain

λg(L Δ L̂) =
∫
M

∫ εn

−εn

g(ζx(s)) I(ζx(s) ∈ L Δ L̂)dsdH(x){1 + o(1)}. (6.8)

For any x ∈ M, recall that Pn(x) = ζx(tn(x)) ∈ M̂. Using Lemma 1 in Chen

et al. (2017), M and M̂ are normal compatible and hence Pn is well defined. For

n large enough, we have sign(f(ζx(s)) − c) = sign(s) and sign(f̂(ζx(s)) − c) =

sign(s−tn(x)), for s ∈ (−εn, εn). Hence for any x ∈ M, the event ζx(s) ∈ L Δ L̂
is equivalent to s ∈ [tn(x) ∧ 0, tn(x) ∨ 0], where tn(x) ∧ 0 = min(tn(x), 0) and
tn(x) ∨ 0 = max(tn(x), 0). With probability one we have tn(x) < εn for n large

enough since L Δ L̂ ⊂ M ⊕ εn as indicated above. Hence from (6.8) we can
write

λg(L Δ L̂) =
∫
M

∫ εn

−εn

I(s ∈ [tn(x) ∧ 0, tn(x) ∨ 0]) g (ζx(s)) dsdH(x){1 + o(1)}

=

∫
M

∫ tn(x)∨0

tn(x)∧0

g (ζx(s)) dsdH(x){1 + o(1)}. (6.9)

By Assumption (G1) we have

g (ζx(s)) = g(p)(x)|s|p{1 + o(1)}, (6.10)

where o(1) is uniform in (x, s) for x ∈ M and s ∈ [−εn, εn]. Note that∫
M

∫ tn(x)∨0

tn(x)∧0

g(p)(x)|s|pdsdH(x) =
1

p+ 1

∫
M

g(p)(x)|tn(x)|p+1dH(x). (6.11)

By using the Taylor expansion for x ∈ M, we have

0 = f̂(Pn(x))− f(x) =f̂(x)− f(x) +
∇f(x)T∇f̂(x)

‖∇f(x)‖ tn(x)

+O

(
|tn(x)|2 sup

x∈M⊕εn

‖∇2f̂(x)‖
)
.

It follows that

|tn(x)| =
|f̂(x)− f(x)|
‖∇f(x)‖ {1 + op(1)}, (6.12)
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where op(1) is uniform in x ∈ M. Also see Lemma 2.2 in Qiao (2019). Combining
(6.11) and (6.12), we have∫

M

∫ tn(x)∨0

tn(x)∧0

g(p)(x)|s|pdsdH(x)

=
1

p+ 1

∫
M

g(p)(x)

‖∇f(x)‖p+1
|f̂(x)− f(x)|p+1dH(x){1 + op(1)}. (6.13)

The result (3.7) immediately follows from (6.9), (6.10) and (6.13).
The proof for the case d = 1 can be shown by going through a similar

procedure as above, but should be simplified with fewer geometric ingredients.
Note that (6.5) is still valid for d = 1. Then using (6.10) we have

λg(L Δ L̂) =
∑
x∈M

∫ tn(x)∨0

tn(x)∧0

g (ζx(s)) ds

=
1

p+ 1

∑
x∈M

g(p)(x)

|f ′(x)|p+1
|f̂(x)− f(x)|p+1{1 + op(1)}.

Proof of Theorem 3.2.
We only show the proof for the case d ≥ 2, as the proof is similar and simpler

for the case d = 1, as shown in the proof of Theorem 3.1. Before we show the
main steps in the proof, we give a useful property of the kernel function K under
assumption (K1):

K ∈ Lq, for all 1 ≤ q ≤ ∞. (6.14)

To show (6.14), notice that for 1 < q < ∞,

‖K‖q =

(∫
Rd

|K(x)| |K(x)|q−1dx

)1/q

≤ ‖K‖(q−1)/q
∞ ‖K‖1/q1 < ∞.

Step 1. Let Bn(x) = Ef̂(x) − f(x) and σn(x) =

√
Var(f̂(x)). We will first

prove the following facts, which show that s2n and βh(x) are the asymptotic
expressions of the variance and bias of kernel density estimation uniformly in a
small neighborhood of M.

sup
x∈M⊕εn

|Bn(x)− βh(x)| = o(‖h‖ν), (6.15)

sup
x∈M⊕εn

|σ2
n(x)− s2n| = o

(
1

nh1 · · ·hd

)
. (6.16)

We first show (6.15). Note that by using the Taylor expansion for f(x−h	y)
around f(x), we have

Bn(x) =

∫
Rd

[f(x− h	 y)− f(x)]K(y)dy
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=

∫
Rd

[f(x+ h	 y)− f(x)]K(y)dy

=
∑

i∈Z
ν,d
+

h(i)

∫
Rd

∫ 1

0

(1− t)ν−1

(ν − 1)!
f(i)(x+ th	 y)dtK(y)y(i)dy.

The assumption that K is a νth order symmetric kernel function implies that
we can write

βh(x) =

∫ 1

0

(1− t)ν−1

(ν − 1)!
dt
∑

i∈Z
ν,d
+

[
h(i)f(i)(x)

∫
Rd

K(y)y(i)dy

]
.

Notice that

sup
x∈M⊕εn

|Bn(x)− βh(x)|

≤
∑

i∈Z
ν,d
+

h(i)

∫
Rd

|K(y)y(i)|
∫ 1

0

(1− t)ν−1

(ν − 1)!
sup

x∈M⊕εn

|f(i)(x+ th	 y)− f(i)(x)|dtdy.

We then obtain (6.15) by applying the Dominated Convergence Theorem and
assumption (F1) to the right-hand side of the above inequality.

Next we show (6.16). For s ∈ [−εn, εn] with the same εn given in (6.4), by
using Taylor expansion, we have that

sup
x∈M

|f(ζx(s))− c− s‖∇f(x)‖| = O(s2) = O(ε2n). (6.17)

Therefore using Taylor expansion again we have

sup
x∈M⊕εn

|σ2
n(x)− s2n|

= sup
x∈M⊕εn

∣∣∣∣ 1

nh1 · · ·hd

∫
Rd

[f(x− h	 y)− c]K2(y)dy

− 1

n

[∫
Rd

f(x− h	 y)K(y)dy

]2∣∣∣∣∣
≤ 1

nh1 · · ·hd
sup
x∈Rd

‖∇f(x)‖
[
εn + ‖h‖

∫
Rd

‖y‖K2(y)dy

]
+

1

n
‖f‖2∞‖K‖21

=o

(
1

nh1 · · ·hd

)
.

To get the above o-term, we have used the fact that∫
Rd

‖y‖K2(y)dy =

∫
B0(1)

‖y‖K2(y)dy +

∫
[B0(1)]�

‖y‖K2(y)dy
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≤‖K‖22 + ‖K‖∞
∫
Rd

‖y‖ν |K(y)|dy

≤‖K‖22 + ‖K‖∞dν/2−1

∫
Rd

(|y1|ν + · · ·+ |yd|ν)|K(y)|dy < ∞,

where 0 is the origin of Rd, and we use (6.14) and the definition of νth order
kernels.

Step 2. We prove (3.7) in this step. Note that

Eλg(LΔL̂) = E

∫
I(x ∈ LΔL̂)g(x)dx

=

∫
P(x ∈ LΔL̂)g(x)dx

=

∫
P(f̂(x) ≥ c > f(x))g(x)dx+

∫
P(f(x) ≥ c > f̂(x))g(x)dx

=

∫
L�

P(f̂(x) ≥ c)g(x)dx+

∫
L
P(f̂(x) < c)g(x)dx.

Since LΔL̂ ⊂ M⊕ εn for large n with probability one,

Eλg(LΔL̂)

=

∫
L�∩(M⊕εn)

P(f̂(x) ≥ c)g(x)dx+

∫
L∩(M⊕εn)

P(f̂(x) < c)g(x)dx. (6.18)

Note that here L� ∩ (M⊕ εn) = {ζx(s) : x ∈ M,−εn < s < 0} and L ∩ (M⊕
εn) = {ζx(s) : x ∈ M, 0 ≤ s < −εn}. Similar to (6.8), we have

Eλg(LΔL̂) =
[∫

M

∫ 0

−εn

P(f̂(ζx(s)) ≥ c)g(ζx(s))dsdH(x)

+

∫
M

∫ εn

0

P(f̂(ζx(s)) < c)g(ζx(s))dsdH(x)

]
(1 + o(1)).

(6.19)

For the leading term on the right-hand side of the above expression, it follows
from (6.10) that∫

M

∫ 0

−εn

P(f̂(ζx(s)) ≥ c)g(ζx(s))dsdH(x)

+

∫
M

∫ εn

0

P(f̂(ζx(s)) < c)g(ζx(s))dsdH(x)

=

[∫
M

g(p)(x)

∫ 0

−εn

P(f̂(ζx(s)) ≥ c)|s|pdsdH(x)

+

∫
M

g(p)(x)

∫ εn

0

P(f̂(ζx(s)) < c)|s|pdsdH(x)

]
(1 + o(1)). (6.20)
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Only focusing on the leading term again, in what follows we perform a sequence
of decompositions. In general, we use L1, L2, and L3 to denote dominant terms
and R1, R2, and R3 to denote remainder terms. We have∫

M
g(p)(x)

∫ 0

−εn

P(f̂(ζx(s)) ≥ c)|s|pdsdH(x)

+

∫
M

g(p)(x)

∫ εn

0

P(f̂(ζx(s)) < c)|s|pdsdH(x)

=

∫
M

g(p)(x)

∫ 0

−εn

P

(
f̂(ζx(s))− Ef̂(ζx(s))

σn(ζx(s))
≥ c− Ef̂(ζx(s))

σn(ζx(s))

)
|s|pdsdH(x)

+

∫
M

g(p)(x)

∫ εn

0

P

(
f̂(ζx(s))− Ef̂(ζx(s))

σn(ζx(s))
<

c− Ef̂(ζx(s))

σn(ζx(s))

)
|s|pdsdH(x)

= L1 +R1, (6.21)

where

L1 =

∫
M

g(p)(x)

∫ 0

−εn

Φ

(
−c− Ef̂(ζx(s))

σn(ζx(s))

)
|s|pdsdH(x)

+

∫
M

g(p)(x)

∫ εn

0

Φ

(
c− Ef̂(ζx(s))

σn(ζx(s))

)
|s|pdsdH(x),

with Φ the standard normal distribution function. We will show in step 4 that

|R1| = o(‖h‖ν(p+1) + sp+1
n ). (6.22)

Using the results given in (6.16) and (6.15), we have

L1 = L2 +R2, (6.23)

where

L2 =

∫
M

g(p)(x)

∫ 0

−εn

Φ

(
s‖∇f(x)‖+ βh(x)

sn

)
|s|pdsdH(x)

+

∫
M

g(p)(x)

∫ εn

0

Φ

(
−s‖∇f(x)‖ − βh(x)

sn

)
|s|pdsdH(x).

We will show in step 4 that

|R2| = o(‖h‖ν(p+1) + sp+1
n ). (6.24)

Let u = s/sn. Then we continue to decompose L2 as follows.

L2 = L3 +R3, (6.25)

where

L3 = sp+1
n

∫
M

g(p)(x)

∫ 0

−∞
Φ

(
u‖∇f(x)‖+ βh(x)

sn

)
|u|pdudH(x)
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+ sp+1
n

∫
M

g(p)(x)

∫ ∞

0

Φ

(
−u‖∇f(x)‖ − βh(x)

sn

)
|u|pdudH(x).

We will show in step 4 that

|R3| = o(sp+1
n ). (6.26)

Using integration by parts we can write L3 as

(−1)psp+1
n

∫
M

g(p)(x)

∫ 0

−∞
Φ

(
u‖∇f(x)‖+ βh(x)

sn

)
updudH(x)

+ sp+1
n

∫
M

g(p)(x)

∫ ∞

0

Φ

(
−u‖∇f(x)‖ − βh(x)

sn

)
updudH(x)

=
(−1)p+1

p+ 1
sp+1
n

∫
M

g(p)(x)‖∇f(x)‖
∫ 0

−∞
φ

(
u‖∇f(x)‖+ βh(x)

sn

)
up+1dudH(x)

+
1

p+ 1
sp+1
n

∫
M

g(p)(x)‖∇f(x)‖
∫ 0

−∞
φ

(
u‖∇f(x)‖+ βh(x)

sn

)
up+1dudH(x)

=
1

p+ 1
sp+1
n

∫
M

g(p)(x)‖∇f(x)‖
∫ ∞

−∞
φ

(
u‖∇f(x)‖+ βh(x)

sn

)
|u|p+1dudH(x),

where φ is the pdf of a standard normal distribution. Using the variable trans-
formation v = u‖∇f(x)‖+ βh(x)/sn, then we have

L3 =
1

p+ 1
sp+1
n

∫
M

g(p)(x)

‖∇f(x)‖p+1

∫ ∞

−∞
φ(v)

∣∣∣∣v − βh(x)

sn

∣∣∣∣p+1

dvdH(x)

=
1

p+ 1

∫
M

g(p)(x)

‖∇f(x)‖p+1

∫ ∞

−∞
φ(v) |sn v − βh(x)|p+1

dvdH(x)

=
1

p+ 1
E

∫
M

g(p)(x)

‖∇f(x)‖p+1
|sn Z + βh(x)|p+1

dH(x), (6.27)

where Z is a standard normal random variable, and in the last equality above
we have used the symmetry of Z’s distribution. Note that

E |sn Z + βh(x)|p+1 ≤ 2psp+1
n E|Z|p+1 + 2p|βh(x)|p+1. (6.28)

Since M is a compact set and supx∈M |βh(x)| ≤ C0‖h‖ν for some constant
C0 > 0, we obtain that

L3 = O(sp+1
n + ‖h‖ν(p+1)). (6.29)

Then (3.7) follows from (6.18), (6.19), (6.20), (6.21), (6.22), (6.23), (6.24), (6.25),
(6.26), (6.27) and (6.29).

Step 3. Now we prove (3.8), which is implied by

E

∫
M

g(p)(x)

‖∇f(x)‖p+1

∣∣∣f̂(x)− f(x)
∣∣∣p+1

dH(x)
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=E

∫
M

g(p)(x)

‖∇f(x)‖p+1
|sn Z + βh(x)|p+1

dH(x) + o(sp+1
n + ‖h‖ν(p+1)). (6.30)

We will apply Lemma 1 in Horváth (1991) (see Lemma A.2 in the appendix)

to show (6.30). Let Yi(x) = (h1 · · ·hd)
−1K(h−1 	 (x − Xi)). Then f̂(x) =

n−1
∑n

i=1 Yi(x) and Var(Yi(x)) = nσ2
n(x). Now with w = Bn(x)/σn(x), we

have

E

∣∣∣f̂(x)− f(x)
∣∣∣p+1

=
1

np+1
E

∣∣∣∣∣
n∑

i=1

[Yi(x)− EYi(x)] + n1/2[n1/2σn(x)]w

∣∣∣∣∣
p+1

.

(6.31)

For 1 ≤ k ≤ p+ 3 and x ∈ M, using the substitution u = h−1 	 (x− y) we can
write

E|Y1(x)|k = (h1 · · ·hd)
−k

∫
Rd

|K(h−1 	 (x− y))|kf(y)dy

= (h1 · · ·hd)
−(k−1)

∫
Rd

|K(u)|kf(x− h	 u)du

= (h1 · · ·hd)
−(k−1)c‖K‖kk{1 + o(1)},

where the last step is a consequence of (6.14), assumption (F1), and the Domi-
nated Convergence Theorem. Since EY1(x) = c+ o(1) uniformly in x ∈ M (see
(6.15)), and for 2 ≤ k ≤ p+ 3,

k∑
j=0

(−1)k−j

(
k

j

)
E|Y1(x)|j |EY1(x)|k−j ≤ E|Y1(x)− EY1(x)|k

≤
k∑

j=0

(
k

j

)
E|Y1(x)|j |EY1(x)|k−j ,

we obtain that for x ∈ M and 2 ≤ k ≤ p+ 3,

E|Y1(x)− EY1(x)|k = (h1 · · ·hd)
−(k−1)c‖K‖kk{1 + o(1)}, (6.32)

where o(1) is uniform in x ∈ M⊕ εn.
By applying Lemma A.2 and using (6.15), (6.16), (6.31) and (6.32), there

exist positive constants C1, C2 and C3 such that for all x ∈ M,∣∣∣E|f̂(x)− f(x)|p+1 − E |σn(x)Z +Bn(x)|p+1
∣∣∣

≤ 1

np+1
C1

(
1 +

∣∣∣∣Bn(x)

σn(x)

∣∣∣∣p)
×
{
np/2[n1/2σn(x)]

p−2 c‖K‖33
(h1 · · ·hd)2

+ [n1/2σn(x)]
−2

c‖K‖p+3
p+3

(h1 · · ·hd)p+2

}
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≤C2

(
1 +

(nh1 · · ·hd)
p/2

cp/2‖K‖p2
|βh(x)|p

)
×
(
cp/2‖K‖p−2

2 ‖K‖33
(nh1 · · ·hd)p/2+1

+
‖K‖p+3

p+3

c‖K‖42(nh1 · · ·hd)p+1

)
≤C3(s

p+2
n + s2n|βh(x)|p). (6.33)

Let γn,h = sn + ‖h‖ν . Denote An(x, Z) = γ−1
n,h[snZ + βh(x)] and Dn(x, Z) =

γ−1
n,h[(σn(x)− sn)Z +Bn(x)− βh(x)]. Then we can write

(γn,h)
−(p+1)

∣∣∣E |σn(x)Z +Bn(x)|p+1 − E |sn Z + βh(x)|p+1
∣∣∣

=
∣∣∣E |An(x, Z) +Dn(x, Z)|p+1 − E |An(x, Z)|p+1

∣∣∣ . (6.34)

Using the expressions of sn and βh(x) in (3.3) and (3.4), we have that for
k = 1, · · · , 2(p+ 1),

E|An(x, Z)|k ≤ 2k−1{|γ−1
n,hsn|kE|Z|k + |γ−1

n,hβh(x)|k} = O(1).

Similarly, we have that E|Dn(x, Z)|k = o(1) for k = 1, · · · , 2(p + 1), by using
(6.15) and (6.16). Therefore, on the one hand,

E |An(x, Z) +Dn(x, Z)|p+1 − E |An(x, Z)|p+1

≤
p∑

j=0

(
p+ 1

j

)
E[|An(x, Z)|j |Dn(x, Z)|p+1−j ]

≤
p∑

j=0

(
p+ 1

j

)√
E[|An(x, Z)|2j ]E[|Dn(x, Z)|2(p+1−j)] = o(1), (6.35)

where we have used the Cauchy-Schwarz inequality. On the other hand,

|An(x, Z) +Dn(x, Z)|p+1

≥ ||An(x, Z)| − |Dn(x, Z)||p+1

=

{∑p+1
j=0

(
p+1
j

)
‖An(x, Z)|j [−|Dn(x, Z)|]p+1−j if |An(x, Z)| ≥ |Dn(x, Z)|∑p+1

j=0

(
p+1
j

)
[−|An(x, Z)|]j |Dn(x, Z)|p+1−j if |An(x, Z)| < |Dn(x, Z)|.

Therefore similar to (6.35) we have

E |An(x, Z) +Dn(x, Z)|p+1 − E |An(x, Z)|p+1

≥− 2E|Dn(x, Z)| −
p∑

j=0

(
p+ 1

j

)
E{|An(x, Z)|j |Dn(x, Z)|p+1−j} = o(1).

(6.36)
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It then follows from (6.35) and (6.36) that the right-hand side of (6.34) is of
order o(1), which further implies that∣∣∣E |σn(x)Z +Bn(x)|p+1 − E |sn Z + βh(x)|p+1

∣∣∣ = o(sp+1
n + ‖h‖ν(p+1)). (6.37)

Then (6.30) and hence (3.8) immediately follow from (6.33), (6.37) and the fact
that the M is compact and g(p)(x)/‖∇f(x)‖p+1 is bounded on M.

Step 4. We will prove (6.22), (6.24) and (6.26), as required in step 2.
We first show the proof of (6.22) for R1. By the nonuniform Berry-Esseen

theorem (c.f. Theorem 14, Petrov 1975, page 125), there exists a constant C4 > 0
such that for all y ∈ R,∣∣∣∣∣P

(
f̂(ζx(s))− Ef̂(ζx(s))

σn(ζx(s))
≤ y

)
− Φ(y)

∣∣∣∣∣
≤ C4E |Y1(ζx(s))− EY1(ζx(s))|3

n1/2
(
E |Y1(ζx(s))− EY1(ζx(s))|2

)3/2
(1 + |y|)3

.

It then follows from (6.32) that there exists a constant C5 > 0 such that for all
y ∈ R,

sup
x∈M

sup
s∈[−εn,εn]

∣∣∣∣∣P
(
f̂(ζx(s))− Ef̂(ζx(s))

σn(ζx(s))
≤ y

)
− Φ(y)

∣∣∣∣∣ ≤ C5√
nh1 · · ·hd(1 + |y|3)

.

(6.38)

As a result,

|R1| ≤
C5√

nh1 · · ·hd

∫
M

g(p)(x)

∫ εn

−εn

|s|p
⎛⎝1 +

∣∣∣∣∣c− Ef̂(ζx(s))

σn(ζx(s))

∣∣∣∣∣
3
⎞⎠−1

dsdH(x).

(6.39)

Note that due to (6.15), (6.16) and (6.17), there exists a positive constant C6

such that for all η3‖h‖ν ≤ |s| ≤ εn (where η3 appears in (6.4)),

inf
x∈M

∣∣∣∣∣c− Ef̂(ζx(s))

σn(ζx(s))

∣∣∣∣∣ ≥ C6|s|
sn

.

Plugging this inequality to the right-hand side of (6.39), we obtain

|R1| ≤ R11 +R12,

where

R11 =
C5√

nh1 · · ·hd

∫
M

g(p)(x)dH(x)

∫
|s|≤η3‖h‖ν

|s|pds
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=
2C5√

nh1 · · ·hd

∫
M

g(p)(x)dH(x)
(η3‖h‖ν)p+1

p+ 1

= o(‖h‖ν(p+1)), (6.40)

and

R12 =
C5√

nh1 · · ·hd

∫
M

g(p)(x)dH(x)

∫
η3‖h‖ν≤|s|≤εn

|s|p
(
1 +

C3
6 |s|3
s3n

)−1

ds.

Using the variable transformation t = s/sn we have

R12 =
2C5s

p+1
n√

nh1 · · ·hd

∫
M

g(p)(x)dH(x)

∫
η3‖h‖ν/sn≤t≤εn/sn

tp

1 + C3
6 t

3
dt

≤ 2C5s
p+1
n√

nh1 · · ·hd

∫
M

g(p)(x)dH(x)

∫
0≤t≤εn/sn

tp

1 + C3
6 t

3
dt

= o(sp+1
n + ‖h‖ν(p+1)), (6.41)

where the last rate follows from assumption (H2) and

∫
0≤t≤εn/sn

tp

1 + C3
6 t

3
dt =

⎧⎪⎨⎪⎩
O(1), p = 0, 1

O(log(εn/sn)), p = 2

O((εn/sn)
p−2), p ≥ 3.

With (6.40) and (6.41), we thus get (6.22).
Next we show the proof of (6.24) for R2. It follows from (6.15), (6.16) and

(6.17) that for any ε > 0 small enough, there exists N0 > 0 such that for all
n > N0 we have that for all |s| ≤ εn

sup
x∈M

∣∣∣∣∣c− Ef̂(ζx(s))

σn(ζx(s))
− −s‖∇f(x)‖ − βh(x)

sn

∣∣∣∣∣
≤ sup

x∈M

∣∣∣∣∣c− Ef̂(ζx(s))

σn(ζx(s))
− c− Ef̂(ζx(s))

sn

∣∣∣∣∣
+

∣∣∣∣∣c− Ef̂(ζx(s))

sn
− −s‖∇f(x)‖ − βh(x)

sn

∣∣∣∣∣
≤ε2

(
‖h‖ν
sn

+
|s|
sn

)
.

Hence for large n, by possibly decreasing ε and increasing η3 in (6.4) we have

D+
n (s, x) :=

∣∣∣∣∣Φ
(
c− Ef̂(ζx(s))

σn(ζx(s))

)
− Φ

(
−s‖∇f(x)‖ − βh(x)

sn

)∣∣∣∣∣
≤
{
1 if 0 ≤ s ≤ εsn−βh(x)

‖∇f(x)‖

ε2
(

‖h‖ν

sn
+ |s|

sn

)
φ
(

s‖∇f(x)‖+βh(x)
2sn

)
if εsn−βh(x)

‖∇f(x)‖ < s ≤ εn
,
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and similarly

D−
n (s, x) :=

∣∣∣∣∣Φ
(
−c− Ef̂(ζx(s))

σn(ζx(s))

)
− Φ

(
s‖∇f(x)‖+ βh(x)

sn

)∣∣∣∣∣
≤
{
1 if 0 ≥ s ≥ −εsn−βh(x)

‖∇f(x)‖

ε2
(

‖h‖ν

sn
+ |s|

sn

)
φ
(

s‖∇f(x)‖+βh(x)
2sn

)
if −εsn−βh(x)

‖∇f(x)‖ > s ≥ −εn
.

Therefore

|R2| ≤
∫
M

g(p)(x)

[∫ 0

−εn

D−
n (s, x)|s|pds+

∫ εn

0

D+
n (s, x)|s|pds

]
dH(x)

≤R21 +R22, (6.42)

where

R21 =

∫
M

g(p)(x)

∫ εsn−βh(x)

‖∇f(x)‖

−εsn−βh(x)

‖∇f(x)‖

|s|pdsdH(x),

and

R22 =ε2
∫
M

g(p)(x)

∫ ∞

−∞

(
‖h‖ν
sn

+
|s|
sn

)
φ

(
s‖∇f(x)‖+ βh(x)

2sn

)
|s|pdsdH(x).

Using the variable transformation v = [s‖∇f(x)‖+ βh(x)]/sn, we get

R21 =sn

∫
M

g(p)(x)

∫ ε

−ε

|snv − βh(x)|p
‖∇f(x)‖p+1

dvdH(x)

≤
p∑

j=0

(
p

j

)
sj+1
n

∫
M

g(p)(x)|βh(x)|p−j

∫ ε

−ε

|v|j
‖∇f(x)‖p+1

dvdH(x)

=

p∑
j=0

2

j + 1

(
p

j

)
sj+1
n εj+1

∫
M

g(p)(x)|βh(x)|p−j

‖∇f(x)‖p+1
dH(x)

≤εC7

[
(‖h‖ν)p+1 + sp+1

n

]
, (6.43)

for some C7 > 0. Using the variable transformation v = [s‖∇f(x)‖+ βh(x)]/sn
again, we have

R22 =ε2sn

∫
M

g(p)(x)

∫ ∞

−∞

(
‖h‖ν +

|snv − βh(x)|
‖∇f(x)‖

)
× φ

(v
2

) |snv − βh(x)|p
‖∇f(x)‖p+1

dvdH(x)
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≤ε2
p∑

j=0

(
p

j

)
sj+1
n

∫
M

g(p)(x)
|βh(x)|p−j

‖∇f(x)‖p+1

∫ ∞

−∞

(
‖h‖ν +

sn|v|+ |βh(x)|
‖∇f(x)‖

)
× φ

(v
2

)
|v|jdvdH(x)

≤ε2C8

[
(‖h‖ν)p+2 + sp+2

n

]
, (6.44)

for some C8 > 0. Then (6.24) immediately follows from (6.42), (6.43) and (6.44).
Next we show the proof of (6.26) for R3. Note that εn/sn → ∞ as n → ∞ and

supx∈M |βh(x)| ≤ C9εn for some positive constant C9. When n is large enough,

|R3| =sp+1
n

∫
M

g(p)(x)

∫ −εn/sn

−∞
Φ

(
u‖∇f(x)‖+ βh(x)

sn

)
|u|pdudH(x)

+ sp+1
n

∫
M

g(p)(x)

∫ ∞

εn/sn

Φ

(
−u‖∇f(x)‖ − βh(x)

sn

)
|u|pdudH(x)

≤2sp+1
n

∫
M

g(p)(x)

∫ −εn/sn

−∞
Φ [u(‖∇f(x)‖+ C9)] |u|pdudH(x)

=o(sp+1
n ).

Hence (6.26) is proved and here we conclude the proof.

Proof of Proposition 3.1.
An application of Proposition A.1 in Cadre (2006) (see Lemma A.1 in the

appendix) leads to∫
I(δ)

|f̂(x)− f(x)|2dx =

∫ c+δ/2

c−δ/2

∫
f−1(τ)

|f̂(x)− f(x)|2
‖∇f(x)‖ dH(x)dτ,

for small δ > 0. Using the Lebesgue–Besicovitch theorem (cf. Evans and Gariepy
1992, Theorem 1, Chapter I), we obtain

lim
δ↘0

1

δ
E

∫
I(δ)

|f̂(x)− f(x)|2dx = E

∫
M

|f̂(x)− f(x)|2
‖∇f(x)‖ dH(x). (6.45)

Then the assertion follows from Theorem 3.2, where we take p = 1 and g(p)(x) =
cr‖∇f(x)‖ when g(x) = f(x)r|f(x)− c|. See Remark 3.1 b)(ii).

Proof of Theorem 3.3.
Following simple algebra, we have for any w > 0,

Q(u;M, a, ν) = a2ν/(d+2ν)wd/(d+2ν)Q(a−ν/(d+2ν)wν/(d+2ν)u;w−1M, 1, ν),

and correspondingly,

u(M, a, ν) = aν/(d+2ν)w−ν/(d+2ν)u(w−1M, 1, ν).

The expression of the minimizer in (3.21) then follows by noticing (3.20) with
u = hν , w = κ2

ν , M = κ2
νA(f) and a = n−1cb(f)‖K‖22.
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We continue to use the above notation in what follows. The argument of the
uniqueness of the minimizer uses similar ideas in the proof of Theorem 6 in Yang
and Tschernig (1999), which we describe below. When d = 1, for positive u,

∇2Q(u;M, a, ν) =
2

(ν!)2
M+

a(ν + 1)

ν2
u−2−1/ν > 0. (6.46)

When d ≥ 2, the Hessian of Q(u;M, a, ν) w.r.t. u is given by

∇2Q(u;M, a, ν)

=
2

(ν!)2
M+

a

ν2(u1u2 · · ·ud)1/ν

⎛⎜⎜⎜⎝
(ν + 1)u−2

1 (u1u2)
−1 · · · (u1ud)

−1

(u1u2)
−1 (ν + 1)u−2

2 · · · (u2ud)
−1

...
...

. . .
...

(u1ud)
−1 (u2ud)

−1 · · · (ν + 1)u−2
d

⎞⎟⎟⎟⎠ ,

(6.47)

which is positive definite for u ∈ R̄
d
+ under assumption (F2). Therefore by

(3.20), m̃(h) is a strictly convex function of hν for h ∈ R̄
d
+, which implies that

there is at most one minimizer of m̃(h) in R̄
d
+. Also notice that m̃(h) tends

to infinity if either ‖h‖ → ∞ or ‖h‖ → 0. This shows that m̃(h) is uniquely

minimized by h̃opt.
The result (3.22) follows a standard argument as given in Hall and Marron

(1987). We only sketch the proof here. By Fubini’s theorem, we have from (3.16)
that

m(h) =

∫
M

E|f̂(x)− f(x)|2
‖∇f(x)‖2 dH(x) =

∫
M

Var(f̂(x)) + |Ef̂(x)− f(x)|2
‖∇f(x)‖2 dH(x).

Under the assumption that f has bounded and continuous (ν+2) times deriva-

tives and
∫
R
|uν+2K̃(u)|du < ∞, we can extend the expansions in (3.5) and (3.6)

to the following:

Ef̂(x)− f(x) = βh(x) +
1

(ν + 2)!
κν+2

d∑
k=1

hν+2
k f(k∗(ν+2))(x) + o(‖h‖ν+2),

Var(f̂(x)) = s2n +
1

nh1 · · ·hd

(
1

2
α(K)

d∑
k=1

h2
kf(k∗2)(x) + o(‖h‖2)

)

− 1

n

(
f(x) +

1

ν!
kν

d∑
k=1

hν
kf(k∗ν)(x) + o(‖h‖ν)

)2

,

where κν+2 =
∫
R
uν+2K̃(u)du and α(K) =

∫
Rd u

2
1K(u)2du < ∞. Then we can

obtain the following results:

m(h) = m̃(h) +O

(
1

n‖h‖d−2
+ ‖h‖2ν+2

)
,
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∇m(h) = ∇m̃(h) +O

(
1

n‖h‖d−1
+ ‖h‖2ν+1

)
,

∇2m(h) = ∇2m̃(h) +O

(
1

n‖h‖d + ‖h‖2ν
)
,

and ∇2m̃(h) = O

(
1

n‖h‖d+2
+ ‖h‖2ν−2

)
. (6.48)

Using Taylor expansion, we have

0 = ∇m(hopt) = ∇m(h̃opt) +

[∫ 1

0

∇2m(s hopt + (1− s) h̃opt)ds

]
(hopt − h̃opt),

which implies

hopt − h̃opt =
[
∇2m̃(h̃opt)

]−1 [
∇m̃(h̃opt)−∇m(h̃opt)

]
(1 + o(1)),

since ∇m̃(h̃opt) = 0 and ∇2m̃(h̃opt) is a nonzero scalar when d = 1 by (6.46), or
a nonsingular matrix when d ≥ 2 by (6.47). Then immediately we have (3.22)
and (3.23) by using (6.48).

Proof of Theorem 3.4.
By noticing (6.2) and (6.3), we have that with probability one N̂ = N for

n sufficiently large (also see Theorem 3.1 in Biau et al., 2007). Hence we do

not distinguish between N̂ and N in what follows. Without loss of generality,
we assume that x1 < · · · < xN and x̂1 < · · · < x̂N . Denote the kernel density
estimation using bandwidth h(k) by f̂k(x), k = 0, 1, 2. Also for � = 0, 1, 2, · · · ,
denote the �th derivative of a function g on R by g(�) if it exists, including the
convention g(0) ≡ g.

Under assumption (F1), there exists b0 > 0 such that |f ′(x)| > ε0 for x ∈⋃N
i=1[xi− b0, xi+ b0]. By assuming f has bounded continuous fourth derivatives

and K has bounded continuous third derivatives of bounded variation, it follows
from Lemmas 2 and 3 in Arias-Castro et al. (2016) that for f̂ using bandwidth
h > 0 and for � = 0, 1, 2, and 3,

sup
x∈[xi−b0,xi+b0]

|Ef̂ (�)(x)− f (�)(x)| = O
(
hmin(4−�,2)

)
, (6.49)

sup
x∈[xi−b0,xi+b0]

|f̂ (�)(x)− Ef̂ (�)(x)| = O

(√
logn

nh1+2�

)
, a.s. (6.50)

Due to the uniform consistency result for f̂0 shown in (6.1), (6.2) and (6.3), with
probability one x̂i ∈ [xi − b0, xi + b0], for i = 1, · · · , N , for n large enough. Let

gn(x) = f̂0(x)− f(x). For i = 1, · · · , N , we have

gn(xi) = Op((nh
(0))−1/2 + (h(0))2) = Op(n

−2/5). (6.51)



340 W. Qiao

Since f̂0(x̂i) = f(xi) = c, we have

gn(x̂i) = f̂0(x̂i)− f(x̂i) = f(xi)− f(x̂i) = f ′(x̃i)(xi − x̂i),

where x̃i is between xi and x̂i by using the Taylor expansion. Note that x̃i ∈
[xi − b0, xi + b0], which implies that |f ′(x̃i)| > ε0 and yields

|xi − x̂i| ≤
1

ε0
|gn(x̂i)|. (6.52)

Another Taylor expansion for gn(x̂i) leads to

gn(x̂i)− gn(xi) = g′n(x̌i)(x̂i − xi), (6.53)

where x̌i is between x̂i and xi and

|g′n(x̌i)| ≤ sup
x∈[xi−b0,xi+b0]

|g′n(x)| = Op

(√
logn

n(h(0))3
+ (h(0))2

)
= op(1), (6.54)

by using (6.49) and (6.50). Then it follows from (6.51), (6.52), (6.53) and (6.54)
that

|x̂i − xi| ≤
1

ε0
[|gn(xi)|+ |gn(x̂i)− gn(xi)|] = Op(n

−2/5). (6.55)

Consequently, with sn(x) := f̂ ′′
2 (x)− f ′′(x), using (6.49) and (6.50) we have

|sn(x̂i)− sn(xi)| ≤ |s′n(x̆i)| |(x̂i − xi)| = op(n
−2/5), (6.56)

where x̆i is between x̂i and xi. With the choice h(2) = O(n−1/9),

f̂ ′′
2 (x̂i)− f ′′(xi)

=[sn(x̂i)− sn(xi)] + sn(xi) + [f ′′(x̂i)− f ′′(xi)] = Op(n
−2/9).

Similarly, we have f̂ ′
1(x̂i)− f ′(xi) = Op(n

−2/7). We then have

N∑
i=1

[f̂ ′′
2 (x̂i)]

2|f̂ ′
1(x̂i)|−1 −

N∑
i=1

[f ′′(xi)]
2|f ′(xi)|−1 = Op(n

−2/9),

and

N∑
i=1

|f̂ ′
1(x̂i)|−1 −

N∑
i=1

|f ′(xi)|−1 = Op(n
−2/7).

As a result, for C and Ĉ given in (3.26) and (3.30), we have

Ĉ

C
− 1 = Op(h

−2/9).

and correspondingly we get (3.31) and (3.32).

Appendix

In this appendix, we collect some known results that are used in the proofs.
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Lemma A.1 (Proposition A.1. in Cadre (2006)). Let φ : Rd �→ R+ be a contin-
uously differentiable function such that φ(x) → 0 as ‖x‖ → ∞, and J ⊂ R+ be
an interval such that inf J > 0 and infφ−1(J) ‖∇φ‖ > 0. Then, for all bounded

Borel function g : Rd �→ R:∫
φ−1(J)

gdλ =

∫
J

∫
φ−1({s})

g

‖∇φ‖dHds.

Lemma A.2 (Lemma 1 in Horváth (1991)). Let Y, Y1, · · · , Yn be i.i.d random
vectors with EY = μ, var(Y ) = σ2. If E(Y )p+2 < ∞, then there is a constant
C = C(p) such that for any w ∈ R,∣∣∣∣∣E

∣∣∣∣∣
n∑

i=1

(Yi − μ) + n1/2σw

∣∣∣∣∣
p

− np/2σp
E|Z + w|p

∣∣∣∣∣
≤C(1 + |w|p−1)

[
n(p−1)/2σp−3

E|Y − μ|3 + σ−2
E|Y − μ|p+2

]
,

where Z is a standard normal random variable.
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