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Abstract: We study the convergence behavior of the Expectation Max-
imization (EM) algorithm on Gaussian mixture models with an arbitrary
number of mixture components and mixing weights. We show that as long
as the means of the components are separated by at least Ω(

√
min{M,d}),

where M is the number of components and d is the dimension, the EM
algorithm converges locally to the global optimum of the log-likelihood.
Further, we show that the convergence rate is linear and characterize the
size of the basin of attraction to the global optimum.
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1. Introduction

The EM algorithm [12] is an instrumental tool for evaluating the maximum like-
lihood estimator of latent variable models. It is a Majorization-Minimization
(MM) algorithm that minimizes a surrogate objective function to avoid eval-
uating the intractable marginal (negative) log-likelihood of the latent variable
model. However, as is shown by Wu [29] and Tseng [25], the EM algorithm
may not converge to a global minimizer of the log-likelihood. Instead, it may
converge to a local minimizer or a stationary point. For a method that aims to
evaluate the MLE, this is somewhat disappointing.

There is an recent line of research that shows the EM algorithm initialized in
a neighborhood of the data generating parameters converges to the global mini-
mizer. Unfortunately, this line of work does not encompass the EM algorithm for
fitting mixtures of more than two Gaussians. Assuming the mixture weights are
known, this paper fills this gap in the literature by providing conditions under
which the EM algorithm for fitting Gaussian mixture models with an arbitrary
number of well-separated components and arbitrary mixing weights converges
to the global minimizer. We show that the EM algorithm converges linearly as
long as it is initialized in a neighborhood of the true centers. Our results are of
the same flavor as those by Yan, Yin and Sarkar [31] and Balakrishnan, Wain-
wright and Yu [3], and our proofs follow the same general route. Importantly,
we also consider the ideal case where the mixing weights and the covariance
structure are known.
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This paper is organized as follows. The rest of this section briefly reviews
related work on the EM algorithm. Section 2 describes the EM algorithm for
fitting mixtures of Gaussians and introduces a population version of the al-
gorithm that appears in our study. Section 3 states our main results on the
convergence of EM. In Section 4, we present simulation results that validate
some of our theoretical results. In Section 5, we prove the main results. Finally,
in Section 6, we discuss our results and compare them to similar results in the
literature.

1.1. Related work

Most closely related to our work is the line of work on the convergence of the
EM algorithm for fitting Gaussian mixture models (GMM). On a mixture of
two equally-weighted Gaussians, Balakrishnan, Wainwright and Yu [3] first de-
rived statistical convergence results by specializing the general framework they
proposed to this model. Their framework also applies to a variant of the EM
algorithm known as gradient EM, and they used their framework to obtain
similar results for gradient EM. Klusowski and Brinda [20] later obtained re-
sults of a similar flavor, but showed that there is a larger neighborhood of the
true centers within which the EM algorithm converges. Finally, Xu, Hsu and
Maleki [30] and Daskalakis, Tzamos and Zampetakis [11] completely character-
ized the global convergence behavior of the EM algoritm for fitting two equally
weighted Gaussians. When there are more than two components, a result by
Jin et al. [17] showed that bad local minima exists even in the idealized case of
equally weighted mixtures of well-separated spherical Gaussians. Yan, Yin and
Sarkar [31] proved local convergence results for the gradient EM algorithm for
fitting mixtures of an arbitrary number of well-separated spherical Gaussians.
Despite the recent progress, we are not aware of any results that characterize
the local convergence behavior of the EM algorithm on mixtures of two or more
Gaussians. In high dimension regime, Dasgupta and Schulman [10] outlines a
variant of EM that outputs an estimate that is sufficiently close to the cen-
ter after merely two iterations. But their result does not fully characterize the
convergence behaviour of general EM iterations. For other variants of the EM
algorithm for fitting high-dimensional mixture models, we refer readers to Cai,
Ma and Zhang [6], Wang et al. [28], Yi and Caramanis [32].

There is also a large body of work on other methods for learning mixtures
of Gaussians and, more generally, finite mixtures. One major line of work [9,
26, 1, 2, 19, 5] is based on dimension reduction techniques (such as spectral
embeddings). Like the EM algorithm, these methods require the centers of the
mixture components to be well-separated. Another more recent line of work
[4, 18, 23, 16, 14] employs the method-of-moments, and allows the centers of
the mixture components to be arbitrarily close (as long as the sample size is large
enough). Some other important algorithms and theoretical work are Brubaker
and Vempala [5], Chaudhuri and Rao [7], Chaudhuri et al. [8], Lu and Zhou [21].
For statistical properties such as the rate of convergence of the MLE or the rate
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of convergence of the estimated mixing distribution, we refer readers to Ghosal
and van der Vaart [13], Nguyen [24], Heinrich and Kahn [15] and the references
therein.

2. The EM algorithm on Gaussian mixture models

We consider Gaussian mixture models with known mixture weights and known
common covariance structure. Formally, suppose there areM isotropic Gaussian
distributions, N (μ∗

1, Id), . . . ,N (μ∗
M , Id), and mixture weights, π1, . . . , πM ≥ 0.

The Gaussian mixture model we consider is the set of densities

{p(x;μ∗) =
∑M

i=1 πiφ(x− μ∗
i ) : μ

∗ =
[
(μ∗

1)
T , . . . , (μ∗

M )T
]T ∈ R

Md}, (1)

where φ(z) = 1
(2π)d/2

e−
1
2‖z‖

2
2 is the standard Gaussian density in R

d. The as-

sumption that the components are isotropic leads to no loss of generality as
long as (i) the mixture components share a common covariance structure and
(ii) this structure is known. Without loss of generality, we also assume mixture
is centered; i.e. it has mean zero. The task of fitting (1) boils down to estimating
the cluster centers μ∗ from observations

X1, . . . , Xn
iid∼ p(·;μ∗).

The EM algorithm for fitting a Gaussian mixture model alternates between
evaluating the posterior probabilities (E-step) of the labels and updating the
estimates of the parameters (M-step). In the simple situation that we consider,
both the mixture weights and the covariance matrix are known. The EM al-
gorithm then only updates the vector μ iteratively. Combining the E-step and
M-step gives the update rule

μ+
i ←

∑n
j=1 wi(Xj ;μ)Xj∑n
j=1 wi(Xj ;μ)

, i = 1, . . . ,M, (2)

where the weights wi(Xj ;μ) are defined as

wi(x;μ) :=
πiφ(x;μi)∑M

k=1 πkφ(x;μk)
. (3)

We see that wi(X;μ) is the probability that X comes from component i and μ+
i

is a weighted average of samples, where the weights are the wi(Xj ;μ)’s. For this
reason, the EM algorithm is known as a soft version of the K-means algorithm.

In our analysis, we work with a population version of the EM algorithm. Its
update rule is:

μ+
i ← E[wi(X;μ)X]

Ewi(X;μ)
=

∫
Rd wi(x;μ)xp(x;μ

∗)dx∫
Rd wi(x;μ)p(x;μ∗)dx

, i = 1, . . . ,M. (4)
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We emphasize that the expectations in (4) are with respect to the true data
generating process. We will first derive convergence results for this population
version of the EM algorithm and then extend this result to (the sample-version
of) the EM algorithm using concentration results.

Notation: We define some the notations in this paper. Let Rmax, Rmin be
the largest and smallest distances between the centers of any pair of mixture
components:

Rmax = max
i �=j

‖μ∗
i − μ∗

j‖2,

Rmin = min
i �=j

‖μ∗
i − μ∗

j‖2.
(5)

Define κ as the smallest mixture weight: κ = min{π1, . . . , πM}. Given two pos-
itive sequences {an}, {bn}, an = O(bn) means there exists an absolute constant
C such that an ≤ Cbn for all n; an = Ω(bn) there exists an absolute con-
stant C such that an ≥ Cbn for all n. We write an = Θ(bn) if an = O(bn)
and an = Ω(bn); we write an = o(bn) if an

bn
→ 0 as n → ∞. Table 1 below

summarizes some useful notations that appears in the main text of this paper.

Table 1

Summary of all notations.

Notation Explanation
d Dimension of the observations.
n Sample size.
M Number of mixture components.
[M ] The index set {1, 2, . . . ,M}.
(a)+ max{0, a}.

X1, . . . , Xn Observations in R
d.

μ∗ The collection of all M true centers.
μ+ Population level EM update in (4).
μ0 The initial iterate in the sample level EM update.

{μt}∞t=1 A sequence of sample level EM updates in (2).
μ̂ MLE based on the observations X1, . . . , Xn.

π1, . . . , πM Known mixture weights.
κ The smallest mixing weights as min{π1, . . . , πM}.

w1(X,μ), . . . , wM (X,μ) Stochastic weights in the EM update rule, defined in (3).
ζ The contraction coefficient in Theorem 3.1

Rmax, Rmin The largest/smallest distance between centers as in (5).
‖·‖ The �-2 norm of a vector.

‖·‖op The operator norm of a square matrix.
B(x, r) The euclidean ball centers at x with radius r.

⊗ The cartesian product of sets.
C0, C1, C2, C3 Universal constants.

3. Statement of the main results

In this section, we state our main results for the convergence of the EM algorithm
on Gaussian mixture models. First, we show that the population version of the
EM algorithm converges linearly to μ∗ as long as (i) certain signal strength
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conditions are met and (ii) the algorithm is initialized in a neighborhood of μ∗.
We also characterize the size of this neighborhood in terms of the properties of
the data generating process.

Theorem 3.1. Suppose Rmin ≥ 30min{2M,d} 1
2 and radius a satisfies

a ≤ 1

2
Rmin −min{d, 2M} 1

2 max{4
√
2[log(Rmin

4 )]
1
2
+, 8

√
3, 8 log( 4κ )}. (6)

Then for any iterate μ satisfying maxi∈[M ] ‖μi −μ∗
i ‖2 ≤ a, the next iterate μ+

given by (4) satisfies

max
i∈[M ]

‖μ+
i − μ∗

i ‖2 ≤ ζ max
i∈[M ]

‖μi − μ∗
i ‖2,

where

ζ =
3M

κ2
(2Rmax +min{2M,d})2exp(−1

8 (
1
2Rmin − a)min{d, 2M} 1

2 ). (7)

We remark that Theorem 3.1 does not imply cluster-wise convergence; i.e.
Theorem 3.1 does not imply

‖μ+
i − μ∗

i ‖2 ≤ ζ‖μi − μ∗
i ‖2 for all i ∈ [M ].

This is hardly surprising. If we initialize the EM algorithm at

[
(μ∗

1)
T ,μT

2 , . . . ,μ
T
M

]T
,

where μ2, . . . ,μM are arbitrary points in R
d, there is no guarantee that μ+

1

remains at μ∗
1.

Recall the mixture components are isotropic, so Rmin is the signal strength.
Theorem 3.1 requires the signal strength to grow as Ω(min{M,d} 1

2 ). Theorem
3.1 also shows that the contraction coefficient ζ is decreasing in Rmin and κ.
It also shows that the contraction radius a approaches 1

2Rmin as Rmin goes to
infinity. This contraction radius is essentially optimal because there are examples
of the EM algorithm converging to non-global local minima if ‖μi − μ∗

i ‖ =
1
2Rmin. For example, consider the task of fitting a mixture of two Gaussians. If
we initialize the EM algorithm at

[
1
2 (μ

∗
1 + μ∗

2)
T , 1

2 (μ
∗
1 + μ∗

2)
T
]T

,

the algorithm will never separate the centers and converges to a stationary
point with identical estimates of the two centers. It is not clear whether the
min{d, 2M} 1

2 term in (6) is optimal. We suspect not, because in the experi-
ments we run, we have never seen EM fail to converge to the truth when the
initializer satisfies max ‖μi − μ∗

i ‖2 < Rmin/2. The improved dependence of the
contraction radius on min{d, 2M} instead of d is intuitive. Informally, if d > 2M ,
the components of the noise orthogonal to the subspace spanned by the centers
and estimated centers cancel out when expectation is taken, which reduces the
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effective dimension of the problem from d to min{d, 2M}. The details are in the
proof of Theorem 3.1. We remark that this improvement is not present in studies
of the convergence of the EM algorithm that does not go through a population
level analysis (cf. the result of Dasgupta and Schulman [10]).

Here we lay out a technical comparision of our result with Dasgupta and
Schulman [10], where they characterize the behavior of the first two rounds
of EM. When the dimension d is high, the first iteration brings the randomly
initiated centers into our convergent radius (6). The result regarding the next
iteration is in a similar flavor of ours. When d � M , they show the estimation
error is already exponentially small in d after the second iteration [10, Theorem
17], which requires the minimal separation to grow with the dimension, i.e.

Rmin ≈ d
1
2 → ∞. Under the same condition, our characterization of ζ in (7)

only reveals an error exponentially small in d
1
2 . However, our focus is to show

that EM can work well even when Rmin ≈ M
1
2 . Replacing min{d, 2M} 1

2 by d
in the proof of Theorem 3.1 characterizes a convergence behaviour comparable
to Dasgupta and Schulman [10].

In the statement of Theorem 3.1, there is no provision that ζ < 1. Rearranging
ζ < 1 leads to additional constraints on the convergent radius a, which leads
to a tighter bound. Removing the redundant constraints gives Corollary 3.2. It
is easier to parse but obscures the dependency of the contraction coefficient on
the data generating process. Specifically, the additional term Rmax dominates
the logarithm term of Rmin in (6). We relegate the details to Section 5.

Corollary 3.2. As long as Rmin ≥ C0 min{d,M} 1
2 and

max
i∈[M ]

‖μi − μ∗
i ‖2 ≤ 1

2
Rmin − C1 min{d,M} 1

2 log(max{M
κ2 , Rmax,min{d,M}}) 1

2 ,

where C0, C1 > 0 are universal constants, we have

max
i∈[M ]

‖μ+
i − μ∗

i ‖2 ≤ 1

2
max
i∈[M ]

‖μi − μ∗
i ‖2. (8)

Second, we carry out a perturbation analysis to extend Corollary 3.2 to (the
sample version of) the EM algorithm. At a high level, our result states that
the iterates of the EM algorithm converge linearly to μ∗ up to the statistical
precision of the estimation task. Our proof hinges on the idea in Mei, Bai and
Montanari [22] for proving concentration results. They the uniform convergence
for general non-convex loss function and its gradient. We take the same path
to show the sample update rule (4) converges to its population counterpart (2)
uniformly. Compared to the proof of an analogous result for the gradient EM
algorithm by Yan, Yin and Sarkar [31], our proof is considerably simpler.

Theorem 3.3. Suppose Rmin ≥ C0min{d,M}
1
2 and the initial iterate μ0 sat-

isfies

max
i∈[M ]

‖μ0
i − μ∗

i ‖2 ≤ 1

2
Rmin − C1 min{d,M} 1

2 log(max{M
κ2 , Rmax,min{d,M}}) 1

2 ,

(9)
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where C0, C1 > 0 are universal constants. As long as the sample size n is large
enough so that

log n

n
≤ min

{
κ2

144C̃2Md
,
κ2 maxi∈[M ] ‖μ0

i − μ∗
i ‖22

9C̃3R2
maxMd

}
, (10)

where C2, C3 > 0 are universal constants and C̃2 = C2 log(M(2Rmax +
√
d)),

C̃3 = C3 log(M(3R2
max + d)), the subsequent EM iterates {μt}∞t=1 given by (2)

satisfy

max
i∈[M ]

‖μt
i − μ∗

i ‖2 ≤ 1

2t
max
i∈[M ]

‖μ0
i − μ∗

i ‖2 + 3Rmax

κ ( C̃3Md logn
n )

1
2 (11)

with probability at least 1− 2M
n .

We see that the first term on the right side of (11) converges to zero linearly
while the second term does not depend on t. Initially, the first term on the right
side dominates the second term and the right side decreases linearly. However,
after sufficiently many iterations, the second term on the right side dominates
the first term, and the right side settles down to a limit that is O((Md

κ2n )
1
2 ) (mod-

ulo constant and logarithmic factors). We recognize this limit as the statistical
precision.

Convergence to the maximum likelihood estimator. We remark that
Theorem 3.3 implies EM converges to a stationary point within a ball of ra-
dius O((Md

κ2n )
1
2 ) of the true centers. It is known that the maximum likelihood

estimator (MLE) falls inside this ball with high probability. As long as there
are no other stationary points in this ball, Theorem 3.3 implies EM converges
to the MLE. This is a consequence of the gradient stability result by Yan, Yin
and Sarkar [31], which implies μ∗ is the only stationary point of the expected
log-likelihood function in ⊗i(μ

∗
i , a), and concentration results by Mei, Bai and

Montanari [22], which imply the log-likelihood function only has one stationary
point in ⊗i(μ

∗
i , a).

4. Simulation results

This section presents numerical results to demonstrate the local-convergence
behaviour of the EM. First we operate under our analytical framework, where
the mixture weights and variances are both known. Then we investigate the case
when the mixture weights and variances are unknown and updated via EM.
Though lacking theoretical understanding, empirical evidences shows similar
convergence result.

4.1. Known mixture weights and variances

In this section, we assume the mixture weights πk’s are known, and the each
mixing component is isotropic with unit variance. In the first set of experiments,
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Fig 1. Convergence of EM on the mixture of M = 5 Gaussians in R
10. Left column shows the

statistical error and optimization error for ten trials. Right column shows average statistical
error over ten trials under different SNR (SNR is Rmin). While top row has balanced cluster
weights, bottom row does not.

we empirically verify the prediction of Theorem 3.1 that the statistical error
decreases linearly initially and eventually reaches a plateau. The data generating
process is a mixture of M = 5 isotropic Gaussians in R

10 with one mixture
component centered at the origin and the remaining four centers at the vertices
of RminΔ

9, where Δ9 is the probability simplex in R
10, so Rmax

Rmin
=

√
2. The

components are equally weighted (πi =
1
5 ).

The top left panel of Figure 1 shows the decrease of the optimization error
maxi ‖μ̂i − μt

i‖2 and statistical error maxi ‖μ∗
i − μt

i‖2 over 10 runs of the EM
algorithm. Here μ̂ is the MLE at which EM converges. We set Rmin = 2 and
generate n = 8000 samples from the Gaussian mixture model. We initialize the
EM algorithm at [

(μ∗
1 + δ1)

T , . . . , (μ∗
M + δM )T

]T
,

where δi is uniformly distributed on the sphere of radius 0.4 · Rmin. We see
that the statistical error decreases linearly initially and reaches a plateau after
merely 4–5 iterations. This agrees with the implications of Theorem 3.3. The
top right panel of Figure 1 shows the average log statistical errors over 10 trails
as Rmin varies. We see that larger Rmin values lead to faster convergence, which
agrees with the implications of Theorem 3.1.
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Fig 2. Convergence of EM with unknown mixture weights among 10 independent trails. Left
panel initializes the mixture weights near the truth. Right panel uses extreme initializations
that are far from the truth.

The plots in the bottom panels are analogous to the plots above. We keep
all simulation parameters, except we change the mixture weights from uniform
to πi = i

15 , i ∈ [M ]. We see that non-uniform mixture weights hurt the per-
formance of the EM algorithm. Comparing the two plots on the left, we see
that non-uniform weights causes the algorithm to converge slower and reduces
the statistical precision of the output. The slower convergence agrees with the
implications of Theorem 3.1, which shows that the contraction coefficient is in-
versely proportional to the minimum mixture weight κ. The reduced statistical
precision is due to the fact that the centers of mixture components with smaller
weights are estimated less accurately. This is because the mixture components
with smaller weights have smaller effective sample sizes. We also see greater
variation across the ten runs of the algorithm.

4.2. Unknown mixture weights

In this section, we consider the scenario when the mixture weights are unknown
and updated via EM, while each component is still isotropic with known vari-
ance. We focus on the case with equal mixing weights. The underlying data gen-
erating process is identical to the one in Section 4.1 with equal mixing weights.
The mean vectors are initialized as in Section 4.1. For initializing the weights

π
(0)
i , we consider the following two methods:

(a) {π(0)
i : k = 1, . . . , 5} ∼ Dir(5, 5, 5, 5, 5),

(b) {π(0)
i : k = 1, . . . , 5} ∼ Dir(100, 1, 1, 1, 1),

where Dir() is the Dirichlet distribution. Method (a) initializes the weights that

are close to the truth: π
(0)
i will be centered at πi = 1/5 with a small variace.

Method (b) is an extreme initialization, in the sense that it places most weight
only to the first mixing component, which is wildly different from the truth.

Figure 2 shows the errors among 10 runs of EM algorithms, under initializa-
tions (a) and (b) respectively. We only present the error for estimating the mean
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Fig 3. Convergence of EM with unknown mixture weights and variances. Left panel shows
10 independent runs of EM. Right panel shows average statistical error over 30 trails under
different variances for the fifth component.

vectors. Two comments are in place. First, comparing with Figure 1.a, we find
the local-convergence phenomena persists with a similar statistical precision.
Though the unknown mixture weights does slows down the convergence. Sec-
ond, while the initialization Method (b) does jeopardize the rate of convergence,
even this ‘worst-case’ scenario does not fully destroy the convergence, as shown
on the right panel of Figure 2. The result seems to suggest the initialization of
weights can be quite arbitrary, provided that the centers are sufficiently close
to the truth.

4.3. Unknown mixture weights and variances

Now we consider the situation where both mixture weights and variances are
unknown and updated via EM. The ith mixing component is an isotropic Gaus-
sian distribution N (μ∗

i , σ
2
i Id), where σi could be different acorss i. The first

set of simulation shares the same data generating process with Section 4.1 with
equal mixing weights and variances. The left panel of Figure 3 shows the error
of center estimates among 10 runs of the EM. We initialize the EM as in Section
4.2, using Method (a) for the weights. The variances are initiated from

σ2
i (0) = σ2

i · Zi,

for each i = 1, . . . , 5. Here each Zi follows a chi-square distribution with df = 2.
We observe a similar local-convergence behaviour in line with Theorem 3.3: The
statistical error decreases linearly at first, eventually stabilizes at the statistical
precision. Comparing with Figure 1.a and 2.a, we can see that the unknown
variances further slow down the convergence of EM. Through more extensive
simulation studies, we find that the convergence of EM seem to hold if the initial
variances are reasonably close to the true variances.

In the next set of simulation, we vary σ5, the standard deviation of the fifth
mixing component, while keeping the other variances at 1. The right panel of
Figure 3 shows the average log-statistical errors over 30 independent trails for
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each value of σ5. We see a larger σ5 leads to slower convergence rate. When
σ5 ≥ 1, the phenomena agrees with Dasgupta and Schulman [10]. They show
the key factor dominating the convergence rate is the ratio of Rmin with σmax,
the maximum standard deviation among all mixing components. On the other
hand, the convergence becomes faster when σ5 goes below 1, although σmax

remains to be 1. Intuitively, a smaller σ5 allows for a more accurate estimate
for the fifth component. This component-specific benefit turns out to improve
the convergence rate for all other components in the end.

5. Proofs of the main results

We prove Theorem 3.1, 3.2, and 3.3 in this section, deferring the proofs of the
technical lemmas to the appendices.

5.1. Proof of Theorem 3.1

We make a few observations before proceeding to the proof. Without loss of
generality, we focus on the update rule for the first center μ1:

μ+
1 − μ∗

1 =
E
[
w1(X;μ)(X − μ∗

1)
]

E
[
w1(X;μ)

]
The vector of true centers μ∗ is a fixed point of (4), which implies

E
[
w1(X;μ∗)(X − μ∗

1)
]
= 0.

Thus

μ+
1 − μ∗

1 =
E
[(
w1(X;μ)− w1(X;μ∗)

)
(X − μ∗

1)
]

E
[
w1(X;μ)

] . (12)

In the first step of the proof, we establish an upper bound on the norm of the
numerator. In the second step, we establish a lower bound on the denominator
in (12). Finally, in the third step, we combine the upper and lower bounds to
show the EM update rule is a contraction.

Step 1 (upper bounding the numerator). Define μt := μ∗ + t(μ− μ∗)
and define gX(t) := w1(X;μt). We have

w1(X;μ)− w1(X;μ∗) =

∫ 1

0

g′X(t)dt =

∫ 1

0

∇μw1

(
x;μt
)T

(μt − μ∗)dt,

where

∇μw1(X;μ) =

⎡
⎢⎢⎢⎣
−w1(X;μ)(1− w1(X;μ))(μ1 −X)

w1(X;μ)w2(X;μ)(μ2 −X)
...

w1(X;μ)wM (X;μ)(μM −X)

⎤
⎥⎥⎥⎦ . (13)
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Let |·|op be the operator norm of a matrix. We thus have∥∥E[(w1(X;μ)− w1(X;μ∗))(X − μ∗
1)
]∥∥

2

=
∥∥∥ ∫ 1

0

E
[
w1(X;μt)(1− w1(X;μt))(X − μt

1)
T (μt

1 − μ∗
1)(X − μ∗

1)
]
dt

−
∑
i �=1

∫ 1
0
E
[
w1(X;μt)wi(X;μt)(X − μt

i)
T (μt

i − μ∗
i )(X − μ∗

1)
]
dt
∥∥∥
2

≤
∫ 1

0

∥∥E[w1(X;μt)(1− w1(X;μt))(X − μ∗
1)(X − μt

1)
T
]∥∥

op
‖μt

1 − μ∗
1‖2dt

+
∑
i �=1

∫ 1
0

∥∥E[w1(X;μt)wi(X;μt)(X − μ∗
1)(X − μt

i)
T
]∥∥

op
‖μt

i − μ∗
i ‖2dt

≤ V1‖μ1 − μ∗
1‖2 +

∑
i �=1

Vi‖μi − μ∗
i ‖2

≤ M(maxi Vi) ·max
i

‖μi − μ∗
i ‖2, (14)

where

V1 = sup
t∈[0,1]

∥∥E[w1(X;μt)(1− w1(X;μt))(X − μ∗
1)(X − μt

1)
T
]∥∥

op
, (15)

Vi = sup
t∈[0,1]

∥∥E[w1(X;μt)wi(X;μt)(X − μ∗
1)(X − μt

i)
T
]∥∥

op
. (16)

The rest of the first step consists of establishing bounds on the Vi’s. We state
the result here and defer the details to Appendix A.

Lemma 5.1. As long as Rmin ≥ 30min{d, 2M} 1
2 and

a ≤ 1

2
Rmin −min{d, 2M} 1

2 ·max{4
√
2[log(Rmin/4)]

1
2
+, 8

√
3}, (17)

then for any μ such that μi ∈ B(μ∗
i , a), i ∈ [M ], we have

max
i∈[M ]

Vi ≤
2

κ
(2Rmax +min{2M,d})2exp(−1

8 (
1
2Rmin − a)min{d, 2M} 1

2 ). (18)

Step 2 (lower bounding the denominator). We state the lower bound
and describe the underlying intuition, deferring the proof to the appendix. Let
Z be the label of X. We observe that

E
[
w1(X;μ∗)

]
= E
[
Pμ∗(Z = 1|X)

]
= π1 > κ.

As long as μ ≈ μ∗, E
[
w1(X;μ)

]
≈ E
[
w1(X;μ∗)

]
, so E

[
w1(X;μ)

]
cannot be

much smaller than κ.

Lemma 5.2. As long as Rmin ≥ 30min{M,d} 1
2 and

a ≤ 1

2
Rmin −min{M,d} 1

2 ·max{4
√
2[log(Rmin

4 )]
1
2
+, 8

√
3, 8 log( 4κ )}, (19)
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then for any μ such that μi ∈ B(μ∗
i , a), i ∈ [M ], we have

E
[
wi(X;μ)

]
≥ 3

4
κ, i ∈ [M ]. (20)

Step 3: We combine the bounds for maxi Vi and E
[
w1(X;μ)

]
to show that

the EM update rule is a contraction. Without loss of generality, we focus on the
update rule for the first cluster. By (12), (14), and Lemma 5.2, we have

‖μ+
1 − μ∗

1‖2 =
‖E[
(
w1(X;μ)− w1(X;μ∗)

)
(X − μ∗

1)]‖2
E
[
w1(X;μ)

]
≤ 4M

3κ
(maxi Vi)(maxi ‖μi − μ∗

i ‖2).
(21)

Plugging in (18), we have

‖μ+
1 − μ∗

1‖2 ≤8M

3κ2
(2Rmax +min{2M,d})2

· exp(−1
8 (

1
2Rmin − a)min{d, 2M} 1

2 )(max
i

‖μi − μ∗
i ‖2).

(22)

We recognize the factor in front of maxi ‖μi−μ∗
i ‖2 is smaller than the contrac-

tion factor ζ in Theorem 3.1. We can also check that (6) implies (17) and (19)
so the conditions of Lemmas 5.1 and 5.2 are satisfied. Putting the two parts
together, we see that Theorem 3.1 is correct.

5.2. Proof of Corollary 3.2

To prove Corollary 3.2, we start from (21) and solve for the contraction radius
a that implies ζ < 1

2 . It is enough to find α such that

M maxi Vi
2
3κ

≤ 1

2
.

By Lemma 5.1, the above condition is implied by

2

κ
(2Rmax +min{2M,d})2exp(−1

8 (
1
2Rmin − a)min{d, 2M} 1

2 ) ≤ κ

3M
.

Rearranging, we have

a ≤ 1

2
Rmin − 8

min{d, 2M} 1
2

log( 6M(2Rmax+min{2M,d})2
κ2 ). (23)

Finally, we check that there is a universal constant C1 such that

a ≤ 1

2
Rmin − C1 min{d, 2M} 1

2 log(max{M
κ2 , Rmax,min{2M,d}}) 1

2 ,

implies (17), (19), and (23).
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5.3. Proof of Theorem 3.3

The intuition underlying the proof of Theorem 3.3 is the population and sample
update rules ((2) and (4) respectively) are similar. In the proof, we appeal to the
following technical lemmas on the uniform convergence of 1

n

∑n
j=1 wi(Xj ;μ)×

(Xj − μ∗
1) and

1
n

∑n
j=1 wi(Xj ;μ) to their population counterparts.

Lemma 5.3. Define the event E1,i as

supμ∈U ‖ 1
n

∑n
j=1 wi(Xj ;μ)(Xj − μ∗

i )− E
[
wi(X;μ)(X − μ∗

i )
]
‖2

≥ 1.5Rmax(
C̃3Md logn

n )
1
2 ,

where U = ⊗M
i=1B(μ∗

i , 1.5Rmax), C3 is a universal constant, and

C̃3 = C3 log(M(3R2
max + d)).

We have P(E1,i) ≤ 1
n .

Lemma 5.4. Define the event

E2,i = supμ∈U | 1n
∑n

j=1 wi(Xj ,μ)− E
[
wi(X;μ)

]
| ≥ ( C̃2Md logn

n )
1
2 ,

where μ ∈ U = ⊗M
i=1B(μ∗

i , Rmax), C2 is a universal constant, and

C̃2 = C2 log(M(2Rmax +
√
d)).

We have P(E2,i) ≤ 1
n .

Proof of Theorem 3.3. On the event {∩i∈[M ]Ec
1,i} ∩ {∩i∈[M ]Ec

2,i}, we have

supμ∈U | 1n
∑n

j=1 wi(Xj ,μ)− E
[
wi(X;μ)

]
| ≤ ( C̃2Md logn

n )
1
2 ,

supμ∈U ‖ 1
n

∑n
j=1 wi(Xj ;μ)(Xj − μ∗

i )− E
[
wi(X;μ)(X − μ∗

i )
]
‖2

≤ 1.5Rmax(
C̃3Md log n

n
)

1
2

for all i ∈ [M ]. By Lemmas 5.3 and 5.4, this event occurs with probability at
least 1− 2M

n . The minimum sample size condition (10) implies

Rmax(
C̃3Md logn

n )
1
2 ≤ κ

3
max
i∈[M ]

‖μ0
i − μ∗

i ‖2, (24)

( C̃2Md logn
n )

1
2 ≤ κ

12
. (25)

The second inequality (25) in turn implies

supμ∈U | 1n
∑n

j=1 wi(Xj ,μ)− E
[
wi(X;μ)

]
| ≤ 1

12κ
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for all i ∈ [M ]. Let μ0 be the initial iterate. We have

‖μ1
i − μ∗

i ‖2 =
‖ 1
n

∑n
j=1 wi(Xj ;μ

0)(Xj − μ∗
i )‖2

1
n

∑n
j=1 wi(Xj ;μ0)

≤
‖Ewi(X;μ0)(X − μ∗

i )‖2 +Rmax(
C̃3Md logn

n )
1
2

E[wi(X;μ0)]− κ
12

(i)

≤
∥∥Ewi(X;μ0)(X − μ∗

i )
∥∥
2
+Rmax(

C̃3Md logn
n )

1
2

2κ
3

(ii)

≤ 1

2
max
i∈[M ]

∥∥μ0
i − μ∗

i

∥∥
2
+

3Rmax(C̃3Md log n
n )

1
2

2κ
, (26)

where we appealed to

E
[
wi(X;μ0)

]
≥ 3

4
κ,

‖E
[
wi(X;μ0)(X − μ∗

i )
]
‖2 ≤ κ

3
max
i∈[M ]

‖μ0
i − μ∗

i ‖2

in steps (i) and (ii). Both are intermediate results established in the proof of
Corollary 3.2. Finally, we have

∥∥μ1
i − μ∗

i

∥∥
2
≤ 1

2
max
i∈[M ]

∥∥μ0
i − μ∗

i

∥∥
2
+

3Rmax(C̃3Md log n
n )

1
2

2κ

≤ max
i∈[M ]

∥∥μ0
i − μ∗

i

∥∥
2
,

where the second step is a consequence of (24). This implies μ1 is also in the
contraction region. By applying (26) iteratively, we have

max
i∈[M ]

‖μt
i − μ∗

i ‖2 ≤ 1

2t
max
i∈[M ]

‖μ0
i − μ∗

i ‖2

+
(
1 +

1

2
+ . . .+

1

2t−1

)3Rmax(C̃3Md logn
n )

1
2

2κ
(27)

≤ 1

2t
max
i∈[M ]

‖μ0
i − μ∗

i ‖2 +
3Rmax(C̃3Md logn

n )
1
2

κ
. (28)

6. Summary and discussion

Initialization. We emphasize that our convergence results are local: they as-
sume the EM algorithm is initialized in a neighborhood of the true centers. To
obtain a such an initial iterate, we appeal to approaches based on the method of
moments, such as the method proposed by Hsu and Kakade [16]. These methods
are consistent, but its sample complexity is worse than that of the EM algo-
rithm. Under certain conditions on the true centers μ∗ (see [16, Theorem 3] the
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detailed conditions), the algorithm in Hsu and Kakade [16] gives estimates of
the center μ̂ that satisfy

‖μ̂i − μ∗
i ‖2 ≤ (‖μ∗

i ‖2 +
√

λmax(M2))ε with probability at least 1− δ,

where λmax(M2) is the largest eigenvalue of the matrix M2 �
∑M

i=1 wiμ
∗
i (μ

∗
i )

T .
By combining a spectral method with the EM algorithm, we have the best of
both: the combined estimator is both consistent and (asymptotically) efficient.

Minimum separation between centers. Theorems 3.1 and 3.3 require the
minimum separation between centers to grow as Ω(min{M,d} 1

2 ). Compared to
other methods for fitting mixtures of isotropic Gaussians, this dependence is sub-
optimal. For example, Vempala and Wang [26] showed that spectral clustering
can accurately recover the labels in a mixture of spherical Gaussians provided
that the minimum separation is at least Ω((M log d)

1
4 ). Some approaches based

on the method of moments are able to learn mixtures of Gaussians in which the
centers are arbitrarily close together (as long as the sample size is large enough).
However, the sample complexity of such methods are usually worse than that
of the EM algorithm.

If we restrict to studies of the EM algorithm and its variants (including
gradient EM and the K-means algorithm), our requirement on the minimum
separation between centers is optimal. Yan, Yin and Sarkar [31] imposes the
same condition in their study of the convergence of the gradient EM algorithm.
Lu and Zhou [21] requires the minimum separation to grow proportionally to
M in their study of the convergence of the K-means algorithm.

Contraction radius and convergence rate. This contraction radius in (6)
is optimal in the sense that it is approximately 1

2Rmin when Rmin is large and we
can find examples of the EM algorithm converging to non-global local minima
if ‖μi − μ∗

i ‖2 = 1
2Rmin (see the remarks after Theorem 3.1). By comparison,

the contraction radius for the gradient EM algorithm is very similar to (6) [31],

and the contraction radius for K-means is roughly 1
2Rmin−CM

3
4 [21, Theorem

6.2].

We show that the EM algorithm converges linearly up to statistical precision.
This agrees with our simulation results and previous studies on the convergence
of EM [3, 25]. We see that the convergence rate decreases as κ increases, which
agrees with the folklore that the EM algorithm converges slowly on imbalanced
mixture models.

Minimum sample size. In terms of minimum sample size, our result is

valid as long as n
logn ≥ C

MdR2
max

κ2R2
min

. Yan, Yin and Sarkar [31] established linear

convergence of the gradient EM algorithm as long as n ≥ C
M6R6

maxd

R2
min

and Lu

and Zhou [21] established linear convergence of the K-mean algorithm as long as
n

logn ≥ CM
κ2 . The variations in the minimum sample size are due to differences

in the concentration results that appear in the proofs. We believe it is possible
to avoid the logn factor and improve the dependence on Rmax

Rmin
in the minimum

sample size by refining the concentration results in our proofs.
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Appendix A

In appendix A, we prove Lemma 5.1 and 5.2.

A.1. Preliminaries

Before jumping into the proof, we need the following preliminary result, which
is Lemma 12 and 13 in Yan, Yin and Sarkar [31].

Lemma A.1. Suppose the minimum separation Rmin and radius a satisfy
Rmin ≥ 30

√
d and

a ≤ 1

2
Rmin −

√
dmax

(
4
√
2[log(Rmin/4)]+, 8

√
3
)
,

then for any μ such that μi ∈ B(μ∗
i , a), ∀i ∈ [M ], we have the following inequal-

ities for any p = 0, 1, 2 and any i �= j ∈ [M ]

Ewi(X;μ)(1− wi(X;μ))‖X − μi‖p2 ≤

2M
(3
2
Rmax + d

)p
exp

(
−
(1
2
Rmin − a

)√d

8

)
,

Ewi(X;μ)wj(X;μ)‖X − μi‖‖X − μj‖ ≤
2− κ

κ

(3
2
Rmax + d

)2
exp

(
−
(1
2
Rmin − a

)√d

8

)
.

A.2. Proof for Lemma 5.1

We start from bounding V1:

V1 ≤ sup
t∈[0,1]

∥∥Ew1(X;μt)(1− w1(X;μt))(X − μt
1)(X − μt

1)
T
∥∥
op

+ sup
t∈[0,1]

∥∥Ew1(X;μt)(1− w1(X;μt))(μ∗
1 − μt

1)(X − μt
1)

T
∥∥
op

≤ sup
t∈[0,1]

∥∥Ew1(X;μt)(1− w1(X;μt))(X − μt
1)(X − μt

1)
T
∥∥
op

+ a sup
t∈[0,1]

∥∥Ew1(X;μt)(1− w1(X;μt))(X − μt
1)

T
∥∥
2
, (29)

where a is the radius of the contraction region ⊗iB(μ∗
i , a). For any t ∈ [0, 1],

there exists a rotation matrix Γ, such that all Γμt
i,Γμ

∗
i , i ∈ [M ] have zero

entries in the last [d − 2M ]+ coordinates. Assume d > 2M for now, because
this is the case where the rotation can yield a tighter bound. If d ≤ 2M , this
rotation is unhelpful but innocuous, and we can derive the same results without
much modification.

Let X̃ = ΓX, then X̃|Z = i ∼ N (Γμ∗
i , I) and EX̃ = EX = 0. Write

Γμt
i = [μ̃,0d−2M ], Γμ∗

i = [μ̃∗
i ,0d−2M ], μ̃∗

i , μ̃ ∈ R
d−2M .
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It thus follows

(X − μt
1)(X − μt

1)
T = ΓT

[
(X̃2M − μ̃t

1)(X̃
2M − μ̃t

1)
T (X̃2M − μ̃t

1)(X̃
d−2M )T

(X̃d−2M )(X̃2M − μ̃t
1)

T (X̃d−2M )(X̃d−2M )T

]
Γ.

Since X̃d−2M ∼ N (0, Id−2M ), it is independent of X̃2M . Also note that
w1(X;μt) only depends on X̃2M (the part involving Xd−2M cancels out), we
have∥∥Ew1(X;μt)(1− w1(X;μt))(X − μt

1)(X − μt
1)

T
∥∥
op

=

∥∥∥∥
[

D1 0
0 D2

]∥∥∥∥
op

≤max(‖D1‖op, ‖D2‖op).
Applying Lemma A.1 with dimension min{2M,d} and p = 2, we have

‖D1‖op ≤ 2M
(3
2
Rmax +min{2M,d}

)2
exp

(
−
(1
2
Rmin − a

)
min{d, 2M} 1

2 /8

)
.

(30)
Applying Lemma A.1 with dimension min{2M,d} and p = 0, we have

‖D2‖op = E

[
w1(X̃2M ; μ̃t)(1− w1(X̃2M ; μ̃t))

]
≤ 2Mexp

(
−
(1
2
Rmin − a

)
min{d, 2M} 1

2 /8

)
.

(31)

Combining (30), (31) with (29), we see

V1 ≤ 2M

((3
2
Rmax +min{2M,d}

)2
+ a(

3

2
Rmax +min{2M,d}

))

· exp
(
−
(1
2
Rmin − a

)
min{d, 2M} 1

2 /8

)

≤ 2M
(
2Rmax +min{2M,d}

)2
exp

(
−
(1
2
Rmin − a

)
min{d, 2M} 1

2 /8

)
.

(32)

Next we move to Vi, i �= 1. Using the same decomposition

Vi ≤ sup
t∈[0,1]

∥∥Ew1(X;μt)w2(X;μt)(X − μt
1)(X − μt

i)
T
∥∥
op

+ a sup
t∈[0,1]

∥∥Ew1(X;μt)wi(X;μt)(X − μt
i)
∥∥
2
. (33)

Apply the same rotation trick, we are able to show

Vi ≤
2

κ

(
2Rmax +min{2M,d}

)2
exp

(
−
(1
2
Rmin − a

)
min{d, 2M} 1

2 /8

)
. (34)

Since κ ≤ 1
M , we see

max
i∈[M ]

Vi ≤
2

κ

(
2Rmax +min{2M,d}

)2
exp

(
−
(1
2
Rmin − a

)
min{d, 2M} 1

2 /8

)
.

The proof is now complete.
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A.3. Proof of Lemma 5.2

First, we can apply the same rotation trick to reduce the effective dimension to
min{M,d}. To do so, let Γ be a rotation matrix such that the last [d − M ]+
coordinates of Γμi are zero for all i ∈ [M ]. Write Γμi = (μ̃i,0[d−M ]+), X̃ = ΓX
and we have

‖X − μi‖22 = ‖ΓX − Γμi‖22 = ‖X̃M − μ̃i‖22 + ‖X̃[d−M ]+‖22.

This implies w1(X;μ) = w1(X̃
M ; μ̃) and Ew1(X;μ) = Ew1(X̃

M ; μ̃) where
X̃M |Z = i ∼ N ((Γμ∗

i )M , IM ). We thus have successfully reduced the effective
dimension to min{M,d}.

The rotation step is optional and can only reduce dimension when d > M .
For ease of notation, let us assume M ≥ d and we opt not to do it. The next
step in bounding Ew1(X;μ) is to restrict ourselves to the event where a) X is
generated by the first cluster, and b) X lies in a ball B(μ∗

1, r) for some radius
to be selected later. Specifically, we have

Ew1(X;μ) ≥ π1EX∼N (μ∗
1 ,I)

w1(X;μ) ≥ π1

∫
B(μ∗

1 ,r)

w1(x;μ)φ(x;μ
∗
1)dx. (35)

Notice on B(μ∗
i , r), by triangular inequality we have

‖x− μ1‖2 ≤ r + a

‖x− μi‖2 ≥ Rmin − r − a, ∀i �= 1.

Also, since w1(x;μ) is decreasing in ‖x − μ1‖2 and increasing in ‖x − μi‖2, we
have

w1(x;μ) ≥
π1e

− (r+a)2

2

π1e−
(r+a)2

2 + (1− π1)e−
(Rmin−r−a)2

2

≥ 1− 1− π1

π1
exp
(
− 1

2
Rmin(Rmin − 2r − 2a)

)
≥ 1− 1− κ

κ
exp
(
− 1

2
Rmin(Rmin − 2r − 2a)

)
,

where in the second to the last step, we used numerical inequality a
a+b ≥ 1− b

a .
It thus follows

π1

∫
B(μ∗

1 ,r)

w1(x;μ)φ(x;μ
∗
1)dx

≥ π1

(
1− 1− κ

κ
exp
(
− 1

2
Rmin(Rmin − 2r − 2a)

))∫
B(μ∗

1 ,r)

φ(x;μ∗
1)dx

≥ κ

(
1− 1− κ

κ
exp
(
− 1

2
Rmin(Rmin − 2r − 2a)

))
P(‖ε‖2 ≤ r), (36)

where ε ∼ N (0, Id). Moving forward, we naturally want to lower bound P(‖ε‖2 ≤
r), and the following lemma (Lemma 8 in [31]) allows us to do so.
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Lemma A.2. Let X ∼ N (0, Id), for r ≥ 2
√
d, we have

P(‖X‖2 ≥ r) ≤ exp
(
− r

√
d

2

)
.

Let us pretend for now that 1
2Rmin(Rmin − 2r− 2a) ≥ r

√
d

2 , then by chaining
(35), (36) and applying Lemma A.2, we have

Ew1(X;μ)

≥κ

(
1− 1− κ

κ
exp
(
− r

√
d

2

))(
1− exp

(
− r

√
d

2

))

≥κ− exp
(
− r

√
d

2

)
.

Therefore to let Ew1(X;μ) ≥ 3κ
4 , it suffices to let

exp
(
− r

√
d

2

)
≤ κ

4
.

Now we collect all the conditions we need for all the inequalities to go through;
they are

(C1) r ≥ 2
√
d. (Lemma A.2)

(C2) 1
2Rmin(Rmin − 2r − 2a) ≥ r

√
d

2

(C3) exp
(
− r

2

√
d
)
≤ κ/4.

Setting r = Rmin/2−a
4 , we can check

1. a ≤ 1
2Rmin − 8

√
d implies (C1).

2. Rmin ≥
√
d/6 implies (C2).

3. a ≤ 1
2Rmin − 8√

d
log( 4κ ) implies (C3).

If we replace all d by min{M,d}, the proof goes through with only notational
changes. Now, we can readily check the conditions on Rmin and a in Lemma 5.2
imply the three conditions above. The proof is complete.

Appendix B

In appendix B, we prove Lemma 5.4 and Lemma 5.3 which facilitate the proof
of Theorem 3.3. We first introduce some preliminary results on sub-gaussian
random variables and then prove Lemma 5.4 and Lemma 5.3.

B.1. Preliminaries

Lemma B.1. Let X be a random variable.
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1. (Sub-gaussian random variable). X is called sub-gaussian if there
exists a finite t such that Eexp

(
X2/t2

)
≤ 2. For a sub-gaussian X, its

sub-gaussian norm ‖X‖ψ2 is defined as

‖X‖ψ2 = inf{t > 0 : Eexp
(
X2/t2

)
< ∞}.

2. (Hoeffding’s inequality). Let X1, . . . , XN be independent, mean zero,
sub-gaussian random variables. Then, for every t ≥ 0, we have

P

(∣∣∣ N∑
i=1

Xi

∣∣∣ ≥ t
)
≤ 2exp

(
− ct2∑N

i=1 ‖Xi‖2ψ2

)
,

where c is an absolute constant.
3. (Centering). If X is a sub-gaussian random variable, then X − EX is

sub-gaussian too, and

‖X − EX‖ψ2 ≤ C‖X‖ψ2 ,

where C is an absolute constant.
4. (Bounded random variable is sub-gaussian). Any bounded random

variable X is sub-gaussian, with

‖X‖ψ2 ≤ C‖X‖∞,

where C = 1/
√
log 2.

5. Let X be a bounded random variable on [0, 1], Y be a sub-gaussian random
variable. Then,

‖XY ‖ψ2 ≤ ‖Y ‖ψ2 .

Proof of Lemma B.1. Properties 1–4 are standard results from chapter 2 of [27];
5 is a consequence of taking expectation and infimum on both sides of

exp
(X2Y 2

t2
)
≤ exp

(Y 2

t2
)
.

Lemma B.2. Let X be the mixture of M unit variance gaussian distributions
on R, with centers denoted by {θi}i∈[M ] and mixing proportions by {πi}i∈[M ].
Suppose maxi∈[M ] |θi| ≤ R for some constant R. Then X is sub-gaussian with
sub-gaussian norm

‖X‖ψ2 ≤ Cmax(R, 1)

for some absolute constant C.

Proof of Lemma B.2. Let Y be a random draw from centers {θi}i∈[M ] according
to probabilities {πi}i∈[M ], i.e. P (Y = θi) = πi. It follows that Y is a bounded
random variable and ‖Y ‖ψ2 ≤ C1R. Let ε ∼ N (0, 1). From standard results we
know ‖ε‖ψ2 ≤ C2. Note that X has the same distribution as Y + ε, we have

‖X‖ψ2 = ‖Y + ε‖ψ2 ≤ ‖Y ‖ψ2 + ‖ε‖ψ2 ≤ C1R+ C2 ≤ Cmax(R, 1).
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B.2. Proof of Lemma 5.3

Define L := 1.5Rmax, then for a ≤ 1
2Rmin, we have ⊗iB(μ∗

i , a) ∈ ⊗iB(0, L). This
is a natural consequence of ‖μ∗

i ‖2 ≤ Rmax for all i. To see why ‖μ∗
i ‖2 ≤ Rmax,

suppose the opposite and, without loss of generality, let ‖μ∗
1‖2 > Rmax, then all

μ∗
i ∈ B(μ∗

1, Rmax). Since EX =
∑

πiμ
∗
i = 0 but B(μ∗

1, Rmax) does not contain
the origin, we get a contradiction. Also note that since Theorem 3.1 requires
Rmin ≥ C0 min{d, 2M} 1

2 for a large C0, we can work under the premise that
Rmax ≥ 1, because otherwise, even the population level convergence result does
not apply.

Denote U = ⊗iB(0, L), and we establish all uniform convergence results on
U . Let nε be the ε-covering number of B(0, L), then standard results [27] have it
log(nε) ≤ d log(3L/ε). By doing cartesian product on such covers, we can get a
cover on U . We denote this cover by Mε = {μ1, . . . ,μNε} with Mε ⊂ R

Md and
log(Nε) ≤ Md log(3L/ε). For any μ ∈ ⊗iB(0, L), let j(μ) = argminj∈[Nε]‖μ−
μj‖2. Then for all μ ∈ U , ‖μi − μ

j(μ)
i ‖2 ≤ ε for ∀i ∈ [M ].

Define

In,1(μ) :=
∥∥∥ 1
n

( n∑
i=1

w1(Xi;μ)(Xi − μ∗
1)
)
− E[w1(X;μ)(X − μ∗

1)]
∥∥∥
2

Start by noting

In,1(μ) ≤
∥∥∥ 1
n

( n∑
i=1

w1(Xi;μ)(Xi − μ∗
1)
)
− 1

n

( n∑
i=1

w1(Xi;μ
j(μ))(Xi − μ∗

1)
)∥∥∥

2

+
∥∥∥ 1
n

( n∑
i=1

w1(Xi;μ
j(μ))(Xi − μ∗

1)
)
− E[w1(X;μj(μ))(X − μ∗

1)]
∥∥∥
2

+
∥∥∥E[w1(X;μj(μ))(X − μ∗

1)]− E[w1(X;μ)(X − μ∗
1)]
∥∥∥
2
.

Then we have

P

(
sup
μ∈U

In,1(μ) ≥ t

)
≤ P(At) + P(Bt) + P(Ct),

where the events At, Bt, Ct are defined as

At =

{
sup
μ∈U

∥∥∥ 1
n

( n∑
i=1

w1(Xi;μ)(Xi − μ∗
1)
)
−

1

n

( n∑
i=1

w1(Xi;μ
j(μ))(Xi − μ∗

1)
)∥∥∥

2
≥ t

3

}
,

Bt =

{
sup

j∈[Nε]

∥∥∥ 1
n

( n∑
i=1

w1(Xi;μ
j)(Xi − μ∗

1)
)
− E[w1(X;μj)(X − μ∗

1)]
∥∥∥
2
≥ t

3

}
,

Ct =

{
sup
μ∈U

∥∥∥E[w1(X;μj(μ))(X − μ∗
1)]− E[w1(X;μ)(X − μ∗

1)]
∥∥∥
2
≥ t

3

}
.
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For some δ > 0, we next derive conditions on t that suffice to let

P(At) ≤
δ

2
, P(Bt) ≤

δ

2
, P(Ct) = 0.

Then replacing δ with 1
n completes the proof.

Upper bounding P(Bt):
Let V1/2 be a (1/2)-cover of Bd(0, 1) with log |V1/2| ≤ d log 6. Then we know

from standard result that

∥∥∥ 1
n

( n∑
i=1

w1(Xi;μ
j)(Xi − μ∗

1)
)
− E[w1(X;μj)(X − μ∗

1)]
∥∥∥
2

≤2 sup
v∈V1/2

〈
v,

1

n

( n∑
i=1

w1(Xi;μ
j)(Xi − μ∗

1)
)
− E[w1(X;μj)(X − μ∗

1)]
〉
.

Taking union bound, we have

P(Bt)

≤ P

(
sup

j∈[Nε]
v∈V1/2

{
1

n

n∑
i=1

〈
v, w1(Xi;μ

j)(Xi − μ∗
1)− E[w1(X;μj)(X − μ∗

1)]
〉}

≥ t

6

)

≤ exp
(
Md log(3L/ε) + d log 6

)
· sup
j∈[Nε]
v∈V1/2

P

({
1

n

n∑
i=1

w1(Xi;μ
j)〈Xi − μ∗

1,v〉 − E[w1(X;μj)〈X − μ∗
1,v〉]

}
≥ t

6

)
.

By part 5 of Lemma B.1,

‖w1(X;μj)〈X − μ∗
1,v〉‖ψ2 ≤ ‖〈X − μ∗

1,v〉‖ψ2 .

Note that 〈X − μ∗
1,v〉 follows a one dimensional gaussian mixture model with

centers at {〈μ∗
i − μ∗

1,v〉}i∈[M ]. Since |〈μ∗
i − μ∗

1,v〉| ≤ Rmax and Rmax ≥ 1, we
conclude from Lemma B.2

‖〈X − μ∗
1,v〉‖ψ2 ≤ CRmax ≤ CL.

Consequently, by Hoeffding’s inequality, we have

P(Bt) ≤ exp
(
Md log(3L/ε) + d log 6− cnt2

L2

)
.

To ensure P(Bt) ≤ δ
2 , it suffices to let

t ≥ C

√
L2
(
Md log( 18Lε ) + log( 2δ )

)
n

.
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Upper bound P(Ct):
Using the same integration expression (14) as in section 4.1, we have

sup
μ∈U

∥∥∥E[w1(X;μj(μ))(X − μ∗
1)]− E[w1(X;μ)(X − μ∗

1)]
∥∥∥
2
≤ ε

M∑
i=1

Ui,

where

U1 = E sup
μ∈U

∥∥w1(X;μ)(1− w1(X;μ))(X − μ∗
1)(X − μ1)

T
∥∥
op
, (37)

Ui = E sup
μ∈U

∥∥w1(X;μ)wi(X;μ)(X − μ∗
1)(X − μi)

T
∥∥
op

for i �= 1. (38)

Since Ct is deterministic, so as long as we have ε
∑M

i=1 Ui < t
3 , Ct will never

happen.
Upper bound P(At):

Using Markov inequality, we have

P(At)

≤ 3

t
E

[
sup
μ∈U

∥∥∥ 1
n

( n∑
i=1

w1(Xi;μ)(Xi − μ∗
1)
)
− 1

n

( n∑
i=1

w1(Xi;μ
j(μ))(Xi − μ∗

1)
)∥∥∥

2

]

≤ 3

t
E sup

μ∈U

∥∥∥(w1(X;μj(μ))− w1(X;μ)
)
(X − μ∗

1)
∥∥∥
2

≤ 3ε

t

M∑
i=1

Ui. (due to mean value theorem)

To ensure P (At) ≤ δ
2 , it suffices to let t ≥ 6ε(

∑
Ui)/δ. Note that whenever this

holds, the condition that ensures P(Ct) = 0 is implied.
Bounding Ui:

Knowing that all w ∈ [0, 1], we see

U1 ≤ E

[
sup
μ∈U

‖X − μ∗
1‖‖X − μ1‖

]
≤ E(‖X‖+ L)2 ≤ E(‖Y ‖+ ‖ε‖+ L)2,

where Y is a random draw from centers {μ∗
i }i∈[M ] according to probabilities

{πi}i∈[M ] and ε ∼ N (0, Id). With a bit more calculation, we see U1 ≤ C ′(L2+d),
and the same bound also hold for other Ui. It thus follows

M∑
i=1

Ui ≤ C ′M(L2 + d).

Conclusion:
We set ε = δL

6C′nM(L2+d) , δ = 1
n , then any t satisfy the following ensures bad

events happen with probability less than δ

t ≥ max

{
L

n
,CL

√√√√Md log
(

108C′M(L2+d)n
δ

)
+ log 2

δ

n

}
.
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The second argument in maximum apparently dominates the first argument.
After meticulously checking, we conclude there exists a universal constant C3,
such that

P

(
In,1(μ) ≥ Rmax

√
C̃3Md log n

n

)
≤ 1

n
,

where C̃3 = C3 log(M(3R2
max + d)).

B.3. Proof of Lemma 5.4

The proof of Lemma 5.4 is essentially the same as the proof of Lemma 5.3. Start
by noticing∣∣∣ 1

n

n∑
i=1

w1(Xi;μ)− Ew1(X;μ)
∣∣∣ ≤ ∣∣∣ 1

n

n∑
i=1

w1(Xi;μ)−
1

n

n∑
i=1

w1(Xi;μ
j(μ))
∣∣∣

+
∣∣∣ 1
n

n∑
i=1

w1(Xi;μ
j(μ))− Ew1(X;μj(μ))

∣∣∣
+
∣∣∣Ew1(X;μj(μ))− Ew1(X;μ)

∣∣∣.
Then we have

P

(
sup
μ∈U

∣∣∣ 1
n

n∑
i=1

w1(Xi;μ)− Ew1(X;μ)
∣∣∣ ≥ t

)
≤ P(At) + P(Bt) + P(Ct),

where the events At, Bt, Ct are defined as

At =

{
sup
μ∈U

∣∣∣ 1
n

n∑
i=1

w1(Xi;μ)−
1

n

n∑
i=1

w1(Xi;μ
j(μ))
∣∣∣ ≥ t

3

}
,

Bt =

{
sup

j∈[Nε]

∣∣∣ 1
n

n∑
i=1

w1(Xi;μ
j(μ))− Ew1(X;μj(μ))

∣∣∣ ≥ t

3

}
,

Ct =

{
sup
μ∈U

∣∣∣Ew1(X;μj(μ))− Ew1(X;μ)
∣∣∣ ≥ t

3

}
.

For some δ > 0, we next derive conditions on t that suffice to let

P(At) ≤
δ

2
, P(Bt) ≤

δ

2
, P(Ct) = 0.

Then replacing δ with 1
n completes the proof.

Upper bounding P(Bt):
Since w1(X,μ) is bounded between [0, 1], it is sub-gaussian with a bounded

norm ‖w1(X,μ)‖ψ2 ≤ C for some absolute constant C. We can thus directly
apply union bound and Hoeffding’s inequality:

P(Bt) ≤ exp
(
Md log(3L/ε)

)
· sup
j∈[Nε]

P

(∣∣∣∣ 1n
n∑

i=1

w1(Xi;μ
j)− Ew1(X;μj)

∣∣∣∣ ≥ t

3

)
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≤ 2exp
(
Md log(3L/ε)− cnt2

)
.

To ensure P(Bt) ≤ δ
2 , it suffices to let

t ≥ C

√
Md log( 3Lε ) + log( 4δ )

n
.

Upper bound P(Ct):
Using the same integration expression (14) as in section 4.1, we have

sup
μ∈U

∣∣∣Ew1(X;μj(μ))− Ew1(X;μ)
∣∣∣ ≤ ε

M∑
i=1

Wi,

where

W1 = E sup
μ∈U

∥∥w1(X;μ)(1− w1(X;μ))(X − μ1)
∥∥
2
, (39)

Wi = E sup
μ∈U

∥∥w1(X;μ)wi(X;μ)(X − μi)
∥∥
2

for i �= 1. (40)

Since Ct is deterministic, so as long as we have ε
∑M

i=1 Wi <
t
3 , Ct will never

happen.
Upper bound P(At):

Using Markov inequality, we have

P(At) ≤
3

t
E

[
sup
μ∈U

∣∣∣ 1
n

n∑
i=1

w1(Xi;μ)−
1

n

n∑
i=1

w1(Xi;μ
j(μ))
∣∣∣]

≤ 3

t
E

[
sup
μ∈U

∣∣∣w1(X;μj(μ))− w1(X;μ)
∣∣∣]

≤ 3ε

t

M∑
i=1

Wi. (due to mean value theorem)

To ensure P (At) ≤ δ
2 , it suffices to let t ≥ 6ε(

∑
Ui)/δ. Note that whenever this

holds, the condition that ensures P(Ct) = 0 is implied.
Bounding Wi:

Knowing that all w ∈ [0, 1], we see

W1 ≤ E

[
sup
μ∈U

‖X − μ1‖
]
≤ E
[
‖X‖+ L

]
≤ E
[
‖Y ‖+ ‖ε‖+ L

]
,

where Y is a random draw from centers {μ∗
i }i∈[M ] according to probabilities

{πi}i∈[M ] and ε ∼ N (0, Id). With a bit more calculation, we see W1 ≤ C ′(L +√
d), and the same bound also hold for other Wi. It thus follows

M∑
i=1

Wi ≤ C ′M(L+
√
d).
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Conclusion:
We set ε = δ

6C′nM(L+
√
d)
, δ = 1

n , then any t satisfy the following ensures bad

events happen with probability less than δ

t ≥ max

{
1

n
,C

√√√√Md log
(

18C′ML(L+
√
d)n

δ

)
+ log 4

δ

n

}
.

The second argument in maximum apparently dominates the first argument.
After meticulously checking, we conclude there exists a universal constant C2,
such that

P

(
sup
μ∈U

∣∣∣ n∑
i=1

w1(Xi,μ)− Ew1(X;μ)
∣∣∣ ≥
√

C̃2Md log n

n

)
≤ 1

n
,

where C̃2 = C2 log(2MRmax(2Rmax +
√
d)).

References

[1] Achlioptas, D. and McSherry, F. (2005). On Spectral Learning of Mix-
tures of Distributions. In COLT. MR2203280

[2] Arora, S. and Kannan, R. (2005). Learning mixtures of separated non-
spherical Gaussians. The Annals of Applied Probability 69–92. MR2115036

[3] Balakrishnan, S., Wainwright, M. J. and Yu, B. (2017). Statistical
guarantees for the EM algorithm: From population to sample-based anal-
ysis. The Annals of Statistics 77–120. MR3611487

[4] Belkin, M. and Sinha, K. (2010). Polynomial Learning of Distribution
Families. In Proceedings of the 2010 IEEE 51st Annual Symposium on
Foundations of Computer Science 103–112. MR3024780

[5] Brubaker, S. C. and Vempala, S. (2008). Isotropic PCA and Affine-
Invariant Clustering. In Proceedings of the 2008 49th Annual IEEE Sym-
posium on Foundations of Computer Science 551–560. MR2484643

[6] Cai, T., Ma, J. and Zhang, L. CHIME: Clustering of High-dimensional
Gaussian Mixtures with EM Algorithm and its Optimality. The Annals of
Statistics. To appear. MR3911111

[7] Chaudhuri, K. and Rao, S. (2008). Learning Mixtures of Product Dis-
tributions using Correlations and Independence. In Twenty-First Annual
Conference on Learning Theory 9–20.

[8] Chaudhuri, K., Kakade, S. M., Livescu, K. and Sridharan, K.

(2009). Multi-view Clustering via Canonical Correlation Analysis. In Pro-
ceedings of the 26th Annual International Conference on Machine Learning
129–136.

[9] Dasgupta, S. (1999). Learning mixtures of Gaussians. In 40th Annual
Symposium on Foundations of Computer Science 634–644. MR1917603

[10] Dasgupta, S. and Schulman, L. J. (2007). A probabilistic analysis of
EM for mixtures of separated, spherical Gaussians. Journal of Machine
Learning Research 8 203–226. MR2320668

http://www.ams.org/mathscinet-getitem?mr=2203280
http://www.ams.org/mathscinet-getitem?mr=2115036
http://www.ams.org/mathscinet-getitem?mr=3611487
http://www.ams.org/mathscinet-getitem?mr=3024780
http://www.ams.org/mathscinet-getitem?mr=2484643
http://www.ams.org/mathscinet-getitem?mr=3911111
http://www.ams.org/mathscinet-getitem?mr=1917603
http://www.ams.org/mathscinet-getitem?mr=2320668


Convergence of EM on Gaussian mixtures 659

[11] Daskalakis, C., Tzamos, C. and Zampetakis, M. (2017). Ten Steps
of EM Suffice for Mixtures of Two Gaussians. In Proceedings of the 2017
Conference on Learning Theory 65 704–710.

[12] Dempster, A. P., Laird, N. M. and Rubin, D. B. (1977). Maximum
likelihood from incomplete data via the EM algorithm. Journal of the Royal
Statistical Society, Series B 39 1–38. MR0501537

[13] Ghosal, S. and van der Vaart, A. W. (2001). Entropies and rates of
convergence for maximum likelihood and Bayes estimation for mixtures of
normal densities. The Annals of Statistics 1233–1263. MR1873329

[14] Hardt, M. and Price, E. (2015). Tight Bounds for Learning a Mixture
of Two Gaussians. In Proceedings of the Forty-seventh Annual ACM Sym-
posium on Theory of Computing 753–760. MR3388255

[15] Heinrich, P. and Kahn, J. (2018). Strong identifiability and optimal
minimax rates for finite mixture estimation. The Annals of Statistics 2844–
2870. MR3851757

[16] Hsu, D. and Kakade, S. M. (2013). Learning Mixtures of Spherical
Gaussians: Moment Methods and Spectral Decompositions. In Proceedings
of the 4th Conference on Innovations in Theoretical Computer Science.
MR3385380

[17] Jin, C., Zhang, Y., Balakrishnan, S., J. Wainwright, M. and Jor-

dan, M. (2016). Local Maxima in the Likelihood of Gaussian Mixture
Models: Structural Results and Algorithmic Consequences. In Advances in
Neural Information Processing Systems 29.

[18] Kalai, A. T., Moitra, A. and Valiant, G. (2010). Efficiently Learn-
ing Mixtures of Two Gaussians. In Proceedings of the Forty-second ACM
Symposium on Theory of Computing 553–562. MR2743304

[19] Kannan, R., Salmasian, H. and Vempala, S. (2008). The spectral
method for general mixture models. SIAM Journal on Computing 38 1141–
1156. MR2421081

[20] Klusowski, J. M. and Brinda, W. D. (2016). Statistical Guarantees
for Estimating the Centers of a Two-component Gaussian Mixture by EM.
arXiv preprint. arXiv:1608.02280.

[21] Lu, Y. and Zhou, H. H. (2016). Statistical and Computational Guarantees
of Lloyd’s Algorithm and its Variants. arXiv preprint. arXiv:1612.02099.

[22] Mei, S., Bai, Y. and Montanari, A. The Landscape of Empirical Risk
for Non-convex Losses. arXiv preprint. arXiv:1607.06534. MR3851754

[23] Moitra, A. and Valiant, G. (2010). Settling the Polynomial Learnabil-
ity of Mixtures of Gaussians. In 2010 IEEE 51st Annual Symposium on
Foundations of Computer Science 93–102. MR3024779

[24] Nguyen, X. (2013). Convergence of latent mixing measures in finite and
infinite mixture models. The Annals of Statistics 370–400. MR3059422

[25] Tseng, P. (2004). An analysis of the EM algorithm and entropy-like
proximal point methods. Mathematics of Operations Research 29 27–44.
MR2065712

[26] Vempala, S. and Wang, G. (2004). A spectral algorithm for learning
mixture models. Journal of Computer and System Sciences 68 841–860.

http://www.ams.org/mathscinet-getitem?mr=0501537
http://www.ams.org/mathscinet-getitem?mr=1873329
http://www.ams.org/mathscinet-getitem?mr=3388255
http://www.ams.org/mathscinet-getitem?mr=3851757
http://www.ams.org/mathscinet-getitem?mr=3385380
http://www.ams.org/mathscinet-getitem?mr=2743304
http://www.ams.org/mathscinet-getitem?mr=2421081
https://arxiv.org/abs/arXiv:1608.02280
https://arxiv.org/abs/arXiv:1612.02099
https://arxiv.org/abs/arXiv:1607.06534
http://www.ams.org/mathscinet-getitem?mr=3851754
http://www.ams.org/mathscinet-getitem?mr=3024779
http://www.ams.org/mathscinet-getitem?mr=3059422
http://www.ams.org/mathscinet-getitem?mr=2065712


660 R. Zhao et al.

MR2059647
[27] Vershynin, R. High-Dimensional Probability: An introduction with Ap-

plications in Data Science. MR3837109
[28] Wang, Z., Gu, Q., Ning, Y. and Liu, H. (2015). High Dimensional

EM Algorithm: Statistical Optimization and Asymptotic Normality. In Ad-
vances in Neural Information Processing Systems 28 2521–2529.

[29] Wu, C. F. J. (1983). On the convergence properties of the EM algorithm.
The Annals of Statistics 95–103. MR0684867

[30] Xu, J., Hsu, D. and Maleki, A. (2016). Global Analysis of Expecta-
tion Maximization for Mixtures of Two Gaussians. In Advances in Neural
Information Processing Systems 29.

[31] Yan, B.,Yin, M. and Sarkar, P. (2017). Convergence of Gradient EM on
Multi-component Mixture of Gaussians. In Advances in Neural Information
Processing Systems 30.

[32] Yi, X. and Caramanis, C. (2015). Regularized EM Algorithms: A Unified
Framework and Statistical Guarantees. In Advances in Neural Information
Processing Systems 28 1567–1575.

http://www.ams.org/mathscinet-getitem?mr=2059647
http://www.ams.org/mathscinet-getitem?mr=3837109
http://www.ams.org/mathscinet-getitem?mr=0684867

	Introduction
	Related work

	The EM algorithm on Gaussian mixture models
	Statement of the main results
	Simulation results
	Known mixture weights and variances
	Unknown mixture weights
	Unknown mixture weights and variances

	Proofs of the main results
	Proof of Theorem 3.1
	Proof of Corollary 3.2
	Proof of Theorem 3.3

	Summary and discussion
	Appendix A
	Preliminaries
	Proof for Lemma 5.1
	Proof of Lemma 5.2

	Appendix B
	Preliminaries
	Proof of Lemma 5.3
	Proof of Lemma 5.4

	References

