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Abstract: This paper considers partial linear regression models when nei-
ther the response variable nor the covariates can be directly observed, but
are instead measured with both multiplicative and additive distortion mea-
surement errors. We propose conditional variance estimation methods to
calibrate the unobserved variables. A profile least-squares estimator associ-
ated with the asymptotic results and confidence intervals is then proposed.
To do hypothesis testing of the parameters, a restricted estimator under the
null hypothesis and a test statistic are proposed. The asymptotic proper-
ties of the estimator and the test statistic are also established. Further, we
employ the smoothly clipped absolute deviation penalty to select relevant
variables. The resulting penalized estimators are shown to be asymptoti-
cally normal and have the oracle property. Estimation, hypothesis testing,
and variable selection are discussed under the scenario of multiplicative
distortion alone. Simulation studies demonstrate the performance of the
proposed procedure and a real example is analyzed to illustrate its appli-
cability.
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1. Introduction

In many applications involving regression analysis, observations of the variables
of interest may include with measurement errors. A general distortion errors-in-
variables partial linear model can be written as⎧⎨⎩

Y = XTβ0 + g(Z) + ε,

Ỹ = φM (U)Y + φA(U),

X̃ = ψM (U)X +ψA(U),

(1.1)

where Y is an unobservable response variable, X = (X1, X2, . . . , Xp)
T is an un-

observable continuous covariate vector (throughout this paper, the superscript
“T” denotes the transpose operator on a vector or a matrix), β0 is an unknown
p×1 parameter vector on a compact parameter space Θβ ⊂ R

p, Z is a observed
univariate covariate, and g(·) is an unknown smooth function. The model er-
ror ε satisfies E(ε|X, Z) = 0 and E(ε2|X, Z) < ∞. The confounding variable
U ∈ R

1 is observable and independent of (X, Z, Y ). For the distortion functions
(ψM (·),ψA(·)), the multiplicative distortion function ψM (·) is a p× p-diagonal
matrix given by diag

(
ψM,1(·), . . . , ψM,p(·)

)
, and the additive distortion function

ψA(·) is a p-dimensional vector given by
(
ψA,1(·), . . . , ψA,p(·)

)T
. Moreover, we

assume that (φM (·), φA(·), ψM,r(·), ψA,r(·)), r = 1, . . . , p, are unknown contin-
uous distortion functions. Note that (ψM (·),ψA(·)) and (φM (·), φA(·)) distort
the unobserved X and Y in both multiplicative and additive relations.
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To date, there has been little discussion on the coexistence of the two kinds
of distortion measurement errors in partial linear models. [8] and [38] considered
multiplicative distortion measurement errors (φA(U) ≡ 0, ψA,r(U) ≡ 0), and [39]
considered the additive distortion measurement errors (φM (U) ≡ 1, ψM,r(U) ≡
1). Multiplicative distortion measurement data usually occur in health-related
studies or medical science research. For example, [7] numerically normalized the
collected data according to body mass index (BMI) to study the relation between
fibrinogen level and serum transferrin level among hemodialysis patients. This
processing of the collected data [7] implies that there may exist a multiplicative
relation between the unobserved primary variables and BMI, which is called the
confounding variable. Unfortunately, the exact relation between the confound-
ing variable and the primary variables is typically unknown, and simply dividing
the confounding variable may lead to an inconsistent estimator of the parameter
for a given statistical model. From another perspective, [25, 26] adopted some
flexible multiplicative adjustments by introducing unknown smooth distortion
functions φM (u) and ψM,r(u) on the confounding variable. Recently, a number
of researchers have studied multiplicative distortion measurement error models
(see [1, 22, 21, 28, 25, 20, 27, 11, 41, 36]). The topic of additive distortion mea-
surement errors was first considered in [25]. Later, [20] proposed some graphical
techniques for assessing departures from or violations of assumptions regarding
the type and form of the additive or multiplicative distortion.

Regarding additive distortion, [33] proposed a residual-based estimator of the
correlation coefficient between two unobserved primary variables, and showed
that the estimator is asymptotically efficient as if all the variables are observed
exactly, i.e., without distortion. [34] studied the estimation and variable selection
in partial linear single-index models when the response variable and some covari-
ates are measured with additive distortion measurement errors, i.e., φM (u) ≡ 1
and ψM,r(u) ≡ 1, r = 1, . . . , p. Suppose that there are no multiplicative dis-
tortions errors (φM (u) = ψM,r(u) ≡ 1). If we treat the nonparametric function
g(Z) as a single-index model g(Z) = g(θZ) (θ = 1), the estimation method
proposed in [34] is not applicable to the partial linear model (1.1). Their leave-
one-out component estimation method is not workable because of the identi-
fiability problem for the single-index parameter. The leave-one-out component
estimation method for a single-index parameter can theoretically achieve the
semiparametric efficient bound, and the asymptotic covariance matrix of profile
least-squares estimators is usually invertible, which can be used to construct
asymptotic intervals and hypothesis testing for further statistical inference. In
detail, to use this method, we need to transform the single-index parameter γ
into γ = (

√
1− ‖γ(−1)‖2, γ(−1) = (γ2, . . . , γr)

T)T, and we must also first esti-
mate γ(−1). Obviously, the leave-one-out component estimation method can not
be used in partial linear models, because θ = 1 is a one-dimensional parameter
and θ(−1) is an empty set.

This paper intends discusses partial linear models that contain both multi-
plicative and additive distortion measurement errors. Because the model (1.1)
contains the additive distortion functions φA(u) and ψA,r(u), the calibration
estimation proposed in this paper is different from that in [1] and [34]. In [1],
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the authors only considered the existence of multiplicative distortion measure-
ment errors (φA(u) = ψA,r(u) ≡ 0), and used the conditional mean calibration

procedure to estimate (φM (u), Y, ψM,r(u), Xr): Y = Ỹ
φM (u) , φM (u) = E(Ỹ |U=u)

E(Ỹ )
,

Xr = X̃r

ψM,r(u)
, ψM,r(u) = E(X̃r|U=u)

E(X̃r)
, r = 1, . . . , p. In [34], the authors con-

sidered only additive distortion measurement errors (φM (u) = ψM,r(u) ≡ 1),
and used the conditional mean calibration procedure to obtain the relations
Y − E(Y ) = Ỹ − E(Ỹ |U), X − E(Xr) = X̃r − E(X̃r|U), r = 1, . . . , p. The

authors then used the regression “residuals” {Ỹi − Ê(Ỹi|Ui), X̃ri − Ê(X̃ri|Ui)}
to estimate the parameters in PLSiMs.

From model (1.1), E(Ỹ |U = u) = φM (u)E(Y ) + φA(u), E(X̃r|U = u) =
ψM,r(u)E(Xr)+ψA,r(u). Note that all the distortion functions (φM (u), φA(u)),
(ψM,r(u), ψA,r(u)) are unknown, and the conditional mean calibration [1] and
residual-based calibration procedures in [34] are no longer workable, because

we can not estimate them through E(Ỹ |U = u) or E(X̃r|U = u) alone. Con-
sequently, in this paper, we propose a new calibration procedure by coupling
the conditional means (E(Ỹ |U = u), E(X̃r|U = u)) and conditional variances

(Var(Ỹ |U = u),Var(X̃r|U = u)). Using these estimates Ê(Ỹ |U=u), V̂ar(Ỹ |U=

u), Ê(X̃r|U = u), V̂ar(X̃r|U = u), we obtain (φ̂M (u), φ̂A(u), ψ̂M,r(u), ψ̂A,r(u))

and Ŷ = Ỹ−φ̂A(U)

φ̂M (U)
, X̂r =

X̃r−ψ̂M,r(U)

ψ̂M,r(U)
. Note that the calibrated variables (Ŷ , X̂r)

and the asymptotic results obtained in this paper are all different from those in
[1] and [34].

With these calibrated variables, we use a profile least-squares estimation to
obtain a root-n consistent estimator of β0. Specifically, we consider the estima-
tion efficiency of the proposed estimators in the case when φA(u) = ψA,r(u) ≡ 0.
In this setting, without additive distortion, we further propose a second esti-
mator by using the conditional absolute mean technique [2, 41]. The normal
approximation is derived by estimating the asymptotic covariance matrices and
the empirical likelihood-based statistics are proposed to construct two different
asymptotic confidence intervals of the parameter β0.

To make further inferences, we consider the problem of checking whether the
linear combination Aβ0 = b holds. A restricted profile least-squares estimator
and a test statistic are proposed by introducing Lagrange multipliers under the
null hypothesis. Under the null hypothesis, the limiting distribution of the test
statistic is shown to be a standard chi-squared distribution. We also investigate
the asymptotic properties of the estimator and the test statistic under the lo-
cal alternative hypothesis. Finally, to perform variable selection, we propose a
profile penalized least-squares method based on the smoothly clipped absolute
deviation method [4, SCAD]. We demonstrate that the resulting SCAD-based
solution is selection-consistent. Monte Carlo simulation experiments are con-
ducted to examine the performance of the proposed estimation and test proce-
dures.

The remainder of this paper is organized as follows. In Section 2, we propose
the conditional variance calibration for the unobserved variables, present a pro-
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file least-squares estimator of the parameter, and derive the related asymptotic
results. In Section 3, the confidence intervals the of parameter are proposed. Sec-
tion 4 considers the problem of checking whether the linear restriction Aβ0 = b
holds. In Section 5, variable selection for parameter β0 is discussed. Section 6
covers two estimation procedures when only multiplicative distortion exists. Hy-
pothesis testing, confidence intervals construction, and variable selection are also
discussed. In Section 7, we report the results of simulation studies. In Section 8,
we present statistical analysis results using real data. All technical proofs of the
asymptotic results are given in the appendix.

2. Estimation method and asymptotic results

2.1. Calibration

We first calibrate unobserved Y and X by using the observed i.i.d. sample{
Ỹi, X̃i, Ui

}n

i=1
. To ensure identifiability, it is assumed that

E[φM (U)] = 1, E[φA(U)] = 0, (2.1)

E[ψM,r(U)] = 1, E[ψA,r(U)] = 0, r = 1, . . . , p. (2.2)

The identifiability conditions (2.1)-(2.2) are introduced by [26, 25], and it is
analogous to the classical additive measurement errors: E(e) = 0 for W = X+e,
where W is error-prone and X is error-free [11, 31].

Define

mỸ (u) = E(Ỹ |U = u), σỸ |U (u) =

√
Var(Ỹ |U = u),

mX̃r
(u) = E(X̃r|U = u), σX̃r|U (u) =

√
Var(X̃r|U = u), r = 1, . . . , p.

Suppose that σY

∏p
r=1 σXr > 0, where σY =

√
Var(Y ), σXr =

√
Var(Xr),

r = 1, . . . , p. Under the independence condition between U and (Y,X), the
identifiability conditions (2.1)-(2.2) and condition (C1) entail that:

σỸ |U (u) = φM (u)σY , E
(
σỸ |U (U)

)
= σY , (2.3)

σX̃r|U (u) = ψM,r(u)σXr , E
(
σX̃r|U (U)

)
= σXr , r = 1, . . . , p. (2.4)

The relations (2.3)-(2.4) entail that

φM (u) =
σỸ |U (u)

E
(
σỸ |U (U)

) =
σỸ |U (u)

σY
, (2.5)

ψM,r(u) =
σX̃r|U (u)

E
(
σX̃r|U (U)

) =
σX̃r|U (u)

σXr

, r = 1, . . . , p. (2.6)
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Because the square root of variances σY , σXr ’s are used in the denominators
of (2.5)-(2.6), the condition σY

∏p
r=1 σXr > 0 should be imposed here. Equiva-

lently, it is required that the covariates Xr’s and response variable Y are non-
constant variables.

Using (2.5)-(2.6), mỸ (u) = φM (u)E(Y )+φA(u) = φM (u)E(Ỹ )+φA(u), and

mX̃r
(u) = ψM,r(u)E(Xr) + ψA,r(u) = ψM,r(u)E(X̃r) + ψA,r(u), we have

φA(u) = mỸ (u)−
σỸ |U (u)

E
(
σỸ |U (U)

)E(Ỹ ), (2.7)

ψA,r(u) = mX̃r
(u)−

σX̃r|U (u)

E
(
σX̃r|U (U)

)E(X̃r). (2.8)

Together with (2.5)-(2.8), we have

Y =
Ỹ − φA(U)

φM (U)
=

E
(
σỸ |U (U)

)
σỸ |U (U)

{
Ỹ −mỸ (U)

}
+ E(Ỹ ), (2.9)

Xr =
X̃r − ψA,r(U)

ψM,r(U)
=

E
(
σX̃r|U (U)

)
σX̃r|U (U)

{
X̃r −mX̃r

(U)
}
+ E(X̃r). (2.10)

Thus, the unobserved variables {Y,Xr, r = 1, . . . , p} can be obtained through
(2.9)-(2.10) at the population level. We summarize the calibration procedure as
follows.

• The Nadaraya-Watson estimators are used to estimate φM (u), φA(u),

ψM,r(u) and ψA,r(u). Define f̂U (u) =
1
nh

∑n
j=1 Kh(Uj − u), here Kh(·) =

h−1K(·/h), K(·) is a symmetric density function, h is a positive-valued
bandwidth. Let

m̂Ỹ (u) =
1

nhf̂U (u)

n∑
j=1

Kh(Uj − u)Ỹj ,

σ̂2
Ỹ |U (u) =

1

nhf̂U (u)

n∑
j=1

Kh(Uj − u)
[
Ỹj − m̂Ỹ (Uj)

]2
,

m̂X̃r
(u) =

1

nhf̂U (u)

n∑
j=1

Kh(Uj − u)X̃rj ,

σ̂2
X̃r|U

(u) =
1

nhf̂U (u)

n∑
j=1

Kh(Uj − u)
[
X̃rj − m̂X̃r

(Uj)
]2

.

We obtain σ̂Ỹ |U (u) =
√

σ̂2
Ỹ |U (u), σ̂X̃r|U (u) =

√
σ̂2
X̃r|U

(u), and

Ê
(
σỸ |U (U)

)
= σ̂Y =

1

n

n∑
i=1

σ̂Ỹ |U (Ui),
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Ê
(
σX̃r|U (U)

)
= σ̂Xr =

1

n

n∑
i=1

σ̂X̃r|U (Ui).

Then, the distortion functions are estimated as

φ̂M (u) =
σ̂Ỹ |U (u)

Ê
(
σỸ |U (U)

) , ψ̂M,r(u) =
σ̂X̃r|U (u)

Ê
(
σX̃r|U (U)

) , (2.11)

φ̂A(u) = m̂Ỹ (u)−
σ̂Ỹ |U (u)

Ê
(
σỸ |U (U)

) Ỹ , Ỹ =
1

n

n∑
i=1

Ỹi (2.12)

ψ̂A,r(u) = m̂X̃r
(u)−

σ̂X̃r|U (u)

Ê
(
σX̃r|U (U)

)X̃r, X̃r =
1

n

n∑
i=1

X̃ri. (2.13)

• Using (2.11)-(2.13), the calibrated variables for {Yi, Xri, r = 1, . . . , p}ni=1

are defined as

Ŷi =
Ỹi − φ̂A(Ui)

φ̂M (Ui)
, X̂ri =

X̃ri − ψ̂A,r(Ui)

ψ̂M,r(Ui)
. (2.14)

2.2. A profile least squares estimator

In the following, we define A⊗2 = AAT for any matrix or vector A. From model
(1.1), we have

Y − E(Y |Z) = [X − E(X|Z)]
T
β0 + ε. (2.15)

Under the identifiability conditions (2.1)-(2.2) and the independence condition
between U and Z, the model (2.15) is equivalent to

Y − E(Ỹ |Z) =
[
X − E(X̃|Z)

]T
β0 + ε. (2.16)

Thus, a profile least squares estimator of β0 (at the population level) is obtained
as

β0 =

[
E

{[
X − E(X̃|Z)

]⊗2
}]−1

E
{[

X − E(X̃|Z)
] [

Y − E(Ỹ |Z)
]}

.

We define SY (z) and SX(z) =
(
sX1(z), . . . , sXp(z)

)T
as

SY (z) = E(Ỹ |Z = z), sXr (z) = E(X̃r|Z = z), r = 1, . . . , p.

To obtain the estimator of β0, we use local linear estimators to estimate SY (z)
and sXr (z). These estimators are defined as

ŜY (z) =
Qn2(z)Mn0,Ỹ (z)−Qn1(z)Mn1,Ỹ (z)

Qn2(z)Qn0(z)− [Qn1(z)]
2 , (2.17)
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ŝXr (z) =
Qn2(z)Mn0,X̃r

(z)−Qn1(z)Mn1,X̃r
(z)

Qn2(z)Qn0(z)− [Qn1(z)]
2 , (2.18)

where,M
nδ,W̃

(z) = 1
nh1

∑n
i=1

(
Zi−z
h1

)δ

K
(

Zi−z
h1

)
W̃i with W̃i = Ỹi or W̃i = X̃ri,

δ = 0, 1, r = 1, . . . , p, and Qnω(z) =
1

nh1

∑n
i=1

(
Zi−z
h1

)ω

K
(

Zi−z
h1

)
, ω = 0, 1, 2.

Based on (2.16), the profile least squares estimator of β0 is obtained as

β̂ =

{
1

n

n∑
i=1

[
X̂i − ŜX(Zi)

]⊗2
}−1

(2.19)

× 1

n

n∑
i=1

{
X̂i − ŜX(Zi)

}{
Ŷi − ŜY (Zi)

}
,

where X̂i = (X̂1i, . . . , X̂pi)
T and ŜX(Zi) =

(
ŝX1(Zi), . . . , ŝXp(Zi)

)T
.

After obtaining estimator β̂, using the relation g(z) = E(Y − XTβ0|Z =

z) = E(Ỹ − X̃
T
β0|Z = z), the nonparametric part g(z) is estimated by using

the local linear estimator

(ĝ(z), ĝ′(z)) = arg min
az,bz

n∑
i=1

{
Ỹi − X̃

T

i β̂ − az − bz(Zi − z)
}
Kh2 (Zi − z) ,(2.20)

here, h2 is the bandwidth. After simple calculation, we have

ĝ(z) = âz =
Tn2(z)Vn0(z)− Tn1(z)Vn1(z)

Tn2(z)Tn0(z)− [Tn1(z)]
2 , (2.21)

where,

Vnδ(z) =
1

nh2

n∑
i=1

(
Zi − z

h2

)δ

K

(
Zi − z

h2

)
[Ỹi − X̃

T

i β̂]

Tnω(z) =
1

nh2

n∑
i=1

(
Zi − z

h2

)ω

K

(
Zi − z

h2

)
, δ = 0, 1, ω = 0, 1, 2.

In the following Theorem 2.1 and Theorem 2.2, we present the asymptotic results
of estimators β̂ and ĝ(z).

2.3. Asymptotic results

We now list the assumptions needed in the following theorems.

(C1) The distortion functions φ(u) > 0 and ψr(u) > 0 for all u ∈ [UL,UR],
r = 1, . . . , p, where [UL,UR] denotes the compact support of U . Moreover,
the distortion functions φM (u), φA(u), ψM,r(u)’s and ψA,r(u)’s have third
order continuous derivatives. The density function fU (u) of the random
variable U is bounded away from 0 and satisfies the Lipschitz condition
of order 1 on [UL,UR].
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(C2) For some r ≥ 4, E(|Y |r) < ∞, E(|Xs|r) < ∞, s = 1, . . . , p. The matrix
Σ0 defined in Theorem 2.1 is a positive-definite matrix.

(C3) The density function of Z, fZ(z) is bounded away from zero on Z, where
Z is a compact set in R1. Moreover, fZ(z), E(Xs|Z = z), E(Y |Z = z)
and g(z) have bounded continuous second order derivatives on Z.

(C4) The kernel function K(·) is a symmetric bounded density function sup-
ported on [−A,A] satisfying a Lipschitz condition. K(·) also has second-
order continuous bounded derivatives, satisfying K(j)(±A) = 0, μ2 =∫
s2K(s)ds 	= 0 and μK2 =

∫
K2(s)ds > 0.

(C5) As n → ∞, the bandwidths h and h1 satisfy nh4 → 0, log2 n
nh2 → 0 and

nh8
1 → 0 and log2 n

nh2
1

→ 0.

(C6) The tuning parameters λj j = 1, . . . , p satisfy λj → 0,
√
nλj → ∞ as

n → ∞, and
liminfn→∞liminfu→0+p

′
λj
(u)/λj > 0.

These conditions are not restrictive and are satisfied in most practical sit-
uations. Condition (C1) is the typical smoothing assumptions in the distor-
tion measurement errors literature, see also in [2, 32]. Conditions (C2)-(C3)
are needed for the asymptotic normality of our statistics. See, for example
[35]. Conditions (C4) is a common condition for kernel function K(·), and the
Epanechnikov kernel satisfies this condition. This condition ensures the ker-
nel smoothing estimators 1

nh

∑n
i=1 K(Ui−u

h ) and 1
nh1

∑n
i=1 K(Zi−z

h1
) positive.

[1] considered to use high-order kernel function K∗(t) = 15
32 (3 − 7t2)I{|t| ≤ 1}

such that
∫
t2K∗(t)dt = 0 but

∫
t4K∗(t)dt > 0. The high-order kernel function

K∗(t) has zero value and negative values when |t| ≥
√
3/7. For example, the

involved estimators with 1
nh

∑n
i=1 K

∗(Ui−u
h ) may produce negative values, and

this is the drawback of the high-order kernel function. Condition (C5) is on
bandwidths (h, h1) in the nonparametric kernel smoothing. For bandwidth h1,
Condition (C5) requires that the “optimal” rate of order n−1/5 can be used [35].
For bandwidth h, a under-smoothing condition nh4 → 0 is needed. The con-
sequence of under-smoothing is that the biases of the nonparametric estimates
are kept small and preclude the optimal bandwidth for h. Condition (C6) is the
technique condition involved in SCAD [4].

In the following, we define

Σ0 = E
{
[X − E(X|Z)]

⊗2
}
, Σ0ε = E

{
ε2 [X − E(X|Z)]

⊗2
}
,

G(X,ψM (U)) = diag

([
(X1 − E(X1))

2

2σ2
X1

+
1

2

]
[ψM,1(U)− 1] ,

. . . ,

[
(Xp − E(Xp))

2

2σ2
Xp

+
1

2

]
[ψM,p(U)− 1]

)
,

and

ΣφM ,ψM
= E

{[
[φM (U)− 1]

[
(Y − E(Y ))2

2σ2
Y

+
1

2

]
β0
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−G(X,ψM (U))β0

]⊗2}
.

Theorem 2.1. Suppose conditions (C1)-(C5) hold, we have

√
n
(
β̂ − β0

)
L−→ N

(
0p,Σ

−1
0 Σ0εΣ

−1
0 +ΣφM ,ψM

)
.

Remark. The first termΣ−1
0 Σ0εΣ

−1
0 is the usual asymptotic covariance matrix

for the profile least squares estimator when data are exactly observed [6], i.e.,
φM (u) ≡ 1, φA(u) ≡ 0, ψA,r(u) ≡ 1 and ψA,r(u) ≡ 0, r = 1, . . . , p. If the model
error ε is further independent of X, this term reduces to E(ε2)Σ−1

0 . The second
term ΣφM ,ψM

is caused by the multiplicative and additive distortion measure-
ment errors involved in the response variable and covariates. It is interesting to
see that the additive distortions φA(u) and φA,r(u)’s have no effect on the es-
timation of β0. If we further assumed that φM (u) = ψM,r(u) ≡ 1, r = 1, . . . , p,
then the term Σφ,ψ = 0. In this case, the estimator is efficient because the effect
of additive distortions vanishes, which coincides with the asymptotic result of
Theorem 1 in [39]. In other words, the profile least squares estimation procedure
can automatically eliminate the effect induced by the additive distortions. And
the profile least squares estimation procedure can also eliminate both the effect
of multiplicative and additive distortions for estimating β0r when β0r = 0, i.e.,
Avar(β̂r) = eTr Σ

−1
0 Σ0εΣ

−1
0 er, where β̂r is the r-th component of β̂ , er is a p-

dimensional vector with 1 in the r-th position and 0’s elsewhere, r = 1, . . . , p,
and Avar(β̂r) stands for the asymptotic variance of β̂r obtained in Theorem 2.1.

Theorem 2.2. Suppose conditions (C1)-(C5) hold, as h2 → 0, nh2 → ∞,√
nh2

(
ĝ(z)− g(z)− μ2h

2
2

2
g′′(z)

)
L−→ N

(
0,

μK2σ2(z)

fZ(z)

)
,

where σ2(z) = E

{[
Ỹ − g(Z)− X̃

T
β0

]2
|Z = z

}
.

Remark. When the multiplicative distortions φM (u) and ψM,r(u)’s vanish
(φM (u) = ψM,r(u) ≡ 1), the asymptotic variance σ2(z) = E[ε2|Z = z] +
Var(φA(U)−ψA(U)Tβ0), which coincides with the asymptotic variance of The-
orem 2 in [39]. Moreover, the estimator ĝ(z) is asymptotically efficient when the
additive distortion functions further satisfy P (φA(U) − ψA(U)Tβ0 = 0) = 1,
i.e., the asymptotic bias and asymptotic variance of ĝ(z) are the same as those
obtained in [5] and [6].

3. Confidence intervals

3.1. Asymptotic normal approximation

According to Theorem 2.1, the (1− α)× 100% (0 < α < 1) confidence interval
for β0r can be obtained by estimating the asymptotic covariance matrices. Let
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ε̂i = Ŷi − β̂
T
X̂i − ĝ(Zi), i = 1, . . . , n, we define

Σ̂ =
1

n

n∑
i=1

[
X̂i − ŜX(Zi)

]⊗2

, Σ̂ε =
1

n

n∑
i=1

ε̂2i

[
X̂i − ŜX(Zi)

]⊗2

,

Ĝ(X̂i, ψ̂M (Ui)) = diag

([ (
X̂1i − X̃1

)2
2
[
Ê
(
σX̃1|U (U)

)]2 +
1

2

] [
ψ̂M,1(Ui)− 1

]
,

. . . ,

[ (
X̂pi − X̃p

)2
2
[
Ê
(
σX̃p|U (U)

)]2 +
1

2

] [
ψ̂M,p(Ui)− 1

])
,

and

Σ̂φM ,ψM
=

1

n

n∑
i=1

{[[
φ̂M (Ui)− 1

]( (
Ŷi − Ỹ

)2
2
[
Ê
(
σỸ |U (U)

)]2 +
1

2

)
β̂

−Ĝ(X̂i, ψ̂M (Ui))β̂

]⊗2}
.

Moreover,

σ̂2
r = eTr Σ̂

−1
Σ̂εΣ̂

−1
er + eTr Σ̂φM ,ψM

er. (3.1)

Based on the estimator σ̂2
r , the (1− α)× 100% (0 < α < 1) confidence interval

for β0r is (
β̂r −

√
σ̂2
r

n
zα/2, β̂r +

√
σ̂2
r

n
zα/2

)
,

where β̂r is the r-th component of β̂ , zα/2 is the quantile satisfying P (N(0, 1) ≥
zα/2) = α/2.

3.2. Empirical likelihood method

Empirical likelihood (EL) method proposed by [24] is another popular method
to construct confidence intervals without estimating the asymptotic covariance
matrix. The EL method is an appealing nonparametric approach for construct-
ing confidence intervals (regions) for the parameter of interest. There is a large
and growing literature extending empirical likelihood methods to many sta-
tistical problems. For example, [12, 10, 1, 17]. In the following, we construct
confidence intervals of β0 based on the EL principle.

The EL method needs an auxiliary vector ℘n,i(β
′) = (℘

[1]
n,i(β

′), . . . , ℘
[p]
n,i(β

′))T

with the property of that E℘n,i(β
′) = 0 when β′ = β0. Recalling that model
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(2.16) is a linear regression model, the “ideal” auxiliary random vector can be
constructed as

℘n,i(β
′) = [Xi − SX(Zi)]

(
Yi − SY (Zi)− [Xi − SX(Zi)]

T
β′

)
.

Since {Yi,Xi}ni=1 are unavailable, we use the “calibrated” variables {Ŷi, X̂i}ni=1.

We now define the calibrated EL principle by plugging in {Ŷi − ŜY (Zi), X̂i −
ŜX(Zi)}ni=1 into ℘n,i(β

′):

l̂n(β
′) = −2max

{ n∑
i=1

log(npi) : pi ≥ 0,

n∑
i=1

pi = 1,

n∑
i=1

pi℘̂n,i(β
′) = 0

}
,

where

℘̂n,i(β
′) =

[
X̂i − ŜX(Zi)

](
Ŷi − ŜY (Zi)−

[
X̂i − ŜX(Zi)

]T
β′

)
.

The Lagrange multiplier method entails l̂n(β
′) = 2

∑n
i=1 log{1 + λ̂T℘̂n,i(β

′)},
where λ̂ is determined by 1

n

∑n
i=1

℘̂n,i(β
′)

1+λ̂T℘̂n,i(β′)
= 0.

Theorem 3.1. Suppose conditions in Theorem 2.1 hold, l̂n(β0) asymptotically
converges in distribution to χ2

p, namely, a centered chi-squared distribution with
p degrees of freedom.

From Theorem 3.1, we can construct a confidence region of β0 by Iα = {β′ :

l̂n(β
′) ≤ cα}, where cα denotes the α-quantile of the χ2

p distribution.

4. Hypothesis testing

In the previous section, we consider the estimation and confidence intervals of
β0. Another interesting topic is whether certain explanatory variables can sig-
nificantly influence the response. In many important statistical applications, in
addition to model information in model (1.1), let us give some prior information
about β0 in the form of a set of linear restrictions as follows:

H0 : Aβ0 = b, H1 : Aβ0 	= b, (4.1)

where A is a known k × p full-rank matrix, rank(A) = k ≤ p and b is a known
k-vector constants. This hypothesis test is used to check the special structure
of parameters β0 or the influence of the components of X.

If the null hypothesis H0 is true, the condition Aβ0 = b can be used to
estimate β0. A restricted profile least squares estimation procedure by using
Lagrange multiplier technique is proposed as:

Wn(β,λ) =
n∑

i=1

{
Ŷi − ŜY (Zi)−

[
X̂i − ŜX(Zi)

]T
β

}2

+ 2λT (Aβ − b) ,
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where λ is a k × 1 vector of the Lagrange multipliers. Differentiating Wn(β,λ)
with respect to β and λ,⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∂Wn(β,λ)

∂β
= 2ATλ− 2

n∑
i=1

[
X̂i − ŜX(Zi)

]
×

{
Ŷi − ŜY (Zi)−

[
X̂i − ŜX(Zi)

]T
β

}
= 0,

∂Wn(β,λ)

∂λ
= 2(Aβ − b) = 0.

(4.2)

Using the estimator Σ̂ defined in subsection 3.1, the restricted estimator β̂R of
β0 derived from the first equation (4.2) satisfies

n∑
i=1

[
X̂i − ŜX(Zi)

] [
Ŷi − ŜY (Zi)

]
= Σ̂β̂R −ATλ. (4.3)

Note that the profile least squares estimator β̂ in (2.19) satisfies

n∑
i=1

[
X̂i − ŜX(Zi)

]{
Ŷi − ŜY (Zi)−

[
X̂i − ŜX(Zi)

]T
β̂

}
= 0. (4.4)

Together with (4.3)-(4.4), we have

Σ̂β̂ = Σ̂β̂R −ATλ. (4.5)

Then, equation (4.5) entails that

β̂R = β̂ + Σ̂
−1

ATλ. (4.6)

Recalling that the estimator β̂R in the second equation (4.2) satisfies Aβ̂R−b =
0, we multiply A on both sides in equation (4.6) and obtain

b = Aβ̂R = Aβ̂ +AΣ̂
−1

ATλ. (4.7)

From (4.7), we obtain

λ = −
(
AΣ̂

−1
AT

)−1 (
Aβ̂ − b

)
. (4.8)

We substitute expression λ in (4.8) to (4.6), and the restricted least squares
estimator of β0 is obtained as

β̂R = β̂ − Σ̂
−1

AT
(
AΣ̂

−1
AT

)−1 (
Aβ̂ − b

)
. (4.9)

We now present the asymptotic normality of β̂R.
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Theorem 4.1. Let ΩA = Ip − Σ−1
0 AT

(
AΣ−1

0 AT
)−1

A. Suppose conditions

of Theorem 2.1 hold, under the null hypothesis H0, we have

√
n
(
β̂R − β0

)
L−→ N(0,ΩAΣ−1

0 Σ0εΣ
−1
0 ΩT

A +ΩAΣφM ,ψM
ΩT

A).

Remark. From the definition of ΩA, it is seen that AΩA = 0. Then, the
asymptotic covariance matrix of Aβ̂R − Aβ0 under the null hypothesis H0 is

a zero matrix, this is because the linear constrain Aβ̂R = b holds true in (4.2)
when we estimate β0.

To test hypothesis H0, we propose to use a weighted quadratic forms of
Aβ̂ − b. Intuitively, if the null hypothesis H0 is false, i.e., Aβ0 	= b, the value

of ‖Aβ̂ − b‖ should be significantly large. The test statistic for testing H0 is
defined as

Tn = n
(
Aβ̂ − b

)T (
AΣ̂

−1
Σ̂εΣ̂

−1
AT +AΣ̂φM ,ψM

AT
)−1 (

Aβ̂ − b
)
.

Theorem 4.2. Suppose conditions in Theorem 2.1 hold, under the null hypoth-
esis H0, we have

Tn L−→ χ2
k,

where χ2
k is a centered chi-squared distribution with degrees of freedom k.

Next, we consider the local alternative hypothesis

H1n : Aβ0 = b+ n−1/2c, c 	= 0. (4.10)

In the following, we present the asymptotic results of β̂R and Tn under the local
alternative hypothesis H1n.

Theorem 4.3. Suppose conditions in Theorem 2.1 hold, under the local alter-
native hypothesis H1n, we have

(a) let ηc = −Σ−1
0 AT

(
AΣ−1

0 AT
)−1

c,

√
n
(
β̂R − β0

)
L−→ N(ηc,ΩAΣ−1

0 Σ0εΣ
−1
0 ΩT

A +ΩAΣφM ,ψM
ΩT

A),

(b) let πc = cT
(
AΣ−1

0 Σ0εΣ
−1
0 AT +AΣφM ,ψM

AT
)−1

c,

Tn L−→ χ2
k(πc),

where χ2
k(πc) is the noncentral chi-squared distribution with degrees of

freedom k, and πc is the noncentrality parameter.



5374 J. Zhang

5. Variable selection

In the process of data analysis, the advent of modern technology allows many
variables to be easily collected in scientific studies. Typically, many of them are
included in the full model at the initial stage of modeling to reduce the model
approximation error. It is of fundamental interest in statistical modeling to
determine which variables should be selected and retained in the final statistical
model. One popular variable selection method is the penalized least-squares
method, which has been extensively studied over the past two decades. The
least absolute shrinkage and selection operator [29, LASSO] and the smoothly
clipped absolute deviation [4, SCAD] have been extensively discussed and are
widely used.

Model (2.15) is a linear regression model with respect to β0. It is of interest
to determine which covariates have nonzero effects on the response. There are
a number of penalized variable selection methods for partial linear regression
models (see, for example, [30, 18, 13]). In this section, we use the SCAD penalty
function to select the nonzero component of β0. The SCAD penalty function
pζ(·) satisfies pζ(0) = 0, p′ζ(0+) > 0, and its first order derivative is

p′ζ(δ) = ζ

{
I{δ ≤ ζ}+ (aζ − δ)

(a− 1)ζ
I{aζ > δ}I{δ > ζ}

}
,

where, a is some positive constant with a > 2 and ζ is a tuning parameter.
From the perspective of Bayesian statistics, [4] suggests using a = 3.7, and so
this value will be used throughout the remainder of this paper. For variable
selection in multiplicative distortion measurement error models, [9] considered
the use of Lasso-type penalty functions for simultaneous variable selection and
parameter estimation in a linear regression model. There has been no discussion
in the literature of the variable selection problem when both multiplicative and
additive distortion exist in the partial linear model considered in this paper. To
solve this problem, we propose the following SCAD penalized estimator:

β̂P = argmin
β

{
1

2

n∑
i=1

{
Ŷi − ŜY (Zi)−

[
X̂i − ŜX(Zi)

]T
β

}2

(5.1)

+n

p∑
s=1

pζs(|βs|)
}
,

where pζ(·) is the SCAD penalty function with the tuning parameter ζ.
We now study the sampling property of the resulting penalized least squares

estimators. Without loss of generality, assume that β0 =
(
βT
0,1,β

T
0,2

)T

, where

β0,1 denotes the p0 × 1 nonzero components of β0, and β0,2 is a (p − p0) × 1
vector containing zeros. In addition, X1 consists of the first p0 components of
X and ψM,1(U) consists of the first p0 components of ψM (U). Moreover, we
define the following notation:

Σ0,1 = E
{
[X1 − E(X1|Z)]

⊗2
}
, Σ0ε,1 = E

{
ε2 [X1 − E(X1|Z)]

⊗2
}
,
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G1(X1,ψM,1(U)) = diag

([
(X1 − E(X1))

2

2σ2
X1

+
1

2

]
[ψM,1(U)− 1] ,

. . . ,

[
(Xp0 − E(Xp0))

2

2σ2
Xp0

+
1

2

]
[ψM,p0(U)− 1]

)
,

ΣφM ,ψM,1
= E

{[
[φM (U)− 1]

[
(Y − E(Y ))2

2σ2
Y

+
1

2

]
β0,1

−G1(X1,ψM,1(U))β0,1

]⊗2}
,

Rζ1
=

{
p′ζ1(|β01|)sign(β01), . . . , p

′
ζp0

(|β0p0 |)sign(β0p0)
}
,

Σζ1
= diag

{
p′′ζ1(|β01|), . . . , p′′ζp0 (|β0p0 |)

}
.

Theorem 5.1. Under the conditions (C1)-(C6), the penalized estimator β̂P =(
β̂
T

P,1, β̂
T

P,2

)T

satisfies:

(a) (consistency) with probability tending to one, β̂P,2 = 0;
(b) (asymptotic normality)

√
n
(
Σ0,1 +Σζ1

){(
β̂P,1 − β0,1

)
−

(
Σ0,1 +Σζ1

)−1 Rζ1

}
L−→ N

(
0p0 ,Σ0ε,1 +Σ0,1ΣφM ,ψM,1

Σ0,1

)
.

Remark. The extra-bias
√
nRζ1

is induced by the SCAD penalty function.
If we impose conditions

√
nRζ1

→ 0 and Σζ1
→ 0, the asymptotic result

of Theorem 5.1(b) is the same as Theorem 2.1 if the non-zero components of
β0 were known beforehand. Moreover, the SCAD penalty also automatically
shrinks the zero components of β0 to zeros. With an appropriate choice of the
tuning parameter ζ, Theorem 5.1 indicates that the proposed variable selection
procedure possesses the oracle property. We now discuss the choice of the tuning
parameter.

We adopt the BIC selector to choose the regularization parameters ζj ’s [16]
by reducing the p-dimensional regularization parameters (ζ1, . . . , ζp) to a single
dimension. Let ζr = ζ0σ̂r, r = 1, . . . , p, where σ̂r is defined in (3.1). The BIC
score for ζ0 can be defined as

BIC(ζ0) = log{MSE(ζ0)}+
logn

n
Nζ0 ,

where MSE(ζ0) = 1
n

∑n
i=1

{
Ŷi − ŜY (Zi)−

[
X̂i,ζ − ŜX,ζ(Zi)

]T
β̂P,ζ

}2

, X̂i,ζ

and ŜX,ζ(Zi) consist of the components of X̂i and ŜX(Zi) according to β̂P,ζ ,

respectively. Nζ0 is the number of nonzero coefficients of β̂P,ζ , where β̂P,ζ is the
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resulting penalized estimator of β0 with tuning parameter ζ = (ζ1, . . . , ζp)
T,

where ζr = ζ0σ̂r. Thus, the minimization problem over ζj reduces to a one-
dimensional minimization problem through ζ0. The minimizer of the tuning
parameter ζ0 can be obtained by a grid search. Based on our experience in sim-
ulations, 30 grid points, evenly distributed over the range of ζ0, are sufficient.

6. Comparison for no additive distortion scenario

6.1. Estimation

In the previous sections, we consider the coexistence of multiplicative and ad-
ditive distortion measurement errors. In this section, we consider a special case
of φA(U) = 0, ψA(U) ≡ 0, i.e., there is no additive distortions:

Ỹ = φM (U)Y, X̃ = ψM (U)X. (6.1)

We propose to use the recently studied conditional absolute mean calibration
method [2, 41, CAMC] to estimate β0, and we discuss the asymptotic efficiency

of estimator β̂ and the CAMC estimator.
If a random variable S satisfies E(S) = 0, it is easily seen that Var(S) = E[S−

E(S)]2 = ES2. Thus, under the multiplicative distortion setting (6.1), one can
also use (2.8)-(2.10) and (2.14) to calibrate the unobserved response variable and

covariates by the estimated φ̂A(u) and ψ̂A,r(u)’s. Another estimation procedure
is to directly use the model assumption φA(U) = 0 and ψA(U) = 0 without
estimating them. We now consider the later estimation procedure. According to
(2.5)-(2.6) and (6.1), under the condition σY

∏p
r=1 σXr > 0, we have

Y =
Ỹ

φM (U)
, Xr =

X̃r

ψM,r(U)
, r = 1, . . . , p.

Use directly (2.11), the calibrated variables are defined as

ŶV,i =
Ỹi

φ̂M (Ui)
, X̂V,ri =

X̃ri

ψ̂M,r(Ui)
, r = 1, . . . , p, i = 1, . . . , n.

Let X̂V,i = (X̂V,1i, . . . , X̂V,pi)
T, using (2.17) and (2.18), the parameter β0 is

estimated as

β̂V =

{
1

n

n∑
i=1

[
X̂V,i − ŜX(Zi)

]⊗2
}−1

(6.2)

× 1

n

n∑
i=1

{
X̂V,i − ŜX(Zi)

}{
ŶV,i − ŜY (Zi)

}
.

The estimators (2.19) and (6.2) require the condition σY

∏p
r=1 σXr > 0, which

is equivalent to P (Y = E(Y )) +
∑p

r=1 P (Xr = E(Xr)) < 1. In other words,
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none of the variables is a constant variable. The CAMC method proposed in [2]
and [41] is by using

φM (u) =
E(|Ỹ | |U = u)

E(|Y |) =
E(|Ỹ | |U = u)

E(|Ỹ |)
, (6.3)

ψM,r(u) =
E(|X̃r| |U = u)

E(|Xr|)
=

E(|X̃r| |U = u)

E(|X̃r|)
, r = 1, . . . , p. (6.4)

The equations (6.3) and (6.4) require the condition E(|Y |)
∏p

r=1 E(|Xr|) > 0,
which is equivalent to P (Y = 0) +

∑p
r=1 P (Xr = 0) < 1. In other words, none

of the variables {Y,Xr, r = 1, . . . , p} is a zero variable under the condition

E(|Y |)
∏p

r=1 E(|Xr|) > 0. Although {Y,Xr, r = 1, . . . , p} is unobserved, Ỹ ≡ 0
if and only if Y ≡ 0 under the model assumption (6.1). Thus, the condition
E(|Y |)

∏p
r=1 E(|Xr|) > 0 is much weaker than the condition σY

∏p
r=1 σXr > 0.

It is remarkable that the CAMC method is applicable for model (6.1) but
not for model (1.1). When φA(u) 	≡ 0 and ψA,r(u) 	≡ 0, r = 1, . . . , p, the CAMC

method (6.3) is infeasible. It is seen that E(|Ỹ | |U = u) = E(|φM (u)Y +φA(u)|),
because φA(u) and φM (u) are two unknown functions, and only one equation
(6.3) is not workable anymore. [2] proposed the CAMC method to estimate the
conditional mean function E(Y |X = x), and [41] used CAMC for model checking
problem. We now propose another estimator of β0 based on the CAMC method.
The Nadaraya-Watson estimators of φM (u) and ψM,r(u) are defined as

φ̂M|·|(u) =
1

nf̂U (u)|Ỹ |

n∑
i=1

Kh(Ui − u)|Ỹi|, |Ỹ | = 1

n

n∑
i=1

|Ỹi| (6.5)

ψ̂M|·|,r(u) =
1

nf̂U (u)|X̃r|

n∑
i=1

Kh(Ui − u)|X̃ri|, |X̃r| =
1

n

n∑
i=1

|X̃ri|. (6.6)

Using (6.5)-(6.6), we obtain the CAMC calibrated variables {ŶC,i, X̂C,ri, r =
1, . . . , p}ni=1 as

ŶC,i =
Ỹi

φ̂M|·|(Ui)
, X̂C,ri =

X̃ri

ψ̂M|·|,r(Ui)
, r = 1, . . . , p. (6.7)

Let X̂C,i = (X̂C,1i, . . . , X̂C,pi)
T, using (2.17) and (2.18), the parameter β0 is

estimated as

β̂C =

{
1

n

n∑
i=1

[
X̂C,i − ŜX(Zi)

]⊗2
}−1

× 1

n

n∑
i=1

{
X̂C,i − ŜX(Zi)

}{
ŶC,i − ŜY (Zi)

}
.

We now present the asymptotic results for the estimators β̂V and β̂C . Define
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the following notations:

F (X,ψM (U)) = diag

(
(ψM,1(U)− 1)|X1|

E(|X1|)
, . . . ,

(ψM,p(U)− 1)|Xp|
E(|Xp|)

)
,

ΩφM ,ψM
= E

{[
(φM (U)− 1)|Y|

E(|Y |) β0 − F (X,ψM (U))β0

]⊗2
}
.

Theorem 6.1. Suppose conditions (C1)-(C5) hold, we have

√
n
(
β̂V − β0

)
L−→ N

(
0p,Σ

−1
0 Σ0εΣ

−1
0 +ΣφM ,ψM

)
,

√
n
(
β̂C − β0

)
L−→ N

(
0p,Σ

−1
0 Σ0εΣ

−1
0 +ΩφM ,ψM

)
.

Compared with Theorem 2.1, it is seen that estimators β̂V and β̂ have the
same asymptotic mean and asymptotic covariance matrix. This is not surprising
because the additive distortions φA(U) and ψA(U) has no effect on the profile

least squares estimator β̂, and the distortion model (6.1) assumed that φA(U) =

0 and ψA(U) ≡ 0. As a result, it is natural that β̂V and β̂ have common
asymptotic mean and asymptotic covariance matrix.

For the CAMC estimator β̂C , it is seen that β̂C is more asymptotically

efficient than β̂V when ΣφM ,ψM
−ΩφM ,ψM

is a positive definite matrix, and vice

versa. In details, we denote the asymptotic variance of β̂V,r (the r-th component

of β̂V ) as Avar(β̂V,r) and the asymptotic variance of β̂C,r (the r-th component

of β̂C) as Avar(β̂C,r). We have

Avar(β̂C,r)−Avar(β̂V,r)

= β2
0rVar(φM (U))

{
E(Y 2)

[E(|Y |)]2 − E[(Y − E(Y ))4]

4σ4
Y

− 3

4

}
+ β2

0rVar(ψM,r(U))

{
E(X2

r )

[E(|Xr|)]2
− E[(Xr − E(Xr))

4]

4σ4
Xr

− 3

4

}
− 2β2

0r

{
E(|Y Xr|)

E(|Y |)E(|Xr|)
− E[(Y − E(Y ))2(Xr − E(Xr))

2]

4σ2
Y σ

2
Xr

− 3

4

}
×Cov(φM (U), ψM,r(U)).

It is seen that if the response variable Y is exactly observed, i.e., φM (u) ≡ 1,
then Var(φM (U)) = 0 and Cov(φM (U), ψM,r(U)) = 0, the difference between

the asymptotic variances Avar(β̂V,r) and Avar(β̂C,r) reduces to

β2
0rVar(ψM,r(U))

{
E(X2

r )

[E(|Xr|)]2
− E[(Xr − E(Xr))

4]

4σ4
Xr

− 3

4

}
.

It is also seen that if the true parameter β0r = 0, we have

Avar(β̂V,r) = Avar(β̂C,r) = eTr Σ
−1
0 Σ0εΣ

−1
0 er.
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When β0r = 0, both β̂C and β̂V result in asymptotic efficient estimators, i.e., the
profile least squares estimation with different calibration procedures eliminate
the effect caused by the multiplicative distorting functions φM (u) and ψM,r(u)’s.

We directly substitute estimators β̂ with β̂V or β̂C in the (2.20) and (2.21),
and obtain the estimators ĝV (z) and ĝC(z), respectively. In Theorem 6.1, the

estimators β̂V and β̂C have root-n convergence rate, and local linear kernel
smoothing estimators ĝV (z) and ĝC(z) have root-(nh2) convergence rate, which
is slow than the former one. So the asymptotic result of ĝV (z) and ĝC(z) are the
same as those in Theorem 2.2, but the asymptotic variance σ2(z) is calculated
under the model (6.1).

6.2. Confidence intervals

(1) Confidence intervals based on β̂V .
According to Theorem 6.1, the (1−α)×100% (0 < α < 1) confidence interval

for β0r can be obtained by estimating the asymptotic covariance matrices. Let

ε̂V,i = ŶV,i − β̂
T

V X̂V,i − ĝV (Zi), i = 1, . . . , n, here ĝV (z) is obtained from (2.21)

by substitute β̂ with β̂V . We define

Σ̂V =
1

n

n∑
i=1

[
X̂V,i − ŜX(Zi)

]⊗2

, Σ̂V,ε =
1

n

n∑
i=1

ε̂2V,i

[
X̂V,i − ŜX(Zi)

]⊗2

,

and

ĜV (X̂V,i, ψ̂M (Ui)) = diag

([ (
X̂V,1i − X̃1

)2
2
[
Ê
(
σX̃1|U (U)

)]2 +
1

2

] [
ψ̂M,1(Ui)− 1

]
,

. . . ,

[ (
X̂V,pi − X̃p

)2
2
[
Ê
(
σX̃p|U (U)

)]2 +
1

2

] [
ψ̂M,p(Ui)− 1

])
,

Σ̂V,φM ,ψM
=

1

n

n∑
i=1

{[[
φ̂M (Ui)− 1

]( (
ŶV,i − Ỹ

)2
2
[
Ê
(
σỸ |U (U)

)]2 +
1

2

)
β̂V

−ĜV (X̂V,i, ψ̂M (Ui))β̂V

]⊗2}
.

Moreover,

σ̂2
V,r = eTr Σ̂

−1

V Σ̂V,εΣ̂
−1

V er + eTr Σ̂V,φM ,ψM
er.

Based on the estimator σ̂2
V,r, the (1−α)×100% (0 < α < 1) confidence interval

for β0r is ⎛⎝β̂V,r −

√
σ̂2
V,r

n
zα/2, β̂V,r +

√
σ̂2
V,r

n
zα/2

⎞⎠ .
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(2) Confidence intervals based on β̂C .

Let ε̂C,i = ŶC,i − β̂
T

CX̂C,i − ĝC(Zi), i = 1, . . . , n, here ĝC(z) is obtained from

(2.21) by substitute β̂ with β̂C . We define

Σ̂C =
1

n

n∑
i=1

[
X̂C,i − ŜX(Zi)

]⊗2

, Σ̂C,ε =
1

n

n∑
i=1

ε̂2C,i

[
X̂C,i − ŜX(Zi)

]⊗2

,

and

F̂ (X̂C,i, ψ̂M|·|
(Ui)) = diag

(
|X̃1i| − |X̂C,1i|

|X̃1|
, . . . ,

|X̃pi| − |X̂C,pi|
|X̃p|

)
,

Ω̂φM ,ψM
=

1

n

n∑
i=1

[
|Ỹi| − |ŶC,i|

|Ỹ |
β̂C − F̂ (X̂C,i, ψ̂M|·|

(Ui))β̂C

]⊗2

.

Moreover, we define

σ̂2
C,r = eTr Σ̂

−1

C Σ̂C,εΣ̂
−1

C er + eTr Ω̂φM ,ψM
er. (6.8)

Based on the estimator σ̂2
C,r, the (1−α)×100% (0 < α < 1) confidence interval

for β0r is ⎛⎝β̂C,r −

√
σ̂2
C,r

n
zα/2, β̂C,r +

√
σ̂2
C,r

n
zα/2

⎞⎠ .

(3) Empirical likelihood method
Analogous to Section 3.2, we now define two calibrated EL principles by plug-

ging in {ŶV,i−ŜY (Zi), X̂V,i−ŜX(Zi)}ni=1 and {ŶC,i−ŜY (Zi), X̂C,i−ŜX(Zi)}ni=1

into ℘n,i(β
′):

l̂V,n(β
′) = −2max

{ n∑
i=1

log(npi) : pi ≥ 0,

n∑
i=1

pi = 1,

n∑
i=1

pi℘̂V,n,i(β
′) = 0

}
,

l̂C,n(β
′) = −2max

{ n∑
i=1

log(npi) : pi ≥ 0,
n∑

i=1

pi = 1,
n∑

i=1

pi℘̂C,n,i(β
′) = 0

}
,

where

℘̂V,n,i(β
′) =

[
X̂V,i − ŜX(Zi)

](
ŶV,i − ŜY (Zi)−

[
X̂V,i − ŜX(Zi)

]T
β′

)
,

℘̂C,n,i(β
′) =

[
X̂C,i − ŜX(Zi)

](
ŶC,i − ŜY (Zi)−

[
X̂C,i − ŜX(Zi)

]T
β′

)
.

Similar to the proof of Theorem 3.1, both l̂V,n(β0) and l̂C,n(β0) asymptotically
converge in distribution to χ2

p. Thus, we can construct two empirical likelihood

based confidence regions by IV,α = {β′ : l̂V,n(β
′) ≤ cα} and IC,α = {β′ :

l̂C,n(β
′) ≤ cα}.
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6.3. A hypothesis testing

For the parameter hypothesis testing problem (4.1), the test statistics are defined
as

TV,n = n
(
Aβ̂V − b

)T (
AΣ̂

−1

V Σ̂V,εΣ̂
−1

V AT +AΣ̂V,φM ,ψM
AT

)−1

×
(
Aβ̂V − b

)
,

TC,n = n
(
Aβ̂C − b

)T (
AΣ̂

−1

C Σ̂C,εΣ̂
−1

C AT +AΩ̂φM ,ψM
AT

)−1

×
(
Aβ̂C − b

)
.

We have the following asymptotic results.

Theorem 6.2. Suppose conditions in Theorem 1 hold, under the null hypothesis
H0 of (4.1), we have

TV,n L−→ χ2
k, TC,n

L−→ χ2
k.

Under the local null hypothesis H1n of (4.10), we have

TV,n L−→ χ2
k(πc), TC,n

L−→ χ2
k(πC,c),

where χ2
k(πC,c) is the noncentral chi-squared distribution with degrees of freedom

k, and πC,c is the noncentrality parameter:

πC,c = cT
(
AΣ−1

0 Σ0εΣ
−1
0 AT +AΩφM ,ψM

AT
)−1

c.

From Theorem 6.2, we can use two test statistics TV,n and TC,n to check the
hypothesis H0 in (4.1). It is seen that if πC,c > πc, TC,n performs asymptotically
more powerful than TV,n for detecting the local alternative hypothesis H1n;
if πC,c = πc, both two statistics are asymptotically equivalent. If the local
alternative hypothesis H1n is given in advance, we can use the larger value of
estimators π̂c and π̂C,c to decide which statistic is better.

6.4. Variable selection

Analogous to (5.1), the penalized estimators of β0 are defined as

β̂P,V = argmin
β

{
1

2

n∑
i=1

{
ŶV,i − ŜY (Zi)−

[
X̂V,i − ŜX(Zi)

]T
β

}2

+n

p∑
s=1

pζs(|βs|)
}
,
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β̂P,C = argmin
β

{
1

2

n∑
i=1

{
ŶC,i − ŜY (Zi)−

[
X̂C,i − ŜX(Zi)

]T
β

}2

+n

p∑
s=1

pζs(|βs|)
}
,

where pζ(·) is the SCAD penalty function with tuning parameter ζ. Similar to

Theorem 6.1, the asymptotic result of β̂P,V is the same as Theorem 5.1. Now

we present the asymptotic results of β̂P,C . In the following, we define

F 1(X1,ψM,1(U))

= diag

(
(ψM,1(U)− 1)|X1|

E(|X1|)
, . . . ,

(ψM,p0(U)− 1)|Xp0 |
E(|Xp0 |)

)
,

ΩφM ,ψM,1
= E

{[
(φM (U)− 1)|Y|

E(|Y |) β0,1 − F 1(X1,ψM,1(U))β0,1

]⊗2
}
.

Theorem 6.3. Under the conditions (C1)-(C6), the penalized estimator β̂P,C =(
β̂
T

P,C,1, β̂
T

P,C,2

)T

satisfies:

(a) (consistency) with probability tending to one, β̂P,C,2 = 0;
(b) (asymptotic normality)

√
n
(
Σ0,1 +Σζ1

){(
β̂P,C,1 − β0,1

)
−

(
Σ0,1 +Σζ1

)−1 Rζ1

}
L−→ N

(
0p0 ,Σ0ε,1 +Σ0,1ΩφM ,ψM,1

Σ0,1

)
.

To choose the regularization parameters ζj ’s for the penalized estimator β̂P,C ,
we also adopt the BIC selector suggested by [16]. Let ζj = ζ0σ̂C,j , where σ̂C,j ’s
are defined in (6.8). The BIC score for ζ0 can be defined as

BIC(ζ0) = log{MSE(ζ0)}+
log n

n
Nζ0 ,

where, MSE(ζ0) = 1
n

∑n
i=1

{
ŶC,i − ŜY (Zi)−

[
X̂C,i,ζ − ŜX,ζ(Zi)

]T
β̂P,C,ζ

}2

,

X̂C,i,ζ and ŜX,ζ(Zi) consist of the components of X̂C,i and ŜX(Zi) according

to β̂P,C,ζ , respectively. Nζ0 is the number of nonzero coefficients of β̂P,C,ζ ,

where β̂P,C,ζ is the resulting penalized estimator of β0 with tuning parameter

ζ = (ζ1, . . . , ζp)
T, with ζj = ζ0σ̂C,j . Based on our experience in simulations, 30

grid points are set to be evenly distributed over the range of ζ0.

7. Implementation

This section reports the results of simulation studies to demonstrate the perfor-
mance of our proposed estimators. The Epanechnikov kernel K(t) = 0.75(1 −
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t2)I{|t| < 1} is used here. According to condition (C5), the bandwidth h1 can be
chosen as the optimal convergence rate, but the bandwidth h should be chosen
for under-smoothing (nh4 → 0). The consequence of under-smoothing is that
the biases of the non-parametric estimates are remain small and preclude the
optimal bandwidth for h. The asymptotic variances of the proposed estimators
for β0 depend on neither the bandwidths (h, h1) nor the kernel function K(t).
Hence, we can use the rule of thumb: h = σ̂Un

−1/3, h1 = σ̂Zn
−1/5, and with

σ̂U being the sample deviation of U and σ̂Z being the sample deviation of Z.
This method is fairly effective and easy to implement in practice. Our experi-
ence suggests that the numerical results are stable when we shift several values
around the data-driven bandwidths.

Example 1. We consider the model

Y = β01X1 + β02X2 + β03X3 + 2 sin(πZ) + ε. (7.1)

A total of 1000 realizations are generated and sample sizes of n = 300, n = 500,
and n = 1000 are considered. β0 = (β01, β02, β03)

T = (2,−0.1, 0)T, (X, Z) ∼
N4(μX ,ΣX) with μX = 04×1 and ΣX = (σij)1≤i,j≤3, σij = (0.5)|i−j|. The
model error ε is independent of X and generated as N(0, 0.52). The variable U
follows the uniform distribution U[0, 1], and the distortion functions are chosen

as φM (U) = 12((U−0.5)2+1)
13 , φA(U) = U2 − 1

3 , ψM,1(U) = 1 + 0.5 sin(2πU),

ψA,1(U) = U − 1
2 , ψM,2(U) = 1− U2−1/3

2 , ψA,2(U) = U2 − 1
3 ψM,3(U) = 2(U+3)

7
and ψA,3(U) = (U − 1

2 )
3.

(1.1) Estimation of β0. In Table 1, we report the mean, standard errors and

mean squared errors for the true estimator β̂T (the profile least-squares estima-

tor [14] using the simulated dataset {Yi,Xi, Zi}ni=1), the proposed estimator β̂

and the naive estimator β̂N (the profile least squares estimator using the dataset

{Ỹi, X̃i, Zi}ni=1 without calibration). Unsurprisingly, β̂T performs better than

β̂, because the MSE values for β̂T are all smaller than those for β̂ . For the pro-

posed estimator β̂ , all the mean values are close to the true value (2,−1, 0)T,
and the MSE values decrease as the sample size n increases. In Theorem 2.1, we
show that the estimator β̂r is asymptotically efficient when β0r = 0. In Table
1, we see that MSE values for the estimator β̂3 are very close those for the
true estimator β̂T3 when n = 1000. The naive estimator β̂N has a large bias,
especially when estimating β01 and β02. All MSE values for the naive estimator
are greater than those for the true estimator and proposed estimator in this ta-
ble. This indicates that ignoring the multiplicative distortion functions φM (U),
φA(U), ψM,r(U) and ψA,r(U) increases the bias and results in an inconsistent
estimator, even when the sample size n is large.

(1.2) Confidence intervals. We report the 95% normal approximation (NA)
confidence intervals and empirical likelihood (EL) confidence intervals for β0s,
s = 1, 2, 3. The results are reported in Table 2. In Table 2, as the sample size
n increases, we see that both the NA confidence intervals and the EL confi-
dence intervals achieve satisfactory performance, both in terms of the average
length of the confidence intervals and the coverage probabilities. The NA con-
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fidence intervals are wider and have larger coverage probabilities than the EL
confidence intervals. Note that the EL method does not need to estimate the
asymptotic variances of estimators, whereas the NA method does. Generally,
the NA asymptotic intervals and the EL method are both recommended when
the sample size is large.

(1.3) Restriction Estimator. We consider the restricted estimator under two
constraints A1 = (2,−1, 0) (i.e., 2β01 − β02 = 5) and A2 = (−0.5, 1, 0) (i.e.,
−0.5β01 + β02 = −2). In Table 4, the MSE of the restricted estimator for β02

using A1 is much smaller than the value in Table 1, and the MSEs for β01 and
β03 have improved slightly. This indicates that the restricted condition A1 can
improve the estimation efficiency for β02 without sacrificing much estimation
efficiency for β01 and β03. For A2, the MSE of the restricted estimator for β0s,
s = 1, 2, 3, is much smaller than the value in Table 1, which again implies that
the restricted condition A2 improves the estimation efficiency for β0.

(1.4) Hypothesis test. We consider the following test problem for model (7.1),

H0 : Aβ0 = 0, H1 : Aβ0 = c, c 	= 0, (7.2)

where A1 = (0, 0, 1) and c = 0.05, 0.10, . . . , 0.40 for the alternative hypothesis
H1. Under the null hypothesis H0, we set β0 = (2,−1, 0)T, and β0 = (2,−1, c)T

for H1. The simulation results for the test statistic Tn are reported in Table 4.
In Table 4, as the value of c increases, the power function increases rapidly. The
power function tends to 1 as the sample size n increases, which shows that the
test statistic Tn is powerful for this test problem.

Table 1

Simulation results of Mean (M), Standard Error (SD) and Mean Squared Error (MSE) for

true estimator β̂T , the proposed estimator β̂, and the naive estimator β̂N . MSE is in the
scale of ×10−3.

n = 300 n = 500 n = 1000

M SD MSE M SD MSE M SD MSE

β̂T,1 2.0002 0.0504 2.5417 2.0005 0.0378 1.4348 1.9989 0.0271 0.7317

β̂1 1.9689 0.0977 10.5076 1.9902 0.0640 4.1945 1.9966 0.0418 1.7603

β̂N,1 1.7459 0.0710 69.6039 1.7476 0.0546 66.6695 1.7420 0.0397 66.1176

β̂T,2 -1.0005 0.0534 2.8584 -0.9996 0.0441 1.9407 -0.9993 0.0312 0.9688

β̂2 -0.9761 0.0668 5.0392 -0.9870 0.0484 2.5142 -0.9924 0.0328 1.1337

β̂N,2 -0.8683 0.0684 22.0162 -0.8688 0.0528 19.9913 -0.8676 0.0391 19.0435

β̂T,3 -0.0006 0.0565 3.1923 0.0009 0.0447 1.9898 -0.0003 0.0308 0.9464

β̂3 -0.0006 0.0605 3.6625 0.0019 0.0471 2.2233 -0.0006 0.0312 0.9776

β̂N,3 0.0080 0.0783 6.1981 0.0071 0.0597 3.6161 0.0065 0.0407 1.7020

Example 2. We conduct 1000 simulations from model (1.1) by choosing β0 =
(2,−1.5, 0.5, 0, 0, . . . , 0)T and g(z) = 2 sin(πz), where the length of β0 is set
to be 10, 20 and 30, i.e., the number of zero components of β0 is 7, 17 and
27, respectively. The covariate (X, Z) follows normal distribution N(0,Σ) with
Σ = (σij)1≤i,j≤(p+1), σij = (−0.5)|i−j|, p = 10, p = 20 and p = 30. The model
error ε, the confounding variable U , and the distortion functions φM (U) and
φA(U) are the same as those in Example 1. The distortion function for Xr is
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Table 2

Simulation results of confidence intervals. “NA” stands for the normal approximation and
“EL” stands for the empirical likelihood. “Lower” stands for the lower bound, “Upper”
stands for upper bound, “AL” stands for average length, “CP” stands for the coverage

probabilities.

n = 300 n = 500 n = 1000

β1 β2 β3 β1 β2 β3 β1 β2 β3

NA Lower 1.8073 -1.1158 -0.1351 1.8648 -1.0927 -0.1047 1.9120 -1.0683 -0.0739

Upper 2.132‘ -0.8368 0.1347 2.1094 -0.8780 0.1045 2.0835 -0.9169 0.0745

AL 0.3247 0.2789 0.2699 0.2446 0.2174 0.2093 0.1715 0.1514 0.1483

CP 94.1% 96.3% 96.3% 95.5% 96.7% 97.0% 96.4% 95.9% 96.5%

EL Lower 1.8070 -1.1058 -0.1214 1.8733 -1.0863 -0.0937 1.9184 -1.0592 -0.0661

Upper 2.1313 -0.8490 0.1238 2.1021 -0.8879 0.0948 2.0766 -0.9278 0.0674

AL 0.3243 0.2567 0.2452 0.2288 0.1984 0.1885 0.1581 0.1318 0.1336

CP 94.6% 94.3% 95.5% 94.5% 95.9% 95.5% 94.7% 94.9% 95.3%

Table 3

Simulation results of Mean (M), Standard Error (SD) and Mean Squared Error (MSE) for

β̂R with A1β0 = 5 and A2β0 = −2. All values of MSE are in the scale of 10−3.

A1 = (2,−1, 0) A2 = (−0.5, 1, 0)
M SD MSE M SD MSE

n = 300
β01 1.9971 0.0287 0.8340 1.9849 0.0661 4.5999
β02 -1.0057 0.0575 3.3363 -1.0075 0.0330 1.1499
β03 0.0071 0.0592 3.5538 0.0112 0.0572 3.4048

n = 500
β01 2.0005 0.0239 0.5755 1.9968 0.0545 2.9828
β02 -0.9989 0.0479 2.3020 -1.0015 0.0272 0.7457
β03 0.0036 0.0470 2.2212 0.0059 0.0457 2.1302

n = 1000
β01 2.0012 0.0135 0.1839 2.0015 0.0292 0.8551
β02 -0.9975 0.0270 0.7358 -0.9992 0.0146 0.2137
β03 0.0002 0.0311 0.9721 0.0011 0.0300 0.9045

Table 4

Simulation results for power calculations of Tn in Example 1.

n = 300 n = 500 n = 1000

Significant level 0.01 0.05 0.10 0.01 0.05 0.10 0.01 0.05 0.10

c = 0.00 0.012 0.057 0.108 0.011 0.053 0.106 0.011 0.051 0.102

c = 0.05 0.018 0.079 0.138 0.023 0.129 0.206 0.078 0.208 0.331

c = 0.10 0.101 0.299 0.432 0.197 0.427 0.578 0.524 0.795 0.875

c = 0.15 0.329 0.591 0.732 0.600 0.842 0.914 0.942 0.991 0.997

c = 0.20 0.621 0.860 0.915 0.902 0.981 0.992 1.000 1.000 1.000

c = 0.25 0.877 0.966 0.990 0.988 0.998 1.000 1.000 1.000 1.000

c = 0.30 0.970 0.994 0.999 0.998 0.999 1.000 1.000 1.000 1.000

c = 0.35 0.993 0.997 1.000 1.000 1.000 1.000 1.000 1.000 1.000

c = 0.40 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

set to be ψM,r(U) = 1+(r+1)Ur

2 , ψA,r(U) = Ur − 1
r+1 , r = 1, . . . , p. The sample

size n in this example is chosen as n = 300, n = 500 and n = 1000.
To measure the selection and estimation accuracy, we define ωu,β0

, ωc,β0
and

ωo,β0
as the proportions of underfitted, correctly fitted and overfitted models.

In the case of overfitted models, “1”, “2”, and “≥ 3” are the proportions of
models including 1, 2, and more than 2 insignificant covariates. We denote the
mean squared error ‖β̂P − β0‖22 as Mseβ0

, where β̂P is the final penalized
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estimators. Moreover, “Cβ0
” and “INβ0

” denote the average number of the zero
coefficients that were correctly set to be zero, and the average number of non-
zero coefficients that were incorrectly set to be zero, respectively.

In Table 5, we report the true penalized estimator (using the true covariates

(Y,X, Z)), the penalized estimator β̂P , and the naive penalized estimator (using

the observed data (Ỹi, X̃i, Zi) directly without calibration). We see that the val-

ues of “Cβ0
” for the true penalized estimator and β̂P are close to the true values

7 (p = 10), 17 (p = 20), and 27 (p = 30), and that “INβ0
” is close to 0. However,

the naive penalized estimator falsely penalizes the non-zero components of β0 to
zero, and the values of INβ0

are nonzero even for large sample sizes. For the true

penalized estimator and the penalized estimator β̂P , the proportion of models
that are correctly fitted (column ωc,β0

) is above 90% when n = 300, and 100%
when n = 1000. The proportions of models that are underfitted (column ωu,β0

)

and overfitted (columns under ωo,β0
) for the true penalized estimator and β̂P

are about 0% and 10% when n = 300 and n = 500, respectively. In the overfit-
ted case, the proportion of models including 1 insignificant covariate dominates
the cases including 2 or more insignificant covariates, and the latter is close
to 0% in most situations. This indicates that the true penalized estimator and
β̂P are most likely to select a final model that is very close to the true model.

Moreover, the mean squared errors Mseβ0
for β̂P are much smaller than for the

naive penalized estimator. The naive penalized estimator definitely ruins the
oracle property of the SCAD penalty function, giving larger values of Mseβ0

.
The large biases can not be eliminated even when the sample size n increases
to 1000, which coincides with the simulation results reported in Table 1. When
the sample size n = 300, the percentage of underfitted models (columns under
ωu,β0

) is about 8%, which implies that the naive penalized estimator eventually
produces an incorrect model. This again indicates that ignoring the distortion
measurement errors in the variable selection process will ruin the oracle property
and result in a wrong model.

Example 3. We generate 1000 realizations from model (7.1). The sample size
are chosen to n = 300, n = 500 and n = 1000. The variables (X, Z, ε, U) are
the same as those in Example 1. The multiplicative distortion functions are

φM (U) = 12((U−0.5)2+1)
13 , ψM,1(U) = 1 + 0.3 cos(2πU), ψM,2(U) = U2 + 2

3 and
ψM,3(U) = 5

4−U3. The additive distortion functions are set to be zero functions,
i.e., φA(U) = 0, ψA,r(U) = 0, r = 1, . . . , p. We compare the performance of the

estimators (β̂V , β̂C) and their confidence intervals, test statistics (TV,n, TC,n)

and penalized estimators (β̂P,V , β̂P,C). Note that the estimation method pro-
posed in [1] can not be used in this example because E(Xr) = 0, r = 1, . . . , p.

In Table 6, it is not surprising that the true estimator performs better than
the proposed estimator, because the MSE values for β̂T are all smaller than

β̂V and β̂C , and their mean values are close to the true value (2,−1, 0)T. The

performance of β̂V is slightly better than that of β̂C . The latter has a slightly

larger MSE. In Theorem 6.1, we have shown that the estimator β̂r is asymp-
totically efficient when β0r = 0. In Table 6, we see that the MSE values for the
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Table 5

Simulation results for Example 2. “T” stands for the true penalized estimator, “P”
standards for the penalized estimator β̂P , and “N” stands for the naive penalized estimator.

All values of Mseβ0
are in the scale of 10−3.

ωo,β0
(%) No of zeros

(p0, q0) ωu,β0
(%) ωc,β0

(%) “1 (%)” “2” (%) “≥ 3”(%) Mseβ0
Cβ0

INβ0
n = 300

(3, 7) T 0.0 98.1 1.9 0.0 0.0 5.3655 6.981 0.000
(3, 7) P 0.0 91.0 8.6 0.4 0.0 11.6584 6.906 0.000
(3, 7) N 8.4 88.8 2.7 0.1 0.0 208.6972 6.967 0.084

n = 500
(3, 7) T 0.0 100 0.0 0.0 0.0 3.5145 7.000 0.000
(3, 7) P 0.0 99.9 0.1 0.0 0.0 7.2799 6.999 0.000
(3, 7) N 3.1 96.6 0.3 0.0 0.0 202.1424 6.997 0.031

n = 1000
(3, 7) T 0.0 100 0.0 0.0 0.0 1.8867 7.000 0.000
(3, 7) P 0.0 100 0.0 0.0 0.0 3.4036 7.000 0.000
(3, 7) N 0.5 99.5 0.0 0.0 0.0 195.0048 7.000 0.005

n = 300
(3, 17) T 0.0 98.7 1.2 0.1 0.0 6.0981 16.986 0.000
(3, 17) P 0.0 94.6 5.0 0.4 0.0 14.0470 16.942 0.000
(3, 17) N 7.2 87.3 5.2 0.3 0.0 205.6913 16.942 0.072

n = 500
(3, 17) T 0.0 100 0.0 0.0 0.0 3.7067 17.000 0.000
(3, 17) P 0.0 99.7 0.3 0.0 0.0 7.2445 16.997 0.000
(3, 17) N 4.1 95.5 0.4 0.0 0.0 201.2426 16.996 0.041

n = 1000
(3, 17) T 0.0 100 0.0 0.0 0.0 1.9170 17.000 0.000
(3, 17) P 0.0 100 0.0 0.0 0.0 3.5003 17.000 0.000
(3, 17) N 0.2 99.8 0.0 0.0 0.0 194.4349 17.000 0.002

n = 300
(3, 27) T 0.0 99.1 0.0 0.0 0.0 5.6787 26.991 0.000
(3, 27) P 0.0 90.0 8.7 0.7 0.2 13.1403 26.893 0.000
(3, 27) N 7.8 83.6 7.7 0.9 0.0 208.6185 26.895 0.078

n = 500
(3, 27) T 0.0 100 0.0 0.0 0.0 3.6449 27.000 0.000
(3, 27) P 0.0 99.2 0.8 0.0 0.0 7.3020 26.992 0.000
(3, 27) N 2.8 96.5 0.7 0.0 0.0 202.0266 26.993 0.028

n = 1000
(3, 27) T 0.0 100 0.0 0.0 0.0 1.7407 27.000 0.000
(3, 27) P 0.0 100 0.0 0.0 0.0 3.3344 27.000 0.000
(3, 27) N 0.8 99.2 0.0 0.0 0.0 194.5244 27.000 0.008

estimators β̂V,3 and β̂C,3 become very close to those for the true estimator β̂T,3

as the sample size n increases. Moreover, their MSE values are also close to those
in Table 1. This again implies that the multiplicative distortions and additive
distortions asymptotically have no effect on estimating β03 = 0, regardless of
the choice of distortion functions.

In Table 7, we report the 95% NA confidence intervals based on the estimator
β̂V associated with EL confidence intervals, and the NA confidence intervals

based on the estimator β̂C associated with EL confidence intervals for β0s,

s = 1, 2, 3. In Table 7, the NA confidence intervals according to β̂C are slightly

wider than for β̂V , but the coverage probabilities are slightly larger than the
empirical likelihood confidence intervals. Additionally, the EL method produces
more accurate coverage probabilities than the NA method (see also Table 2).

In Table 8, we compare the performance of the test statistics TV,n and TC,n

for the hypothesis testing problem 7.2. Simulation results are similar to those
in Table 4. As the value of c increases, the power functions of TV,n and TC,n
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increase to a rapidly as the sample size n increases. It is clear that TC,n is
more powerful than TV,n, and this coincides with the confidence intervals of β03

reported in Table 7. As the 95% confidence intervals based on β̂C are slightly

wider than those for β̂V , if one uses the complement sets of the 95% confidence
intervals to reject the hypothesis 7.2, the complement sets of the confidence
intervals according to β̂C are more powerful than those for β̂V . The simulation

results in Table 8 also reveal that TC,n (based on β̂C) is more powerful than

TV,n (based on β̂V ).

Table 6

Simulation results of Mean (M), Standard Error (SD) and Mean Squared Error (MSE) for

true estimator β̂T , the proposed estimators β̂V and β̂C , and the naive estimator β̂N . MSE
is in the scale of ×10−3.

n = 300 n = 500 n = 1000

M SD MSE M SD MSE M SD MSE

β̂T,1 1.9972 0.0501 2.5169 2.0009 0.0403 1.6246 1.9989 0.0280 0.7858

β̂V,1 1.9822 0.0558 3.4256 1.9924 0.0449 2.0718 1.9958 0.0311 0.9859

β̂C,1 1.9690 0.0577 4.2963 1.9794 0.0457 2.5095 1.9833 0.0313 1.2614

β̂N,1 1.8835 0.0608 17.2547 1.8850 0.0482 15.5462 1.8835 0.0330 14.6514

β̂T,2 -0.9978 0.0556 3.1008 -1.0009 0.0445 1.9853 -1.0005 0.0321 1.0341

β̂V,2 -0.9784 0.0626 4.3797 -0.9891 0.0494 2.5585 -0.9928 0.0347 1.2603

β̂C,2 -0.9787 0.0632 4.4477 -0.9893 0.0499 2.6080 -0.9933 0.0350 1.2745

β̂N,2 -0.8497 0.0595 26.1239 -0.8520 0.0475 24.1497 -0.8514 0.0334 23.1959

β̂T,3 -0.0006 0.0547 2.9924 0.0002 0.0443 1.9649 0.0015 0.0305 0.9351

β̂V,3 -0.0052 0.0566 3.2321 -0.0033 0.0461 2.1416 -0.0018 0.0306 0.9447

β̂C,3 -0.0045 0.0590 3.5057 -0.0020 0.0472 2.2324 0.0004 0.0317 1.0093

β̂N,3 -0.0715 0.0583 8.5270 -0.0698 0.0471 7.0912 -0.0699 0.0324 5.9402

Table 7

Simulation results of confidence intervals. “NAV” stands for the normal approximation
based on β̂V , “ELV” stands for the corresponding empirical likelihood method. “NAC”

stands for the normal approximation based on β̂C , “ELV” stands for the corresponding
empirical likelihood method.

n = 300 n = 500 n = 1000

β1 β2 β3 β1 β2 β3 β1 β2 β3

NAV Lower 1.8567 -1.1215 -0.1351 1.8929 -1.0974 -0.1023 1.9257 -1.0701 -0.0729

Upper 2.1151 -0.8428 0.1226 2.0926 -0.8806 0.0950 2.0673 -0.9159 0.0668

AL 0.2584 0.2787 0.2542 0.1997 0.2167 0.1973 0.1416 0.1542 0.1398

CP 96.3% 96.7% 96.5% 95.7% 96.3% 96.3% 95.8% 95.6% 96.4%

NAC Lower 1.8414 -1.1239 -0.1363 1.8786 -1.0989 -0.1066 1.9124 -1.0714 -0.0753

Upper 2.1044 -0.8451 0.1305 2.0870 -0.8795 0.1016 2.0549 -0.9156 0.0727

AL 0.2629 0.2824 0.2669 0.2020 0.2194 0.2082 0.1425 0.1558 0.1481

CP 96.3% 96.7% 96.7% 95.5% 96.7% 97.0% 95.5% 95.7% 96.1%

ELV Lower 1.8637 -1.1153 -0.1201 1.8996 -1.0844 -0.0930 1.9321 -1.0585 -0.0658

Upper 2.1070 -0.8499 0.1092 2.0859 -0.8939 0.0847 2.0609 -0.9275 0.0603

AL 0.2432 0.2653 0.2294 0.1863 0.1905 0.1778 0.1287 0.1309 0.1263

CP 96.0% 94.5% 95.2% 95.2% 94.9% 95.1% 94.7% 94.6% 95.4%

ELC Lower 1.8504 -1.1173 -0.1250 1.8861 -1.0850 -0.0965 1.9193 -1.0591 -0.0679

Upper 2.094 -0.8492 0.1164 2.0735 -0.8935 0.0909 2.0480 -0.9279 0.0654

AL 0.2445 0.2680 0.2415 0.1873 0.1915 0.1875 0.1286 0.1312 0.1334

CP 94.7% 94.5% 95.5% 94.6% 94.7% 95.7% 94.7% 94.8% 95.9%
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Table 8

Simulation results for power calculations of TV,n and TC,n in Example 3.

TV,n TC,n

Significant level 0.01 0.05 0.10 0.01 0.05 0.10

n = 300

c = 0.00 0.012 0.052 0.102 0.010 0.054 0.104

c = 0.05 0.018 0.078 0.150 0.016 0.073 0.137

c = 0.10 0.081 0.253 0.363 0.085 0.259 0.385

c = 0.15 0.272 0.544 0.658 0.311 0.575 0.713

c = 0.20 0.557 0.769 0.854 0.607 0.848 0.912

c = 0.25 0.783 0.904 0.942 0.852 0.954 0.974

c = 0.30 0.887 0.938 0.953 0.970 0.994 1.000

c = 0.35 0.929 0.963 0.970 0.997 1.000 1.000

c = 0.40 0.935 0.958 0.966 1.000 1.000 1.000

n = 500

c = 0.00 0.011 0.051 0.095 0.011 0.053 0.102

c = 0.05 0.034 0.109 0.196 0.027 0.105 0.196

c = 0.10 0.178 0.393 0.515 0.184 0.413 0.562

c = 0.15 0.540 0.764 0.852 0.595 0.826 0.917

c = 0.20 0.767 0.897 0.923 0.895 0.976 0.991

c = 0.25 0.928 0.959 0.969 0.992 0.997 1.000

c = 0.30 0.946 0.970 0.984 0.995 1.000 1.000

c = 0.35 0.966 0.998 1.000 1.000 1.000 1.000

c = 0.40 1.000 1.000 1.000 1.000 1.000 1.000

n = 1000

c = 0.00 0.010 0.049 0.101 0.012 0.051 0.104

c = 0.05 0.061 0.193 0.301 0.063 0.212 0.333

c = 0.10 0.413 0.686 0.780 0.499 0.763 0.849

c = 0.15 0.812 0.902 0.931 0.922 0.987 0.993

c = 0.20 0.923 0.952 0.962 0.997 0.999 1.000

c = 0.25 0.942 0.968 1.000 1.000 1.000 1.000

c = 0.30 0.987 1.000 1.000 1.000 1.000 1.000

c = 0.35 1.000 1.000 1.000 1.000 1.000 1.000

c = 0.40 1.000 1.000 1.000 1.000 1.000 1.000

Example 4. In this example, we conduct 1000 simulations from model (1.1)

to examine the performance of the penalized estimators β̂P,V and β̂P,C . The
sample sizes are set to be n = 300, n = 500, and n = 1000. The parameter β0,
the variables (X, Z, U, Y, ε) and multiplicative distortion functions φM (U) and
ψM,r(U)’s are the same as those in Example 2. The additive distortion functions
are all set to be zero: φA(U) = 0, ψA,r(U) = 0, r = 1, . . . , p.

In Table 9, we report the true penalized estimator (using the true simu-

lated data {Yi,Xi, Zi}ni=1), the penalized estimators β̂P,V , β̂P,C , and the naive

penalized estimator (using the distorted data {Ỹi, X̃i, Zi}ni=1 directly without
calibration). The simulation results are all similar to those in Table 5. The val-

ues of “Cβ0
” for β̂P,V , β̂P,C are close to the true values 7 (p = 10), 17 (p = 20),

and 27 (p = 30), and “INβ0
” is close to 0. The values of ωc,β0

are all above
97%. For ωu,β0

(underfitted model) and ωo,β0
(overfitted model), the values are

all close to 0. However, the naive penalized estimator falsely penalizes the non-
zero components of β0 to zero because the values of INβ0

are nonzero, even for
large sample sizes, and the values of ωu,β0

are also nonzero. The naive penal-
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ized estimator definitely ruins the oracle property of SCAD penalty function,
giving larger values of Mseβ0

. The large biases can not be eliminated even when
the sample size n increases to 1000, which coincides with the simulation results
reported in Table 5. This again indicates that ignoring the multiplicative distor-
tion measurement errors for the variable selection process will ruin the oracle
property and result in a poor model.

Table 9

Simulation results for Example 3. “T” stands for the true penalized estimator, “V”
standards for the penalized estimator β̂P,V , “C” standards for the penalized estimator β̂P,C
and “N” stands for the naive penalized estimator. All values of Mseβ0

are in the scale of

10−3.

ωo,β0
(%) No of zeros

(p0, q0) ωu,β0
(%) ωc,β0

(%) “1 (%)” “2” (%) “≥ 3”(%) Mseβ0
Cβ0

INβ0
n = 300

(3, 7) T 0.0 99.8 0.2 0.0 0.0 19.2945 6.998 0.000
(3, 7) V 0.0 99.4 0.6 0.4 0.0 29.7618 6.994 0.000
(3, 7) C 0.0 99.7 0.3 0.0 0.0 29.6891 6.997 0.000
(3, 7) N 20.3 77.6 2.0 0.1 0.0 225.8709 6.972 0.203

n = 500
(3, 7) T 0.0 100 0.0 0.0 0.0 14.5730 7.000 0.000
(3, 7) V 0.0 99.9 0.1 0.0 0.0 19.8203 6.999 0.000
(3, 7) C 0.0 100 0.0 0.0 0.0 19.4369 7.999 0.000
(3, 7) N 14.0 85.7 0.3 0.0 0.0 220.4970 6.997 0.140

n = 1000
(3, 7) T 0.0 100 0.0 0.0 0.0 11.1170 7.000 0.000
(3, 7) V 0.0 100 0.0 0.0 0.0 13.8354 7.000 0.000
(3, 7) C 0.0 100 0.0 0.0 0.0 13.8996 7.000 0.000
(3, 7) N 6.6 93.4 0.0 0.0 0.0 215.5112 7.000 0.006

n = 300
(3, 17) T 0.0 99.8 0.2 0.0 0.0 19.1307 16.998 0.000
(3, 17) V 0.0 98.5 1.4 0.0 0.1 30.4570 16.981 0.000
(3, 17) C 0.0 98.5 1.4 0.1 0.0 28.9576 16.984 0.000
(3, 17) N 20.3 75.1 4.2 0.4 0.0 226.2938 16.935 0.203

n = 500
(3, 17) T 0.0 100 0.0 0.0 0.0 14.9827 17.000 0.000
(3, 17) V 0.0 99.8 0.2 0.0 0.0 20.9940 16.998 0.000
(3, 17) C 0.0 99.9 0.1 0.0 0.0 19.5397 16.999 0.000
(3, 17) N 14.4 85.3 0.3 0.0 0.0 221.4022 16.995 0.144

n = 1000
(3, 17) T 0.0 100 0.0 0.0 0.0 11.6909 17.000 0.000
(3, 17) V 0.0 100 0.0 0.0 0.0 14.0145 17.000 0.000
(3, 17) C 0.0 100 0.0 0.0 0.0 13.6771 17.000 0.000
(3, 17) N 7.0 93.0 0.0 0.0 0.0 218.1803 17.000 0.070

n = 300
(3, 27) T 0.0 99.7 0.3 0.0 0.0 18.3902 26.997 0.000
(3, 27) V 0.0 97.6 2.3 0.0 0.1 29.2157 26.974 0.000
(3, 27) C 0.0 97.5 2.4 0.1 0.0 28.4769 26.974 0.000
(3, 27) N 21.4 72.8 5.3 0.5 0.0 227.5474 26.911 0.214

n = 500
(3, 27) T 0.0 100 0.0 0.0 0.0 16.3829 27.000 0.000
(3, 27) V 0.0 100 0.0 0.0 0.0 22.1077 27.000 0.000
(3, 27) C 0.0 99.8 0.2 0.0 0.0 20.7386 26.998 0.000
(3, 27) N 14.8 84.4 0.8 0.0 0.0 219.5000 26.991 0.148

n = 1000
(3, 27) T 0.0 100 0.0 0.0 0.0 11.6011 27.000 0.000
(3, 27) V 0.0 100 0.0 0.0 0.0 15.1849 27.000 0.000
(3, 27) C 0.0 100 0.0 0.0 0.0 15.1381 27.000 0.000
(3, 27) N 7.2 92.8 0.0 0.0 0.0 214.3303 27.000 0.072
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8. Real data analysis

As an illustration, we now apply our method to the analysis of bodyfat data
(http://lib.stat.cmu.edu/datasets/bodyfat). The dataset contains the
percentage of body fat determined by underwater weighing and various body
circumference measurements for 252 men. In practice, the accurate measure-
ment of body fat is inconvenient and costly. Thus, simple methods of estimat-
ing body fat that are neither inconvenient nor costly are desirable. We used
the partial linear model (1.1) to investigate the relationship between Y -percent
body fat, Z-age,X1-weight,X2-height,X3-neck circumference,X4-chest circum-
ference, X5-abdomen circumference, X6-hip circumference, X7-thigh circumfer-
ence,X8-knee circumference,X9-ankle circumference,X10-biceps circumference,
X11-forearm circumference, X12-wrist circumference, and the confounding vari-
able U -the body density determined from underwater weighing. We first present
the patterns of φ̂M (u), φ̂A(u), ψ̂M,r(u)’s and ψ̂A,r(u)’s in Figures 1–4. The plots
show that all the distortion functions are non-constant.

Corresponding to the covariates (X1, . . . , X12)
T, Table 10 presents the es-

timators of β0, standard errors, p-values, confidence intervals based on NA,
confidence intervals based on EL, and the penalized estimators associated with
their estimated standard errors. The standard errors of the penalized estima-
tor β̂P are obtained using the plug-in estimators of the asymptotic covariance

matrices obtained in Theorem 5.1. The estimator β̂ and its associated p-values
show that only variable X5-abdomen is significant; the remaining p-values are
all greater than 0.2. The only 95% NA confidence intervals that does not contain
zero is that of β05. For the 95% EL confidence intervals, only those for β01, β05

and β012 exclude zero, implying that these parameters should be significant at
the 5% significant level. The penalized estimator β̂P indicates that X2-height,
X5-abdomen and X12-wrist are irrelevant to the response Y . The above anal-
ysis suggests that X5-abdomen is the most important variable in model (1.1).
Intuitively, it makes sense that the percentage of body fat will increase as X5

abdomen circumference becomes larger. Finally, we show the pattern of ĝ(z) in
Figure 5. This figure reveals that g(z) is nonlinear, and that the percentage of
body fat increases from age 20–45, decreases slightly from age 45–60, and then
increases again from age 60–80. Generally, the parameter estimation results in
Table 10 and the plot in Figure 1 show that X5-abdomen and Z-age can be
used as the two principal variables for predicting the percentage of body fat in
future health studies.

Appendix A: Appendix

A.1. Three technical lemmas

Lemma A.1. Suppose E(W |U = u) = m(u) and its derivatives up to second or-
der are bounded for all u ∈ [a1, a2]. E(|W |3) exists and supu

∫
|w|sf(u,w)dw <

∞, where f(u,w) is the joint density of (U,W ). Suppose (Ui,Wi), i = 1, 2, . . . n

http://lib.stat.cmu.edu/datasets/bodyfat
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Fig 1. Estimated curves of distorting functions ψ̂M,r(u) and ψ̂A,r(u), r = 1, . . . , 4, against
confounding variable U-the body density, associated 95% point-wise confidence intervals (dot-
ted lines).

Fig 2. Estimated curves of distorting functions ψ̂M,r(u) and ψ̂A,r(u), r = 5, . . . , 8, against
confounding variable U-the body density, associated 95% point-wise confidence intervals (dot-
ted lines).
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Fig 3. Estimated curves of distorting functions ψ̂M,r(u) and ψ̂A,r(u), r = 9, . . . , 12, against
confounding variable U-the body density, associated 95% point-wise confidence intervals (dot-
ted lines).

Fig 4. Estimated curves of distorting functions φ̂M (u) (left panel) and φ̂A(u) (right panel)
against confounding variable U-the body density, associated 95% point-wise confidence inter-
vals (dotted lines).
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Table 10

Estimation results for the body fat data

weight height neck chest abdomen hip

β̂ -0.0213 -0.0836 -0.0634 -0.0082 0.2593 0.0422
Seβ̂ 0.5032 1.0789 1.8082 0.8266 0.9379 1.2342

p-values 0.5001 0.2187 0.5777 0.8745 0.0001 0.5875
left NA -0.0834 -0.2168 -0.2866 -0.1102 0.1435 -0.1102
right NA 0.0407 0.0496 0.1598 0.0938 0.3751 0.1945
left EL -0.0343 -0.1765 -0.1964 -0.0552 0.2143 -0.0108
right EL -0.0073 0.0024 0.0735 0.0417 0.3053 0.0961

β̂P 0 -0.1147 0 0 0.2144 0
Seβ̂P

(—) 1.0113 (—) (—) 0.8845 (—)

thigh knee ankle biceps forearm wrist

β̂ -0.0336 -0.0523 0.0174 0.0285 0.0959 -0.3530
Seβ̂ 1.1499 2.4373 2.0280 1.4388 1.5519 4.7116

p-values 0.6423 0.7329 0.8916 0.7534 0.3268 0.2342
left NA -0.1756 -0.3533 -0.2329 -0.1491 -0.0957 -0.9347
right NA 0.1083 0.2485 0.2677 0.2061 0.2874 0.2286
left EL -0.1036 -0.1933 -0.1536 -0.0845 -0.0531 -0.6710
right EL 0.0373 0.0946 0.1993 0.1444 0.2428 -0.0190

β̂P 0 0 0 0 0 -0.4775
Seβ̂P

(—) (—) (—) (—) (—) 3.9948

are independent and identically distributed (i.i.d.) samples from (U,W ). If con-
dition (C4) holds true for kernel function K(u), and n2ε−1h → ∞ for ε <
1− s−1, we have

sup
u∈[a1,a2]

∣∣∣∣∣ 1n
n∑

i=1

Kh(Ui − u)Wi − fU (u)m(u)− 1

2
[fU (u)m(u)]′′μ2h

2

∣∣∣∣∣
= O(τn,h), a.s.

where μ2 =
∫
K(u)u2du, and τn,h = h3 +

√
logn/(nh).

Proof. Lemma A.1 can be immediately proved from the result obtained by [19].

Lemma A.2. Let M(W ) be a continuous function of W = (Y,X, Z) satisfying
E
[
M2(W )

]
< ∞. Suppose Conditions (C1)-(C5) hold, we have

1

n

n∑
i=1

(
Ŷi − Yi

)
M(W i)

=
1

n

n∑
i=1

{{[
(Yi − E(Y ))2

2σ2
Y

+
1

2

]
Cov(Y,M(W )) + YiE[M(W )]

}

× [φM (Ui)− 1] + φA(Ui)E[M(W )]

}
+ oP (n

−1/2).

For r = 1, . . . , p, we have

1

n

n∑
i=1

(
X̂ri −Xri

)
M(W i)
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Fig 5. The estimated curves of ĝ(z) against Z-age, associated 95% pointwise confidence in-
tervals (dotted lines).

=
1

n

n∑
i=1

{{[
(Xri − E(Xr))

2

2σ2
Xr

+
1

2

]
Cov(Xr,M(W )) +XriE[M(W )]

}

× [ψM,r(Ui)− 1] + ψA,r(Ui)E[M(W )]

}
+ oP (n

−1/2).

Proof. Lemma A.2 is the direct result of Theorem 1 in [37].

Lemma A.3. Suppose that the Conditions (C1)-(C5) hold. Let M(W ) be a
continuous function of W = (Y,X, Z) satisfying E

[
M2(W )

]
< ∞. Then,

1

n

n∑
i=1

(
ŶM,i − Yi

)
M(W i) =

1

n

n∑
i=1

(
|Ỹi| − |Yi|

)E[
YM(W )

]
E(|Y|) + oP (n

−1/2).

For r = 1, . . . , p, we have

1

n

n∑
i=1

(
X̂M,ri −Xri

)
M(W i)

=
1

n

n∑
i=1

(
|X̃ri| − |Xri|

)E[
XrM(W )

]
E(|Xr|)

+ oP (n
−1/2).

Proof. Lemma A.2 is the direct result of Lemma B.2 in [40]. See also the Lemma
1.1 in the on-line supplementary material of [41].
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A.2. Proof of Theorem 1

Recalling that

β̂ − β0 =

{
1

n

n∑
i=1

[
X̂i − ŜX(Zi)

]⊗2
}−1

(A.1)

× 1

n

n∑
i=1

{
X̂i − ŜX(Zi)

}{
Ŷi − ŜY (Zi)− X̂

T

i β0 + [ŜX(Zi)]
Tβ0

}

=

{
1

n

n∑
i=1

[
X̂i − ŜX(Zi)

]⊗2
}−1

[Dn1 + Dn2 + Dn3] ,

where,

Dn1 =
1

n

n∑
i=1

{
X̂i − ŜX(Zi)

}
εi, (A.2)

Dn2 =
1

n

n∑
i=1

{
X̂i − ŜX(Zi)

}{
Ŷi − Yi − (X̂i −Xi)

Tβ0

}
, (A.3)

Dn3 =
1

n

n∑
i=1

{
SY (Zi)− ŜY (Zi)− (SX(Zi)− ŜX(Zi))

Tβ0

}
(A.4)

×
{
X̂i − ŜX(Zi)

}
.

Step 1.1 For the expression Dn1, we have

Dn1 =
1

n

n∑
i=1

{
X̂i −Xi

}
εi +

1

n

n∑
i=1

{Xi − SX(Zi)} εi (A.5)

+
1

n

n∑
i=1

{
SX(Zi)− ŜX(Zi)

}
εi

def
= Dn1[1] + Dn1[2] + Dn1[3].

Recalling εi = Yi −XT
i β0 − g(Zi) and E(εi|Xi, Zi) = 0. Using Lemma A.2, we

have

1

n

n∑
i=1

{
X̂ri −Xri

}
εi (A.6)

=
1

n

n∑
i=1

{{[
(Xri − E(Xr))

2

2σ2
Xr

+
1

2

]
Cov(Xr, ε) +XriE(ε)

}

× [ψM,r(Ui)− 1] + ψA,r(Ui)E(ε)

}
+ oP (n

−1/2) = oP (n
−1/2).
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Based on (A.6), we have Dn1[1] = oP (n
−1/2). For argument Dn1[3], directly

using Lemma A.1 and similar to the proof of Theorem 1 in [15], we have Dn1[3] =
oP (n

−1/2). Thus, we obtain that

Dn1 =
1

n

n∑
i=1

{Xi − SX(Zi)} εi + oP (n
−1/2). (A.7)

Step 1.2 For the argument Dn2, we have

Dn2 =
1

n

n∑
i=1

{
X̂i −Xi

}{
Ŷi − Yi − (X̂i −Xi)

Tβ0

}
(A.8)

+
1

n

n∑
i=1

{Xi − SX(Zi)}
{
Ŷi − Yi − (X̂i −Xi)

Tβ0

}
+
1

n

n∑
i=1

{
SX(Zi)− ŜX(Zi)

}{
Ŷi − Yi − (X̂i −Xi)

Tβ0

}
def
= Dn2[1] + Dn2[2] + Dn2[3].

Let V̂i = Ŷi, or V̂i = X̂ri, and D̂i = Ŷi, or D̂i = X̂ri, accordingly, Vi = Yi, or
Vi = Xri or Vi = Zi, and Di = Yi, or Di = Xri or Di = Zi. According to the

proof of theorems in Zhang, Lin and Li (2019), as nh8 → 0 and log2 n
nh2 → 0,

Lemma A.1 entails that

1

n

n∑
i=1

(V̂i − Vi)(D̂i −Di) = OP ((n
−1/2 + h2 + τn,h)

2) = oP (n
−1/2). (A.9)

Using (A.9), we have Dn2[1] = oP (n
−1/2). For the argument Dn2[2], using E[X−

SX(Z)|Z] = 0 and Cov(Y,X − SX(Z)) = Σ0β0, Lemma A.2 entails that

1

n

n∑
i=1

{Xi − SX(Zi)}
{
Ŷi − Yi

}
(A.10)

=
1

n

n∑
i=1

[
(Yi − E(Y ))2

2σ2
Y

+
1

2

]
Cov(Y,X − SX(Z)) [φM (Ui)− 1]

+
1

n

n∑
i=1

{YiE[X − SX(Z)] [φM (Ui)− 1] + φA(Ui)E[X − SX(Z)]}

+ oP (n
−1/2)

=
1

n

n∑
i=1

[
(Yi − E(Y ))2

2σ2
Y

+
1

2

]
[φM (Ui)− 1]Σ0β0 + oP (n

−1/2).

Similarly, we have

1

n

n∑
i=1

{Xi − SX(Zi)} (X̂i −Xi)
Tβ0 (A.11)
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=

p∑
r=1

{
1

n

n∑
i=1

{Xi − SX(Zi)} (X̂ri −Xri)β0r

}

=

p∑
r=1

{
1

n

n∑
i=1

[
(Xri − E(Xr))

2

2σ2
Xr

+
1

2

]
Cov(Xr,X − SX(Z))

× [ψM,r(Ui)− 1]β0r

}

+

p∑
r=1

{
1

n

n∑
i=1

XriE[X − SX(Z)] [ψM,r(Ui)− 1]β0r

}

+

p∑
r=1

{
1

n

n∑
i=1

ψA,r(Ui)E[X − SX(Z)]β0r

}
+ oP (n

−1/2)

=
1

n

n∑
i=1

p∑
r=1

[
(Xri − E(Xr))

2

2σ2
Xr

+
1

2

]
[ψM,r(Ui)− 1]Σ0ere

T
r β0 + oP (n

−1/2).

Together with (A.10) and (A.11), we have

Dn2[2] =
1

n

n∑
i=1

[
(Yi − E(Y ))2

2σ2
Y

+
1

2

]
[φM (Ui)− 1]Σ0β0 (A.12)

− 1

n

n∑
i=1

p∑
r=1

[
(Xri − E(Xr))

2

2σ2
Xr

+
1

2

]
[ψM,r(Ui)− 1]Σ0ere

T
r β0

+oP (n
−1/2).

Under the condition nh8
1 → 0 and logn

nh2
1

→ 0, the conclusion of (A.1) in [15]

entails that sup
z∈Z

|ŜY (z) − SY (z)| = oP (n
−1/4), and sup

z∈Z
|ŝXr (z) − sXr (z)| =

oP (n
−1/4), r = 1, . . . , p. According to the proof of Theorem 1 in [38], we can

show that Dn2[3] = oP (n
−1/2), and also Dn3 = oP (n

−1/2). Moreover,

1

n

n∑
i=1

[
X̂i − ŜX(Zi)

]⊗2 P−→ Σ0. (A.13)

Thus, together with (A.7), (A.12) and (A.13), we obtain that

β̂ − β0 = Σ−1
0 (Dn1 + Dn2 + Dn3) + oP (n

−1/2) (A.14)

=
1

n

n∑
i=1

Σ−1
0 {Xi − SX(Zi)} εi

+
1

n

n∑
i=1

[
(Yi − E(Y ))2

2σ2
Y

+
1

2

]
[φM (Ui)− 1]β0

− 1

n

n∑
i=1

p∑
r=1

[
(Xri − E(Xr))

2

2σ2
Xr

+
1

2

]
[ψM,r(Ui)− 1] ere

T
r β0
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+oP (n
−1/2).

Using (A.14), we have completed the proof of Theorem 1.

A.3. Proof of Theorem 2

Note that

ĝ(z)− g(z) =
Tn2(z)Vn0(z)− Tn1(z)Vn1(z)

Tn2(z)Tn0(z)− [Tn1(z)]
2 − g(z) (A.15)

=
Tn2(z)[Vn0(z)− Tn0(z)g(z)]

Tn2(z)Tn0(z)− [Tn1(z)]
2 − Tn1(z)[Vn1(z)− Tn1(z)g(z)]

Tn2(z)Tn0(z)− [Tn1(z)]
2

= Sn1(z)− Sn2(z).

For the term Sn1(z), using Lemma A.1 and Theorem 1, it is seen that

Sn1(z) =
Vn0(z)− Tn0(z)g(z)

Tn0(z)− [Tn1(z)]
2
/Tn2(z)

(A.16)

=
1

fZ(z)nh2

n∑
i=1

K

(
Zi − z

h2

)[
Ỹi − g(Zi)− X̃

T

i β0

]
+

1

fZ(z)nh2

n∑
i=1

K

(
Zi − z

h2

)
X̃

T

i

(
β0 − β̂

)
+
μ2h

2
2

2
g′′(z) + h2

2

f ′
Z(z)g

′(z)

fZ(z)
+ oP (h

2
2 + 1/

√
nh2)

=
1

fZ(z)nh2

n∑
i=1

K

(
Zi − z

h2

)[
Ỹi − g(Zi)− X̃

T

i β0

]
+

μ2h
2
2

2
g′′(z)

+h2
2

f ′
Z(z)g

′(z)

fZ(z)
+ oP (h

2
2 + 1/

√
nh2).

Directly using Lemma A.1, similar to (A.16), we have

Sn2(z) =
g′(z)f ′(z)

fZ(z)
h2
2μ2 + oP (h

2
2 + 1/

√
nh2). (A.17)

Together with (A.16) and (A.17), we have

ĝ(z)− g(z)− μ2h
2
2

2
g′′(z) (A.18)

=
1

fZ(z)nh2

n∑
i=1

K

(
Zi − z

h2

)[
Ỹi − g(Zi)− X̃

T

i β0

]
+ oP (h

2
2 + 1/

√
nh2).

The asymptotic result of Theorem 2 is directly obtained from (A.18), we have
completed the proof of Theorem 2.
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A.4. Proof of Theorem 3

We first consider the conditional mean calibration. For 1 ≤ r ≤ p, let ℘̂
[r]
n,i(β0)

be the r-component of ℘̂n,i(β0). We decompose ℘̂
[r]
n,i(β0) into following terms:

℘̂
[r]
n,i(β0) = (Yi − SY (Zi)− [Xi − SX(Zi)]

Tβ0)[Xri − sXr (Zi)] +

8∑
t=1

R
[r]
n,it,

where,

R
[r]
n,i1 = {Ŷi − Yi − [X̂i −Xi]

Tβ0}[Xri − sXr (Zi)],

R
[r]
n,i2 = {Ŷi − Yi − [X̂i −Xi]

Tβ0}[X̂ri −Xri],

R
[r]
n,i3 = {Ŷi − Yi − [X̂i −Xi]

Tβ0}[sXr (Zi)− ŝXr (Zi)],

R
[r]
n,i4 = {Yi − SY (Zi)− [Xi − SX(Zi)]

Tβ0}[sXr (Zi)− ŝXr (Zi)],

R
[r]
n,i5 = {Yi − SY (Zi)− [Xi − SX(Zi)]

Tβ0}[X̂ri −Xri],

R
[r]
n,i6 = {SY (Zi)− ŜY (Zi)− [SX(Zi)− ŜX(Zi)]

Tβ0}[sXr (Zi)− ŝXr (Zi)],

R
[r]
n,i7 = {SY (Zi)− ŜY (Zi)− [SX(Zi)− ŜX(Zi)]

Tβ0}[X̂ri −Xri],

R
[r]
n,i8 = {SY (Zi)− ŜY (Zi)− [SX(Zi)− ŜX(Zi)]

Tβ0}[Xri − sXr (Zi)].

To prove Theorem 3, we need to show that

max
1≤i≤n

|℘̂[r]
n,it| = oP (n

1/2), t = 1, . . . , 8.

It is noted that for any sequence of i.i.d random {Vi, 1 ≤ i ≤ n} and E[V 2] < ∞,

we have max
1≤i≤n

|Vi|√
n

→ 0, a.s.. Then,

max
1≤i≤n

∣∣∣(Yi − SY (Zi)− [Xi − SX(Zi)]
Tβ0)[Xri − sXr (Zi)]

∣∣∣ = oP (n
1/2).

Next, for R
[r]
n,i1, according to the proof of Theorem 1 and Theorem 3 in [37],

max
1≤i≤n

|{Ŷi − Yi}[Xri − sXr (Zi)]| (A.19)

≤ max
1≤i≤n

∣∣∣φM (Ui)− φ̂M (Ui)
∣∣∣ ∣∣∣∣Yi[Xri − sXr (Zi)]

φM (Ui)

∣∣∣∣
+
∣∣∣φA(Ui)− φ̂A(Ui)

∣∣∣ ∣∣∣∣ [Xri − sXr (Zi)]

φM (Ui)

∣∣∣∣+OP

(
h4 +

logn

nh

)
OP (n

1/2)

= oP (n
1/2).

Similar to (A.19), we have

max
1≤i≤n

|R[r]
n,i1| = oP (n

1/2), max
1≤i≤n

|R[r]
n,i5| = oP (n

1/2). (A.20)
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For R
[r]
n,i2, similar to (A.19), we have

max
1≤i≤n

|{Ŷi − Yi}[X̂ri −Xri]| (A.21)

≤ max
1≤i≤n

∣∣∣[φM (Ui)− φ̂M (Ui)][ψM,r(Ui)− ψ̂M,r(Ui)]
∣∣∣

× max
1≤i≤n

∣∣∣∣ YiXri

φM (Ui)ψM,r(Ui)

∣∣∣∣
+ max

1≤i≤n

∣∣∣[φM (Ui)− φ̂M (Ui)][ψA,r(Ui)− ψ̂A,r(Ui)]
∣∣∣

× max
1≤i≤n

∣∣∣∣ Yi

φM (Ui)ψM,r(Ui)

∣∣∣∣
+ max

1≤i≤n

∣∣∣[ψM,r(Ui)− ψ̂M,r(Ui)][φA(Ui)− φ̂A(Ui)]
∣∣∣

× max
1≤i≤n

∣∣∣∣ Xri

φM (Ui)ψM,r(Ui)

∣∣∣∣
+ max

1≤i≤n

∣∣∣∣ 1

φM (Ui)ψM,r(Ui)

∣∣∣∣ max
1≤i≤n

∣∣∣[ψA,r(Ui)− ψ̂A,r(Ui)][φA(Ui)− φ̂A(Ui)]
∣∣∣

= OP

(
h4 +

logn

nh
+ n−1

)
OP (n

1/2) = oP (n
1/2).

Thus, according to (A.21), we show that

max
1≤i≤n

|R[r]
n,i2| = oP (n

1/2). (A.22)

The conclusion of (A.1) in [15] entails that sup
z∈Z

|ŜY (z) − SY (z)| = oP (n
−1/4),

and sup
z∈Z

|ŝXr (z) − sXr (z)| = oP (n
−1/4), r = 1, . . . , p. Similar to (A.21)-(A.22),

we have

max
1≤i≤n

|{Ŷi − Yi}[sXr (Zi)− ŝXr (Zi)]| (A.23)

≤ max
1≤i≤n

∣∣∣φM (Ui)− φ̂M (Ui)
∣∣∣ ∣∣∣∣ Yi

φM (Ui)

∣∣∣∣ max
1≤i≤n

|sXr (Zi)− ŝXr (Zi)|

+ max
1≤i≤n

∣∣∣φA(Ui)− φ̂A(Ui)
∣∣∣ ∣∣∣∣ 1

φM (Ui)

∣∣∣∣ max
1≤i≤n

|sXr (Zi)− ŝXr (Zi)| = oP (n
1/2).

From (A.23), we show that

max
1≤i≤n

|R[r]
n,i3| = oP (n

1/2). (A.24)

Similar to the proofs of |R[r]
n,it|, t = 1, 2, 3, 5, we have max

1≤i≤n
|R[r]

n,it| = oP (n
1/2)

for t = 4, 6, 7, 8. We omit the details. Followed the same argument in the proof
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(2.14) in [23], we have λ̂ = OP (n
1/2). Thus, max

1≤i≤n
|λ̂T℘̂n,i(β0)| = oP (1). Note

that log(1 + t) ≈ t− 1
2 t

2 for t sufficiently small, we have

l̂(β0) = 2
n∑

i=1

(
λ̂T℘̂n,i(β0)−

1

2
{λ̂T℘̂n,i(β0)}2

)
+ oP (1). (A.25)

Note that λ̂ satisfies the following equation,

1

n

n∑
i=1

℘̂n,i(β0)

1 + λ̂T℘̂n,i(β0)
= 0.

Furthermore,

0 =
1

n

n∑
i=1

℘̂n,i(β0)

1 + λ̂T℘̂n,i(β0)

1

n

n∑
i=1

℘̂n,i(β0)−
1

n

n∑
i=1

℘̂n,i(β0)℘̂n,i(β0)
Tλ̂

+
1

n

n∑
i=1

℘̂n,i(β0){λ̂T℘̂n,i(β0)}2

1 + λ̂T℘̂n,i(β0)
. (A.26)

Above equation (A.26) and max
1≤i≤n

|λ̂T℘̂n,i(β0)| = oP (1) entail that

λ̂ =
( 1

n

n∑
i=1

℘̂n,i(β0)℘̂n,i(β0)
T
)−1 1

n

n∑
i=1

℘̂n,i(β0) + oP (n
−1/2). (A.27)

Plugging the asymptotic expression (A.27) to (A.24), we have

l̂(β0) = n
( 1

n

n∑
i=1

℘̂n,i(β0)
)T( 1

n

n∑
i=1

℘̂n,i(β0)℘̂n,i(β0)
T
)−1

(A.28)

×
( 1

n

n∑
i=1

℘̂n,i(β0)
)
+ oP (1).

According the proof Theorem 1, we can obtain that

l̂(β0) = n
( 1

n

n∑
i=1

κn,i(β0)
)T( 1

n

n∑
i=1

κn,i(β0)κn,i(β0)
T
)−1( 1

n

n∑
i=1

κn,i(β0)
)

+oP (1),

where, κn,i(β0) = (Yi −SY (Zi)− [Xi −SX(Zi)]
Tβ0)[Xi −SX(Zi)] is indepen-

dent and identically distributed p-dimensional random vector with zero mean.
Theorem 3 for l̂(β0) follows from the central limit theorem and the Slutsky
theorem.
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A.5. Proof of Theorem 4 and Theorem 5

Step 1 Note that

β̂R = β̂ − Σ̂
−1

AT
{
AΣ̂

−1
AT

}−1 [
Aβ̂ − b

]
. (A.29)

Under the null hypothesis H0, we have Aβ0 = b. Using (A.29), it is seen that

β̂R − β0 =
(
β̂ − β0

)
− Σ̂

−1
AT

{
AΣ̂

−1
AT

}−1 [
Aβ̂ −Aβ0

]
(A.30)

=

[
Ip − Σ̂

−1
AT

{
AΣ̂

−1
AT

}−1

A

](
β̂ − β0

)
.

Together with (A.13) and (A.14), the equation (A.30) can be expressed as

β̂R − β0 =

[
Ip −Σ−1

0 AT
{
AΣ−1

0 AT
}−1

A

](
β̂ − β0

)
+ oP (n

−1/2). (A.31)

Define ΩA = Ip−Σ−1
0 AT

{
AΣ−1

0 AT
}−1

A, the expression (A.31) entails that

√
n
(
β̂R − β0

)
L−→ N(0,ΩAΣ−1

0 Σ0εΣ
−1
0 ΩT

A +ΩAΣφM ,ψM
ΩT

A).

We have completed the proof of Theorem 4.

Step 2 Under the null hypothesis H0 : Aβ0 = b, using (A.14) and Theorem 1,
we have

√
n
(
Aβ̂ − b

)
=

√
nA

(
β̂ − β0

)
(A.32)

L−→ N
(
0,AΣ−1

0 Σ0εΣ
−1
0 AT +AΣφM ,ψM

AT
)
.

Similar to the analysis of (A.13), we have

AΣ̂
−1

Σ̂εΣ̂
−1

AT +AΣ̂φM ,ψM
AT (A.33)

P−→ AΣ−1
0 Σ0εΣ

−1
0 AT +AΣφM ,ψM

AT.

The Slutsky theorem entails that[
AΣ̂

−1
Σ̂εΣ̂

−1
AT +AΣ̂φM ,ψM

AT
]−1/2 [√

n
(
Aβ̂ − b

)]
(A.34)

L−→ N(0, Ik),

where, Ik is a k × k dimensional identity matrix. Using (A.34), the continuous
mapping theorem entails that

Tn = n
(
Aβ̂ − b

)T [
AΣ̂

−1
Σ̂εΣ̂

−1
AT +AΣ̂φM ,ψM

AT
]−1

(A.35)
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×
(
Aβ̂ − b

)
L−→ χ2

k,

where, χ2
k is the centered chi-squared distribution with degree of freedom k We

have completed the proof of Theorem 5.

A.6. Proof of Theorem 6

Step 1 It is noted that b = Aβ0−n−1/2c under the null hypothesis H1n. From
(A.29), we have

β̂R = β̂ − Σ̂
−1

AT
{
AΣ̂

−1
AT

}−1 [
Aβ̂ − b

]
(A.36)

= β̂ − Σ̂
−1

AT
{
AΣ̂

−1
AT

}−1 [
Aβ̂ −Aβ0 + n−1/2c

]
= β̂ − Σ̂

−1
AT

{
AΣ̂

−1
AT

}−1

A
(
β̂ − β0

)
−n−1/2Σ̂

−1
AT

{
AΣ̂

−1
AT

}−1

c.

Using (A.30)-(A.31) and (A.36), we have

β̂R − β0 (A.37)

= ΩA

(
β̂ − β0

)
− n−1/2Σ−1

0 AT
{
AΣ−1

0 AT
}−1

c+ oP (n
−1/2).

According to Theorem 1, we have

√
n
(
β̂R − β0

)
(A.38)

L−→ N(−Σ−1
0 AT

{
AΣ−1

0 AT
}−1

c,ΩAΣ−1
0 ΣεΣ

−1
0 ΩT

A +ΩAΣφM ,ψM
ΩT

A).

Step 2 Under the local alternative hypothesis H1n : Aβ0 = b+ n−1/2c, using
Theorem 1, we have

√
n
(
Aβ̂ − b

)
=

√
n
(
Aβ̂ −Aβ0 + n−1/2c

)
(A.39)

=
√
nA

(
β̂ − β0

)
+ c

L−→ N
(
c,AΣ−1

0 Σ0εΣ
−1
0 AT +AΣφM ,ψM

AT
)
.

Using (A.33)-(A.34) and (A.39), we have[
AΣ̂

−1
Σ̂εΣ̂

−1
AT +AΣ̂φM ,ψM

AT
]−1/2 [√

n
(
Aβ̂ − b

)]
(A.40)

L−→ N

([
AΣ−1

0 Σ0εΣ
−1
0 AT +AΣφM ,ψM

AT
]−1/2

c, Ik

)
.
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Then, according to (A.40), the continuous mapping theorem entails that

Tn = n
(
Aβ̂ − b

)T [
AΣ̂

−1
Σ̂εΣ̂

−1
AT +AΣ̂φM ,ψM

AT
]−1

(A.41)

×
(
Aβ̂ − b

)
L−→ χ2

k(πc),

where, χ2
k(πc) is the noncentral chi-squared distribution with degree of freedom

k, and πc is the noncentrality parameter, defined as

πc = cT
[
AΣ−1

0 Σ0εΣ
−1
0 AT +AΣφM ,ψM

AT
]−1

c.

We have completed the proof of Theorem 6.

A.7. Proof of Theorem 7

Step 1 In this step, we establish the asymptotic expressions of minimizer
estimator β̂P . Define

LP (β) =
1

2

n∑
i=1

{
Ŷi − ŜY (Zi)−

[
X̂i − ŜX(Zi)

]T
β

}2

+ n

p∑
s=1

pζs(|βs|).

Let κn = n−1/2 + a∗n with a∗n = max1≤j≤p{p′ζj (|β0j |), β0j 	= 0}, and s =

(s1, . . . , sp)
T with ‖s‖ = C0. Moreover, we define β(n) = β0 + κns and

Fn,1 =
1

2

n∑
i=1

{
Ŷi − ŜY (Zi)−

[
X̂i − ŜX(Zi)

]T
β(n)

}2

−1

2

n∑
i=1

{
Ŷi − ŜY (Zi)−

[
X̂i − ŜX(Zi)

]T
β0

}2

,

Fn,2 = −n

p0∑
j=1

{pζj (|β0j + κnsj |)− pζj (|β0j |)}.

Using (A.13)-(A.14), we have

Fn,1 =
1

2
κ2
n

n∑
i=1

sT
[
X̂i − ŜX(Zi)

]⊗2

s (A.42)

−κn

n∑
i=1

sT
[
X̂i − ŜX(Zi)

]T (
β̂ − β0

)
=

n

2
κ2
ns

TΣ0s− nκns
TΣ0

(
β̂ − β0

)
+ oP (nκ

2
nC

2
0 ) + oP (n

1/2κnC0).

As a∗n = OP (n
−1/2), we have κn = OP (n

−1/2) and the asymptotic expression
(A.42) entails that the first argument of Dn,1 is positive and dominated by
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n
2κ

2
nC

2
0 in probability and the second argument of is dominated by C0OP (1).

Taylor expansion and Cauchy-Schawz inequality entail that

|Fn,2| ≤ n
√
p0κna

∗
n‖s‖+ nκ2

na
∗∗
n ‖s‖2 ≤ C0nκ

2
n

{√
p0 + a∗∗n C0

}
,

where a∗∗n = max1≤j≤p{p′′ζj (|β0j |), β0j 	= 0}. Furthermore, Dn,2 is bounded by

nκ2
nC

2
0 in probability. Thus, as a∗∗n , b∗∗n tend to 0 and C0 sufficiently large, Dn,1

dominates Dn,2. As a consequence, for any given δ > 0, there exists a large
constant C0 such that

P

{
inf
S

LP (β(n)) > LP (β0)

}
≥ 1− δ,

where S = {s : ‖s‖ = C0}. We conclude that b̂P is OP (n
−1/2).

Step 2. Let β∗
1 satisfies ‖β∗

1−β01‖ = OP (n
−1/2). Similar to the proof of Lemma

1 in [3], we can show that

LP

(
(β∗T

1 ,0T)T
)
= min

L∗
LP

(
(β∗T

1 ,β∗T
2 )T

)
, (A.43)

where, L∗ = {‖β∗
2‖ ≤ L∗n−1/2} and L∗ is a positive constant. We omit the

details for the proof in this step.

Step 3. Denote that β̂P,1 is the penalized least squares estimator of β0,1. In

addition, we denote that X̂i,1 and ŜX,1(Zi) consist of the first p0 components

of X̂i and ŜX(Zi), respectively. Define L∗
P (β1) = LP

(
(βT

1 ,0
T)T

)
. Taylor ex-

pansion entails that

0 =
∂L∗

P (β1)

∂β1

∣∣∣∣∣
β1=β̂P,1

(A.44)

= −
n∑

i=1

[
X̂i,1 − ŜX,1(Zi)

]{
Ŷi −

[
X̂i,1 − ŜX,1(Zi)

]T
β0,1

}

+nRζ1
+

(
n∑

i=1

[
X̂i,1 − ŜX,1(Zi)

]⊗2

+ nΣζ1

)(
β̂P,1 − β0,1

)
+OP (δn),

where, δn = n‖β̂P,1 − β01‖2. Similar to (A.14), we have that

1√
n

n∑
i=1

[
X̂i,1 − ŜX,1(Zi)

]{
Ŷi −

[
X̂i,1 − ŜX,1(Zi)

]T
β0,1

}
(A.45)

L−→ N
(
0p0 ,Σ0ε,1 +Σ0,1ΣφM ,ψM,1

Σ0,1

)
,

where, Σ0ε,1, Σ0,1 and ΣφM ,ψM,1
are defined in Theorem 7. The asymptotic

expressions (A.44) and (A.45) entail that

√
n
(
Σ0,1 +Σζ1

){(
β̂P,1 − β0,1

)
+

(
Σ0,1 +Σζ1

)−1 Rζ1

}
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L−→ N
(
0p0 ,Σ0ε,1 +Σ0,1ΣφM ,ψM,1

Σ0,1

)
.

We have completed the proof of Theorem 7.

A.8. Proof of Theorem 8

The proof of asymptotic normality of β̂V can be directly obtained from the
proof of Theorem 1 by treating φA(U) ≡ 0, ψA,r(U) ≡ 0, r = 1, . . . , p. We omit
the details.

For the estimator β̂C , similar to (A.1), we have

β̂C − β0 (A.46)

=

{
1

n

n∑
i=1

[
X̂C,i − ŜX(Zi)

]⊗2
}−1

1

n

n∑
i=1

{
X̂C,i − ŜX(Zi)

}
×
{
ŶC,i − ŜY (Zi)− X̂

T

C,iβ0 + ŜT
X(Zi)β0

}
=

{
1

n

n∑
i=1

[
X̂C,i − ŜX(Zi)

]⊗2
}−1

[Kn1 +Kn2 +Kn3] ,

where,

Kn1 =
1

n

n∑
i=1

{
X̂C,i − ŜX(Zi)

}
εi, (A.47)

Kn2 =
1

n

n∑
i=1

{
X̂C,i − ŜX(Zi)

}{
ŶC,i − Yi − (X̂C,i −Xi)

Tβ0

}
, (A.48)

Kn3 =
1

n

n∑
i=1

{
X̂C,i − ŜX(Zi)

}
(A.49)

×
{
SY (Zi)− ŜY (Zi)− (SX(Zi)− ŜX(Zi))

Tβ0

}
.

Step 8.1 For the expression Kn1, we have

Kn1 =
1

n

n∑
i=1

{
X̂C,i −Xi

}
εi +

1

n

n∑
i=1

{Xi − SX(Zi)} εi (A.50)

1

n

n∑
i=1

{
SX(Zi)− ŜX(Zi)

}
εi

def
= Kn1[1] +Kn1[2] +Kn1[3].

Recalling εi = Yi −XT
i β0 − g(Zi) and E(εi|Xi, Zi) = 0. Using Lemma A.3, we

have

1

n

n∑
i=1

{
X̂ri −Xri

}
εi (A.51)
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=

n∑
i=1

(
|X̃ri| − |Xri|

)E[
Xrε

]
E(|Xr|)

+ oP (n
−1/2) = oP (n

−1/2).

Based on (A.51), we have Kn1[1] = oP (n
−1/2). From the proof of Theorem 1,

Kn1[3] = Dn1[3] = oP (n
−1/2). Thus, we obtain that

Kn1 =
1

n

n∑
i=1

{Xi − SX(Zi)} εi + oP (n
−1/2). (A.52)

Step 8.2 For the argument Kn2, we have

Kn2 =
1

n

n∑
i=1

{
X̂C,i −Xi

}{
ŶC,i − Yi − (X̂C,i −Xi)

Tβ0

}
(A.53)

+
1

n

n∑
i=1

{Xi − SX(Zi)}
{
ŶC,i − Yi − (X̂C,i −Xi)

Tβ0

}
+
1

n

n∑
i=1

{
SX(Zi)− ŜX(Ẑi)

}{
ŶC,i − Yi − (X̂C,i −Xi)

Tβ0

}
def
= Kn2[1] +Kn2[2] +Kn2[3].

According the proof of Theorem 1 in [41], we have Kn2[1] = oP (n
−1/2).

For Kn2[2], using E[X − SX(Z)|Z] = 0, Lemma A.3 entails that

1

n

n∑
i=1

{Xi − SX(Zi)}
{
ŶC,i − Yi

}
(A.54)

=
1

n

n∑
i=1

(
|Ỹi| − |Yi|

)E[
Y{X − SX(Z)}

]
E(|Y|) + oP (n

−1/2)

=
1

n

n∑
i=1

|Ỹi| − |Yi|
E(|Y|) Σ0β0 + oP (n

−1/2)

=
1

n

n∑
i=1

|Yi|
E(|Y|) [φM (Ui)− 1]Σ0β0 + oP (n

−1/2).

Similarly, we have

1

n

n∑
i=1

{Xi − SX(Zi)} (X̂C,i −Xi)
Tβ0 (A.55)

=

p∑
r=1

{
1

n

n∑
i=1

{Xi − SX(Zi)} (X̂C,ri −Xri)β0r

}

=

p∑
r=1

{
1

n

n∑
i=1

(
|X̃ri| − |Xri|

)E[
Xr{X − SX(Z)}

]
E(|Xr|)

β0r

}
+ oP (n

−1/2)
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=
1

n

n∑
i=1

p∑
r=1

|X̃ri| − |Xri|
E(|Xr|)

Σ0ere
T
r β0 + oP (n

−1/2)

=
1

n

n∑
i=1

p∑
r=1

|Xri|
E(|Xr|)

[ψM,r(Ui)− 1]Σ0ere
T
r β0 + oP (n

−1/2).

Together with (A.54) and (A.55), we have

Kn2[2] =
1

n

n∑
i=1

|Yi|
E(|Y|) [φM (Ui)− 1]Σ0β0 (A.56)

− 1

n

n∑
i=1

p∑
r=1

|Xri|
E(|Xr|)

[ψM,r(Ui)− 1]Σ0ere
T
r β0 + oP (n

−1/2).

The conclusion of (A.1) in [15] entails that sup
z∈Z

|ŜY (z) − SY (z)| = oP (n
−1/4),

and sup
z∈Z

|ŝXr (z) − sXr (z)| = oP (n
−1/4), r = 1, . . . , p. According to the proof

of Theorem 1 in [38] and the proof of Theorem 1 in [41], we can show that
Kn2[3] = oP (n

−1/2), and also Kn3 = oP (n
−1/2). Moreover,

1

n

n∑
i=1

[
X̂C,i − ŜX(Zi)

]⊗2 P−→ Σ0. (A.57)

Thus, together with (A.52), (A.56) and (A.57), we obtain that

β̂C − β0 = Σ−1
0 (Kn1 +Kn2 +Kn3) + oP (n

−1/2) (A.58)

=
1

n

n∑
i=1

Σ−1
0 {Xi − SX(Zi)} εi +

1

n

n∑
i=1

|Yi|
E(|Y|) [φM (Ui)− 1]β0

− 1

n

n∑
i=1

p∑
r=1

|Xri|
E(|Xr|)

[ψM,r(Ui)− 1]ere
T
r β0 + oP (n

−1/2).

We have completed the proof of Theorem 8.

A.9. Proof of Theorem 9

The proof of the asymptotic results of TV,n are similar to the proof of Theorem
5 and Theorem 6, we omit the details.

For the test statistic TC,n, under the null hypothesis H0 : Aβ0 = b, using
(A.58) and Theorem 1, we have

√
n
(
Aβ̂C − b

)
=

√
nA

(
β̂C − β0

)
(A.59)

L−→ N
(
0,AΣ−1

0 Σ0εΣ
−1
0 AT +AΩφM ,ψM

AT
)
.
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Similar to the analysis of (A.57), we have

AΣ̂
−1

C Σ̂C,εΣ̂
−1

C AT +AΩ̂φM ,ψM
AT (A.60)

P−→ AΣ−1
0 Σ0εΣ

−1
0 AT +AΩφM ,ψM

AT.

The Slutsky theorem entails that[
AΣ̂

−1

C Σ̂C,εΣ̂
−1

C AT +AΩ̂φM ,ψM
AT

]−1/2 [√
n
(
Aβ̂C − b

)]
(A.61)

L−→ N(0, Ik).

Using (A.61), the continuous mapping theorem entails that

TC,n = n
(
Aβ̂C − b

)T [
AΣ̂

−1

C Σ̂C,εΣ̂
−1

C AT +AΩ̂φM ,ψM
AT

]−1

(A.62)

×
(
Aβ̂C − b

)
L−→ χ2

k.

Under the local alternative hypothesis H1n, it is noted that b = Aβ0−n−1/2c
under the null hypothesis, we have

√
n
(
Aβ̂C − b

)
=

√
n
(
Aβ̂C −Aβ0 + n−1/2c

)
(A.63)

=
√
nA

(
β̂C − β0

)
+ c

L−→ N
(
c,AΣ−1

0 Σ0εΣ
−1
0 AT +AΩφM ,ψM

AT
)
.

Using (A.60)-(A.61) and (A.63), we have[
AΣ̂

−1

C Σ̂C,εΣ̂
−1

C AT +AΩ̂φM ,ψM
AT

]−1/2 [√
n
(
Aβ̂C − b

)]
(A.64)

L−→ N

([
AΣ−1

0 Σ0εΣ
−1
0 AT +AΩφM ,ψM

AT
]−1/2

c, Ik

)
.

Then, according to (A.64), the continuous mapping theorem entails that

TC,n = n
(
Aβ̂C − b

)T [
AΣ̂

−1

C Σ̂C,εΣ̂
−1

C AT +AΩ̂φM ,ψM
AT

]−1

(A.65)

×
(
Aβ̂C − b

)
L−→ χ2

k(πC,c),

where, χ2
k(πC,c) is the noncentral chi-squared distribution with degree of free-

dom k, and πC,c is the noncentrality parameter:

πC,c = cT
[
AΣ−1

0 Σ0εΣ
−1
0 AT +AΩφM ,ψM

AT
]−1

c.

We have completed the proof of Theorem 9.
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A.10. Proof of Theorem 10

The proof of Theorem 10 (1) is the same as Step 1 and Step 2 in the proof

of Theorem 7, we omit the details. Denote that β̂P,C,1 is the penalized least

squares estimator of β0,1. In addition, we denote that X̂C,i,1 and ŜX,1(Zi)

consist of the first p0 components of X̂C,i and ŜX(Zi), respectively. Define

L∗
P (β1) = LP

(
(βT

1 ,0
T)T

)
. Taylor expansion entails that

0 =
∂L∗

P (β1)

∂β1

∣∣∣∣∣
β1=β̂P,C,1

(A.66)

= −
n∑

i=1

[
X̂C,i,1 − ŜX,1(Zi)

]{
ŶC,i −

[
X̂C,i,1 − ŜX,1(Zi)

]T
β0,1

}

+nRζ1
+

(
n∑

i=1

[
X̂C,i,1 − ŜX,1(Zi)

]⊗2

+ nΣζ1

)(
β̂P,C,1 − β0,1

)
+OP (δn),

where δn = n‖β̂P,C,1 − β01‖2. Similar to (A.14), we have that

1√
n

n∑
i=1

[
X̂C,i,1 − ŜX,1(Zi)

]{
ŶC,i −

[
X̂C,i,1 − ŜX,1(Zi)

]T
β0,1

}
(A.67)

L−→ N
(
0p0 ,Σ0ε,1 +Σ0,1ΩφM ,ψM,1

Σ0,1

)
,

where, Σ0ε,1, Σ0,1 and ΩφM ,ψM,1
are defined in Theorem 10. The asymptotic

expressions (A.66) and (A.67) entail that

√
n
(
Σ0,1 +Σζ1

){(
β̂P,C,1 − β0,1

)
+

(
Σ0,1 +Σζ1

)−1 Rζ1

}
L−→ N

(
0p0 ,Σ0ε,1 +Σ0,1ΩφM ,ψM,1

Σ0,1

)
.

We have completed the proof of Theorem 10.
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