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Abstract: This paper focuses on modeling the dynamic attributes of a
dynamic network with a fixed number of vertices. These attributes are
considered as time series which dependency structure is influenced by the
underlying network. They are modeled by a multivariate doubly stochastic
time series framework, that is we assume linear processes for which the coef-
ficient matrices are stochastic processes themselves. We explicitly allow for
dependence in the dynamics of the coefficient matrices as well as between
the two stochastic processes driving the time series. This framework allows
for a separate modeling of the attributes and the underlying network. In
this setting, we define network autoregressive models and discuss their sta-
tionarity conditions. Furthermore, an estimation approach is discussed in
a low- and high-dimensional setting and how this can be applied to fore-
casting. The finite sample behavior of the forecast approach is investigated.
This approach is applied to real data whereby the goal is to forecast the
GDP of 33 economies.

Keywords and phrases: Time series, dynamic networks, high-dimensional,
autoregressive.

Received July 2018.

1. Introduction

Consider a vertex-labeled dynamic and weighted network with a fixed number d
of vertices given by the set V = {1, . . . , d}. The weights are within the interval
[−1, 1]. Such a dynamic and weighted network with a fixed number of vertices
can be described by a time dependent adjacency matrix, here denoted by Ad =
{Adt, t ∈ Z}, where Adt is [−1, 1]d×d- valued. If no edge is present at time t, a
zero weight is considered. Thus, e>i Adtej gives the weight of an edge at time t
from vertex i to vertex j. It is considered that the network is driven by some
random process, hence, the corresponding adjacency matrix process Ad is a
stochastic process.

The vertices are considered as actors (e.g. people, countries), and a network
could describe a relationship structure among these actors. A (weighted) edge
between two actors describes some connection between them. The weights can be
interpreted as the strength of the connection. For example, consider economies
as actors where a possible relationship between two economies could be given by
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their relative trade volume at a given time point. Further examples are social
networks, see [10, 23]. The actors in such networks often possess attributes.
These attributes can be static (e.g a person’s name or birthday) or dynamic (e.g.
personal income, time a person does sports, or political views). In the example
with the economies and their trade volume as a relationship between them,
dynamic attributes of interest are macroeconomic measures such as inflation
rate or gross domestic product (GDP). These attributes may be affected by the
attributes of other actors, especially by actors with which the considered actor
is strongly connected. In this work, the dynamic attributes are denoted by a
time series X = {Xt, t ∈ Z}. To simplify the notation, we focus on the case that
each actor has only one attribute, meaning that X is d-dimensional, where each
component of the time series is assigned to a vertex (actor) of the underlying
network. Nevertheless, this framework can also handle multiple attributes per
actor, see Section 2 for details. In the social-economical literature, the influence
of connected actors on the attributes is denoted as peer effect, see [8, 20].

This work focuses on the dynamic attributes and not on the network itself.
Consequently, this work is not about modeling a dynamic network. For model-
ing the dynamic networks, many models for static networks have been extended
to the dynamic case as done by Hanneke et al. [9], Krivitsky and Handcock [15]
for the Exponential Random Graph Models (ERGM), see Section 6.5 in [14],
or by Xing et al. [38], Xu [39] for the stochastic block model (SBM). By con-
trast, this work gives a framework which models the dynamic attributes, that
means modeling a time series on a dynamic network, in which the weighted
edges influence the dependency of the time series. Knight et al. [12], Zhu et al.
[42] have modeled these attributes for non-random edges, which mainly cover
static networks. In the context of a static network, attributes can be consid-
ered as standard multivariate time series with additional information and can
be modeled by using vector autoregressive (VAR) models with constraints, see
Lütkepohl [19, Chapter 2 and 5]. However, VAR models have many parame-
ters, which is why Knight et al. [12], Zhu et al. [42] focus on how to use the
network structure to reduce the number of parameters so that high dimen-
sions, meaning a large number of vertices, become feasible. By contrast, this
work deals with a random network structure, and consequently, the process X
cannot be modeled appropriately by using VAR models. Instead, we adopt a
multivariate doubly stochastic time series framework, meaning two stochastic
processes drive the time series. On the one hand, there is the innovation pro-
cess of the time series. On the other hand, the coefficient matrices in linear
processes or autoregressive models are stochastic processes themselves. Dou-
bly stochastic time series models were introduced in Tjøstheim [31], Pourah-
madi [27, 28], and these authors assume that the two processes driving the
time series are independent. That would mean the network could influence
the attributes but not the other way around. This assumption could be too
restrictive for most application. In the example where the GDP is the at-
tribute and the trade volume defines the underlying network, the influence
goes in both directions. To capture such behavior, we allow dependency be-
tween both processes, see Section 2 for details. Hence, the network, in form
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of the edges, can influence the attributes, and the attributes can influence the
edges.

Knight et al. [11] extended the model of [12] to dynamic networks. Their
model can be considered as a special case of the model considered in this paper,
see Section 2 for details. They present an R-package to estimate their model,
however, they present theoretical results only for the case of a static network
such that the attributes can be written as a VAR model with constraints. Thus,
they do not derive theoretical results for the dynamic case. This gap is filled in
this work.

This paper is structured as follows. In Section 2, time series on dynamic net-
works are defined and some basic properties are given. In Section 3, the focus is
on statistical results of network autoregressive processes, and their applications
to forecasting are discussed. Some of the forecasting results are underlined by a
simulation study which is given in Section 4. In Section 5, we apply this setup to
forecast the GDP using the trade volume between economies as an underlying
network. Proofs can be found in Section 7.

2. Time series modeling on dynamic networks

To elaborate, we first fix some notation. For a random variable X, we write

‖X‖E,q for
(
E|X|q

)1/q
, where q ∈ N; for a vector x ∈ Rd, ‖x‖0 =

∑d
j=1 1(xj 6=

0), ‖x‖1 =
∑d
j=1 |xj |, ‖x‖22 =

∑d
j=1 |xj |2, and ‖x‖∞ = maxj |xj |. Furthermore,

for an r × s matrix B = (bi,j)i=1,...,r,j=1,...,s, ‖B‖1 = max1≤j≤s
∑r
i=1 |bi,j | =

maxj ‖Bej‖1, ‖B‖∞ = max1≤i≤r
∑s
j=1 |bi,j | = maxi ‖e>i B‖1, ‖B‖max = maxi,j

|e>i Bej |, where ej = (0, . . . , 0, 1, 0, . . . , 0)> denotes the vector with the one ap-
pearing in the jth position. Let 1 = (1, . . . , 1)> be a vector of ones. For a
matrix B, the absolute value evaluated component-wise is denoted by |B|. De-
note the largest eigenvalue of a matrix B by ρ(B) and ‖B‖22 = ρ(BB>). The
d-dimensional identity matrix is denoted by Id. Furthermore, for two matrices
A,B the Kronecker product of A and B is denoted by A⊗B, see among others
Appendix A.11 in [19]. Let A � B denote the component-wise multiplication
of A and B, i.e. the Hadamard product. sign(·) denotes the signum function,
| · |+ = max(0, ·), and they are evaluated component-wise for matrix arguments.
Let Id;−I ∈ R(d−|I|)×d denote a d-dimensional identity matrix without the rows
i ∈ I and Id;I = Id;−IC . An empty product denotes the neutral element, mean-

ing
∏0
k=1Bk = Id. For a vector-valued times series {Xt}, we write Xt;r := e>r Xt,

and for a matrix-valued time series {Adt}, we write Adt;rs := e>r Adtes.

With this, we can define a network linear process as follows.

Definition 2.1. Let Ad = {Adt, t ∈ Z} be a [−1, 1]d×d-valued, strictly station-
ary stochastic process, and let fj : R(d×d)j → Rd×d be measurable functions.
Furthermore, let ε = {εt, t ∈ Z} be an i.i.d. sequence of Rd-valued random
vectors with Eε1 = µ ∈ Rd,Var(ε1) = Σε (positive definite and ‖Σε‖2 < ∞).
{εs, s > t} and {Ads, s ≤ t} are independent for all t. If the following L2-limit



4948 J. Krampe

exists,

Xt =

∞∑
j=1

fj(Adt−1, . . . , Adt−j)εt−j + εt =:

∞∑
j=1

Bt,jεt−j + εt, (1)

we denote the process given by X = {Xt, t ∈ Z} a (generalized) network linear
process (GNLP).

Let p, q ∈ N and fj : R(d×d)j → Rd×d, gs : R(d×d)s → Rd×d, j = 1, . . . , p, s =
1, . . . , q be measurable functions. A process X fulfilling equation (2) is denoted
as a (generalized) network autoregressive moving average process of order (p, q)
(GNARMA(p, q))

Xt =

p∑
j=1

fj(Adt−1, . . . , Adt−j)Xt−j +

q∑
s=1

gs(Adt−1, . . . , Adt−s)εt−s + εt. (2)

In this work, the focus is on the following network autoregressive process of
order p given by

Xt =

p∑
j=1

(Aj �Gj(Adt−j))Xt−j + εt, (3)

where A1, . . . , Ap ∈ Rp×p are coefficient matrices, Gj : [−1, 1]d×d → [−1, 1]d×d,
j = 1, . . . , p are some known measurable functions. Since (3) is a special case
of (2), where the functions fj appearing in (2) have a particular form, we drop
the term generalized. Note that the causal solution of (3) fits into the frame-
work (1), see Lemma 2.2. Since for an adjacency matrix Ad ∈ {0, 1}d×d we
have that erAd

jes gives the number of paths with length j from node r to
node s, examples for Gj are polynomials. E.g., if for some lag j the direct
neighbors as well as the neighbors of these neighbors should have a direct im-
pact, then Gj can be chosen as Gj(Adtj ) = sign(Adtj + Ad2tj ). Denote a ver-
tex v as a k-stage neighbor of u if there is a path from u to v of length k
but no shorter one. That means a direct neighbor is a 1-stage neighbor and
a neighbor’s neighbor which is not a direct neighbor a 2-stage one. Given an
adjacency matrix Ad ∈ {0, 1}d×d, the k-stage neighborhood matrix is given

by Nk(Ad) = sign(| sign((Ad>)k) − sign(
∑k−1
i=1 (Ad>)i)|+), where the ones in

e>j Nk(Ad) indicate the k-stage neighbors of vertex j.

For direct edges, two natural concepts occur; the concept that the influence
goes in the direction of the edge and vice versa. Definition 1 can handle both
concepts. E.g., if G̃j(·) = Gj(·)>, j = 1, . . . , p, is used in (3), one can switch
between both concepts. If not specified otherwise, the concept that the influence
goes in the direction of the edge is used in this work. That means the easiest
function for Gj in model (3) is given by Gj(X) = X>.

An NAR(p) model can be written as a stacked NAR(1) process in the follow-
ing way. Let Xt = (X>t , X

>
t−1, . . . , X

>
t−p)

>. Then, the stacked NAR(1) process
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corresponding to (3) is given by Xt = (Ã�G̃(Adt−1))Xt−1+(e1⊗Id)εt, where

Ã =


A1 A2 . . . Ap−1 Ap
Id 0 . . . 0 0
0 Id 0 0
...

. . .
...

...
0 0 . . . Id 0


and

G̃(Adt−1) =


G1(Adt−1) G2(Adt−2) . . . Gp−1(Adt−p+1) Gp(Adt−p)

Id 0 . . . 0 0
0 Id 0 0
...

. . .
...

...
0 0 . . . Id 0


are the corresponding matrices of the stacked NAR(1) process. The process

{G̃(Adt), t ∈ Z} is denoted by AdG.
It is also possible to handle more than one attribute at a time by simply

enlarging Ad. For two different attributes we can replace Adt by the following

matrix

(
Adt Bt
Ct Adt

)
, where Bt and Ct describe the (time-dependent) rela-

tionship between the different attributes. E.g, if there shall only be an influence
between the different attributes of the same actor, we set Bt = Ct = Id, or if
the different attributes shall influence each other in the same way as they are
influenced by their own kind, we set Bt = Ct = Adt.

Model (3) is inspired by Knight et al. [12]. Let sj be the order number for lag
j, which denotes the maximal stage neighbors included for lag j. Let Ad be a
static adjacency matrix and denote by N (k)(r) = {j = 1, . . . , p : e>r Nk(Ad)ej =
1} the k-stage neighbors of vertex r. Then, for component i = 1, . . . , d, their
autoregressive model is given in the following way

Xt;i =

p∑
j=1

αjXt−j;i +

sj∑
r=1

∑
q∈N (r)(i)

βj,r,qXt−j;q + εt;i. (4)

Note that k-stage neighborhood sets are disjoint for different k. Thus, the above
model fits into the framework (3) in the following way

Xt =

p∑
j=1

(Aj � (Id +

sj∑
r=1

Nk(Ad)))Xt−j + εt. (5)

Knight et al. [11] extended the model (4) to dynamic networks with potential
covariates and edge weights. Apart from the covariates, their extended model
fits also in the framework (3). As mentioned in the case of a static network,
model (3) can be considered as a vector autoregressive model with parameter
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constraints. For this case, Knight et al. [11] give conditions for stationarity
and showed consistency of the least square approach. However, they give no
theoretical results for the case of a dynamic network. In this work, the focus is
on the dynamic case. Note that for this case model (3) cannot be considered as
a VAR model with constraints anymore.

The condition that {εs, s > t} and {Ads, s ≤ t} are independent for all
t ensures that (1) is a meaningful and causal representation. This condition
allows that there could be an interaction between network Ad and X in a way
that the network at time t can be influenced by {Xs, s ≤ t}. That means an
underlying network given by the adjacency process Ad has to fulfill only this
condition, strictly stationarity and later on some dependence measure conditions
on the dynamic behavior, but we assume nothing about the inner structure of
the network. Thus, it does not matter if its a sparse or dense network, or if it has
properties like the small-world-phenomenon. Hence, it gives the flexibility that
the time series and the underlying dynamic network can be modeled separately.
One is not fixed to a specific network model as it would be the case for a joint
modeling approach. Instead, the idea is that the approach described here is used
to model the time series X, and one of the several models for dynamic networks
can be used to model the network Ad.

If Ad is a deterministic sequence, the GNARMA model is closely related to
time-varying ARMA models, which, for instance, are used in the locally station-
ary framework; see [6, 32]. Furthermore, if Ad is i.i.d., this framework reduces
to the framework of random coefficient models, see for instance [25] and for
the multivariate setting [24]. However, assuming independence between differ-
ent time-points for the process Ad seems to be inappropriate in the framework
of dynamic networks. Some form of influence of the recent history seems to be
more reasonable, see among others [10].

Assumption 1 gives conditions which implies that (3) possesses a causal,
stationary solution, see the following Lemma 2.2 for details. Assumption 1a)
imposes only conditions on X, but no restrictions on the underlying dynamic
network are required. If more about the underlying network is known, e.g. its
weights and sparsity setting, one may work with Assumption 1b) which is more
general but harder to verify without knowledge about the network. In Sec-
tion 3.2, a simplified model is considered in which Assumption b) can be verified
under simple conditions.

Assumption 1. In (3) let for j = 1, . . . , p, ‖Gj(·)‖max ≤ 1 and let further one
of the following hold

a) det(I −
∑p
j=1 |Aj |zj) 6= 0 for all |z| ≤ 1,

b) ρ(Ã�G̃(·)) < 1, where Ã, G̃ denote the corresponding quantities of the stacked
process.

Lemma 2.2. Under Assumption 1, the process (3) possesses a stationary solu-
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tion. The solution takes the form

Xt =

∞∑
j=0

(e1 ⊗ Id)>
j∏
s=1

(Ã� G̃(Adt−s))(e1 ⊗ Id)εt−j =:

∞∑
j=0

Bt,jεt−j , (6)

where for all t ‖Bt,j‖2 ≤ ‖ |Ã|j‖2. The process has the following autocovariance
function

Γ(h) =

∞∑
j2=0

∞∑
j1=0

Cov((e1 ⊗ Id)>(

j1∏
s1=1

Ã� ˜G(Ad)h−s1)(e1 ⊗ Id)εh−j1 ,

(e1 ⊗ Id)>
j2∏

s2=1

(Ã� ˜G(Ad)−s2)(e1 ⊗ Id)ε−j1), h ≥ 0,

and Γ(h) = Γ(−h)>, h < 0. EXt =
∑∞
j=0EB0,jε−j =: µX .

The autocovariance as well as the mean of X is affected by the dynamic
behavior of the underlying network. In order to get a better understanding on
how the dynamic dependency of the network affects the time series, the following
Lemma 2.3 presents the autocovariance structure in the more simple case that
{Adt} and {εt} are mutually independent. Note that Assumption 1 implies for
model (3) the conditions (ii),(iii) of the following Lemma.

Lemma 2.3. Let {Xt} be a generalized network linear process as defined in (1).
If

i) {Adt} and {εt} are mutually independent,
ii)
∑∞
s=0

(
E|Bj,s+lΣεB>0,s|

)
+
∑∞
s1=0

∑∞
s2=0 |Cov (Bj,s1µ,Bl,s2µ) | < ∞ for all

j, l ∈ N (component-wise)
iii)

∑∞
s=0 (E|B0,s|) <∞ (component-wise),

hold, then Xt = limq→∞
∑q
j=0Bt,jεt−j converges component-wise in the L2-

limit, and the autocovariance function is given by ΓX(h) = ΓX(−h)>, and

ΓX(h) =

∞∑
s=0

E
(
Bh,s+hΣεB

>
0,s

)
+

∞∑
j=0

∞∑
s=0

Cov (Bh,jµ,B0,sµ) , h ≥ 0, (7)

and the mean function by µX =
∑∞
j=0EB0,jµ.

The latter term of the autocovariance function,
∑∞
j=0

∑∞
s=0 Cov (Bh,jµ,B0,sµ),

comes only into play for non-centered innovations and is driven by the linear
dependency structure of the network. Consequently, it can be seen that the
linear dependency of the network directly influences the linear dependency of
the process X. As a consequence, even a network moving average process of
order q may possess a nonzero autocovariance for lags higher than q. In order to
better understand this, consider a small toy example with vertices {1, 2, 3} and
two possible edges, (1, 3) and (2, 3), and only one edge is present at a time. Let
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{et, t ∈ Z} be i.i.d. random variables with uniform distribution on [0, 1], i.e.,
e1 ∼ U [0, 1]. Which edge is present at time t is given by the random variables
(et) in the following way. If Adt−1;13 = 1, then if et > 0.05, then Adt;13 = 1 else
Adt;23 = 1. If Adt−1;13 = 0 (that means Adt−1;23 = 1), then if et > 0.95, then
Adt;13 = 1 else Adt;23 = 1. Consequently, we flip in this network between the
edges (1, 3) and (2, 3), and if one edge is present at time t, it is more likely (with
probability 0.95) that it is present at time t+ 1 than flipping to the other edge.
We have dependency between different time points as well as between edges.
ε1 ∼ N (µ, I3), and µ = (10,−10, 0)>. Let X be given by

Xt = Ad>t−1εt−1 + εt = Ad>t−1Xt−1 + εt, where Ad>· =

0 0 0
0 0 0
∗ ∗ 0

 . (8)

Thus, X is a network moving average process of order 1, and the influence goes
in the direction of the edges. Since no edge goes into vertex 1 or 2, {Xt;1, t ∈ Z}
and {Xt;2, t ∈ Z} are white noise. This can be also seen in the autocovariance
function, which is displayed in its two parts in Figure 1. The left-hand side
figures display the first part;

∑∞
s=0E

(
Bh,s+hΣεB

>
0,s

)
. The dependency of the

network has little influence on the first part. This part would remain the same
if a static model was considered where Ad is replaced by its expected value.
That is why this part of the autocovariance function has the structure one
expects from a vector moving average (VMA) process of order 1. The right-
hand side figures display the second part of the autocovariance function in
Lemma 2.3,

∑∞
j=0

∑∞
s=0 Cov (Bh,jµ,B0,sµ). As already mentioned, this part is

completely driven by the linear dependence structure of the network. For the
two edges, we have the following linear dependency: Cov(Adt+h;23, Adt;23) =
Cov(Adt+h;13, Adt;13) = 0.9h/4,Cov(Adt+h;23, Adt;13) = Cov(Adt+h;13, Adt;23)
= −0.9h/4. This explains the geometric decay in the autocovariance function
of the third component of X, whereas the magnitude of the autocovariance
function of the third component is mainly given by the difference of the mean
of the innovations of the first two components. Hence, a greater difference of
the innovations mean makes it harder to identify the linear dependency, which
means the first part of the autocovariance function in Lemma 2.3, between com-
ponents 1 and 3, or 2 and 3 respectively. In this particular example with mean
µ = (10,−10, 0)>, no linear dependency between the different components can
be identified for moderate sample sizes. A sample autocorrelation function as
well as a realization of the third component of X is displayed in Figure 2 for a
sample size n = 500. Instead, looking from the perspective of the classical time
series analysis, the sample autocorrelation function looks like we have three
uncorrelated components where the first two components are white noises and
the third could be an AR(1) process. Hence, this examples gives two important
aspects: firstly, the linear dependency of the network can influence the linear
dependency of the time series directly. Secondly, the problem that the autoco-
variance function may not suffice to identify network linear processes such as
network autoregressive models should be kept in mind.
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Fig 1. Left-hand-side (
∑∞

s=0
E(Bh,s+hΣεB>

0,s); left figure) and right-hand-side

(
∑∞

j=0

∑∞
s=0

Cov(Bh,jµ,B0,sµ); right figure) of the autocovariance function (7) of

process (8)

Fig 2. Sample autocorrelation function and realization of the third component of process (8),
based on n = 500

3. Statistical results

In this section we focus on the estimation of model (3). As seen in the example
in Section 2, the autocovariance function is not helpful to identify such models.
Note further that even if Ad is Markovian, an NAR(1) process can generally not
be written as a Hidden Markov model (HMM). This is because X given Ad is
not a sequence of conditionally independent variables and cannot be written as a
noisy functional of Adt−1 only, which is required by a HMM, see among others [2]
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for details on HMM. Consequently, techniques used for HMM cannot be applied
here. Instead, the same setting as in Knight et al. [12, 11], Zhu et al. [42] is
considered. Thus, the process X as well as the network Ad is observed leading to
observations X1, . . . , Xn and Ad1, . . . , Adn−1. In such a setting, the consistency
of a least square estimate as well as asymptotic normality for model (3) is shown
in the first subsection. The results are presented under general assumptions and
the asymptotic setting that d is fixed and n→∞. Later on, we give dependence
measure conditions for the underlying dynamic network such that the general
assumptions hold. In the second subsection, a simplified version of model (3)
is considered. This simplified model is suited for high-dimensional cases, and
consequently, the theoretical estimation results are presented nonasymptotically.

3.1. Network autoregressive models

Networks usually come together with some form of sparsity, see among others
Section 3.5 in [14]. This means that a vertex has only a connection to a limited
number of other vertices and E sign(Ad1) could have some zero entries or might
even be a sparse matrix. Thus, E sign(Gj(Ad1)), j = 1, . . . , p might be sparse
matrices as well. That means the number of parameters of model (3) is given
by
∑p
j=1 ‖ vec(E| sign(Gj(Ad1))|)‖0 ≤ pd2 and depends on the sparsity of the

underlying network. Let I(r) = {̃i = i + (j − 1)d, i = 1, . . . , d, j = 1, . . . , p :
1/n

∑n
t=p+1 e

>
r |Gj(Adt−j)|ei > 0}, r = 1, . . . , d be a set of indices correspond-

ing to the non-zero coefficients of
∑n
t=p+1 |(G1(Adt−1) : · · · : Gp(Adt−p))| and

I(r)E = {̃i = i + (j − 1)d, i = 1, . . . , d, j = 1, . . . , p : Ee>r |Gj(Ad1)|ei > 0}, r =
1, . . . , d is the corresponding population quantity. Note that I(r) ⊆ I(r)E for all
t. Only parameters corresponding to indices of the set I(r)E are well defined in
the sense that they have an influence on the process. We set the other parame-
ters, meaning those corresponding to indices of the set (I(r)E)C , to zero. Recall
that Id;−I ∈ R(d−|I|)×d denotes a d-dimensional identity matrix without rows
i ∈ I and Id;I = Id;−IC . Let for r = 1, . . . , d, wr = Idp;I(r)(e

>
r A1, . . . , e

>
r Ap)

>

and

Y
(r)
t−1 = Idp;I(r)((e

>
r G1(Adt−1))�X>t−1, . . . , (e>r Gp(Adt−p))�X>t−p)>.

Then for t = p+ 1, . . . , n and r = 1, . . . , d, we can write (3) as

Xt;r = w>r Y
(r)
t−1 + εt;r. (9)

Thus, wr and µr = Eεt;r can be estimated by using the following least square
approach given by argminŵr,µ̂r

∑n
t=p+1(Xt;r − ŵ>r Yt1 − µ̂r)2. For component r,

this leads to the following linear system:(∑n
t=p+1Xt;rY

(r)
t−1 − 1

n−p
∑n
t1,t2=p+1 Y

(r)
t1−1Xt2;r∑n

t=p+1Xt;r

)
=(

0
∑n−1
t=p Y

(r)
t (Y

(r)
t )> − 1

n−p
∑n−1
t1,t2=p

(Y
(r)
t1 )(Y

(r)
t2 )>

n− p
∑n−1
t=p (Y

(r)
t )>

)(
µ̂r
ŵr

)
. (10)
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We show the consistency of the least square estimators under general assump-
tions. Later on, we specify a dependence concept for the underlying network
which ensures these general assumptions, see Lemma 3.2.

Assumption 2. For all r = 1, . . . , d, we have, as n→∞,

1. EY
(r)
1 = µY (r) , 1/n

∑n
s=1 Y

(r)
s = µY (r) + OP (1/

√
n), and ΓY (r)(0) =

Var(Y r1 ), ‖ΓY (r)(0)‖2, ‖ΓY (r)(0)−1‖2 <∞,

1

n

n∑
t=1

(Y
(r)
t − µY (r))(Y

(r)
t − µY (r))> = Var(Y

(r)
1 ) +OP (1/

√
n).

2.
1

n

n∑
t=1

εt;r = µr +OP (1/
√
n),

and

1

n

n∑
t=1

(Y
(r)
t −µY (r))(εt+1;r−µr) = Cov(Y

(r)
0 , ε1)+OP (1/

√
n) = OP (1/

√
n).

3. For all s = 1, . . . , d, E|Y (r)
0;s |4 <∞ and E|ε0;s|4 <∞.

Assumption 3. For all r = 1, . . . , d, we have, as n→∞,

1√
n

n∑
t=1

(εt;r − µr)(Y (r)
t−1 − µY (r))>

D→ N (0,Σε),

where Σε = Var(ε0;r)ΓY (r)(0) = Σε;rrΓY (r)(0).

Theorem 3.1. Under Assumption 2 we have for r = 1, . . . , d, µ̂r = µr +
OP (1/

√
n), ŵr = wr +OP (1/

√
n). If additionally Assumption 3 holds, we have,

as n→∞,

√
n

(
µ̂r − µr
ŵr − wr

)
D→ N

(
0,Σε;rr

(
1 + µ>

Y (r)ΓY (r)(0)−1µY (r) 0
0 ΓY (r)(0)−1

))
.

Furthermore, we have for r, s = 1, . . . , p, as n→∞,

nCov(µr, µs)→ Σε;rs(1 + µ>Y (r)ΓY (r)(0)−1Cov(Y
(r)
1 , Y

(s)
1 )ΓY (s)(0)−1µY (s)),

nCov(wr, ws)→ Σε;rsΓY (r)(0)−1Cov(Y
(r)
1 , Y

(s)
1 )ΓY (s)(0)−1

and nCov(wr, µs)→ 0.

The results of Theorem 3.1 can be used to forecast the process X. If Adn is

observed, then let Y
(r)
n = Idp;I(r)((e

>
r G1(Adn)) � Xn, . . . , (e

>
r Gp(Adn−p+1)) �

Xn−p+1)> and a one-step ahead forecast of Xn+1 is given by X̂
(1)
n+1;r = ŵrY

(r)
n +

µ̂r, r = 1, . . . , d. Since {εt} is i.i.d. and ŵr, µ̂r are
√
n consistent, we have

E(Xn+1;r − X̂
(1)
n+1:r)

2 = e>r Σεer + O(1/
√
n). If Adn is not observed, Adn it-
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self needs to be predicted first. This could be done by fitting a dynamic network
model to Ad1, . . . , Adn−1 and using this model to predict Adn. An h-step ahead
forecast can be done recursively, which means performing a one-step ahead
forecast based on the observations and the results of the h− 1, . . . , 1-step ahead
forecasts.

Assumption 2 mainly requires a
√
n conversion rate of the first and second

sample moments of X. An absolutely summable autocovariance function of X
is sufficient for the convergence of the first sample moments. As pointed out
in Lemma 2.2 and Lemma 2.3, the autocovariance of X depends on the de-
pendency structure of Ad. For simplicity, consider the following network mov-
ing average process Xt = Adt−1εt−1 + εt, Eε1 = µ,Varε1 = Σε where Ad
and {εt} are independent. Following Lemma 2.3, we obtain

∑∞
h=0 ΓX(h) =

(Σε + E(Ad1ΣεAd
>
1 ) + (EAd1Σε) +

∑∞
h=0 Cov(Adhµ,Ad0µ). Hence, even for

this simple moving average process, a summmable autocovariance function can
be obtained only if Ad possesses some sort of short-range dependence. Several
general dependency concepts exists which could describe a short-range depen-
dency structure such as mixing[3], some weak dependency concepts[7] or physical
dependence[33, 36, 37, 17]. Since the concept of physical dependence works well
also in the high-dimensional case, see among others [40, 41], this concept is used
to quantify the dependence structure of Ad.

To elaborate, let {ξt} be a sequence of i.i.d. random vectors of dimension
d̃ such that {Ξt = (εt, ξt)} is also an i.i.d. sequence. Furthermore, let Adt =
H(Ξt,Ξt−1, . . . ), where H is some measurable function to [−1, 1]d×d. Denote
by Ξ′t an i.i.d. copy of Ξt and let for some q > 0 δq(Ad, j) = maxr,i=1,...,d

‖e>r (Adj − Ad∗j )ei‖E,q, where Ad∗j = H(Ξj ,Ξj−1, . . . ,Ξ1,Ξ
′
0,Ξ−1,Ξ−2, . . . ) is a

coupled version of Adj with Ξ0 in the latter being replaced by Ξ′0. Since H is
a function to [−1, 1]d×d, δq(Ad, j) < ∞ for q ≥ 1. Furthermore, let ∆q(Ad) =∑∞
j=0 δq(Ad, j). The process Ad is denoted as q-stable if ∆q(Ad) < ∞. This

property still holds for some nonlinear transformations, see [33, 34]. E.g. consider
a polynomial transformation given by {g(Adt) = Adkt }. Note that for some

matrices A,B we have Ak − Bk =
∑k−1
s=0 A

s(A − B)Bj−1−s. If ‖Ad‖∞ ≤ C,
then δq/2({g(Adt)}, j) = δq(Ad, j)Ck−1k. Without assuming any sparsity, an
upper bound is given by C ≤ d. This dependency concept covers a wide range of
processes among them many nonlinear time series, see [33, 36, 37] for examples.
Furthermore, this concept includes nonlinear Markov chains, meaning Ad can
be given by Adt = H(Adt−1,Ξt). Chen et al. [5], Zhang and Cheng [41] pointed
out that a stable process is obtained if H possesses some form of Lipschitz-
continuity. Then, δq(Ad, j) = O(ρj) for some ρ ∈ (0, 1), see Example 2.4 in
[41] or Example 2.1 in [5] for details. A stable vector autoregressive process
possesses also such geometrically decaying physical dependence coefficients, see
among others Example 2.2 in [5]. Note that many dynamic network models, e.g.
Temporal ERGMs [9], are Markovian.

Lemma 3.2. If Assumption 1a) holds, AdG = {G̃(Adt)} is 2q-stable, and
maxr ‖ε0;r‖E,2q <∞ for some q ≥ 1, then X is q-stable. If the above conditions
hold for q ≥ 4, then Assumption 2 and 3 hold.
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3.2. Network autoregressive models for large dimension

The number of parameters in model (3) is of size O(pd2). If the underlying
network is not very sparse, a reasonable estimate could be only obtained if
d � n. Hence, in order to handle high-dimensional cases, meaning d is of the
same order as n or even larger, we follow Knight et al. [11] and simplify model
(3). For each component, the influence of the own lagged components is modeled
separately, thus, we set e>s Gj(·)es = 0 for all s = 1, . . . , d, j = 1, . . . , p. Then,
the simplified model is given by

Xt;r =

p∑
j=1

αj,rXt−j;r + βj,re
>
r Gj(Adt−j)Xt−j + εt;r, r = 1, . . . , p, (11)

where αj,r, βj,r ∈ R, j = 1, . . . , p, r = 1, . . . , d and Eεt;r = µr. Hence, this
simplified model possesses in total only d(2p+ 1) parameters or more precisely
only 2p + 1 parameters for each component of the time series independently
of the dimension. The parameter α quantifies the linear influence of the same
component and β the linear influence of the other components. Note that model
(11) can be written as

Xt =

p∑
j=1


αj,1 βj,1 . . . βj,1 βj,1
βj,2 αj,2 βj,2 . . . βj,2

...
. . .

. . .
. . .

...
βj,d−1 . . . βj,d−1 αj,d−1 βj,d−1
βj,d . . . βj,d βj,d αj,d

�(Ip +Gj(Adt−j))Xt−j + εt,

(12)

and consequently fits into the framework (3). We denote the process as Large
Network AutoRegression (LNAR) and the coefficient matrices occurring in (12)
by Aj,α,β , j = 1, . . . , p. Since a LNAR is an NAR process, a stationary solu-
tion is given by Lemma 2.2 if det(I −

∑p
j=1 |Aj,α,β |zj) 6= 0 for all |z| ≤ 1 or

ρ(Ã� G̃(·)) < 1. If no restrictions on the underlying network are imposed, then
the first condition implies that in order to obtain a stationary solution, the
parameter space depends on d. This is not the case we would like to consider
here, which is why conditions on the underlying network are imposed. We re-
quire that ‖Gj(·)‖∞ ≤ 1, j = 1, . . . , p, which means that the sum of weights of
the edges going into a vertex does not grow with the dimension d. To simplify
notation, we bound the sum of weights by 1. Knight et al. [11] require a similar
condition in the case of a static network. Under this condition, we obtain a
stationary solution if maxr=1,...,p

∑p
j=1 |αj,r|+ |βj,r| ≤ Cλ < 1, see the following

Lemma 3.3. Note that under the same conditions Knight et al. [11] obtain a
stationary solution in the case of a static network.

Lemma 3.3. If ‖Gj(·)‖∞ ≤ 1 for j = 1, . . . , p, and maxr=1,...,p

∑p
j=1 |αj,r| +

|βj,r| ≤ Cλ < 1, then (11) fulfills Assumption 1b) and possesses a stationary
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solution. The solution takes the form

Xt =

∞∑
j=0

(e1 ⊗ Id)>
j∏
s=1

(Ãα,β � G̃(Adt−s))(e1 ⊗ Id)εt−j =:

∞∑
j=0

Bt,jεt−j , (13)

where

˜G(Ad)t−1) =


Id +G1(Adt−1) Id 0 . . . 0
Id +G2(Adt−2) 0 Id 0

...
...

. . .
...

Id +Gp−1(Adt−p+1) 0 0 . . . Id
Id +Gp(Adt−p) 0 0 . . . 0


>

.

Furthermore, ρ(|Ãα,β � G̃(·)|) ≤ C1/p
λ .

For component r = 1, . . . , d, let wr = (α1,r, β1,r, . . . , αp,r, βp,r)
> ∈ R2p

and Y
(r)
t−1 = (Xt−1;r, e

>
r G1(Adt−1)Xt−1, . . . , Xt−p;r, e

>
r Gp(Adt−p)Xt−p)

>. Then,

(11) can be written as Xt;r = w>t Y
(r)
t−1 + εt;r. This is the same framework as in

Section 3.1, and the linear system (10) gives a least square estimate. To cover
a high-dimensional setting, we study the theoretical properties of this estima-
tor in a nonasymptotic framework as it is done in the high-dimensional vector
autoregressive case, see among others [1]. We make use of the Nagaev inequal-
ity for dependent variables, see Theorem 2 in [18], to formulate nonasymptotic
error bounds. Again, the physical dependency concept is used to quantify the
dependency structure of Ad, see the following Assumption 4.

Assumption 4. For j = 1, . . . , p let ‖Gj(·)‖∞ ≤ 1 and let AdG1 ={maxj=1,...,p

maxr e
>
r |Gj(Adt)|1, t ∈ Z} be 2q-stable with

∑∞
k=1 kδ2q(AdG1, k) ≤ CG, where

CG < ∞ is some constant. Furthermore, let maxr=1,...,d

∑p
j=1 |αj,r| + |βj,r| ≤

Cpλ < 1 and ‖|Ãα,β � G̃(·)|j‖∞ ≤ CAC
j
λ. The constants appearing here do not

depend on the dimension d.

Note that ‖G(·)‖∞ ≤ 1 and maxr=1,...,d

∑p
j=1 |αj,r| + |βj,r| ≤ Cpλ < 1

implies ‖|Ãα,β � G̃(·)|j‖∞ ≤ ‖|Ãα,β � W̃ |‖j∞ ≤ 1. Furthermore, we have a

bound for the largest eigenvalue ρ(|Ãα,β � W̃ |) ≤ Cλ < 1, see the proof
of Lemma 3.3. If Gj(·) = Wj � ·, where Wj ∈ [−1, 1]d×d and ‖Wj‖∞ ≤ 1
for all j, then δ2q(AdG1, k) = ‖maxr maxj e

>
r (Gj(Adk) − Gj(Ad

∗
k))1‖E,2q =

‖maxr maxj e
>
r (Wj � (Adk −Ad∗k))1‖E,2q ≤ maxj ‖Wj‖∞δ(Ad, k) ≤ δ(Ad, k).

If AdG1 possesses geometrically decaying physical dependence coefficients, then∑∞
k=1 kδ2q(AdG1, k) ≤ CG <∞.

This Assumption implies that X as well as {Y (r)
t , t ∈ Z} are q-stable and

their physical dependency quantity
∑∞
j=0 δq(·, j) can be bounded independently

from the dimension d, see Lemma 3.4 for details.

Lemma 3.4. If Assumption 4 holds, and maxi ‖ε0,i‖E,2q < ∞, then X gener-
ated by model (11) is q-stable and

∑∞
j=0 δq({maxr=1,...,dXt;r, t ∈ Z}, j)
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≤ maxi ‖ε0,i‖E,2q(CA/(1−Cλ))2/Cλ
∑∞
j=0 δ2q(AdG1, j) + 1). Furthermore, we

have for k = 1, . . . , 2p,
∑∞
j=0 jδq({maxr e

>
k Y

(r)
t , t ∈ Z}, j) ≤ CδY , where

CδY = max
i
‖ε0,i‖E,2q

CA
1− Cλ

[ Cλ
1− Cλ

+ CG(1 +
CA(2− Cλ)

(1− Cλ)2
)
]
.

With this results, we can formulate the nonasymptotic error bounds. In order
to handle a high-dimensional setting an import result is to obtain an error bound
which grows only moderately with d, the dimension of the process. Note that
in contrast to the estimation of a high-dimensional VAR system, e.g. [13], the
dimension of the parameter vector does not depend on d. This enables us to
obtain an error bound which does not depend on d at all, see the following
Theorem 3.5 for details.

Theorem 3.5. Under Assumption 4 we have for component r = 1, . . . , d, of
model (11), and the estimators given by the linear system (10) for some y ∈ R
with probability of at least (1−cq(n−p)1−qy−q− (c′q+2) exp(−cq(n−p)y2))4 =:
Cq(n, y)4, where cq, c

′
q are constants depending on q only, the following error

bounds

‖ŵr − wr‖1 ≤y
√

2pCδY (‖ε0;r‖E,q + CδY y + µr + ‖µY (r)‖1)

ρ(Γ−1)− y2pCδY (2CA/(1− Cλ) + 2‖µY (r)‖1 + yCδY )
, (14)

|µ̂r − µr| ≤(‖µY (r)‖1 + yCδY )‖ŵr − wr‖1 + yCδY . (15)

For y = o(1/
√
n), the error tends to zero but the probability still faces 1

with increasing n. This rate is independent of the dimension d. This enables us
to use LNAR for forecasting in a high-dimensional framework. The forecasting
procedure is analogue to the one for the NAR approach, see the end of the
previous subsection.

4. Numerical examples

In this section, the forecasting performance of the models presented in Sec-
tion 2 is investigated in finite samples. For a low-dimensional example and a
high-dimensional example, we forecast Xn+1, . . . , Xn+h based on observations
X1, . . . , Xn and Ad1, . . . , Adn−1, where h = 4. The performance is measured by
computing the mean squared error (MSE) averaged over all components via a
Monte Carlo simulation using B = 1000 repetitions, meaning

MSE(X̂
(h)
n+h) ≈ 1/d

d∑
j=1

1/B

B∑
i=1

(Xn+h,i;j − X̂(h)
n+h,i;j)

2,

where Xn,i;j denotes the jth component of the nth observation of the ith Monte
Carlo sample. In the following, we denote the approach using model (3) as NAR
and the approach using model (11) as LNAR. As a benchmark, we use a vector
autoregressive model given by Xt =

∑p
j=1AjXt−j + εt, where A1, . . . , Ap ∈
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Rd×d. This approach is denoted by VAR. The three models considered have
a tuning parameter p which specifies the lag order. For all three models, the
Bayesian Information Criterion (BIC) is used to automatically choose the lag-
order p, see among others Section 5.5 in [4].

The approaches NAR and LNAR make use of the underlying network struc-
ture. That means in order to computeXh

n+h, the approaches NAR and LNAR re-
quire an observation or at least an estimate of the underlying network structure.
Both cases are considered here, in the first case we forecast Adn, . . . , Adn+h−1
based on the observations Ad1, . . . , Adn−1, and in the second case we assume
that Adn, . . . , Adn+h−1 is observed. In order to distinguish between these two
cases, we denote the forecast of approach NAR based on an estimated net-

work by NAR(Âd) and the forecast based on a known network structure by
NAR(Ad). An analogue notation is used for LNAR.

All computations are done in R [29] using the additional packages tergm,
BigVAR, markovchain [16, 26, 30].

In the first example, a network with 4 vertices is considered. The adjacency
matrix process Ad is a Markovian process and the edges are independent from
each other. The process Ad is given by

(P (Adt;ij = 1|Adt−1;ij = 1))i,j=1,...,d =


0.95 0.70 0.99 0

0 0.95 0.70 0
0.99 0.50 0.95 0.95
0.30 0 0 0.95

 ,

(P (Adt;ij = 1|Adt−1;ij = 0))i,j=1,...,d =


0.05 0.10 0.01 0

0 0.05 0.30 0
0.01 0.50 0.05 0.05
0.30 0 0 0.05

 . (16)

The process X is an NAR(1) process and is given by

Xt = (α�Adt−1)Xt−1 + εt, t ∈ Z, ε1 ∼ N
(
(−1, 4,−9, 16)>, I4

)
, (17)

where α =


0.25 0.7 0 0

0 0.25 0.7 0
0 0 0.25 0.7

0.7 0 0 0.25

.

A realization of the network, the time series, and the sample autocovariance
function are displayed in Figure 3. The edges (3, 1) and (1, 3) have a coefficient
of 0, hence, whether they are present or not, they do not influence the time
series X.

The model structure of Ad is used to compute a forecast of Ad. Thus, for
each component of Ad, a discrete Markov chain is fitted to Ad1, . . . , Adn−1, and
this Markov chain is then used to obtain a forecast for Adn, . . . , Adn+h−1. For
this the R-package markovchain was used.
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Fig 3. The upper figure presents a realization of the network of the example given by (16)
and a realization of the time series X given by (17). Red dots indicate the current time point.
This figure contains animation only visible on screen. The lower graphic presents the sample
autocovariance function of X.

The mean squared errors for the forecast horizons h = 1, . . . , 4 are displayed
in Table 1. Note that an optimal one-step ahead forecast for this process would
possess a forecast error of 1. This can be nearly achieved by NAR with a known
network structure and moderate sample size. If the underlying network structure
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Table 1
Mean squared error averaged over all components for process (17) and the forecast horizons

h = 1, . . . , 4.

n h = 1 h = 2 h = 3 h = 4
NAR(Ad) 1.24 1.42 1.53 1.61

NAR(Âd) 1.47 2.80 3.67 4.14
50 LNAR(Ad) 1.89 2.32 2.62 2.91

LNAR(Âd) 2.00 3.18 4.04 4.63
VAR 2.83 3.56 4.08 4.35
NAR(Ad) 1.07 1.19 1.23 1.25

NAR(Âd) 1.20 2.76 3.56 4.13
100 LNAR(Ad) 1.78 2.18 2.35 2.47

LNAR(Âd) 1.83 3.08 3.86 4.49
VAR 2.65 3.40 3.80 4.08
NAR(Ad) 1.01 1.12 1.14 1.16

NAR(Âd) 1.11 2.63 3.55 4.09
200 LNAR(Ad) 1.71 2.04 2.20 2.30

LNAR(Âd) 1.74 2.88 3.71 4.30
VAR 2.63 3.30 3.69 4.01
NAR(Ad) 1.01 1.11 1.14 1.15

NAR(Âd) 1.13 2.66 3.41 4.10
500 LNAR(Ad) 1.69 2.00 2.14 2.23

LNAR(Âd) 1.73 2.91 3.60 4.32
VAR 2.60 3.27 3.60 3.92

is unknown, NAR outperforms the other approaches for the forecast horizons
up to h = 3. For forecast horizons further ahead, VAR performs slightly better.
This drop in performance for horizons further ahead is mainly caused by the
estimate of the underlying network structure. The approach used here causes

that Âd
(h)
n+h is identical for all horizons h = 1, . . . , 4. This estimate gets poorer,

the larger h is.
In the second example, a Separable Temporal Exponential Random Graph

Model (STERGM) is considered, see Krivitsky and Handcock [15] and also [16]
for the used R package tergm. The network is generated using simulate.stergm of
the R-package tergm with dissolution coefficient 4, formation coefficient

− log
(

(d/5 − 1)(1 + exp(4)) − 1
)

, and a mean density of 5/d. Networks of

the sizes d = 10, 33, 100, and 500 are considered, and for each network size the
sample sizes n = 100, 200, and 500. For d = 500, such a network has about
4000 edge changes from t = 1 to t = 100. Let Adt be the adjacency matrix of
such a network at time t and let Bt = diag((1/(e>i Ad

>
t 1)i=1,...,d) be a diagonal

matrix, where 1/0 is defined as 0. This defines the function G(Adt) = Ad>t Bt
and let AdGt = G(Adt) = Ad>t Bt. This means e>i AdGt apportions equally
the weight 1 among the in-going edges to vertex i at time t, and we have
‖AdGt‖∞ = maxi

∑d
s=1Adt;si/(

∑d
s=1Adt;si) ≤ 1. Then, the process X is given

by the following LNAR(1) model

Xt;r = 0.9(r/d)Xt−1;r + 0.9(d− r)/dAdGt−1Xt−1 + εt;r, (18)

where εt ∼ N (µ, 5Σε) and µ = (1(−1), 2(−1)2, 3(−1)3, . . . , d(−1)d)> and Σε
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is a banded matrix with ones on the diagonal and 0.25(−1)j+1, j = 1, . . . , d −
1 on the first off diagonal. The function G is considered as known, meaning
AdG1, . . . , AdGn−1 is observed.

Two approaches are used to obtain a forecast for Adn, . . . , Adn+h−1. The first

approach fits a STERGM model to Ad1, . . . , Adn−1 and then generates Âd
(h)
n−1+h

by simulating the fitted model with Adn−1 as a starting value. This forecast is

denoted as Âd1. The second approach fits for each component independently
a discrete Markov chain and uses this to forecast Ad. The second approach is

denoted as Âd2.
Since a standard VAR model cannot be applied well to a high-dimensional

setting, the VAR estimation is modified by adding sparsity constraints, meaning
a coefficient Aj;rc is set to zero for j = 1, . . . , p if

∑n
t=1 e

>
r AdGtec = 0. This is

motivated by the fact that in model (18) if Ee>r AdGtec = 0, then Xt−j;c, j =
1, . . . , p do not directly influence Xt;r. Furthermore, forecasts given by the R-
package BigVAR are included as additional benchmarks, see [26]. There the
idea is that the underlying VAR model is sparse but the sparsity structure is
unknown. It can be estimated by using a LASSO approach, see among others [1,
13]. The forecast obtained by a such a model of order p is denoted by BigVAR(p),
where p = 1, 2.

Table 2
Relative mean squared error (basing point: VAR) for process (18) averaged over forecast

horizons and sample sizes.

d 10 33 100 500
NAR(Ad) 0.35 0.33 0.44 0.51

NAR(Âd1) 0.71 0.74 0.78 0.77

NAR(Âd2) 0.84 0.93 0.95 0.96
LNAR(Ad) 0.27 0.04 0.01 < 0.01

LNAR(Âd1) 0.66 0.60 0.56 0.53

LNAR(Âd2) 0.80 0.85 0.81 0.80
VAR 1.00 1.00 1.00 1.00
BigVAR(1) 2.99 5.35 6.35 7.88
BigVAR(2) 3.24 5.71 6.68 8.09

The mean squared errors of the forecasts are displayed in Table 3 and Ta-
ble 4. Note that an optimal one-step ahead forecast would possess a forecast
error of 5. With a known network structure at hand, LNAR is nearly able
to achieve such optimal results independently of the dimension. Is the future
network unknown, then the forecasting performance of NAR and LNAR drop
considerably. Especially for LNAR, the loss of performance due to an unknown
network structure seems to increase with the dimension of the process. Of the
two approaches used to forecast the network, a better performance is given by

the network forecasting approach Âd1 for NAR as well as LNAR. Given the net-

work forecast Âd1, both approaches still outperform all others namely VAR and
BigVAR(p), p = 1, 2. As mentioned, VAR uses the underlying network structure
to set sparsity constraints such that the number of parameters can be reduced.
In all settings considered, VAR outperforms BigVAR(p), p = 1, 2. This indicates
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Table 3
Mean squared error for process (18) with dimension d = 10, 33 and the forecast horizons

h = 1, . . . , 4.

d = 10 d = 33
n Model h = 1 h = 2 h = 3 h = 4 h = 1 h = 2 h = 3 h = 4

1
0
0

NAR(Ad) 6.9E+00 1.1E+01 1.5E+01 1.9E+01 3.4E+01 7.2E+01 1.1E+02 1.6E+02

NAR(Âd1) 9.7E+00 1.8E+01 2.7E+01 3.6E+01 5.6E+01 1.3E+02 2.1E+02 2.9E+02

NAR(Âd2) 1.2E+01 2.3E+01 3.2E+01 4.3E+01 7.5E+01 1.6E+02 2.5E+02 3.4E+02
LNAR(Ad) 5.1E+00 7.1E+00 8.5E+00 9.6E+00 5.3E+00 7.2E+00 8.5E+00 9.4E+00

LNAR(Âd1) 8.3E+00 1.6E+01 2.3E+01 3.1E+01 4.1E+01 1.0E+02 1.7E+02 2.4E+02

LNAR(Âd2) 1.1E+01 2.1E+01 2.9E+01 3.8E+01 6.7E+01 1.5E+02 2.3E+02 3.1E+02
VAR 1.3E+01 2.7E+01 4.1E+01 5.5E+01 6.9E+01 1.8E+02 3.2E+02 4.9E+02
BigVAR(1) 4.4E+01 6.8E+01 8.8E+01 1.0E+02 5.4E+02 7.3E+02 8.9E+02 1.0E+03
BigVAR(2) 4.8E+01 7.2E+01 9.1E+01 1.1E+02 5.7E+02 7.6E+02 9.2E+02 1.0E+03

2
0
0

NAR(Ad) 5.9E+00 8.8E+00 1.1E+01 1.3E+01 2.9E+01 5.7E+01 8.5E+01 1.1E+02

NAR(Âd1) 9.4E+00 1.8E+01 2.8E+01 3.7E+01 5.7E+01 1.2E+02 1.9E+02 2.6E+02

NAR(Âd2) 1.1E+01 2.2E+01 3.2E+01 4.2E+01 7.6E+01 1.5E+02 2.4E+02 3.2E+02
LNAR(Ad) 5.2E+00 7.2E+00 8.3E+00 9.2E+00 5.1E+00 6.9E+00 8.0E+00 8.7E+00

LNAR(Âd1) 8.9E+00 1.7E+01 2.6E+01 3.5E+01 4.2E+01 9.3E+01 1.5E+02 2.2E+02

LNAR(Âd2) 1.1E+01 2.1E+01 3.0E+01 4.0E+01 6.6E+01 1.4E+02 2.2E+02 3.0E+02
VAR 1.3E+01 2.6E+01 4.0E+01 5.3E+01 6.2E+01 1.5E+02 2.7E+02 4.1E+02
BigVAR(1) 5.2E+01 8.1E+01 1.0E+02 1.2E+02 6.9E+02 9.3E+02 1.1E+03 1.2E+03
BigVAR(2) 6.0E+01 9.0E+01 1.1E+02 1.3E+02 7.5E+02 9.8E+02 1.2E+03 1.3E+03

5
0
0

NAR(Ad) 5.1E+00 7.3E+00 8.8E+00 9.9E+00 1.9E+01 3.6E+01 5.2E+01 6.5E+01

NAR(Âd1) 9.1E+00 1.7E+01 2.6E+01 3.3E+01 4.9E+01 1.1E+02 1.8E+02 2.5E+02

NAR(Âd2) 1.1E+01 2.0E+01 2.9E+01 3.8E+01 6.5E+01 1.4E+02 2.2E+02 3.0E+02
LNAR(Ad) 5.0E+00 7.0E+00 8.3E+00 9.2E+00 5.0E+00 6.7E+00 7.8E+00 8.4E+00

LNAR(Âd1) 9.0E+00 1.7E+01 2.6E+01 3.3E+01 3.9E+01 9.5E+01 1.6E+02 2.3E+02

LNAR(Âd2) 1.1E+01 2.0E+01 2.9E+01 3.7E+01 5.7E+01 1.3E+02 2.1E+02 2.9E+02
VAR 1.2E+01 2.3E+01 3.5E+01 4.5E+01 5.4E+01 1.4E+02 2.5E+02 3.6E+02
BigVAR(1) 5.0E+01 8.6E+01 1.1E+02 1.3E+02 5.1E+02 8.6E+02 1.1E+03 1.3E+03
BigVAR(2) 5.6E+01 9.2E+01 1.2E+02 1.3E+02 5.7E+02 9.2E+02 1.2E+03 1.3E+03

that for this process the network induced sparsity constraints are more helpful
than a free but unknown sparsity setting as given in BigVAR. However, note
that the amount of parameters which are estimated for the approaches NAR and
VAR depend on the set In := {i, r = 1, . . . , d : 1/n

∑n−1
t=1 e

>
r |Adt|ei > 0}, and

we have |In| ≤ |Im| for m ≥ n. This could explain why these two approaches
do not gain immediately from an increasing sample size for larger dimensions.

In order to get a better overview of the results, we set the MSE of the approach
VAR as basing point, meaning all MSE values are divided by the corresponding
VAR’s MSE. An average over all sample sizes and forecast horizons leads to
Table 2. These aggregated results support the argument that the approaches
NAR and LNAR benefit from the underlying network structure and even when
the future network structure is unknown and needs to be estimated itself, there
is still a benefit. For higher dimensions, only LNAR performs well whereas the
performance of all others drop dramatically, meaning that the network induced
sparsity does not seem to be sufficient to obtain good estimation results in this
setting.
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Table 4
Mean squared error for process (18) with dimension d = 100, 500 and the forecast horizons

h = 1, . . . , 4.

d = 100 d = 500
n Model h = 1 h = 2 h = 3 h = 4 h = 1 h = 2 h = 3 h = 4

1
0
0

NAR(Ad) 2.6E+02 5.7E+02 9.5E+02 1.4E+03 5.5E+03 1.2E+04 2.0E+04 2.7E+04

NAR(Âd1) 4.2E+02 9.5E+02 1.5E+03 2.1E+03 9.5E+03 2.3E+04 3.7E+04 5.1E+04

NAR(Âd2) 5.7E+02 1.2E+03 1.8E+03 2.5E+03 1.4E+04 3.0E+04 4.6E+04 6.1E+04
LNAR(Ad) 5.2E+00 7.3E+00 8.4E+00 9.3E+00 5.3E+00 7.2E+00 8.3E+00 9.1E+00

LNAR(Âd1) 2.8E+02 7.3E+02 1.2E+03 1.8E+03 6.9E+03 1.8E+04 3.1E+04 4.4E+04

LNAR(Âd2) 4.8E+02 1.1E+03 1.7E+03 2.4E+03 1.2E+04 2.8E+04 4.3E+04 5.9E+04
VAR 4.8E+02 1.4E+03 2.6E+03 4.3E+03 1.2E+04 3.5E+04 7.0E+04 1.2E+05
BigVAR(1) 5.1E+03 6.4E+03 7.3E+03 8.1E+03 1.7E+05 1.9E+05 2.1E+05 2.2E+05
BigVAR(2) 5.3E+03 6.4E+03 7.4E+03 8.2E+03 1.7E+05 1.9E+05 2.1E+05 2.2E+05

2
0
0

NAR(Ad) 3.1E+02 6.5E+02 9.7E+02 1.3E+03 6.6E+03 1.5E+04 2.5E+04 3.7E+04

NAR(Âd1) 5.0E+02 1.1E+03 1.7E+03 2.3E+03 1.1E+04 2.5E+04 4.0E+04 5.8E+04

NAR(Âd2) 6.8E+02 1.4E+03 2.1E+03 2.8E+03 1.4E+04 3.0E+04 4.8E+04 6.8E+04
LNAR(Ad) 5.1E+00 6.9E+00 8.0E+00 8.5E+00 5.2E+00 6.9E+00 7.9E+00 8.7E+00

LNAR(Âd1) 3.0E+02 7.3E+02 1.3E+03 1.9E+03 7.3E+03 1.8E+04 3.1E+04 4.5E+04

LNAR(Âd2) 5.6E+02 1.2E+03 1.9E+03 2.5E+03 1.2E+04 2.6E+04 4.2E+04 5.8E+04
VAR 4.8E+02 1.3E+03 2.5E+03 3.9E+03 1.1E+04 3.3E+04 6.3E+04 1.0E+05
BigVAR(1) 7.8E+03 9.4E+03 1.1E+04 1.1E+04 2.2E+05 2.4E+05 2.5E+05 2.7E+05
BigVAR(2) 8.3E+03 9.8E+03 1.1E+04 1.2E+04 2.3E+05 2.5E+05 2.6E+05 2.7E+05

5
0
0

NAR(Ad) 2.6E+02 5.7E+02 8.1E+02 1.0E+03 5.6E+03 1.4E+04 3.2E+04 1.1E+05

NAR(Âd1) 4.6E+02 1.1E+03 1.7E+03 2.2E+03 7.9E+03 2.1E+04 4.3E+04 1.3E+05

NAR(Âd2) 5.8E+02 1.3E+03 1.9E+03 2.5E+03 1.1E+04 2.8E+04 5.3E+04 1.4E+05
LNAR(Ad) 5.1E+00 6.7E+00 7.6E+00 8.2E+00 5.0E+00 6.8E+00 7.6E+00 8.3E+00

LNAR(Âd1) 3.0E+02 8.1E+02 1.3E+03 1.8E+03 6.6E+03 1.7E+04 2.9E+04 4.3E+04

LNAR(Âd2) 4.7E+02 1.1E+03 1.7E+03 2.3E+03 1.2E+04 2.7E+04 4.2E+04 5.7E+04
VAR 4.3E+02 1.2E+03 2.2E+03 3.2E+03 1.0E+04 2.9E+04 5.3E+04 8.4E+04
BigVAR(1) 5.6E+03 8.1E+03 9.8E+03 1.1E+04 2.0E+05 2.5E+05 2.7E+05 2.8E+05
BigVAR(2) 6.2E+03 8.6E+03 1.0E+04 1.1E+04 2.1E+05 2.4E+05 2.7E+05 2.8E+05

5. Real data example

In this section, we investigate further the example in which the actors are
economies, their gross domestic product is the attribute of interest and their
trade volume defines the underlying network. To elaborate, we consider the
data set of [22]. This data set contains economic data of 33 economies in the
time period from 1980-2016. The 33 economies cover more than 90% of world
GDP, see Table 6 for a list of included economies. The economies are considered
as actors, and the relationship between these actors is given by the IMF (Inter-
national Monetary Fund) Direction of Trade statistics, see data.imf.org/DOT

and also the trade matrix in [22]. For time t, the connection from actors i to
actor j given by e>j Ad

>
t ei is defined as the sum of exports and imports between

actor i and j at time t divided by the sum of all exports and imports of ac-
tor j at time t. The data set considered contains for each economy attributes
such as real GDP (log transform), inflation rate, short/long-term interest rate.
Note that these attributes are given quarterly whereas the trade relations are

data.imf.org/DOT
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only given annually. We assume here that the trade relations do not change
within a year and perform the analysis on the quarterly sampling level. The
focus here is on the attribute real GDP, and based on the data from 1980Q1-
2014Q4 the goal is to forecast the GDP for the period 2015Q1-2016Q4. The
indices 1, . . . , n denote the time period 1980Q1-2014Q4 and n + 1, . . . , n + 8
the time period 2015Q1-2016Q4. To perform a forecast, we use the models pre-
sented here, namely NAR given by (3) and LNAR given by (11), and include
a VAR model as a benchmark. It is a solid benchmark, since Marcellino [21]
compared a VAR model GDP forecast with various nonlinear alternatives and
pointed out that even though a VAR model is a “simple” linear model, it can
hardly be beaten if it is carefully specified. Let {Yt} be the real GDP (log
transform) of the 33 economies. Unit root tests applied to {Yt} suggest that
real GDP itself may not be stationary. We follow here the economic litera-
ture, see among others [21], and model instead the GDP growth rate given by
Xt = Yt − Yt−1. This transformation can be inverted, and we obtain a forecast

for {Yt} by Ŷ
(1)
n+h = Yn +

∑h
s=1 X̂

(s)
n+s, where X̂

(s)
n+s, s = 1, . . . , h denote fore-

casts of {Xt}. The three models considered have a tuning parameter p which
specifies the lag order. For all three models, the Bayesian Information Criterion
(BIC) is used to choose automatically the lag-order p. The models NAR and
LNAR require a forecast of the underlying network. A simple approach for this

is used, namely Âd
(h)
n+h = Adn, h = 1, . . . , 8 is used as a forecast. We obtain for

a forecast Ŷ
(h)
n+h the forecast error E

(h)
n+h := Yn+h−Y (h)

n+h. The squared error and
the absolute error is used to measure the forecast performance. In Table 5, the

sum of all squared and absolute errors is displayed, meaning
∑8
h=1 ‖E

(h)
n+h‖22 and∑8

h=1 ‖E
(h)
n+h‖1. Over all forecast horizons and economies, the additional net-

work structure improves the forecast, and NAR performs best. NAR’s forecast
error is 25% for the squared error and 15% for the absolute error smaller than
VAR’s forecast error.

Table 5
Sum of the squared error and absolute error, respectively, over all 33 economies and all 8

forecast horizons for the GDP forecast.

VAR LNAR NAR
Square error 0.23 0.21 0.17

Absolute error 5.21 4.87 4.39

Table 6 breaks the forecast error down into economies, and Table 7 breaks it
down into forecast horizons. The performance gap between NAR and LNAR is
small for small h, and it increases with increasing h. Since for h = 8 LNAR and
VAR almost have the same performance and NAR outperforms both, it seems
that LNAR performs worse with increasing h. Taking a closer look at Table 6,
we cannot identify a clear winner. For the 33 listed economies VAR performs
independently of the used error measure 11 times best, LNAR 6 times and NAR
16 times.

To sum up, the trade network delivers useful information for the GDP fore-
cast. The models presented in this paper are able to benefit from these addi-
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tional information such that they can outperform the VAR approach. Note that
an NAR(p) model possesses the same amount of parameters as a VAR(p) model.
Thus, the additional information can be used without estimating additional pa-
rameters.

Table 6
For a given economy the sum of squared error and absolute error, respectively, of the GDP

forecast for the entire forecast period 2015Q1-2016Q4.

Squared error (×100) Absolute error
VAR LNAR NAR VAR LNAR NAR

USA 0.114 0.147 0.033 0.079 0.095 0.044
UNITED KINGDOM 0.057 0.107 0.079 0.062 0.088 0.067
AUSTRIA 0.133 0.211 0.404 0.096 0.124 0.165
BELGIUM 0.094 0.097 0.085 0.079 0.077 0.077
FRANCE 0.087 0.039 0.004 0.074 0.050 0.016
GERMANY 0.032 0.056 0.329 0.048 0.062 0.148
ITALY 0.045 0.004 0.038 0.054 0.016 0.046
NETHERLANDS 0.010 0.035 0.013 0.024 0.048 0.026
NORWAY 0.701 0.508 0.155 0.217 0.179 0.096
SWEDEN 0.185 0.250 0.134 0.106 0.127 0.090
SWITZERLAND 0.188 0.268 0.477 0.118 0.140 0.184
CANADA 0.401 0.449 0.146 0.168 0.179 0.104
JAPAN 0.101 0.013 0.085 0.078 0.030 0.076
CHINA 1.099 0.905 0.321 0.257 0.235 0.131
FINLAND 0.268 0.153 0.036 0.142 0.110 0.047
SPAIN 0.086 0.043 0.939 0.078 0.054 0.246
TURKEY 0.326 0.450 1.330 0.123 0.182 0.248
AUSTRALIA 0.098 0.069 0.038 0.074 0.059 0.046
NEW ZEALAND 0.055 0.095 0.441 0.056 0.073 0.157
SOUTH AFRICA 0.711 1.063 0.059 0.210 0.254 0.064
ARGENTINA 0.486 0.782 0.981 0.176 0.207 0.233
BRAZIL 6.896 8.437 7.244 0.683 0.748 0.700
CHILE 0.977 1.180 0.382 0.240 0.251 0.149
MEXICO 0.049 0.019 0.184 0.058 0.034 0.111
PERU 0.057 0.017 1.143 0.058 0.028 0.271
SAUDI ARABIA 0.286 0.243 0.357 0.145 0.116 0.164
INDIA 0.060 0.093 0.085 0.064 0.079 0.074
INDONESIA 0.006 0.059 0.037 0.020 0.061 0.048
KOREA 1.700 0.256 0.008 0.334 0.129 0.019
MALAYSIA 0.510 0.404 0.122 0.184 0.160 0.071
PHILIPPINES 1.442 0.868 0.424 0.302 0.225 0.154
SINGAPORE 4.251 2.714 0.315 0.544 0.427 0.156
THAILAND 1.020 0.767 0.367 0.260 0.228 0.163

6. Conclusions

This paper models dynamic attributes of the vertices of a dynamic network. The
attributes are modeled such that the underlying network structure can influence
the attributes and vice versa. A linear time series framework is adopted and
network linear processes and network autoregressive processes were defined. This
framework gives flexibility in the sense that the attributes and the underlying
network can be modeled separately. The physical dependence framework is used
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Table 7
For a given forecast horizon the sum of the squared error and absolute error, respectively,

over all 33 economies.

Squared error (×100) Absolute error
h VAR LNAR NAR VAR LNAR NAR
1 0.23 0.17 0.15 0.20 0.18 0.17
2 0.95 0.69 0.68 0.40 0.35 0.34
3 1.31 1.05 0.98 0.48 0.41 0.40
4 2.18 1.87 1.49 0.63 0.55 0.50
5 2.87 2.58 2.07 0.70 0.66 0.58
6 3.81 3.69 2.75 0.82 0.80 0.68
7 5.27 4.95 4.40 0.98 0.93 0.85
8 5.90 5.79 4.28 1.00 0.99 0.87

to quantify the dependency structure of the underlying network such that this
framework becomes feasible and statistical results can be derived in a low- and
high-dimensional setting. These results can be used to do forecasting, and, as
can be seen in the numerical examples as well as in the real data example, the
benefit of using the additional structure can be quite large.

7. Proofs

Proof of Lemma 2.2. Under Assumption 1a), we have that ‖Gj(·)‖max ≤ 1 im-

plies ‖G̃(·)‖max = 1, where G̃(·) denotes the corresponding quantity of the

stacked processes. Thus, for j ∈ N and t ∈ Z, we have ‖
∏j
s=1(Ã�G̃(Adt−s)‖2 ≤

‖|Ã|j‖2. The condition det(I −
∑p
j=1 |Aj |zj) 6= 0 for all |z| ≤ 1 implies det(I −

Ãzj) 6= 0 for all |z| ≤ 1, which gives component-wise summability of the se-
quence

∑∞
j=0 |A|j , see Appendix A.6 and A.9 in [19]. Under Assumption 1b),

we have also by the results of A.9 in [19] that
∑∞
j=0 Ã � G̃(·) is absolutely

component-wise summable.

Let Xt = (Ã� ˜G(Ad)t−1)Xt−1 + (e1 ⊗ Id)εt be the stacked NAR(1) process,

where (6) takes the form Xt =
∑∞
j=0

∏j
s=1(Ã�G(Ãdt−s))(e1⊗ Id)εt−j . This is

obviously a solution of the recursion equality. Given (6), the representation of
the autocovariance function follows directly by taking into account that {εt} is
an i.i.d. sequence and {εs, s > t} and {Ads, s ≤ t} are independent for all t.

Proof of Lemma 2.3. Condition (ii) and (iii) gives the existence of the L2-limit
of Xt, so that it can be written as Xt =

∑∞
j=0Bt,jεt−j . We have Bt,j =

fj(Adt−1, . . . , Adt−j), and {εt, t ∈ Z} is i.i.d and independent to the stationary
process Ad. Thus, {εt, t ∈ Z} and (vec(Bt,j , j ∈ N))t∈Z are independent. We
have µx =

∑∞
j=0EB0,jµ, and for the autocovariance function

ΓX(h) =

∞∑
j=0

∞∑
s=0

(
E
(
Bt+h,jεt+h−jε

>
t−sB

>
t,s

)
− E

(
Bt+h,jµµ

>Bt,s
)

+

E
(
Bt+h,jµµ

>Bt,s
)
− E(Bt+h,j)µµ

>E(B>t,s)
)
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=

∞∑
s=0

E
(
Bh,s+hΣεB

>
0,s

)
+

∞∑
j=0

∞∑
s=0

Cov (Bh,jµ,B0,sµ) , h ≥ 0.

Proof of Theorem 3.1. First note that we have for n large enough that∑n−1
t=p Y

(r)
t (Y

(r)
t )>−1/(n−p)

∑n−1
t1,t2=p

Y
(r)
t1 (Y

(r)
t2 )> is invertible since ΓY (r)(0)−1

is positive definite. Then, we insert Xt;r = (Y
(r)
t−1)>wr + εt;r in (10) and obtain

ŵr =wr + [

n−1∑
t=p

Y
(r)
t (Y

(r)
t )> − 1

n− p

n−1∑
t1,t2=p

(Y
(r)
t1 )(Y

(r)
t2 )>]−1

[

n∑
t=p+1

εt;rY
(r)
t−1 −

1

n− p

n∑
t1,t2=p+1

Y
(r)
t1−1εt2;r]

and µ̂r = 1/(n− p)
∑n
t=p+1(Y

(r)
t−1)>(wr − ŵr) + 1/(n− p)

∑n
t=p+1 εt;r. The

√
n-

consistency of the estimators follows then by Assumption 2. Since
√
n/(n −

p)
∑n
t=p+1(Y

(r)
t−1)>(wr − ŵr) = µY (r)(wr − ŵr) + oP (1), we have the second

assertion by Assumption 3.

Proof of Lemma 3.2. To simplify notation, let AdGt = G̃(Adt). Since Assump-
tion 1a) gives a causal representation, see Lemma 2.2, we have for component r
that Xj;r =

∑∞
s=0 e

>
r Bj,sεj−s = Hr(Ξj ,Ξj−1, . . . ) for some measurable function

Hr. Note that Bj,0 ≡ Ip and ‖Bj,s‖ ≤ ‖|Ã|s‖2 for all j. Denote by ∗ a coupled
version with Ξ0 being replaced by an i.i.d. copy Ξ′0. Then, δq({Xt;r, t ∈ Z}, j) =
‖Xj;r−Hr(Ξj ,Ξj−1, . . . ,Ξ1,Ξ

′
0,Ξ−1,Ξ−2, . . . )‖E,q = ‖Xj;r−X∗j;r‖E,q. We have

by triangular inequality and Cauchy-Schwarz for j ≥ 1

δq({Xt;r}, j) = ‖
∞∑
s=1

e>r (Bj,s −B∗j,s)εj−s + e>r B
∗
j,j(ε0 − ε′0)‖E,q

≤
∞∑
s=1

d∑
i=1

‖(Bj,s;ri −B∗j,s;ri)εj−s;i‖E,q + ‖erB∗j,j(ε0 − ε′0)‖E,q

≤
∞∑
s=1

d∑
i=1

‖(Bj,s;ri −B∗j,s;ri)‖E,2q‖εj−s;i‖E,2q + max
i
‖E0;i‖E,2q

√
d‖|Ã|j‖2.

Let Dk = AdGj−k − AdG∗j−k. Since AdG is 2q-stable, we have that

maxi,s ‖e>i Dkes‖E,2q ≤ δ2q(AdG, j − k). Note that AdG is a causal process
and AdGt −AdG∗t = 0 for all t < 0. Furthermore, we have by Assumption 1a)

‖e>r (Bj,s −B∗j,s)1‖E,2q =‖e>r

[
s∑

k=1

k−1∏
r=1

(Ã�AdG∗j−k)(Ã� (AdGj−k −AdG∗j−k))

×
s∏

r=k+1

(Ã�AdGj−r)

]
1‖E,q
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≤
√
d‖|Ã|s‖2

min(j,s)∑
k=1

δ2q(AdG, j − k).

With this, we have further

δq({Xt}, j) ≤ max
i
‖ε0;i‖E,2q

√
d
[ ∞∑
s=1

‖|Ã|s‖2
min(j,s)∑
k=1

δ2q(AdG, j − k) + ‖|Ã|j‖2
]
.

Similarly, we obtain maxr ‖Xj;r‖E,q ≤ maxi ‖ε0,i‖E,2q
√
d
∑∞
s=0 ‖|Ã‖s‖2 < ∞.

Furthermore, let C =
∑∞
j=1 ‖|Ã|j‖2. Since the components are absolutely sum-

mable, see Lemma 2.2, we have C <∞. This gives us

∞∑
j=1

δq({Xt, t ∈ Z}, j) ≤ max
i
‖ε0;i‖E,2q

√
d

[ ∞∑
j=1

∞∑
s=1

‖|Ã|s‖2
min(j,s)∑
k=1

δ2q(AdG, j − k)

+ C

]
≤ max

i
‖ε0;i‖E,2q

√
d(

∞∑
j=0

δ2q(AdG, j)

∞∑
s=0

‖|Ã|s‖2
∞∑
k=0

|Ã|k‖2 + C) <∞.

Hence, the assertion that X is q-stable follows.
Let k̃ = k+(s−1)d, k = 1, . . . , d, s = 1, . . . , p. Since AdG is stationary and 2q-

stable, we have 1(1/n
∑n
t=p+1 e

>
r |Gs(Adt−s)|ek > 0) = 1(E(e>k |Gs(Ad−s)|er >

0) > 0) + oP (1), where 1(·) is the indicator function, meaning 1(x) = 1 if

x is true and zero otherwise. This implies, as n → ∞, |I(r)| P→ |I(r)E | < ∞.

Consequently, for n large enough, we have I(r)E = I(r). Suppose in the following
that this hold.

A q-stable X implies that {(Y (r)
t−1 = Idp;I(r)((e

>
r G1(Adt−1)) � X>t−1, . . . ,

(e>r Gp(Adt−p)) � X>t−p)>)r=1,...,d, t ∈ Z} is q-stable. To see this, let k̃ = k +

(s − 1)d, k̃ ∈ I(r). Then, e>
k̃
Y

(r)
t−1 = Xt−s;ke

>
r Gs(Adt−j)ek and ‖ek̃(Y

(r)
j −

Y
(r)∗
j )‖E,q = ‖(Xj−s;k − X∗js;k)e>r Gs(Adj−s)ek + X∗j−s;k(e>r Gs(Adj−s)ek −
e>r Gs(Ad

∗
j−s)ek)‖E,q ≤ δq(X; k−j)+δ(AdG; k−j). Since {Xt =

∑∞
j=0Bt,jεt−j}

is a causal process, and {εs, s > t} and {Ads, s ≤ t} are independent for all t, we

have that Y
(r)
t and εt+1 are independent for all t and r. Hence, the i.i.d. structure

of {εt} implies that {(Y (r)
t − µ(r)

Y )(εt+1;r − µr), t ∈ Z} is q-stable and centered.
This ensures that Theorem 3 in [36] can be applied, see also Proposition 3 in
[35]. This gives us that Assumption 2(2.) follows.

Let k̃1 = k1 + (s1 − 1)d, k̃2 = k2 + (s1 − 1)d ∈ I(r). Then, for all t ∈ Z
Cov(e>

k̃1
((e>r G1(Adt−1))�X>t−1, . . . , (e>r Gp(Adt−p))�X>t−p)>, e>k̃2((e>r G1(Adt−1))

�X>t−1, . . . , (e>r Gp(Adt−p))�X>t−p)>) = Cov(X−s1;k1e
>
r Gs1(Ad−s1)ek1 , X−s2;k2

e>r Gs2(Ad−s2)ek2) =: e>
k̃1
I>
dp;I(r)ΓY (r)(0)Idp;I(r)ek̃2 . Since Var(ε1) = Σε is posi-

tive definite, which implies Var(X1) is positive definite, and Ee>r |Gs(Ad1)|ek >
0, ΓY r(0) is positive definite. Hence, the q-stability and Theorem 3 in [36]
gives Assumption 2(1.). Furthermore, Theorem 3 in [36] in connection with
the Crámer-Wold device gives Assumption 3.
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Proof of Lemma 3.3. We have

ρ(|Ã� G̃(·)|) ≤ ‖|Ã� G̃(·)|‖∞ = max(1, max
r=1,...,p

p∑
j=1

|αj,r|+ |βj,r|‖Gj(·)‖∞) = 1.

Suppose v = (v>1 , . . . , v
>
p )> ∈ Cdp, vk ∈ Cd is an eigenvector of |Ã � G̃(·)| to

eigenvalue λ. Due to the special structure of Ã � G̃(·) we have the following
equations

∑p
j=1 |Aj,α,β � Gj(·)|vj = λv1 and vk = λvk+1, k = 1, . . . , p − 1.

Following the proof of Theorem 1 in [11] we obtain
∑p
j=1 |Aj,α,β�Gj(·)|λ−jvp =

vp. We have 0 = ‖
∑p
j=1 |Aj,α,β �Gj(·)|λ−jvp‖1 − ‖vp‖1 ≤ (|λ|−pCλ − 1)‖vp‖1.

Hence, we obtain for an eigenvalue |λ|p ≤ Cλ. Since Cλ < 1 this implies ρ(|Ã�
G̃(·)|) < 1. Furthermore, note that this implies Assumption 1b), which gives
stationarity by Lemma 2.2.

Proof of Lemma 3.4. To simplify notation, let AdGt = G̃(Adt). Similarly as in
the proof of Theorem 3.2, we have

δq({max
r
X·;r}, j) = ‖max

r
Xj;r −Hr(Ξj ,Ξj−1, . . . ,Ξ1,Ξ

′
0,Ξ−1,Ξ−2, . . . )‖E,q

≤
∞∑
s=1

‖max
r
e>r (Bj,s −B∗j,s)εj−s‖E,q + max

i
‖ε0,i‖E,2q‖max

r
e>r B

∗
j,j1‖E,2q.

Note that for j ∈ Z, s ∈ N, we have Bj,s = Bj,s−1Bj−s,1 = Bj−1,1Bj−1,s−1.
This gives us Bj,s − B∗j,s =

∑s
k=1Bj,k−1(Bj−k,1 − B∗j−k,1)B∗j−k,s−k. Note that

Bk,1 = B∗k,1 for all k < 0. Hence,

‖max
r
e>r (Bj,s −B∗j,s)εj−s‖E,q ≤ max

i
‖ε0,i‖E,2q

min(s,j)∑
k=1

‖|Ãα,β � G̃(·)|k−1‖∞

× ‖max
r
e>r |Ãα,β � (G̃(Ad)j−k − G̃(Ad

∗
)j−k)|1‖E,2q‖|Ãα,β � G̃(·)|s−k‖∞

≤ max
i
‖ε0,i‖E,2q

min(s,j)∑
k=1

C2
A/CλC

s
λδ2q(AdG1, j − k),

due to
∑p
u=1 |αu| + |βu| ≤ 1, ‖maxu maxr e

>
r Gu(Adj) − Gu(Ad∗j )1‖E,2q ≤

δ2q(AdG, j), and ‖|Ãα,β � G̃(·)|j‖∞ ≤ CACjλ. Hence,

∞∑
j=1

δq({max
r
X·;r}, j) ≤ max

i
‖ε0,i‖E,2qCA

∞∑
j=1

[CA
Cλ

∞∑
s=1

min(s,j)∑
k=1

Csλδ2q(AdG1, j − k)

+ Cjλ

]
= max

i
‖ε0,i‖E,2qCA/(1− Cλ)(CA/(Cλ(1− Cλ))

∞∑
j=0

δ2q(AdG1, j) + 1).

Since the constants do not depend on d, this is finite and X is q-stable for
any d.
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For {Y (r)
t , t ∈ Z}, we have for s = 1, . . . , p, e>2(s−1)+1Y

(r)
t = Xt−s;r and

e>2(s−1)+2Y
(r)
t = erGs(Adt−s)Xt−s. Hence, for s = 1, . . . , p, j = 1, 2, we have

δq({max
r
e>2(s−1)+jY

(r)
t , t ∈ Z}, j) ≤ δq({max

r
Xt;r, t ∈ Z}, j − s)

+ ‖max
r
e>r (Gs(Adj−s)−Gs(Ad∗j−s))X∗t−j‖E,q

≤ δq({max
r
X·;r}, j − s) + δq(AdG1, j − s) max

i
‖X0,i‖E,2q.

Note that maxi ‖X0,i‖E,2q ≤ CA/(1 − Cλ) maxi ‖ε0,i‖E,2q. Thus, we have for
k = 1, . . . , 2p,

∞∑
j=0

jδq({max
r
e>k Y

(r)
· }, j) ≤ max

i
‖ε0,i‖E,2qCA

[ ∞∑
j=1

jCjλ

+
1

1− Cλ

∞∑
j=1

jδq(AdG1, j) +

∞∑
j=1

j

∞∑
s=1

min(j,s)∑
k=1

CAC
s−1
λ δ2q(AdG1, j − k)

]
≤max

i
‖ε0,i‖E,2q

CA
1− Cλ

[ Cλ
1− Cλ

+ CG +

∞∑
k=1

∞∑
j=0

CAC
k−1
λ δ2q(AdG1, j)(j + k)

]
≤max

i
‖ε0,i‖E,2q

CA
1− Cλ

[ Cλ
1− Cλ

+ CG(1 +
CA(2− Cλ)

(1− Cλ)2
)
]
.

Proof of Theorem 3.5. Let ε̃t;r = εt;r− 1/(n− p)
∑n
l=p+1 εl;r and Ỹ

(r)
t = Y (r)−

1/(n− p)
∑n
l=p+1 Y

(r). Furthermore, let Γ̂ = [1/(n− p)
∑n−1
t=p Ỹ

(r)
t (Ỹ

(r)
t )>] and

Var(Y
(r)
1 ) = Γ. Note that Ỹ

(r)
t is a 2p dimensional vector with p independently

from the dimension d. Let further γ̂ := 1/(n − p)
∑n
t=p+1 ε̃t;rỸ

(r)
t−1 and v :=

(ŵr − wr). Then, the linear system (10) gives

‖v‖2
√

2p| v
>γ̂

‖v‖1
| ≥ v>γ̂ = v>Γv+v>(Γ̂−Γ)v ≥ ‖v‖22(ρ(Γ−1)− 2p

‖v‖21
|v>(Γ̂−Γ)v|).

Hence, ‖v‖2 ≤
√

2p|v>γ̂/‖v‖1|/(ρ(Γ−1) − 2p(v>(Γ̂ − Γ)v/‖v‖21) ≤
√

2p
‖γ̂‖∞/(ρ(Γ−1) − 2p‖Γ̂ − Γ‖max). We use the Nagaev inequality for dependent
random variables, see Theorem 2 in [18], to bound ‖γ̂‖∞ and ‖Γ̂ − Γ‖max. For
some process X, let

νq(X) :=

∞∑
j=1

(jq/2−1δq(X, j)
q)1/q+1 ≤

∞∑
j=1

jδq(X, j).

Note that εt and Y
(r)
t−1 are independent. Furthermore, since ‖a2 − b2‖E,q ≤

‖a−b‖E,2q(‖a‖E,2q+‖b‖E,2q), we have by the same arguments as in Lemma 3.4

that νq({maxs εt;rY
(r)
t;s , t ∈ Z}) ≤ CδY ‖ε1;r‖E,q and νq(({maxs Y

(r)
t;s ), t ∈ Z}) ≤

CδY 2CA/(1− Cλ).
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We have by Theorem 2 in [18] and the remark thereafter

P (| 1

n− p

n∑
t=p+1

max
s
εt;re

>
s (Y

(r)
t−1 − µY (r))| ≤ ‖ε0;r‖E,qCδY y)

≥P (| 1

n− p

n∑
t=p+1

max
s
εt;re

>
s (Y

(r)
t−1;s − µY (r))| ≤ ν({εt;r max

s
e>s Y

(r)
t−1, t ∈ Z})1+1/qy)

≥1− cq(n− p)−q+1y−q(1 +
‖ε0;rv>Y (r)

−1 ‖
q
E,q

ν({εt;rv>Y (r)
t−1, t ∈ Z})q+1

)− c′q exp(−cq(n− p)y2)

− 2 exp(−cq(n− p)y2
ν({εt;rv>Y (r)

t−1, t ∈ Z})2+2/q

‖ε0;rv>Y−1(r)‖2E,2
)

≥1− cq(n− p)1−qy−q − (c′q + 2) exp(−cq(n− p)y2) =: Cq(n, y),

where cq, c
′
q are constants depending on q only. Similarly, we obtain P (1/(n −

p)
∑n
t=p+1 εt;r ≤ ‖ε0;r‖E,qCδY y) ≥ Cq(n, y), P (1/(n − p)

∑n
t=p+1 maxs

e>s (Y
(r)
t−1 − µY (r)) ≤ ‖ε0;r‖E,qCδY y) ≥ Cq(n, y), and P (|1/(n− p)

∑n
t=p+1(maxs

e>s (Y
(r)
t−1 − µY (r)))2 − e>s Γes| ≤ 2CA/(1− Cλ)CδY y) ≥ Cq(n, y).

Let Ωq(n, y) = {ω : |1/(n−p)
∑n
t=p+1εt;r| ≤ ‖ε0;r‖E,qCδY y, |1/(n−p)

∑n
t=p+1

maxs e
>
s (Y

(r)
t − µY (r))| ≤ CδY y, |1/(n− p)

∑n
t=p+1 maxs e

>
s (Y

(r)
t − µY (r))εt;r| ≤

‖ε0;r‖E,qCδY y, and |1/(n − p)
∑n
t=p+1 maxs(e

>
s (Y

(r)
t−1 − µY (r)))2 − e>s Γes| ≤

2CA/(1−Cλ)CδY y}. We have P (Ωq(n, y)) ≥ Cq(n, y)4. Note that |ĀB− ĀB̄| ≤
|ĀB − µAµB |+ |µA(B̄ − µB)|+ |(Ā− µA)µB |+ |(Ā− µA)(B̄ − µB)|. Thus, we
have for ω ∈ Ωq(n, y)

‖ŵ − w‖2 ≤
√

2p|v>γ̂/‖v‖1|/
(
ρ(Γ−1)− 2p(v>(Γ̂− Γ)v/‖v‖21)

)
≤ y

√
2pCδY (‖ε0;r‖E,q + CδY y + µr + ‖µY (r)‖1)

ρ(Γ−1)− y2pCδY (2CA/(1− Cλ) + 2‖µY (r)‖1 + yCδY )
.

Since µ̂r = 1/(n − p)
∑n
t=p+1(Y

(r)
t−1)>(wr − ŵr) + 1/(n − p)

∑n
t=p+1 εt;r, we

have |µ̂r − µr| ≤ (‖µY (r)‖1 + yCδY )‖ŵr − wr‖1 + yCδY .
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