
Electronic Journal of Statistics
Vol. 13 (2019) 3654–3709
ISSN: 1935-7524
https://doi.org/10.1214/19-EJS1610

On detecting changes in the jumps of

arbitrary size of a time-continuous

stochastic process∗

Michael Hoffmann

Ruhr-Universität Bochum, Fakultät für Mathematik, 44780 Bochum, Germany
e-mail: michael.hoffmann@rub.de

Holger Dette

Ruhr-Universität Bochum, Fakultät für Mathematik, 44780 Bochum, Germany
e-mail: holger.dette@rub.de

Abstract: This paper introduces test and estimation procedures for abrupt
and gradual changes in the entire jump behaviour of a discretely observed
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1. Introduction

Stochastic processes are widely used in science nowadays, as they allow for a flex-
ible modelling of time-dependent phenomena. For example, in physics stochastic
processes are used to explain the behaviour of quantum systems (see van Kam-
pen, 2007), but stochastic processes are also suitable for financial modelling.
The seminal paper by Delbaen and Schachermayer (1994) suggests to use the
special class of Itō semimartingales in continuous time. Financial models based
on Itō semimartingales satisfy a certain condition on the absence of arbitrage
and moreover they are still rich enough to accommodate stylized facts such as
volatility clustering, leverage effects and jumps. As a consequence, in recent
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years a lot of research was focused on the development of statistical procedures
for characteristics of Itō semimartingales based on discrete observations. In par-
ticular, the importance of the jump component has been enforced by recent
research (see Aı̈t-Sahalia and Jacod, 2009a and Aı̈t-Sahalia and Jacod, 2009b)
and common methods in this field are gathered in the recent monographs by
Jacod and Protter (2012) and Aı̈t-Sahalia and Jacod (2014).

A fundamental topic in statistics for stochastic processes is the analysis
of structural breaks. Corresponding test procedures, commonly referred to as
change point tests, have their origin in quality control (see Page, 1954; Page,
1955) and nowadays, these techniques are widely used in many fields of sci-
ence such as economics (Perron, 2006), finance (Andreou and Ghysels, 2009),
climatology (Reeves et al., 2007) and engineering (Stoumbos et al., 2000). The
contributions of the present paper to this field of research are new statistical
procedures for the detection of changes in the jump behaviour of an Itō semi-
martingale. In contrast to the existing works Bücher et al. (2017) and Hoffmann
et al. (2017) this paper introduces methods of inference on the jump behaviour
of the underlying process in general, while in the previously mentioned refer-
ences the authors restrict the analysis to jumps which exceed a minimum size
ε > 0.

Throughout this work we assume that we have high-frequency dataXiΔn (i =
0, 1, . . . , n) with Δn → 0, where the process (Xt)t∈R+ is an Itō semimartingale
with the following decomposition

Xt = X0 +

∫ t

0

bs ds+

∫ t

0

σs dWs +

∫ t

0

∫
R

u1{|u|≤1}(μ− μ̄)(ds, du)

+

∫ t

0

∫
R

u1{|u|>1}μ(du, dz).

Here W is a standard Brownian motion and μ is a Poisson random measure
on R+ × R with predictable compensator μ̄ satisfying μ̄(ds, du) = ds νs(du).
Our approach is completely non-parametric, that is we only impose structural
assumptions on the characteristic triplet (bs, σs, νs) of (Xt)t∈R+ . The crucial
quantity here is the transition kernel νs which controls the number and the size
of the jumps around time s ∈ R+. Our aim is to test the null hypothesis

H0 : νs(dz) = ν0(dz)

against various alternatives involving the non-constancy of νs. In particular, the
detection of abrupt changes in a stochastic feature has been discussed extensively
in the literature (see Aue and Horváth, 2013 and Jandhyala et al., 2013 for an
overview in a time series context). The first part of this paper belongs to this
area of research and introduces tests for H0 versus alternatives of an abrupt
change of the form

H
(ab)
1 : ν(n)s (dz) = 1{s<�nθ0�Δn}ν1(dz) + 1{s≥�nθ0�Δn}ν2(dz),

for some unknown θ0 ∈ (0, 1) and two distinct Lévy measures ν1 �= ν2. Similar
to the classical setup of detecting changes in the mean of a time series it is only
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possible to define the change point relative to the length of the data set which in
our case is the time horizon nΔn. However, for inference on the jump behaviour
the time horizon has to tend to infinity (nΔn → ∞) since there are only finitely
many jumps of a certain size on every compact interval. Furthermore, we also
discuss how to estimate the unknown change point θ0, if the alternative H(ab)

1

is true.
A more difficult problem is the detection of gradual (smooth, continuous)

changes in a stochastic feature. As a consequence, the setup in most papers on
this topic is restricted to non-parametric location or parametric models with
independently distributed observations (see e.g. Bissell, 1984, Gan, 1991, Sieg-
mund and Zhang, 1994, Hus̆ková, 1999, Hus̆ková and Steinebach, 2002 and
Mallik et al., 2013). Gradual changes in a time series context are for instance
discussed in Aue and Steinebach (2002) and Vogt and Dette (2015). In the sec-
ond part of this paper we contribute to this development by introducing new
procedures for gradual changes in the kernel νs, where we basically test H0

against the general alternative

H
(gra)
1 : νs(dz) is not Lebesgue-almost everywhere constant in s ∈ [0, nΔn].

Moreover, we introduce an estimator for the first time point where the jump
behaviour deviates from the null hypothesis.

The remaining paper is organized as follows: In Section 2 we give the basic
assumptions on the characteristics of the underlying process and the observation
scheme. Section 3 introduces test and estimation procedures for abrupt changes
in the jump behaviour in general by using CUSUM processes. In Section 4 we
discuss how to detect and estimate gradual changes in the entire jump behaviour.
Section 5 contains an extensive simulation study investigating the finite-sample
performance of the new procedures. Finally, all proofs are relegated to Section
6 and the technical appendices A–E.

2. The basic assumptions

In order to accommodate both abrupt and gradual changes in our approach we
follow Hoffmann et al. (2017) and assume that there is a driving law behind
the evolution of the jump behaviour in time which is common for all n ∈ N.
That is we assume that at step n ∈ N we observe an Itō semimartingale X(n)

with characteristics (b(n)
s , σ(n)

s , ν(n)
s ) at the equidistant time points iΔn with i =

0, 1, . . . , n which satisfies the following rescaling assumption

ν(n)s (dz) = g
( s

nΔn
, dz

)
(2.1)

for a transition kernel g(y, dz) from ([0, 1],B([0, 1])) into (R,B), where here
and below B(A) denotes the trace σ-algebra on A ⊂ R of the Borel σ-algebra
B of R. In order to detect changes in the jump behaviour of the underlying
Itō semimartingale in general, we have to draw inference on the kernel g(y,B)
for sets B ∈ B containing the origin. However, g has locally the properties of
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a Lévy measure. Thus, if we deviate from the (simple) case of finite activity
jumps the total mass of g on every neighbourhood of the origin is infinite and
we cannot estimate g(y, ·) on sets containing 0 directly. We address this problem
by weighting the kernel g according to an auxiliary function, precisely for change
point detection we consider

Nρ(g; θ, t) :=

∫ θ

0

∫ t

−∞
ρ(z)g(y, dz)dy, (2.2)

for (θ, t) ∈ [0, 1] × R, where ρ is chosen appropriately such that the integral
is always defined. Under weak conditions on ρ, this so-called Lévy distribution
function Nρ determines the entire kernel g and therefore the evolution of the
jump behaviour in time. The natural approach to draw inference on Nρ is the
following sequential generalization of an estimator in Nickl et al. (2016)

Ñ (n)
ρ (θ, t) =

1

nΔn

�nθ�∑
i=1

ρ(Δn
i X

(n))1(−∞,t](Δ
n
i X

(n)),

for (θ, t) ∈ [0, 1] × R, where Δn
i X

(n) = X(n)

iΔn
− X(n)

(i−1)Δn
. Using a spectral

approach similar to Nickl and Reiß (2012) these authors prove weak convergence
of

√
nΔn

(
Ñ (n)

ρ (1, t)−Nρ(g; 1, t)
)
in �∞(R) to a tight Gaussian process, but only

for Lévy processes without a diffusion component, i.e. in particular for constant
g(y, ·) ≡ ν(·). The main difficulty in generalizing this result is the superposition
of small jumps with the roughly fluctuating Brownian component of the process.
We solve this problem by using a truncation approach which has originally
been used by Mancini (2009) to cut off jumps in order to draw inference on
integrated volatility. More precisely, we follow Hoffmann and Vetter (2017) and
identify jumps by inverting the truncation technique of Mancini (2009), i.e. all
test statistics and estimators investigated below are functionals of the sequential
truncated empirical Lévy distribution function

N (n)
ρ (θ, t) =

1

nΔn

�nθ�∑
i=1

ρ(Δn
i X

(n))1(−∞,t](Δ
n
i X

(n))1{|Δn
i X

(n)|>vn}, (2.3)

((θ, t) ∈ [0, 1]× R) for some suitable null sequence vn → 0.
As a further improvement to previous studies we analyse the asymptotic

behaviour of our tests under local alternatives. That is, in the rescaling assump-
tion (2.1) we let g = g(n) depend on n ∈ N, where there exist transition kernels
g0, g1, g2 satisfying some additional regularity assumptions such that for each
y ∈ [0, 1]

g(n)(y, dz) = g0(y, dz) +
1√
nΔn

g1(y, dz) +Rn(y, dz) (2.4)

and for each y ∈ [0, 1], B ∈ B and n ∈ N the remainder kernel Rn satisfies

Rn(y,B) ≤ ang2(y,B)
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for a sequence an = o((nΔn)
−1/2) of non-negative real numbers. For constant

g0(y, ·) ≡ ν0(·) assumption (2.4) is exactly the local alternative where the jump
behaviour converges to the null hypothesis g0(y, ·) ≡ ν0(·) from the direction
defined by g1 at rate (nΔn)

−1/2. In this sense, Theorem 6.3, in which we prove
weak convergence of the stochastic process

G(n)
ρ (θ, t) =

√
nΔn

(
N (n)

ρ (θ, t)−Nρ(g
(n); θ, t)

)
, (θ, t) ∈ [0, 1]× R

to a tight Gaussian process in �∞([0, 1]×R), is a generalization of the results in
Hoffmann and Vetter (2017) to sequential processes for time dependent variable
jump behaviour as in (2.4).

Critical values for the test procedures introduced below and the optimal
choice of a regularization parameter of the new estimator for gradual change
points are obtained by a multiplier bootstrap approach. Precisely, Theorem
6.4, in which we prove conditional weak convergence in a suitable sense of the
bootstrapped version

Ĝ(n)
ρ (θ, t) =

1√
nΔn

�nθ�∑
i=1

ξiρ
(
Δn

i X
(n)

)
1(−∞,t]

(
Δn

i X
(n)

)
1{|Δn

i X
(n)|>vn},

((θ, t) ∈ [0, 1]×R) of G(n)
ρ to a Gaussian process, where (ξi)i∈N is a sequence of

i.i.d. multipliers with mean 0 and variance 1, complements the paper Hoffmann
and Vetter (2017).

For the rescaling assumptions (2.1) and (2.4) we consider transition kernels
gi(y, dz) of the set G(β, p) depending on parameters β ∈ (0, 2), p > 0. In order
to define this set we denote by λ the one-dimensional Lebesgue measure defined
on the Lebesgue σ-algebra L1 of R and we denote by λ1 the restriction of λ to
the trace σ-algebra [0, 1] ∩ L1.

Definition 2.1. For β ∈ (0, 2) and p > 0 the set G(β, p) consists of all transition
kernels g(y, dz) from ([0, 1],B([0, 1])) into (R,B), such that for each y ∈ [0, 1]
the measure g(y, dz) has a Lebesgue density hy(z) and there exist η,M > 0 as
well as a Lebesgue null set L ∈ [0, 1] ∩ L1 such that the following items are
satisfied:

(1) hy(z) ≤ K|z|−(1+β) holds for all z ∈ (−η, η), y ∈ [0, 1] \ L and for some
K > 0.

(2) For n ∈ N let Cn := {z ∈ R | 1
n ≤ |z| ≤ n}. Then for each n ∈ N there

exists a Kn > 0 with hy(z) ≤ Kn for each z ∈ Cn and all y ∈ [0, 1] \ L.
(3) hy(z) ≤ K|z|−(2p∨2)−ε whenever |z| ≥ M and y ∈ [0, 1]\L, for some K > 0

and some ε > 0.

The items above basically say that the densities hy are bounded by a con-
tinuous Lévy density of a Lévy measure which behaves near zero like the one of
a β-stable process, whereas this density has to decay sufficiently fast at infin-
ity. Such conditions are well-known in the literature and often used in similar
works on high-frequency statistics; see e.g. Aı̈t-Sahalia and Jacod (2009a) or
Aı̈t-Sahalia and Jacod (2010). From Assumption 6.1 and Proposition 6.2 in
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Section 6 it can be seen that it is even possible to work with a wider class of
transition kernels g(y, dz) which does not require Lebesgue densities. Neverthe-
less, we stick to the set G(β, p) defined above which is much simpler to interpret.
The following example shows that alternatives of abrupt changes in the jump
behaviour can be described by transition kernels in the set G(β, p).
Example 2.2 (Abrupt changes). In Section 3 we introduce statistical procedures
for inference of abrupt changes in the jump behaviour. In this case the kernel
g0 is typically of the form as discussed below. For β ∈ (0, 2) and p > 0 let
M(β, p) be the set of all Lévy measures ν such that the constant transition
kernel g(y, dz) = ν(dz) belongs to G(β, p).

Let θ0 ∈ (0, 1] and let ν1, ν2 ∈ M(β, p) be two Lévy measures. Then the
transition kernel g0 given by

g0(y, dz) =

{
ν1(dz), for y ∈ [0, θ0]

ν2(dz), for y ∈ (θ0, 1]
(2.5)

is an element of G(β, p). In the context of change-point tests θ0 = 1 corresponds
to the null hypothesis of no change in the jump behaviour, whereas (2.5) describes
an abrupt change for θ0 ∈ (0, 1) and ν1 �= ν2.

The variance gamma process is a common model for the log stock price in
finance (see for instance Madan et al. (1998)). Moreover, the Lévy measure of a
variance gamma process has the form ν(dz) = (a1z

−1e−b1z−a2z
−1e−b2z) dz for

a1, a2, b1, b2 > 0. Thus, the transition kernel g0(y, dz) belongs to G(β, p) for all
β ∈ (0, 2) and p > 0, if similar as in (2.5) g0 is piecewise constant in y ∈ [0, 1]
and on the domains of constancy it is equal to the Lévy measure of a variance
gamma process.

For the asymptotic statements in this paper we require the following as-
sumptions. Our results are also correct under less restrictive but more technical
conditions. For the sake of a transparent presentation these are not presented
here but deferred to Section 6.1.

Assumption 2.3. Let 0 < β < 2 and 0 < τ < (1/5 ∧ 2−β
2+5β ). Furthermore, let

p > β + (( 12 + 3
2β) ∨

2
1+5τ ). At step n ∈ N we observe an Itō semimartingale

X(n) adapted to the filtration of some filtered probability space (Ω,F , (Ft)t∈R+ ,P)
with characteristics (b(n)

s , σ(n)
s , ν(n)

s ) at the equidistant time points {iΔn | i =
0, 1, . . . , n} such that the following items are satisfied:

(a) Assumptions on the jump characteristic and the function ρ:

(1) For each n ∈ N and s ∈ [0, nΔn] we have

ν(n)s (dz) = g(n)
( s

nΔn
, dz

)
, (2.6)

where there exist transition kernels g0, g1, g2 ∈ G(β, p) such that for each
y ∈ [0, 1]

g(n)(y, dz) = g0(y, dz) +
1√
nΔn

g1(y, dz) +Rn(y, dz) (2.7)
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and for each y ∈ [0, 1], B ∈ B and n ∈ N the kernel Rn satisfies
Rn(y,B) ≤ ang2(y,B) for a sequence an = o((nΔn)

−1/2) of non-
negative real numbers.

(2) ρ : R → R is a bounded C1-function with ρ(0) = 0 and its derivative
satisfies |ρ′(z)| ≤ K|z|p−1 for all z ∈ R and some constant K > 0.

(3) ρ(z) �= 0 for each z �= 0.

(4) For every t ∈ R there exists a finite set M(t) ⊂ [0, 1], such that the
function

y �→
∫ t

−∞
ρ(z)g0(y, dz)

is continuous on [0, 1] \M(t).

(b) Assumptions on the truncation sequence vn and the observation scheme:
The truncation sequence vn satisfies vn := γΔw

n , with w = (1 + 5τ)/4 and
some γ > 0. Define further t1 := (1 + τ)−1 and t2 := ((7τ + 1)/2)−1 ∧ 1
(note that 0 < t1 < t2 ≤ 1) and we suppose that the observation scheme
satisfies for some δ > 0

Δn = o(n−t1) and n−t2+δ = o(Δn).

(c) Assumptions on the drift and the diffusion coefficient:
For mb =

6+10τ
3−5τ ≤ 4 and mσ = 6+10τ

1−5τ we have

sup
n∈N

sup
s∈R+

{
E
∣∣b(n)s

∣∣mb ∨ E
∣∣σ(n)

s

∣∣mσ
}
< ∞.

Remark 2.4. Suppose we have complete knowledge of the distribution function
Nρ(g0; θ, t). Obviously, the measure with density M(dy, dz) := ρ(z)g0(y, dz)dy is
completely determined from knowledge of the entire function Nρ(g0; ·, ·) and does
not charge [0, 1]×{0}. Therefore, due to Assumption 2.3(a3) 1/ρ(z)M(dy, dz) =
g0(y, dz)dy and consequently the jump behaviour corresponding to g0 is known
as well. Furthermore, Assumption 2.3(a4) ensures that a characteristic quantity
for a gradual change, which we introduce in Section 4 is zero if and only if the
jump behaviour corresponding to g0 is constant in time. All convergence results
in this paper also hold without Assumption 2.3(a3) and (a4). Moreover, the
function

ρ̃(x) =

{
0, if x = 0,

e−1/|x|, if |x| > 0,

is suitable for any choice of the constants β and τ . In practice, however, one
would like to work with a polynomial decay at zero, in which case the condition
on p comes into play. Here, the smaller the parameter β, the smaller p can be
chosen. For example, for β < 3/5 and τ > 3/35 even a choice p < 2 is possible.

Furthermore, it is also important to choose the observation scheme suitably.
Obviously, we have Δn → 0 and nΔn → ∞ because of 0 < t1 < t2 ≤ 1, and
a typical choice is Δn = O(n−y) and n−y = O(Δn) for some 0 < t1 < y <
t2 ≤ 1. Finally, Assumption 2.3(c) requires only a bound on the moments of the
remaining characteristics and is therefore extremely mild.
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In the remaining part of this section we illustrate an example of a kernel
g0 ∈ G(β, p) for some suitable β, p and a function ρ satisfying Assumption
2.3(a2) and (a3).

Example 2.5 (Gradual changes). In Section 4, which is dedicated to inference
of gradual changes, we basically test against the general alternative that the jump
behaviour is non-constant. In the following we introduce an example of a kernel
g0 which can be used to describe a gradual change in the jump behaviour and a
corresponding function ρ satisfying Assumption 2.3(a2) and (a3). To this end,
for L > 0, p > 1 let

ρL,p(z) := L×

⎧⎪⎨
⎪⎩
2|z|p, for |z| ≤ 1

4p|z| − pz2 + 2− 3p, for 1 ≤ |z| ≤ 2

2 + p, for |z| ≥ 2

(2.8)

and for 0 < β < 2, p > 1 consider the Lévy density

hβ,p(z) := |z|−(1+β)1{0<|z|<1} + 1{1≤|z|≤2} + |z|−p1{|z|>2}.

Furthermore, for 0 < β̂ < 2 and p̂ > 1 ∨ β̂ let A : [0, 1] → (0,∞), β : [0, 1] →
(0, β̂] and p : [0, 1] → [2p̂+ ε,∞) for some ε > 0 be Borel measurable functions
such that A is bounded. Then, the kernel

g0(y, dz) = A(y)hβ(y),p(y)(z)dz, y ∈ [0, 1] (2.9)

belongs to G(β̂, p̂) and for arbitrary L > 0 the function ρL,p̂ satisfies Assumption
2.3(a2) and (a3).

3. Statistical inference for abrupt changes

In this section we deduce test and estimation procedures for abrupt changes
in the jump behaviour of the underlying process, that is we investigate the
situation of Example 2.2. To this end, we test the null hypothesis of no change
in the jump behaviour

H0: Assumption 2.3 is satisfied for g1 = g2 = 0 and there exists a Lévy measure
ν0 such that g0(y, dz) = ν0(dz) for Lebesgue almost every y ∈ [0, 1].

against the alternative that the jump behaviour is constant on two intervals

H1: Assumption 2.3 is satisfied for g1 = g2 = 0 and there exists some θ0 ∈ (0, 1)
and two Lévy measures ν1 �= ν2 such that g0 has the form (2.5).

The corresponding alternative for fixed t0 ∈ R is given by:

H
(ρ,t0)
1 : We have the situation from H1, but with Nρ(ν1; t0) �= Nρ(ν2; t0), where

Nρ(ν; t) =

∫ t

−∞
ρ(z)ν(dz) (3.1)

for a Lévy measure ν.
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Moreover, we investigate the behaviour of the tests introduced in this section
under local alternatives which tend to the null hypothesis as n → ∞:

H
(loc)
1 : Assumption 2.3 is satisfied with g0(y, dz) = ν0(dz) for Lebesgue-a.e.

y ∈ [0, 1] for some Lévy measure ν0 and with some transition kernels
g1, g2 ∈ G(β, p).

3.1. Weak convergence of test statistics

Following Inoue (2001) a suitable approach to introduce tests for the hypotheses
above is to investigate the convergence behaviour of the CUSUM process

T(n)
ρ (θ, t) =

√
nΔn

(
N (n)

ρ (θ, t)− �nθ�
n

N (n)
ρ (1, t)

)
, (3.2)

with N
(n)
ρ (θ, t) defined in (2.3). The corresponding test rejects the null hypoth-

esis H0 for large values of the Kolmogorov-Smirnov-type statistic

T (n)
ρ = sup

(θ,t)∈[0,1]×R

∣∣T(n)
ρ (θ, t)

∣∣.
The theorem below establishes functional weak convergence of T(n)

ρ in the general
case of local alternatives.

Theorem 3.1. Under H
(loc)
1 the process T

(n)
ρ converges weakly in �∞([0, 1]×R)

to the process Tρ + Tρ,g1 , where the tight mean zero Gaussian process Tρ has
the covariance structure

E{Tρ(θ1, t1)Tρ(θ2, t2)} = {(θ1 ∧ θ2)− θ1θ2}
∫ t1∧t2

−∞
ρ2(z)ν0(dz) (3.3)

and the deterministic function Tρ,g1 ∈ �∞([0, 1]× R) is given by

Tρ,g1(θ, t) = Nρ(g1; θ, t)− θNρ(g1; 1, t), (3.4)

where Nρ(g1; ·, ·) is defined in (2.2).

As an immediate consequence of the previous result and the continuous map-
ping theorem we obtain weak convergence of the statistic T (n)

ρ .

Corollary 3.2. Suppose H
(loc)
1 is true, then we have

T (n)
ρ � Tρ,g1 := sup

(θ,t)∈[0,1]×R

∣∣Tρ(θ, t) + Tρ,g1(θ, t)
∣∣, (3.5)

in (R,B) with Tρ + Tρ,g1 the limit process in Theorem 3.1.

In applications the Lévy measure ν0 which describes the limiting jump be-
haviour of the underlying process is usually unknown. If one is only interested
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in the detection of changes in the distribution function Nρ(ν0; t0) for a fixed
t0 ∈ R, the processes

V
(n)
ρ,t0(θ) :=

T
(n)
ρ (θ, t0)√
N (n)

ρ2 (1, t0)
1{N(n)

ρ2
(1,t0)>0}, θ ∈ [0, 1]

converge weakly to a shifted version of a pivotal limit process.

Proposition 3.3. Under H
(loc)
1 for each fixed t0 ∈ R with Nρ2(ν0; t0) > 0 we

have V
(n)

ρ,t0 � K + V̄
(g1)

ρ,t0 in �∞([0, 1]), where K denotes a standard Brownian
bridge and with the deterministic function

V̄
(g1)
ρ,t0 (θ) :=

Tρ,g1(θ, t0)√
Nρ2(ν0; t0)

∈ �∞([0, 1]),

where Nρ2(ν0; ·) is defined in (3.1). In particular,

V
(n)
ρ,t0 := sup

θ∈[0,1]

∣∣V(n)
ρ,t0(θ)

∣∣ � V̄
(g1)
ρ,t0 := sup

θ∈[0,1]

∣∣K(θ) + V̄
(g1)
ρ,t0 (θ)

∣∣. (3.6)

Quantiles of functionals of the limit process Tρ + Tρ,g1 in Theorem 3.1 are
not easily accessible since the distribution of such functionals usually depends
in a complicated way on the unknown quantities ν0 and g1 in the jump charac-
teristic of the underlying process. In order to obtain reasonable approximations
for these quantiles we use a multiplier bootstrap approach. That is, in the fol-
lowing we consider bootstrapped processes, Ŷn = Ŷn(X1, . . . , Xn, ξ1, . . . , ξn),
which depend on random variables X1, . . . , Xn defined on a probability space
(ΩX ,FX ,PX) and on random weights ξ1, . . . , ξn which are defined on a distinct
probability space (Ωξ,Fξ,Pξ). Thus, the processes Ŷn live on the product space
(Ω,A,P) := (ΩX ,AX ,PX)⊗ (Ωξ,Aξ,Pξ). Below we use the notion of weak con-
vergence conditional on the sequence (Xi)i∈N in probability. It can be found in
Kosorok (2008) on pp. 19–20.

Definition 3.4. Let Ŷn = Ŷn(X1, . . . , Xn; ξ1, . . . , ξn) : (Ω,A,P) → D be a ran-
dom element taking values in some metric space D depending on some random
variables X1, . . . , Xn and some random weights ξ1, . . . , ξn. Moreover, let Y be a
tight, Borel measurable random variable into D. Then Ŷn converges weakly to Y
conditional on the data X1, X2, . . . in probability, if and only if

(a) sup
f∈BL1(D)

|Eξf(Ŷn)− Ef(Y )| P
∗
→ 0,

(b) Eξf(Ŷn)
∗ − Eξf(Ŷn)∗

P→ 0 for all f ∈ BL1(D).

Here, Eξ denotes the conditional expectation over the weights ξ given the data
X1, . . . , Xn, whereas BL1(D) is the space of all real-valued Lipschitz continuous
functions f on D with sup-norm ‖f‖D ≤ 1 and Lipschitz constant 1. Here and
below we denote the sup-norm of a real valued function f on a set M by ‖f‖M .
Furthermore, in item (b) f(Ŷn)

∗ and f(Ŷn)∗ denote a minimal measurable ma-
jorant and a maximal measurable minorant with respect to the joint probability
space (Ω,A,P). The type of convergence defined above is denoted by Ŷn �ξ Y .
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Remark 3.5.

(i) Throughout this work all expressions f(Ŷn), with a bootstrapped statistic
Ŷn and a Lipschitz continuous function f , are measurable functions of
the random weights. To this end we do not use a measurable majorant or
minorant in item (a) in the definition above.

(ii) The implication “(ii) ⇒ (i)” in the proof of Theorem 2.9.6 in Van der
Vaart and Wellner (1996) shows that conditional weak convergence �ξ

implies unconditional weak convergence � with respect to the product mea-
sure P.

For the results on conditional weak convergence of the bootstrapped processes
below we require a rather mild additional assumption on the sequence of mul-
tipliers, which is satisfied for many common distributions such as for instance
the Gaussian, the Poisson or the Binomial distribution.

Assumption 3.6. The sequence (ξi)i∈N is defined on a distinct probability space
than the one generating the data {X(n)

iΔn
| i = 0, 1, . . . , n} as described above, is

i.i.d. with mean zero, variance one and there exists an M > 0 such that for each
integer m ≥ 2 we have

E|ξ1|m ≤ m!Mm.

Reasonable bootstrap counterparts T̂(n)
ρ of the processes T(n)

ρ are given by

T̂(n)
ρ (θ, t) := T̂(n)

ρ (X
(n)
Δn

, . . . , X
(n)
nΔn

; ξ1, . . . , ξn; θ, t) :=

√
nΔn

�nθ�
n

n− �nθ�
n

[ 1

�nθ�Δn

�nθ�∑
j=1

ξjρ(Δ
n
j X

(n))×

× 1(−∞,t](Δ
n
j X

(n))1{|Δn
j X

(n)|>vn}

− 1

(n− �nθ�)Δn

n∑
j=�nθ�+1

ξjρ(Δ
n
j X

(n))1(−∞,t](Δ
n
j X

(n))1{|Δn
j X

(n)|>vn}

]
.

(3.7)

In the following theorem we establish conditional weak convergence of T̂(n)
ρ

under the general assumptions of Section 2.

Theorem 3.7. Let Assumption 2.3 be valid and let the multipliers (ξj)j∈N sat-
isfy Assumption 3.6. Then we have

T̂(n)
ρ �ξ Tρ

in �∞([0, 1]×R), where Tρ is a tight mean zero Gaussian process in �∞([0, 1]×R)
with covariance function

E{Tρ(θ1, t1)Tρ(θ2, t2)} (3.8)
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=

∫ θ1∧θ2

0

∫ t1∧t2

−∞
ρ2(z)g0(y, dz)dy − θ1

∫ θ2

0

∫ t1∧t2

−∞
ρ2(z)g0(y, dz)dy

− θ2

∫ θ1

0

∫ t1∧t2

−∞
ρ2(z)g0(y, dz)dy + θ1θ2

∫ 1

0

∫ t1∧t2

−∞
ρ2(z)g0(y, dz)dy.

Remark 3.8. The aim of our bootstrap procedure is to mimic the convergence
behaviour of T(n)

ρ . The covariance function of the limiting process in Theorem
3.7 differs from (3.3), because Theorem 3.7 holds under the general conditions
introduced in Assumption 2.3, i.e. for an arbitrary kernel g0 ∈ G(β, p). Under
the null hypothesis H0, where we have g0(·, dz) = ν0(dz), the covariance function
(3.8) coincides with (3.3).

The limit distribution of the Kolmogorov-Smirnov-type test statistic T (n)
ρ in

Corollary 3.2 can be approximated under H0 by the bootstrap statistics in the
following corollary, which is an immediate consequence of Proposition 10.7 in
Kosorok (2008).

Corollary 3.9. If Assumption 2.3 and Assumption 3.6 are satisfied, we have

T̂ (n)
ρ := sup

(θ,t)∈[0,1]×R

|T̂(n)
ρ (θ, t)|�ξ Tρ := sup

(θ,t)∈[0,1]×R

∣∣Tρ(θ, t)
∣∣,

with Tρ the limit process in Theorem 3.7.

3.2. Test procedures for abrupt changes

The weak convergence results of the previous section make it possible to define
test procedures for abrupt changes in the jump behaviour of the underlying
process based on Lévy distribution functions of type (2.2). In the following let
B ∈ N be some large number and let (ξ(b))b=1,...,B be independent vectors of i.i.d.
random variables ξ(b) = (ξ(b)

j )j=1,...,n with mean zero and variance one, which

satisfy Assumption 3.6. With T̂
(n)

ρ,ξ(b)
and T̂ (n)

ρ,ξ(b)
we denote the corresponding

bootstrapped quantity calculated with respect to the data and the b-th multi-
plier sequence ξ(b). For a given level α ∈ (0, 1), we propose to reject H0 in favor
of H1, if

T (n)
ρ ≥ q̂

(B)
1−α

(
T (n)
ρ

)
, (3.9)

where q̂(B)

1−α(T
(n)
ρ ) denotes the (1−α)-sample quantile of T̂ (n)

ρ,ξ(1)
, . . . , T̂ (n)

ρ,ξ(B) . Sim-

ilarly, for t0 ∈ R, H0 is rejected in favor of H(ρ,t0)

1 , if

W (n,t0)
ρ := sup

θ∈[0,1]

|T(n)
ρ (θ, t0)| ≥ q̂

(B)
1−α

(
W (n,t0)

ρ

)
, (3.10)

where q̂(B)

1−α(W
(n,t0)
ρ ) denotes the (1−α)-sample quantile of Ŵ (n,t0)

ρ,ξ(1)
, . . . , Ŵ (n,t0)

ρ,ξ(B) ,

and where Ŵ (n,t0)

ρ,ξ(b)
:= supθ∈[0,1] |T̂(n)

ρ,ξ(b)
(θ, t0)| for b = 1, . . . , B. Furthermore,
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according to Proposition 3.3 we define an exact test procedure, that is H0 is
rejected in favor of the point-wise alternative H(ρ,t0)

1 , if

V
(n)
ρ,t0 ≥ qK1−α, (3.11)

where qK
1−α is the (1 − α)-quantile of the Kolmogorov-Smirnov-distribution,

that is the distribution of the supremum of a standard Brownian bridge K =
supθ∈[0,1] |K(θ)|.

The following results show the behaviour of the previously introduced tests
under the null hypothesis, local alternatives and the alternatives of an abrupt
change. In particular, these tests are consistent asymptotic level α tests. First,
recall the tight centered Gaussian process Tρ in �∞([0, 1] × R) with covariance
function (3.3), let Lρ : (R,B) → (R,B) be the distribution function of the supre-
mum variable sup(θ,t)∈[0,1]×R |Tρ(θ, t)| and let L(t0)

ρ be the distribution function
of supθ∈[0,1] |Tρ(θ, t0)|. Furthermore, recall the random variable

Tρ,g1 = sup
(θ,t)∈[0,1]×R

∣∣Tρ(θ, t) + Tρ,g1(θ, t)
∣∣,

defined in (3.5) with the deterministic function

Tρ,g1(θ, t) = Nρ(g1; θ, t)− θNρ(g1; 1, t),

defined in (3.4) and let

T (t0)
ρ,g1 := sup

θ∈[0,1]

∣∣Tρ(θ, t0) + Tρ,g1(θ, t0)
∣∣.

Then the results on consistency of the tests are as follows.

Proposition 3.10. Under H
(loc)
1 with ν0 �= 0

P
(
Lρ(Tρ,g1) > 1− α

)
≤ lim inf

B→∞
lim
n→∞

P
(
T (n)
ρ ≥ q̂

(B)
1−α

(
T (n)
ρ

))
≤ lim sup

B→∞
lim

n→∞
P
(
T (n)
ρ ≥ q̂

(B)
1−α

(
T (n)
ρ

))
≤ P

(
Lρ(Tρ,g1) ≥ 1− α

)
(3.12)

holds for each α ∈ (0, 1) and additionally if Nρ2(ν0, t0) > 0 then for all α ∈ (0, 1)
we have

P
(
V̄

(g1)
ρ,t0 > qK1−α

)
≤ lim inf

n→∞
P
(
V

(n)
ρ,t0 ≥ qK1−α

)
(3.13)

≤ lim sup
n→∞

P
(
V

(n)
ρ,t0 ≥ qK1−α

)
≤ P

(
V̄

(g1)
ρ,t0 ≥ qK1−α

)
,

with V
(n)
ρ,t0 and V̄

(g1)
ρ,t0 defined in (3.6), as well as

P
(
L(t0)
ρ

(
T (t0)
ρ,g1

)
> 1− α

)
≤ lim inf

B→∞
lim

n→∞
P
(
W (n,t0)

ρ ≥ q̂
(B)
1−α

(
W (n,t0)

ρ

))
≤ lim sup

B→∞
lim

n→∞
P
(
W (n,t0)

ρ ≥ q̂
(B)
1−α

(
W (n,t0)

ρ

))
≤ P

(
L(t0)
ρ

(
T (t0)
ρ,g1

)
≥ 1− α

)
. (3.14)
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Remark 3.11. According to Corollary 1.3 and Remark 4.1 in Gaenssler et al.
(2007) the distribution function Lρ is continuous on R and strictly increasing
on R+. Thus, (3.12) basically states that under the local alternative for large
B,n ∈ N the probability that the test (3.9) rejects the null hypothesis is approx-
imately equal to the probability that the supremum of the shifted version Tρ,g1

exceeds the (1 − α)-quantile of the non-shifted version Tρ,0. An analysis of the
latter probability, which is beyond the scope of this paper, then shows in which
direction, i.e. for which g1, it is harder to distinguish the null hypothesis from
the alternative. The assertions (3.13) and (3.14) can be interpreted in the same
way.

Corollary 3.12. Under H0 the tests (3.9), (3.10) and (3.11) have asymptotic
level α, that is if ν0 �= 0 we have for each α ∈ (0, 1)

lim
B→∞

lim
n→∞

P
(
T (n)
ρ ≥ q̂

(B)
1−α(T

(n)
ρ )

)
= α (3.15)

and furthermore

lim
n→∞

P
(
V

(n)
ρ,t0 ≥ qK1−α

)
= α, lim

B→∞
lim

n→∞
P
(
W (n,t0)

ρ ≥ q̂
(B)
1−α(W

(n,t0)
ρ )

)
= α,

(3.16)

holds for all α ∈ (0, 1), if Nρ2(ν0; t0) > 0.

Proposition 3.13. The tests (3.9), (3.10) and (3.11) are consistent in the
following sense: Under H1, for all α ∈ (0, 1) and all B ∈ N, we have

lim
n→∞

P
(
T (n)
ρ ≥ q̂

(B)
1−α(T

(n)
ρ )

)
= 1.

Under H(ρ,t0)

1 , we have for all α ∈ (0, 1) and all B ∈ N,

lim
n→∞

P
(
V

(n)
ρ,t0 ≥ qK1−α

)
= 1 and lim

n→∞
P
(
W (n,t0)

ρ ≥ q̂
(B)
1−α(W

(n,t0)
ρ )

)
= 1.

3.3. Argmax-estimators

If one of the aforementioned tests rejects the null hypothesis in favor of an
abrupt alternative the natural question arises of how to estimate the unknown
break point θ0. A typical approach in change-point analysis to this estimation
problem is the so-called argmax-estimator, that is we basically take the argmax
of the function θ �→ supt∈R |T(n)

ρ (θ, t)| as an estimate for θ0. Consistency of our
estimators follows with the argmax continuous mapping theorem of Kim and
Pollard (1990) using the following auxiliary result.

Proposition 3.14. Under H1, the random function (θ, t) �→ (nΔn)
−1/2T(n)

ρ (θ, t)
converges in �∞([0, 1]× R) to the function

T ρ
(1)(θ, t) :=

{
θ(1− θ0){Nρ(ν1; t)−Nρ(ν2; t)}, if θ ≤ θ0

θ0(1− θ){Nρ(ν1; t)−Nρ(ν2; t)}, if θ ≥ θ0

in outer probability, where Nρ(ν; ·) is defined in (3.1).
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For the test problem H0 versus H1 we consider the estimator

θ̃(n)ρ := argmaxθ∈[0,1] sup
t∈R

∣∣T(n)
ρ (θ, t)

∣∣ (3.17)

and in the setup H0 versus H
(ρ,t0)
1 a suitable estimator for the change point is

given by

θ̃
(n)
ρ,t0 := argmaxθ∈[0,1]

∣∣T(n)
ρ (θ, t0)

∣∣.
The following proposition establishes consistency of these estimators.

Proposition 3.15. Under H1 we have θ̃(n)
ρ = θ0 + oP(1) for n → ∞ and if the

special case H(ρ,t0)

1 is true we obtain θ̃(n)

ρ,t0 = θ0 + oP(1).

Remark 3.16. For the sake of convenience we have focused on the case of one
single break. The results on the tests in Section 3.2 also hold for alternatives with
finitely many abrupt changes. Moreover, the estimation methods depicted above
can easily be extended to detect multiple change points by a standard binary
segmentation algorithm dating back to Vostrikova (1981). We illustrate this in
Section 5.2, where a real data example is discussed.

4. Statistical inference for gradual changes

As a generalization of Proposition 3.14 one can show that (nΔn)
−1/2T(n)

ρ (θ, t)
converges in �∞([0, 1] × R) in outer probability to the function Tρ,g0 defined
in (3.4) whenever Assumption 2.3 is satisfied. Thus, under some regularity
conditions, argmaxθ∈[0,1]|T(n)

ρ (θ, t)| is a consistent estimator of argmaxθ∈[0,1]

|Tρ,g0(θ, t)|. However, if the jump behaviour changes gradually at θ0, the func-
tion θ �→ |Tρ,g0(θ, t)| is usually maximal at a point θ1 > θ0. As a consequence
the argmax-estimators investigated in Section 3.3 usually overestimate a change
point, if the change is not abrupt. Therefore, in this section we introduce test
and estimation procedures which are tailored for gradual changes in the entire
jump behaviour.

4.1. A measure of time variation for the entire jump behaviour

If the jump behaviour is given by (2.1) for some suitable transition kernel g = g0
from ([0, 1], B([0, 1])) into (R,B), we follow Vogt and Dette (2015) and base our
analysis of gradual changes on the quantity

D(g0)
ρ (ζ, θ, t) := Nρ(g0; ζ, t)−

ζ

θ
Nρ(g0; θ, t), (ζ, θ, t) ∈ C × R (4.1)

with
C := {(ζ, θ) ∈ [0, 1]2 | ζ ≤ θ} (4.2)

and where Nρ(g0; ·, ·) is defined in (2.2). Here and throughout this paper we use
the convention 0

0 := 1. We will address D(g0)
ρ as the measure of time variation
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(with respect to ρ) of the entire jump behaviour of the underlying process,
because the following lemma shows thatD(g0)

ρ indicates whether there is a change
in the jump behaviour.

Lemma 4.1. Let θ ∈ [0, 1]. Then D(g0)
ρ (ζ, θ, t) = 0 for all 0 ≤ ζ ≤ θ and t ∈ R if

and only if the kernel g0(·, dz) is Lebesgue almost everywhere constant on [0, θ].

According to the preceding lemma there exists a (gradual) change in the
jump behaviour given by g0 if and only if

sup
θ∈[0,1]

D̃(g0)
ρ (θ) > 0,

where D̃(g0)
ρ (θ) := sup

t∈R

sup0≤ζ≤θ

∣∣D(g0)
ρ (ζ, θ, t)

∣∣. As a consequence, the first point

of a change in the jump behaviour is given by

θ0 := inf
{
θ ∈ [0, 1] | D̃(g0)

ρ (θ) > 0
}
, (4.3)

where we set inf ∅ := 1. We call θ0 the change point of the jump behaviour of
the underlying process. Notice that by the discussion after (4.2) the definition
in (4.3) is independent of ρ. In Section 4.3 we construct an estimator for θ0,
where we only consider the quantity

D(g0)
ρ (θ) := sup

t∈R

sup
0≤ζ≤θ′≤θ

∣∣D(g0)
ρ (ζ, θ′, t)

∣∣, (4.4)

instead of D̃(g0)
ρ . On the one hand the monotonicity of D(g0)

ρ simplifies our entire
presentation and on the other hand the first time point where D(g0)

ρ deviates from
0 is also given by θ0, so it is equivalent to consider D(g0)

ρ instead. Our analysis
of gradual changes is based on a consistent estimator D(n)

ρ of D(g0)
ρ which we

construct in Section 4.2. Before that we illustrate the quantities introduced in
(4.3) and (4.4) in the situations of Example 2.2 and Example 2.5.

Example 4.2. Recall the situation of an abrupt change as in Example 2.2.
Precisely, let β ∈ (0, 2), p > 0 and ν1, ν2 ∈ M(β, p) with ν1 �= ν2 such that for
some θ0 ∈ (0, 1) the transition kernel g0 has the form

g0(y, dz) =

{
ν1(dz), for y ∈ [0, θ0],

ν2(dz), for y ∈ (θ0, 1].
(4.5)

Obviously, for some function ρ : R → R such that Assumption 2.3(a2) and (a3)
are satisfied we have D(g0)

ρ (ζ, θ′, t) = 0 for each (ζ, θ′, t) ∈ C × R with θ′ ≤ θ0
and consequently D(g0)

ρ (θ) = 0 for each θ ≤ θ0. On the other hand, if θ0 < θ′ ≤ 1
and ζ ≤ θ0 we have

D(g0)
ρ (ζ, θ′, t) = ζNρ(ν1; t)−

ζ

θ′
(θ0Nρ(ν1; t) + (θ′ − θ0)Nρ(ν2; t))

= ζ(Nρ(ν2; t)−Nρ(ν1; t))
(θ0
θ′

− 1
)
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with Nρ(ν; t) defined in (3.1) and we obtain

sup
t∈R

sup
ζ≤θ0

|D(g0)
ρ (ζ, θ′, t)| = V ρ

0 θ0
(
1− θ0

θ′
)
,

where V ρ
0 = supt∈R |Nρ(ν1; t) − Nρ(ν2; t)| > 0, because of ν1 �= ν2 and the

assumptions on ρ. For θ0 < ζ ≤ θ′ a similar calculation yields

D(g0)
ρ (ζ, θ′, t) = θ0(Nρ(ν2; t)−Nρ(ν1; t))

( ζ
θ′

− 1
)

which gives

sup
t∈R

sup
θ0<ζ≤θ′

∣∣D(g0)
ρ (ζ, θ′, t)

∣∣ = V ρ
0 θ0

(
1− θ0

θ′
)
.

Therefore, it follows that the quantity defined in (4.3) is given by θ0, because for
θ > θ0 we have

D(g0)
ρ (θ) = sup

θ0<θ′≤θ
max

{
sup
t∈R

sup
ζ≤θ0

∣∣D(g0)
ρ (ζ, θ′, t)

∣∣, sup
t∈R

sup
θ0<ζ≤θ′

∣∣D(g0)
ρ (ζ, θ′, t)

∣∣}

= V ρ
0 θ0

(
1− θ0

θ

)
. (4.6)

Example 4.3. Recall the situation of Example 2.5. Let the transition kernel g0
be of the form (2.9) such that there exist θ0 ∈ (0, 1), A0 ∈ (0,∞), β0 ∈ (0, β̂]
and p0 ∈ [2p̂+ ε,∞) for some ε > 0 with

A(y) = A0, β(y) = β0 and p(y) = p0 (4.7)

for each y ∈ [0, θ0]. Additionally, let θ0 be contained in an open interval U with a

real analytic function Ā : U → (0,∞) and affine linear functions β̄ : U → (0, β̂],
p̄ : U → [2p̂ + ε,∞) such that at least one of the functions Ā, β̄ and p̄ is
non-constant and

A(y) = Ā(y), β(y) = β̄(y), as well as p(y) = p̄(y) (4.8)

for all y ∈ [θ0, 1) ∩ U . Then the quantity defined in (4.3) is given by θ0.

4.2. The empirical measure of time variation and its convergence
behaviour

Suppose we have established that N (n)
ρ (·, ·) is a consistent estimator for

Nρ(g0; ·, ·). Then with the set C defined in (4.2) it is reasonable to consider

D(n)
ρ (ζ, θ, t) := N (n)

ρ (ζ, t)− ζ

θ
N (n)

ρ (θ, t), (ζ, θ, t) ∈ C × R, (4.9)

as an estimate for the measure of time variation of the entire jump behaviour
D(g0)

ρ defined in (4.1). In the following we want to establish consistency of the
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empirical measure of time variation D(n)
ρ . To be precise, the following two theo-

rems show that the process

H(n)
ρ (ζ, θ, t) :=

√
nΔn

(
D(n)

ρ (ζ, θ, t)−D(g0)
ρ (ζ, θ, t)

)
, (4.10)

and its bootstrapped counterpart converge weakly or weakly conditional on the
data in probability, respectively, to a suitable tight mean zero Gaussian process.

Theorem 4.4. If Assumption 2.3 is satisfied, then the process H(n)
ρ defined in

(4.10) converges weakly, that is H(n)
ρ � Hρ +D(g1)

ρ in �∞(C × R), where Hρ is
a tight mean zero Gaussian process with covariance function

Cov
(
Hρ(ζ1, θ1, t1),Hρ(ζ2, θ2, t2)

)
=

∫ ζ1∧ζ2

0

∫ t1∧t2

−∞
ρ2(z)g0(y, dz)dy − ζ1

θ1

∫ ζ2∧θ1

0

∫ t1∧t2

−∞
ρ2(z)g0(y, dz)dy

− ζ2
θ2

∫ ζ1∧θ2

0

∫ t1∧t2

−∞
ρ2(z)g0(y, dz)dy +

ζ1ζ2
θ1θ2

∫ θ1∧θ2

0

∫ t1∧t2

−∞
ρ2(z)g0(y, dz)dy.

(4.11)

For the statistical change-point inference proposed in the following sections
we require quantiles of functionals of the limiting distribution in Theorem 4.4.
(4.11) shows that this distribution depends in a complicated way on the un-
known underlying kernel g0 and therefore corresponding quantiles are difficult
to estimate. In order to solve this problem we want to use a multiplier bootstrap
approach similar to Section 3. To this end, we define the following bootstrap
counterpart of the process H(n)

ρ

Ĥ(n)
ρ (ζ, θ, t) := Ĥ(n)

ρ (X
(n)
Δn

, . . . , X
(n)
nΔn

; ξ1, . . . , ξn; ζ, θ, t)

:=
1√
nΔn

[ �nζ�∑
j=1

ξjρ(Δ
n
j X

(n))1(−∞,t](Δ
n
j X

(n))1{|Δn
j X

(n)|>vn}

− ζ

θ

�nθ�∑
j=1

ξjρ(Δ
n
j X

(n))1(−∞,t](Δ
n
j X

(n))1{|Δn
j X

(n)|>vn}

]
. (4.12)

The result below establishes consistency of Ĥ(n)
ρ .

Theorem 4.5. Let Assumption 2.3 be valid and let the multiplier sequence
(ξi)i∈N satisfy Assumption 3.6. Then we have Ĥ(n)

ρ �ξ Hρ in �∞(C ×R), where
the tight mean zero Gaussian process Hρ has the covariance structure (4.11).

4.3. Estimating the gradual change point

For the sake of a unique definition of the (gradual) change point θ0 in (4.3) we
suppose throughout this section that Assumption 2.3 holds with g1 = g2 = 0.
Recall the definition

D(g0)
ρ (θ) = sup

t∈R

sup
0≤ζ≤θ′≤θ

∣∣D(g0)
ρ (ζ, θ′, t)

∣∣
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in (4.4), then by Theorem 4.4 the process D(n)
ρ (ζ, θ, t) from (4.9) is a consistent

estimator of D(g0)
ρ (ζ, θ, t). Therefore, we set

D
(n)
ρ,∗(θ) := sup

t∈R

sup
0≤ζ≤θ′≤θ

∣∣D(n)
ρ (ζ, θ′, t)

∣∣,
and an application of the continuous mapping theorem and Theorem 4.4 yields
the following result.

Corollary 4.6. If Assumption 2.3 is satisfied with g1 = g2 = 0, then (nΔn)
1/2

D
(n)
ρ,∗ � Hρ,∗ in �∞

(
[0, θ0]

)
, where Hρ,∗ is the tight process in �∞([0, 1]) defined

by

Hρ,∗(θ) := sup
t∈R

sup
0≤ζ≤θ′≤θ

|Hρ(ζ, θ
′, t)|,

with the centered Gaussian process Hρ defined in Theorem 4.4.

Below we obtain that the rate of convergence of an estimator for θ0 depends
on the smoothness of the curve θ �→ D(g0)

ρ (θ) at θ0. Thus, we impose a kind of
Taylor expansion of the function D(g0)

ρ . More precisely, we assume throughout
this section that θ0 < 1 and that there exist constants ι, η,�, c > 0 such that
D(g0)

ρ admits an expansion of the form

D(g0)
ρ (θ) = c

(
θ − θ0

)�
+ ℵ(θ) (4.13)

for all θ ∈ [θ0, θ0+ ι], where the remainder term satisfies |ℵ(θ)| ≤ K
(
θ− θ0

)�+η

for some K > 0. According to Theorem 4.4 we have (nΔn)
1/2D

(n)
ρ,∗(θ) → ∞

in probability for any θ ∈ (θ0, 1]. Consequently, if the deterministic sequence
κn → ∞ is chosen appropriately, the statistic

r(n)ρ (θ) := 1{(nΔn)1/2D
(n)
ρ,∗(θ)≤κn},

should satisfy

r(n)ρ (θ)
P→
{
1, if θ ≤ θ0,

0, if θ > θ0.

Thus, we define the estimator for the change point by

θ̂(n)ρ = θ̂(n)ρ (κn) :=

∫ 1

0

r(n)ρ (θ)dθ. (4.14)

The theorem below establishes consistency of the estimator θ̂(n)
ρ under mild

additional assumptions on the sequence (κn)n∈N.

Theorem 4.7. If Assumption 2.3 is satisfied with g1 = g2 = 0, θ0 < 1, and
(4.13) holds for some � > 0, then

θ̂(n)ρ − θ0 = OP

(( κn√
nΔn

)1/�)
,

for any sequence κn → ∞ with κn/
√
nΔn → 0.
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Theorem 4.7 describes how the curvature of D(g0)
ρ at θ0 determines the con-

vergence behaviour of the estimator: A lower degree of smoothness of D(g0)
ρ in

θ0 yields a better rate of convergence. However, the estimator depends on the
choice of the threshold level κn and we explain below how to choose this se-
quence with bootstrap methods in order to control the probability of over- and
underestimation. But before that the following theorem investigates the mean
squared error

MSE(κn) = E

[(
θ̂(n)ρ (κn)− θ0

)2]

of the estimator θ̂(n)
ρ . Recall the definition of H(n)

ρ in (4.10) and define

H
(n)
ρ,∗(θ) := sup

t∈R

sup
0≤ζ≤θ′≤θ

|H(n)
ρ (ζ, θ′, t)|, θ ∈ [0, 1],

which is an upper bound for the distance between the estimator D(n)
ρ,∗(θ) and the

true value D(g0)
ρ (θ). For a sequence αn → ∞ with αn = o(κn) we decompose

the MSE into

MSE
(ρ)
1 (κn, αn) := E

[(
θ̂(n)ρ (κn)− θ0

)2
1{

H
(n)
ρ,∗(1)≤αn

}],
MSE

(ρ)
2 (κn, αn) := E

[(
θ̂(n)ρ (κn)− θ0

)2
1{

H
(n)
ρ,∗(1)>αn

}] ≤ P
(
H

(n)
ρ,∗(1) > αn

)
,

which can be considered as the MSE due to small and large estimation error.

Theorem 4.8. Suppose that θ0 < 1, (4.13) and Assumption 2.3 with g1 = g2 =
0 are satisfied. Then for any sequence αn → ∞ with αn = o(κn) we have

K1

( κn√
nΔn

)2/�

≤MSE
(ρ)
1 (κn, αn) ≤ K2

( κn√
nΔn

)2/�

MSE
(ρ)
2 (κn, αn) ≤ P

(
H

(n)
ρ,∗(1) > αn

)
,

for n ∈ N sufficiently large, where K1 =
(
1−ϕ
c

)2/�
and K2 =

(
1+ϕ
c

)2/�
for

some ϕ ∈ (0, 1).

In the following we discuss the choice of the regularizing sequence κn for the
estimator θ̂(n)

ρ in order to control the probability of over- and underestimation of

the change point θ0 ∈ (0, 1). Let θ̂∗n be a preliminary consistent estimate of θ0.

For example, if (4.13) holds for some � > 0, one can take θ̂∗n = θ̂(n)
ρ (κn) for a

sequence κn → ∞ satisfying the assumptions of Theorem 4.7. In the sequel, let
B ∈ N be some large number and let (ξ(b))b=1,...,B denote independent sequences
of random variables, ξ(b) := (ξ(b)

j )j∈N, satisfying Assumption 3.6. We denote by

Ĥ
(n,b)
ρ,∗ the particular bootstrap statistics calculated with respect to the data and

the bootstrap multipliers ξ(b)

1 , . . . , ξ(b)
n from the b-th iteration, where

Ĥ
(n)
ρ,∗(θ) := sup

t∈R

sup
0≤ζ≤θ′≤θ

∣∣Ĥ(n)
ρ (ζ, θ′, t)

∣∣ (4.15)
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for θ ∈ [0, 1]. With these notations for B,n ∈ N and 0 < r ≤ 1 we define the
following empirical distribution function

F
(ρ,r)
n,B (x) =

1

B

B∑
i=1

1{(
Ĥ

(n,i)
ρ,∗ (θ̂∗

n)
)r

≤x
},

and we denote by F
(ρ,r)−
n,B (y) := inf

{
x ∈ R

∣∣ F (ρ,r)
n,B (x) ≥ y

}
its pseudo-inverse.

Then in the sense of the theorems below the optimal choice of the threshold is
given by

κ̂
(α,ρ)
n,B (r) := F

(ρ,r)−
n,B (1− α), (4.16)

for a confidence level α ∈ (0, 1).

Theorem 4.9. Let 0 < α < 1 and assume that Assumption 2.3 is satisfied with
g1 = g2 = 0 and with 0 < θ0 < 1 for θ0 defined in (4.3). Suppose further that
there exists some t0 ∈ R with Nρ2(g0; θ0, t0) > 0. Then the limiting probability
for underestimation of the change point θ0 is bounded by α. Precisely,

lim sup
B→∞

lim sup
n→∞

P

(
θ̂(n)ρ

(
κ̂

(α,ρ)
n,B (1)

)
< θ0

)
≤ α.

Theorem 4.10. Let Assumption 2.3 be satisfied with g1 = g2 = 0, let 0 < r < 1
and for θ0 defined in (4.3) let 0 < θ0 < 1. Furthermore, suppose that (4.13) holds
for some �, c > 0 and that there exists a t0 ∈ R satisfying Nρ2(g0; θ0, t0) > 0.
Additionally, let the bootstrap multipliers be either bounded in absolute value
or standard normal distributed. Then for each K >

(
1/c

)1/�
and all sequences

(αn)n∈N ⊂ (0, 1) with αn → 0 and (Bn)n∈N ⊂ N with Bn → ∞ such that

α2
nBn → ∞, (nΔn)

1−r
2r αn → ∞, α−1

n nΔ1+τ
n → 0 (with τ > 0 from Assumption

2.3), we have

lim
n→∞

P

(
θ̂(n)ρ

(
κ̂

(αn,ρ)
n,Bn

(r)
)
> θ0 +Kϕ∗

n

)
= 0, (4.17)

where ϕ∗
n =

(
κ̂

(αn,ρ)
n,Bn

(r)/
√
nΔn

)1/� P→ 0, while κ̂
(αn,ρ)
n,Bn

(r)
P→ ∞.

Theorem 4.10 is meaningless without the statement ϕ∗
n

P→ 0. With the addi-
tional parameter r ∈ (0, 1) this assertion can be proved by using the assumptions

(nΔn)
1−r
2r αn → ∞ and α−1

n nΔ1+τ
n → 0 only. However, it seems that for r = 1

the statement ϕ∗
n

P→ 0 can only be verified under very restrictive conditions on
the underlying process.

We conclude this section with an example which shows that the expansion
(4.13) and the additional assumption Nρ2(g0; θ0, t0) > 0 of the preceding the-
orems are satisfied in the situations of Example 2.2 and Example 2.5. A proof
for this example can be found in Section 6.4.
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Example 4.11.

(1) Recall the situation of an abrupt change considered in Example 4.2. In this
case it follows from (4.6) that

D(g0)
ρ (θ) = V ρ

0 θ0
(
1− θ0

θ

)
= V ρ

0 (θ − θ0)−
V ρ
0

θ
(θ − θ0)

2 > 0,

whenever θ0 < θ ≤ 1. Consequently, (4.13) is satisfied with � = 1 and

ℵ(θ) = −V ρ
0

θ (θ − θ0)
2 = O((θ − θ0)

2) for θ → θ0. Moreover, if ν1 �= 0
and the function ρ meets Assumption 2.3(a3), the transition kernel given by
(4.5) satisfies the additional assumption Nρ2(g0; θ0, t0) > 0 in Theorem 4.9
and Theorem 4.10 for some t0 ∈ R.

(2) In the situation discussed in Example 4.3 let

N̄(y, t) = Ā(y)

∫ t

−∞
ρL,p̂(z)hβ̄(y),p̄(y)(z)dz

for y ∈ U and t ∈ R. Then we have k0 := min{k ∈ N
∣∣ ∃t ∈ R : Nk(t) �=

0} < ∞, where for k ∈ N0 and t ∈ R

Nk(t) :=
(∂kN̄

∂yk

)∣∣∣
(θ0,t)

denotes the k-th partial derivative of N̄ with respect to y at (θ0, t), which is
a bounded function on R. Furthermore, there exists a ι > 0 such that

D(g0)
ρL,p̂

(θ) =
( 1

(k0 + 1)!
sup
t∈R

|Nk0(t)|
)
(θ − θ0)

k0+1 + ℵ(θ) (4.18)

on [θ0, θ0 + ι] with |ℵ(θ)| ≤ K(θ − θ0)
k0+2 for some K > 0. Obviously,

Nρ2
L,p̂

(g0; θ0, t0) > 0 holds for some t0 ∈ R.

4.4. Testing for a gradual change

In Section 3 we introduced change point tests for the situation of an abrupt
change as in Example 2.2, where the jump behaviour is assumed to be constant
before and after the change point. In this section we illustrate a reasonable way
to derive test procedures for the existence of a gradual change in the data. In
order to formulate suitable hypotheses for a gradual change point recall the
definition of the measure of time variation for the entire jump behaviour D(g0)

ρ

in (4.1) and define for t0 ∈ R and θ ∈ [0, 1] the quantities

D(g0)
ρ (θ) := sup

t∈R

sup
0≤ζ≤θ′≤θ

∣∣D(g0)
ρ (ζ, θ′, t)

∣∣
D(g0)

ρ,t0 (θ) := sup
0≤ζ≤θ′≤θ

∣∣D(g0)
ρ (ζ, θ′, t0)

∣∣.
We test the null hypothesis
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H0: Assumption 2.3 is satisfied with g1 = g2 = 0 and there exists a Lévy
measure ν0 such that g0(y, dz) = ν0(dz) holds for Lebesgue almost every
y ∈ [0, 1].

versus the general alternative of non-constant jump behaviour

H∗
1: Assumption 2.3 holds with g1 = g2 = 0 and we have D(g0)

ρ (1) > 0.

If one is interested in gradual changes in Nρ(ν
(n)
s ; t0) for a fixed t0 ∈ R, one

can consider the corresponding alternative

H∗
1(t0): Assumption 2.3 is satisfied with g1 = g2 = 0 and we have D(g0)

ρ,t0 (1) > 0.

Furthermore, we investigate the behaviour of the tests introduced below un-
der local alternatives of the form

H
(loc)
1 : Assumption 2.3 holds with g0(y, dz) = ν0(dz) for Lebesgue-a.e. y ∈ [0, 1]

for some Lévy measure ν0 and some transition kernels g1, g2 ∈ G(β, p).

Remark 4.12. Note that the function D(g0)
ρ in (4.1) is uniformly continuous

in (ζ, θ) ∈ C uniformly in t ∈ R, that is for any η > 0 there exists a δ > 0 such
that ∣∣D(g0)

ρ (ζ1, θ1, t)−D(g0)
ρ (ζ2, θ2, t)

∣∣ < η

holds for each t ∈ R and all pairs (ζ1, θ1), (ζ2, θ2) ∈ C = {(ζ, θ) ∈ [0, 1]2 | ζ ≤
θ} with maximum distance ‖(ζ1, θ1) − (ζ2, θ2)‖∞ < δ. Therefore, the function
D∗

ρ(g0; ζ, θ) = supt∈R |D(g0)
ρ (ζ, θ, t)| is uniformly continuous on C and as a con-

sequence D(g0)
ρ is continuous on [0, 1]. Thus, D(g0)

ρ (1) > 0 holds if and only if
the point θ0 defined in (4.3) satisfies θ0 < 1.

The idea of the following tests is to reject the null hypothesis H0 for large
values of the corresponding estimators D(n)

ρ,∗(1) and sup(ζ,θ)∈C |D(n)
ρ (ζ, θ, t0)| for

D(g0)
ρ (1) and D(g0)

ρ,t0(1), respectively. In order to obtain critical values we use the
multiplier bootstrap approach introduced in Section 4.2. For this purpose we de-
note by (ξ(b))b=1,...,B for some largeB ∈ N independent sequences ξ(b) = (ξ(b)

j )j∈N

of multipliers satisfying Assumption 3.6. We denote by Ĥ(n,b)
ρ the processes de-

fined in (4.12) calculated from {X(n)

iΔn
| i = 0, . . . , n} and the b-th bootstrap

multipliers ξ(b)

1 , . . . , ξ(b)
n . For a given level α ∈ (0, 1), we propose to reject H0 in

favor of H∗
1, if

(nΔn)
1/2D

(n)
ρ,∗(1) ≥ q̂

(B)
1−α

(
H

(n)
ρ,∗(1)

)
, (4.19)

where q̂
(B)
1−α

(
H

(n)
ρ,∗(1)

)
denotes the (1 − α)-quantile of the sample Ĥ

(n,1)
ρ,∗ (1), . . .,

Ĥ
(n,B)
ρ,∗ (1) with Ĥ

(n,b)
ρ,∗ defined in (4.15). Similarly, for t0 ∈ R, the null hypothesis

H0 is rejected in favor of H∗
1(t0) if

R
(n)
ρ,t0 := (nΔn)

1/2 sup
(ζ,θ)∈C

∣∣D(n)
ρ (ζ, θ, t0)

∣∣ ≥ q̂
(B)
1−α

(
R

(n)
ρ,t0

)
, (4.20)
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where q̂
(B)
1−α

(
R

(n)
ρ,t0

)
denotes the (1− α)-quantile of the sample R̂(n,1)

ρ,t0 , . . . , R̂
(n,B)

ρ,t0 ,
and

R̂
(n,b)
ρ,t0 := sup

(ζ,θ)∈C

∣∣Ĥ(n,b)
ρ (ζ, θ, t0)

∣∣.
In the following we show the behaviour of the aforementioned tests under

H0, H
(loc)
1 and the alternatves H∗

1, H
∗
1(t0). To this end, recall the limit process

Hρ,g1 := Hρ+D(g1)
ρ in Theorem 4.4, where D(g1)

ρ is defined in (4.1) and where the
tight mean zero Gaussian process Hρ in �∞(C ×R) has the covariance function
(4.11). Under the general Assumption 2.3 let Kρ : (R,B) → (R,B) be the c.d.f.
of sup(ζ,θ,t)∈C×R |Hρ(ζ, θ, t)| and let K(t0)

ρ : (R,B) → (R,B) be the c.d.f. of
sup(ζ,θ)∈C |Hρ(ζ, θ, t0)|. Furthermore, let

Hρ,g1 := sup
(ζ,θ,t)∈C×R

|Hρ(ζ, θ, t) +D(g1)
ρ (ζ, θ, t)|,

H(t0)
ρ,g1 := sup

(ζ,θ)∈C

|Hρ(ζ, θ, t0) +D(g1)
ρ (ζ, θ, t0)|.

The proposition below shows the performance of the new tests under the

local alternative H
(loc)
1 .

Proposition 4.13. Under H
(loc)
1 we have for each α ∈ (0, 1)

P
(
Kρ(Hρ,g1) > 1− α

)
≤ lim inf

B→∞
lim

n→∞
P

(
(nΔn)

1/2D
(n)
ρ,∗(1) ≥ q̂

(B)
1−α

(
H

(n)
ρ,∗(1)

))
≤ lim sup

B→∞
lim
n→∞

P

(
(nΔn)

1/2D
(n)
ρ,∗(1) ≥ q̂

(B)
1−α

(
H

(n)
ρ,∗(1)

))
≤P

(
Kρ(Hρ,g1) ≥ 1− α

)
,

if there exist t̄ ∈ R, ζ̄ ∈ (0, 1) with Nρ2(g0; ζ̄, t̄) > 0, and furthermore

P
(
K(t0)

ρ (H(t0)
ρ,g1) > 1− α

)
≤ lim inf

B→∞
lim

n→∞
P

(
R

(n)
ρ,t0 ≥ q̂

(B)
1−α

(
R

(n)
ρ,t0

))
≤ lim sup

B→∞
lim
n→∞

P

(
R

(n)
ρ,t0 ≥ q̂

(B)
1−α

(
R

(n)
ρ,t0

))
≤ P

(
K(t0)

ρ (H(t0)
ρ,g1) ≥ 1− α

)
holds for each α ∈ (0, 1), if there exists a ζ̄ ∈ (0, 1) with Nρ2(g0; ζ̄, t0) > 0.

With the result above and an inspection of the limiting probability P
(
Kρ(

Hρ,g1) ≥ 1 − α
)
, which is beyond the scope of this paper, one can show for

which direction g1 it is more difficult to distinguish the null hypothesis from
the alternative. An immediate consequence of Proposition 4.13 is that the tests
(4.19) and (4.20) hold the level α asymptotically.

Corollary 4.14. The tests (4.19) and (4.20) are asymptotic level α tests in the
following sense: Under H0 with ν0 �= 0 we have for each α ∈ (0, 1)

lim
B→∞

lim
n→∞

P

(
(nΔn)

1/2D
(n)
ρ,∗(1) ≥ q̂

(B)
1−α

(
H

(n)
ρ,∗(1)

))
= α

and moreover
lim

B→∞
lim
n→∞

P

(
R

(n)
ρ,t0 ≥ q̂

(B)
1−α

(
R

(n)
ρ,t0

))
= α,

holds for all α ∈ (0, 1), if Nρ2(ν0; t0) > 0.
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The tests (4.19) and (4.20) are also consistent under the fixed alternatives
H∗

1, H
∗
1(t0) in the sense of the following proposition.

Proposition 4.15. Under H∗
1, we have for all B ∈ N

lim
n→∞

P

(
(nΔn)

1/2D
(n)
ρ,∗(1) ≥ q̂

(B)
1−α

(
H

(n)
ρ,∗(1)

))
= 1.

Under H∗
1(t0), we have for all B ∈ N

lim
n→∞

P

(
R

(n)
ρ,t0 ≥ q̂

(B)
1−α

(
R

(n)
ρ,t0

))
= 1.

5. Finite sample properties

In this section we present the results of a simulation study assessing the finite
sample properties of the new statistical procedures. We divide this study into
two parts: In Section 5.1 we investigate the performance of the new tests and
estimators by means of a simulation study. Finally, we apply the new methods
to high-frequency stock exchange prices in Section 5.2.

5.1. Monte Carlo experiments

This section is dedicated to a Monte Carlo simulation study. The design of this
study is as follows:

(i) We apply our estimators and test statistics to n data points {XΔn , . . . , XnΔn}
as realizations of an Itō semimartingale (Xt)t∈R+ with characteristics (b, σ, νs).
For the sample size we choose either n = 10000 or n = 22500, where for the
effective sample size we consider the choices kn := nΔn = 50, 100, 200 in the
case n = 10000 resulting in frequencies Δ−1

n = 200, 100, 50 and in the case
n = 22500 we consider kn = nΔn = 50, 75, 100, 150, 250 resulting in Δ−1

n =
450, 300, 225, 150, 90.

(ii) Corresponding to our basic rescaling assumption (2.1) the jump character-
istic satisfies

νs(dz) = g
( s

nΔn
, dz

)
,

where the transition kernel g(y, dz) is given by

g(y, [z,∞)) =

⎧⎨
⎩
(

η(y)
πz

)1/2

−
(

1
π106

)1/2

, if 0 < z ≤ η(y)106,

0, otherwise,
(5.1)

and g(y, (−∞, z]) = 0 for all z < 0.

(iii) In order to simulate data points {XΔn , . . . , XnΔn} including an abrupt
change we choose
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η(y) =

{
1, if y ≤ θ0,

ψ, if y > θ0,
(y ∈ [0, 1]) (5.2)

for θ0 ∈ (0, 1), ψ ≥ 1 and we use a modification of Algorithm 6.13 in Cont
and Tankov (2004) to simulate pure jump Itō semimartingales under H0, i.e.
for ψ = 1. Under the alternative of an abrupt change, i.e. for ψ > 1, we merge
two paths of independent semimartingales together.

(iv) A gradual change in the jump characteristic is realized by choosing

η(y) =

{
1, if y ≤ θ0,

(A(y − θ0)
w + 1)2, if y ≥ θ0,

(y ∈ [0, 1]) (5.3)

in (5.1) for some θ0 ∈ [0, 1], A > 0 and w > 0. In order to obtain pure jump
Itō semimartingale data according to this model we sample 15 times more fre-
quently, i.e. for j ∈ {1, . . . , 15n} we use a modification of Algorithm 6.13 in

Cont and Tankov (2004) to simulate an increment Zj = X̃
(j)
jΔn/15

− X̃
(j)
(j−1)Δn/15

of a 1/2-stable pure jump Lévy subordinator with characteristic exponent

Φ(j)(u) =

∫
(eiuz − 1)ν(j)(dz),

where ν(j)(dz) = g(j/(15n), dz). For the resulting data vector {XΔn , . . . , XnΔn}
we use

XkΔn =

15k∑
j=1

Zj , (k = 1, . . . , n).

(v) In order to investigate the performance of our truncation method we ei-
ther use the plain pure jump data vector {XΔn , . . . , XnΔn} as described above,
resulting in the characteristics b = σ = 0 for the continuous part, or we use
{XΔn + SΔn , . . . , XnΔn + SnΔn}, where St = Wt + t with a Brownian motion
(Wt)t∈R+ resulting in b = σ = 1. In the graphics depicted below the results for
pure jump data are presented on the left-hand side, while the results including
a continuous component are always placed on the right-hand side.

(vi) For the truncation sequence vn = γΔw
n we choose γ = 1 and w = 3/4 in

each run resulting in the parameter τ = 2/15 in Assumption 2.3.

(vii) Due to computational reasons we approximate the supremum in t ∈ R by
taking the maximum either over the finite grid T1 := {0.1 · j | j = 1, . . . , 30} or
the finite grid T2 := {0.1 + j · 0.3 | j = 0, 1, . . . , 9}.
(viii) For the function ρ we use ρL,p from (2.8) in Example 2.5 with parameters
L = 1 and p = 2.

(ix) Each combination of parameters we present below is run 500 times and if
the statistical procedure includes a bootstrap method we always use B = 200
bootstrap replications. In order to illustrate the power of our test procedures we
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Table 1

Simulated rejection probabilities of the tests (3.9), (3.10) and (3.11) under the null
hypothesis. Upper part: pure jump subordinator data. Lower part: jump subordinator data

plus a Brownian motion with drift.

kn Test (3.9) Pointwise Tests t0 = 0.5 t0 = 1 t0 = 1.5 t0 = 2 t0 = 2.5 t0 = 3
50 0.026 (3.10) 0.062 0.036 0.024 0.036 0.026 0.036

(3.11) 0.060 0.042 0.030 0.030 0.016 0.020
75 0.052 (3.10) 0.058 0.048 0.046 0.040 0.046 0.050

(3.11) 0.040 0.046 0.032 0.036 0.028 0.030
100 0.050 (3.10) 0.046 0.054 0.042 0.046 0.038 0.042

(3.11) 0.038 0.038 0.036 0.040 0.028 0.032
150 0.068 (3.10) 0.038 0.054 0.054 0.054 0.058 0.066

(3.11) 0.036 0.036 0.050 0.042 0.052 0.044
250 0.060 (3.10) 0.068 0.056 0.056 0.058 0.064 0.060

(3.11) 0.046 0.034 0.034 0.032 0.044 0.052

50 0.040 (3.10) 0.038 0.042 0.036 0.054 0.034 0.036
(3.11) 0.036 0.030 0.028 0.042 0.026 0.028

75 0.058 (3.10) 0.024 0.050 0.030 0.048 0.058 0.050
(3.11) 0.030 0.032 0.020 0.042 0.046 0.036

100 0.050 (3.10) 0.044 0.050 0.040 0.046 0.048 0.052
(3.11) 0.034 0.040 0.026 0.046 0.040 0.048

150 0.054 (3.10) 0.040 0.050 0.048 0.056 0.048 0.060
(3.11) 0.040 0.032 0.038 0.038 0.030 0.038

250 0.060 (3.10) 0.046 0.058 0.036 0.056 0.062 0.058
(3.11) 0.036 0.050 0.030 0.044 0.054 0.046

display simulated rejection probabilities, i.e. the mean of the 500 test results.
Furthermore, we measure the performance of our estimators by mean absolute
deviation, i.e. if Θ = {θ̂1, . . . , θ̂500} is the set of obtained estimation results we
depict

�1(Θ, θ0) =
1

500

500∑
j=1

|θ̂j − θ0|,

where θ0 is the location of the change point.

5.1.1. Statistical inference for abrupt changes

To illustrate the finite sample performance of the procedures introduced in Sec-
tion 3 we choose the sample size n = 22500 and the grid T1 = {0.1 · j | j =
1, . . . , 30} to approximate the supremum in t ∈ R. The confidence level of the
test procedures is α = 5% in each run.

In Table 1 we display the rejection probabilities of the tests (3.9), (3.10) and
(3.11) under the null hypothesis. We observe a reasonable approximation of the
nominal level α = 0.05. The test (3.11) appears to be slightly more conservative
than the test (3.10). Note that the process investigated in the lower part of
Table 1 includes a continuous component with b = σ = 1.

In the upper part of Figure 1 we depict the rejection probabilities of the
test (3.9) for different effective sample sizes kn = nΔn. The factor of jump
size corresponds to ψ in (5.2) and the dashed red line indicates the nominal
level α = 5%. The change point is located at θ0 = 0.5. Large differences of
the jump size before and after the change yield higher rejection probabilities.
Moreover, the rejection probabilities increase with kn = nΔn. Notice also that
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Fig 1. Simulated rejection probabilities of the test (3.9). Upper part: different factors of jump
size ψ in (5.2) (location of change point fixed at θ0 = 0.5). Middle part: different locations of
the change point θ0 (ψ = 4 fixed). Lower part: different values of the parameter p ≥ 2 in the
function ρ1,p (θ0 = 0.5, ψ = 3 fixed). Left panels: Pure jump data. Right panels: pure jump
data plus a Brownian motion with drift. The dashed red line indicates α = 5%.

the results for pure jump Itō semimartingales and for data including a continuous
component are very similar. This fact indicates a reasonable performance of the
proposed truncation technique for an ordinary sample size n = 22500. The
middle part of Figure 1 shows the rejection probabilities for varying locations of
the change point θ0, where ψ = 4 in (5.2). Our results illustrate that an abrupt
change can be detected best, if it is located close to θ0 ≈ 0.5. Furthermore, in this
case the power of the test is increasing with kn = nΔn and the performance
for data including a continuous component is nearly the same. In the lower
part of Figure 1 we display the rejection probabilities for different values of the
parameter p ∈ [2, 20] of the function ρ1,p in (2.8), which is used to calculate
the process T(n)

ρ1,p
(θ, t). Here the change point is located at θ0 = 0.5 and we
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Fig 2. Simulated rejection probabilities of the test (3.10) (black lines) and the test (3.11)
(grey lines) for different values t0 for pure jump data (left-hand side) and with an additional
Brownian motion with drift (right-hand side). The dashed red line indicates the nominal level
α = 5%.

choose ψ = 3 in (5.2). The results suggest to use the lowest possible value of
the parameter p in order to obtain the maximum power of the test. Again, the
rejection probabilities of the test are nearly unaffected by the presence of a
Brownian component.

In Figure 2 we depict rejection probabilities of the tests (3.10) and (3.11)
for different values of t0 ∈ [0.1, 50]. In the underlying model (5.1) we use η(y)
defined in (5.2) with θ0 = 0.5 and ψ = 3. We observe that the test (3.10) has
slightly more power than the test (3.11) and the power of both tests is increasing
for small values of t0. The latter can be explained by the fact that less increments
of the underlying Itō semimartingale which take values in the interval (vn, t0]
are used to calculate the test statistics. The effect is even more significant when
a Brownian component is present (right panel). In this case it is more difficult to
detect a change, because of the superposition of small increments with an i.i.d.
sequence of random variables following a normal distribution with variance Δn

(see also Figure 3 in Bücher et al. (2017)). Furthermore, one can show (see, for
instance, Lemma 6.3 in Hoffmann et al. (2017)) that in the case of a pure jump
Itō semimartingale the probability of the event that m increments exceed the
value t0 is bounded by Kt−m/2

0 . As a consequence, for large t0 the power of both
tests reaches a saturation, because only a negligible proportion of increments
exceed t0.

We conclude this section with a brief investigation of the argmax-estimator
(3.17). In the upper part of Figure 3 we display mean absolute deviations of
the estimator (3.17) for different values ψ ∈ [1, 5] in (5.2) (θ0 = 0.5 fixed),
and in the lower part we consider different locations of the change point θ0 ∈
(0, 1) (ψ = 3 fixed). The results in the upper part correspond to Figure 1 in
the sense that large values of ψ yield a better performance of the statistical
procedure. Additionally, we also observe that due to the truncation approach
the mean absolute deviation is nearly unaffected by the presence of a Brownian
component. Similar to the middle part of Figure 1 the results in the lower part
suggest that a change point can be detected best if it is located at θ0 ≈ 0.5. Note
also that the estimation error is decreasing with the effective sample size kn.
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Fig 3. Mean absolute deviation of the estimator (3.17). Upper part: different values of ψ in
(5.2), θ0 = 0.5 fixed. Lower part: different locations of θ0 ∈ (0, 1), ψ = 3 fixed. Left panels:
pure jump data. Right panels: pure jump data plus an additional Brownian motion with drift.

5.1.2. Statistical inference for gradual changes

In this section we investigate the finite sample performance of the statistical
procedures introduced in Section 4.

In Table 2 we show the simulated rejection probabilities of the tests (4.19)
and (4.20) under the null hypothesis, i.e. for ψ = 1 in (5.2). The sample size is
n = 22500 and for the test (4.19) we approximate the supremum in t ∈ R by
taking the maximum over the finite grid T1 = {0.1 · j | j = 1, . . . , 30}. In both
cases for pure jump Itō semimartingales (b = σ = 0) and for Itō semimartin-
gales including a Brownian component (b = σ = 1) we observe a reasonable
approximation of the nominal level α = 5%.

To save computational time the rejection probabilities of the tests (4.19) and
(4.20) under the alternative are obtained for the sample size n = 10000 and
effective sample size kn ∈ {50, 100, 200}. The upper part of Figure 4 shows
the simulated rejection probabilities of the test (4.19) for different degrees of
smoothness of the change w in (5.3). The change is located at θ0 = 0.4 and
A is chosen such that the characteristic quantity for a gradual change satisfies
D(g)

ρ (1) = 3 in each scenario. As expected, it is more difficult to distinguish a very
smooth change from the null hypothesis and therefore the rejection probability
is decreasing in w. Similar to the CUSUM test investigated in Section 5.1.1 the
power of the test is increasing with kn = nΔn. In the lower part of Figure 4 we
depict the rejection rates of the test (4.19) for different locations of the change
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Table 2

Simulated rejection probabilities of the tests (4.19) and (4.20) under the null hypothesis.
Upper part: pure jump Itō semimartingale data. Lower part: pure jump Itō semimartingale

data plus a Brownian motion with drift.

Test (4.19) Test (4.20)
kn T1 t0 = 0.5 t0 = 1 t0 = 1.5 t0 = 2 t0 = 2.5 t0 = 3
50 0.050 0.028 0.020 0.030 0.040 0.056 0.046
75 0.048 0.058 0.058 0.048 0.048 0.048 0.044
100 0.056 0.062 0.038 0.046 0.038 0.046 0.060
150 0.076 0.056 0.062 0.066 0.054 0.062 0.078
250 0.062 0.070 0.070 0.058 0.056 0.054 0.066

50 0.044 0.036 0.026 0.028 0.044 0.040 0.040
75 0.042 0.050 0.054 0.042 0.044 0.038 0.044
100 0.074 0.040 0.038 0.036 0.046 0.062 0.068
150 0.044 0.036 0.056 0.058 0.052 0.042 0.044
250 0.050 0.034 0.042 0.056 0.062 0.062 0.058

point θ0 ∈ (0, 1). We simulate a linear change, i.e. we have w = 1 in (5.3), and
A is chosen such that D(g)

ρ (1) = 0.3 holds in each run. As before, the power of
the test is increasing in the effective sample size kn = nΔn and moreover it is
decreasing in θ0. The latter observation can be explained by the shape of model
(5.3), because for larger values of θ0 the jump characteristic is “closer” to the
null hypothesis.

Note also that all results are very similar for pure jump processes and pro-
cesses including a Brownian component. This indicates that our truncation ap-
proach also works in this setup.

We conclude this section with a study of the change point estimator θ̂(n)
ρ in

(4.14). Following Hoffmann et al. (2017) we implement the estimator θ̂(n)
ρ in five

steps as follows:

Step 1. Choose a preliminary estimate θ̂(pr) ∈ (0, 1), a probability level α ∈ (0, 1)
and a parameter

r ∈ (0, 1].

Step 2. Initial choice of the tuning parameter κn: Evaluate (4.16) for θ̂(pr), α
and r (with B = 200

as described above and where the supremum in t ∈ R is approximated
by the maximum

over t ∈ T2 = {0.1 + j · 0.3 | j = 0, 1, . . . , 9}) and obtain κ̂(in).

Step 3. Intermediate estimate of the change point. Evaluate (4.14) for κ̂(in) and

obtain θ̂(in).

Step 4. Final choice of the tuning parameter κn: Evaluate (4.16) for θ̂(in), α, r
and obtain κ̂(fi).

Step 5. Estimate θ0. Evaluate (4.14) for κ̂(fi) and obtain the final estimate θ̂ of
the change point.
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Fig 4. Simulated rejection probabilities of the test (4.19) under the alternative. Upper part:
different values w ∈ [0.6, 30] in (5.3), θ0 = 0.4 fixed. Lower part: different locations of the
change point θ0 ∈ (0, 1), w = 1 fixed. Left panels: pure jump Itō semimartingales; Right
panels: pure jump Itō semimartingales plus a Brownian motion with drift. The dashed red
line indicates the nominal level α = 5%.

From the theoretical point of view as discussed in Section 4.3 we have to
ensure that the preliminary estimate θ̂(pr) in Step 1 is consistent in order to
guarantee consistency of the final estimate θ̂. If not mentioned otherwise, we
always make the “arbitrary” choice θ̂(pr) = 0.1 for two reasons: First, a simula-
tion study which is not included in this paper, where the estimation procedure
is started in Step 2 with the choice κ̂(in) = 3

√
nΔn (which yields consistency ac-

cording to Theorem 4.7) has shown similar results as the ones depicted below.

Secondly, with the small choice of θ̂(pr) = 0.1 in Step 1 we obtain smaller values
of the thresholds κ̂(in), κ̂(fi) and this reduces the calculation time. Furthermore,
in the following simulation study we choose for the sample size n = 22500 and
vary the effective sample size kn = nΔn in {50, 100, 250}. For the evaluation of
(4.16) we always use α = 10% and for computational reasons suprema in t ∈ R

are approximated by maxima over t ∈ T2 = {0.1 + j · 0.3 | j = 0, 1, . . . , 9}. If
not mentioned otherwise, we simulate a linear change, i.e. w = 1 in (5.3), which
is located at θ0 = 0.4. A is always chosen such that the characteristic quantity
for a gradual change satisfies D(g)

ρ (1) = 3 in all scenarios.
The upper part of Figure 5 shows the mean absolute deviation of the esti-

mator (4.14) for different choices of r ∈ (0, 1] in Step 1. We observe that in all
cases the mean absolute deviation for r = 0.3 is close to its overall minimum.
Thus, we choose r = 0.3 in Step 1 in all following investigations. In the lower
part we display the mean absolute deviation for different choices of the pre-
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Fig 5. Mean absolute deviation of the estimator (4.14). Upper part: different choices of r ∈
(0, 1] in Step 1. Lower part: different choices of the preliminary estimate θ̂(pr) ∈ (0, 1) in Step
1. Left panels: pure jump Itō semimartingales. Right panels: pure jump Itō semimartingales
plus an additional Brownian component.

liminary estimate θ̂(pr) ∈ (0, 1) in Step 1. The smallest error is obtained, if the
preliminary estimate is chosen close to 1. These findings were confirmed by a
further simulation study which is not presented here and demonstrates that the
procedure (4.14) tends to underestimate the change point. As a consequence,

θ̂(pr) close to 1 induces larger values of the quantities κ̂(in), θ̂(in), κ̂(fi) in Steps
2-4 and prevents the underestimation error.

The upper part of Figure 6 shows the simulated mean absolute deviation
of the estimator (4.14) for different degrees of smoothness of the change w in
(5.3). The results correspond to the upper part of Figure 4 and confirm the
intuitive idea that a smooth change is more difficult to detect. Moreover, larger
effective sample sizes kn = nΔn reduce the estimation error. In the lower part we
display the simulated mean absolute deviation of the estimator θ̂(n)

ρ for different
locations of the change point θ0 ∈ (0, 1) in (5.3). The results correspond to lower
part of Figure 4 and show that for small values of θ0 the change point can be
detected best. This is a consequence of model (5.3), where for larger values of
θ0 ∈ (0, 1) the jump behaviour is nearly constant.

5.2. Real data application

In this section we show the results of an application of the new methods to
mid price data (in US dollar) of Apple shares between 09:30 and 16:00 on 21-
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Fig 6. Mean absolute deviation of the estimator (4.14). Upper part: different degrees of
smoothness of the change w in (5.3). Lower part: different locations of the change point.
Left panels: pure jump processes. Right panels: pure jump processes plus an additional addi-
tional Brownian motion with drift.

06-2012, which is depicted in Figure 7 and consists of n = 106626 data points.
We choose kn = nΔn = 23400, which corresponds to the number of seconds
between 09:30 and 16:00. Furthermore, we use again the function ρL,p from
(2.8) in Example 2.5 with parameters L = 1 and p = 2. For the truncation
sequence we choose vn = γ(kn/n)

3/4, where we use γ = 0.005 to address the
fact that the increments Δn

i X in the data are very small, due to the extremely
high frequency of sampling. For the same reason we approximate the supremum
in t ∈ R in the methods from Section 3 by the maximum over the finite grid
{j · 0.0005 | j ∈ {1, . . . , 80}}, while the supremum in t ∈ R in the methods from
Section 4 is approximated by the maximum over the finite grid {j · 0.004 | j ∈
{1, . . . , 10}}. As in Section 5.1 we use 200 bootstrap replications whenever a
procedure requires resampling. Due to the huge sample size we use r = 0.8 in
order to reduce the calculation time.

The test (3.9) and the test (4.19) reject the null hypothesis of no change in
the jump behaviour (level α = 5%). In order to locate the abrupt change point
an application of the argmax-estimator (3.17) yields the value 38029 seconds
after midnight for the time of an abrupt change. Similarly, the 5-step-procedure
for the estimator (4.14) introduced in Section 5.1.2 gives 38131 seconds after

midnight for the time of a gradual change (here we also choose θ̂(pr) = 0.1
and α = 0.1 in step 1). We also applied the standard binary segmentation
algorithm to detect further change points [see Vostrikova (1981)], where we
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Fig 7. Mid prices of Apple shares in US dollar between 09:30 and 16:00 on 21-06-2012. The
time is measured on the x-axis by seconds after midnight. The solid vertical lines show the
results of the argmax-estimator (3.17) (left panel) and the estimator (4.14) (right panel).

restrict ourselves to a maximal number of 5 change points. The results are
depicted by the solid vertical lines in Figure 7, where the left and right panel
correspond to the detection of abrupt and gradual changes, respectively.

Remark 5.1. An important and extremely difficult problem in finite samples
is to distinguish between abrupt and gradual changes. In the context of change
point detection in a sequence of means it was demonstrated in Section 7.1 of
Vogt and Dette (2015) that the procedure for detecting gradual changes is also
able to detect abrupt changes in the mean. Similarly, the classical test for an
abrupt change detects also a gradual one. However, a test applied under a wrong
assumption might be less powerful, even if it is consistent. In the context for
changes in the jump behaviour a similar observation can be made. Both tests
detect abrupt and gradual changes, but a test constructed for a specific form
of the change might be less efficient if the form of the change deviates from the
postulated model.

On the other hand, even in the context of detecting a change in a sequence
of means, a formal statistical test to distinguish between an abrupt and gradual
change is to our best knowledge not available. Problems of this type are very
challenging topics for future research.

6. Proofs

The proofs of the results in this paper are technically very demanding and
we decompose the arguments in several parts. The main steps are given in
this section. We begin stating general assumptions in Section 6.1 which are
sufficient for all results presented in this paper and implied by the more readable
assumptions made in Section 2. In Section 6.2 we state results regarding the
weak convergence of two empirical processes, which are used in the definition
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of the statistics considered in Section 3 and 4. Proofs for the results in these
sections can be found in Section 6.3 and 6.4. All arguments presented here rely
on several technical auxiliary results, which can be found in Appendix A–E of
the supplement (Hoffmann and Dette (2019)).

6.1. Alternative assumptions

All results in this paper also hold under the weaker assumptions given below.
Here and throughout this section K or K(δ) denote generic constants depending
in some cases on a quantity δ and may change from place to place.

Assumption 6.1. At step n ∈ N we observe an Itō semimartingale X(n)

adapted to the filtration of some filtered probability space (Ω,F , (Ft)t∈R+ ,P)
with characteristics (b(n)

s , σ(n)
s , ν(n)

s ) at the equidistant time points {iΔn | i =
0, 1, . . . , n}. Furthermore, the following assumptions are satisfied:

(a) Assumptions on the jump characteristic and the function ρ:
For each n ∈ N and s ∈ [0, nΔn] we have

ν(n)s (dz) = g(n)
( s

nΔn
, dz

)
, (6.1)

where there exist transition kernels g0, g1, g2 from ([0, 1],B([0, 1])) into
(R,B) such that for each y ∈ [0, 1]

g(n)(y, dz) = g0(y, dz) +
1√
nΔn

g1(y, dz) +Rn(y, dz) (6.2)

and for each y ∈ [0, 1], B ∈ B and n ∈ N the kernel Rn satisfies Rn(y,B) ≤
ang2(y,B) for a sequence an = o((nΔn)

−1/2) of non-negative real numbers.
Furthermore, we have

(1) There exists β ∈ [0, 2] with

max
i=0,1,2

(
λ1 − ess supy∈[0,1]

(∫ (
1 ∧ |z|(β+δ)∧2

)
gi(y, dz)

))
≤ K(δ) < ∞

for each δ > 0.

(2) ρ : R → R is a bounded C1-function with ρ(0) = 0. Furthermore, there
exists some p > β + (β ∨ 1) such that the derivative satisfies |ρ′(z)| ≤
K|z|p−1 for all z ∈ R and some K > 0.

(3) For p = (p− 1) ∨ 1 with p from (a2) we have

max
i=0,1,2

(
λ1 − ess supy∈[0,1]

(∫
|z|p1{|z|≥1}gi(y, dz)

))
< ∞.
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(4) (I) There exist r > v > 0, α0 > 0, q > 0 and K > 0 such that for
every choice m1,m2 ∈ {g0, g1, g2}

λ2 − ess supy1,y2∈[0,1]

(∫ ∫
1{|x−z|≤Δr

n}1{Δv
n/2<|x|≤α0}×

× 1{Δv
n/2<|z|≤α0}m1(y1, dx)m2(y2, dz)

)
≤ KΔq

n,

holds for n ∈ N sufficiently large, where λ2 denotes the restriction
of the two-dimensional Lebesgue measure to the measure space
([0, 1]2, [0, 1]2 ∩ L2) with the two-dimensional Lebesgue σ-algebra
L2 on R2.

(II) For each α > 0 there is a K(α) > 0 such that for every choice
m1,m2 ∈ {g0, g1, g2} we have

λ2 − ess supy1,y2∈[0,1]

(∫ ∫
1{|x−z|≤Δr

n}1{|x|>α}×

× 1{|z|>α}m1(y1, dx)m2(y2, dz)
)
≤ K(α)Δq

n,

for n ∈ N large enough with the constants from (a(4)I).

(b) Assumptions on the truncation sequence vn and the observation scheme:
We have vn = γΔw

n for some γ > 0 and w satisfying 1
2(p−β) < w < 1

2 ∧ 1
2β .

Furthermore, the observation scheme satisfies with the constants from the
previous assumptions:

(1) Δn → 0,

(2) nΔn → ∞,

(3) nΔ
1+q/2
n → 0,

(4) nΔ1+2w
n → 0,

(5) nΔ
1+2v(p−β−δ)
n → 0 for some δ > 0,

(6) nΔ
2(1−βw(1+ε))
n → 0 for some ε > 0,

(7) nΔ
((1+2(r−w))∨1)+δ
n → ∞ for some δ > 0.

(c) Assumptions on the drift and the diffusion coefficient: For mb =
1+2w
1−w ≤ 4

and mσ = 1+2w
1/2−w , we have

sup
n∈N

sup
s∈R+

{
E
∣∣b(n)s

∣∣mb ∨ E
∣∣σ(n)

s

∣∣mσ
}
< ∞.

Throughout the following proofs we will work with Assumption 6.1 without
further mention. This is due to the following result which proves that Assump-
tion 2.3 implies the set of conditions above.

Proposition 6.2. Assumption 2.3 is sufficient for Assumption 6.1.
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Proof. Let 0 < β < 2, 0 < τ < (1/5∧ 2−β
2+5β ) and p > β + (( 12 +

3
2β)∨

2
1+5τ ) and

suppose that Assumption 2.3 is satisfied for these constants. In order to verify
Assumption 6.1 define the following quantities:

r := 3τ, v :=
τ

1 + 3β
, q := r − (1 + 3β)v = 2τ, (6.3)

and recall that w = (1 + 5τ)/4.
ρ is suitable for Assumption 6.1(a2), as in particular p > β+(β∨1) is satisfied

due to (1 + 3β)/2 > β and 2/(1 + 5τ) > 1. Assumption 6.1(b) is established,
since 1/(2(p − β)) < w = (1 + 5τ)/4 is equivalent to p > β + (2/(1 + 5τ)) and
w = (1 + 5τ)/4 < 1/2 ∧ 1/(2β) holds due to τ < (1/5 ∧ 2−β

2+5β ). Furthermore,
simple calculations show

(1 + 2r − 2w) ∨ 1 = t−1
2 < 1 + τ = t−1

1 = (1 +
q

2
)

= 2(1− βw(1 + ε)) < (1 + 2v(p− β)) ∧ (1 + 2w) (6.4)

with ε = 2−2τ−β(1+5τ)
β(1+5τ) > 0, since τ < 2−β

2+5β and (p−β) > (1+3β)/2. Therefore,

all conditions on the observation scheme are satisfied.
Additionally, if η,M > 0 and a Lebesgue null set L ∈ [0, 1] ∩ L1 are chosen

such that the requirements of Definition 2.1 hold, we have h
(i)
y (z)|z|(β+δ)∧2 ≤

K|z|(−1+δ)∧(1−β) for each δ > 0 and all y ∈ [0, 1] \ L, z ∈ (−η, η), i ∈ {0, 1, 2},
where h(i)

y denotes a density for the kernel gi. Therefore, and due to Definition

2.1(2) and (3), we obtain λ1 − ess sup
( ∫ (

1∧ |z|(β+δ)∧2
)
gi(y, dz)

)
≤ K(δ) < ∞

for every δ > 0 and all i ∈ {0, 1, 2}. Moreover, due to Definition 2.1(3) we have

h(i)
y (z)|z|p ≤ K|z|−1−ε, (6.5)

for all |z| ≥ M , y ∈ [0, 1] \ L, i ∈ {0, 1, 2} and some K > 0. So together with
Definition 2.1(2) we obtain λ1 − ess supy∈[0,1]

( ∫
|z|p1{|z|≥1}gi(y, dz)

)
< ∞ for

each i ∈ {0, 1, 2} which is Assumption 6.1(a3).
Furthermore it follows that 1+2w

1−w = 6+10τ
3−5τ and 1+2w

1/2−w = 6+10τ
1−5τ , and as con-

sequence Assumption 2.3(c) implies Assumption 6.1(c).
We are thus left with proving Assumption 6.1(a(4)I) and (a(4)II). Obviously,

0 < v < r holds with the choice in (6.3). First, we verify Assumption 6.1(a(4)I).
To this end, we choose η > 0 and a Lebesgue null set L ∈ [0, 1] ∩ L1 such

that h
(i)
y (z) ≤ K|z|−(1+β) holds for all z ∈ (−η, η) \ {0}, y ∈ [0, 1] \ L, i ∈

{0, 1, 2} according to Definition 2.1(1) and we set α0 := η/2. Then for any
choice m1,m2 ∈ {g0, g1, g2} we get∫ ∫

1{|x−z|≤Δr
n}1{Δv

n/2<|x|≤α0}1{Δv
n/2<|z|≤α0}m1(y1, dx)m2(y2, dz)

≤ K

∫ ∫
1{|x−z|≤Δr

n}1{Δv
n/2<|x|≤α0}1{Δv

n/2<|z|≤α0}|x|−(1+β)|z|−(1+β)dxdz

≤ 2K

∞∫
0

∫ ∞

0

1{|x−z|≤Δr
n}1{Δv

n/2<x≤α0}1{Δv
n/2<z≤α0}x

−(1+β)z−(1+β)dxdz,
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for all (y1, y2) ∈ ([0, 1] \L)× ([0, 1] \L) and n ∈ N large enough. For the second
inequality we have used symmetry of the integrand as well as Δr

n < Δv
n/2. In

the following, we ignore the extra condition on x. Evaluation of the integral with
respect to x plus a Taylor expansion give the further upper bounds

K

∫ ∞

0

|(z −Δr
n)

β − (z +Δr
n)

β |
|z2 −Δ2r

n |β z−(1+β)1{Δv
n/2<z≤α0}dz

≤ KΔr
n

∫ ∞

0

ξ(z)β−1

|z2 −Δ2r
n |β z

−(1+β)1{Δv
n/2<z≤α0}dz

for some ξ(z) ∈ [z − Δr
n, z + Δr

n]. Finally, we distinguish the cases β < 1 and
β ≥ 1 for which the numerator has to be treated differently, depending on
whether it is bounded or not. The denominator is always smallest if we plug in
Δv

n/2 for z. Overall,∫ ∫
1{|x−z|≤Δr

n}1{Δv
n/2<|x|≤α0}1{Δv

n/2<|z|≤α0}m1(y1, dx)m2(y2, dz)

≤
{
KΔr

nΔ
−(1+β)v
n

∫ α0

Δv
n/2

z−(1+β)dz, if β < 1

KΔr
nΔ

−2βv
n

∫ α0

Δv
n/2

z−(1+β)dz, if β ≥ 1

≤ KΔr−(1+3β)v
n = KΔq

n

for all m1,m2 ∈ {0, 1, 2} and (y1, y2) ∈ [0, 1]2 \L2. Finally, we consider Assump-
tion 6.1(a(4)II), for which we proceed similarly with n ∈ N large enough, α > 0
and (y1, y2) ∈ [0, 1]2 \ L2, as well as m1,m2 ∈ {g0, g1, g2} arbitrary:∫ ∫

1{|x−z|≤Δr
n}1{|x|>α}1{|z|>α}m1(y1, dx)m2(y2, dz)

≤ O(Δr
n) + 2K

∫ ∞

M ′

∫ ∞

M ′
1{|x−z|≤Δr

n}1{x>α}1{z>α}x
−2z−2dxdz.

This inequality holds with a suitable M ′ > 0 due to Definition 2.1 (2) and (3), as
we have h(i)

y (z) ≤ K|z|−2 for y ∈ [0, 1] \ L, i ∈ {0, 1, 2} and large |z|. Therefore,∫ ∫
1{|x−z|≤Δr

n}1{|x|>α}1{|z|>α}m1(y1, dx)m2(y2, dz)

≤ O(Δr
n) +KΔr

n

∫ ∞

M ′

1

|z2 −Δ2r
n |z

−21{z>α}dz = o(Δq
n) (6.6)

for (y1, y2) ∈ [0, 1]2 \ L2 and any choice m1,m2 ∈ {g0, g1, g2}. The final bound
in (6.6) holds since the last integral is finite.

6.2. Weak convergence of the empirical truncated Lévy distribution
function

The proofs of the statements in Section 3 and Section 4 rely on two deep results
about the weak convergence of empirical processes which are the basic blocks
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in the statistics considered there. We begin with a central limit theorem for the
process

G(n)
ρ (θ, t) =

√
nΔn

(
N (n)

ρ (θ, t)−Nρ(g
(n); θ, t)

)
,

where Nρ(·, ·) and Nρ(g; ·, ·) are defined in (2.2) and (2.3), respectively. The
following result is a generalization of Theorem 3.1 in Hoffmann and Vetter (2017)
which can be obtained by the choice g0(y, dz) = ν(dz) for a Lévy measure ν
and g1 = g2 = 0. The proof is given in Section A of the supplement.

Theorem 6.3. Let Assumption 2.3 be satisfied. Then we have weak convergence

G
(n)
ρ � Gρ in �∞([0, 1] × R), where Gρ is a tight mean zero Gaussian process

in �∞([0, 1]× R) with covariance function

Hρ((θ1, t1); (θ2, t2)) :=

∫ θ1∧θ2

0

∫ t1∧t2

−∞
ρ2(z)g0(y, dz)dy. (6.7)

Additionally, the sample paths of Gρ are almost surely uniformly continuous
with respect to the semimetric

dρ((θ1, t1); (θ2, t2)) =
{∫ θ1

0

∫ t1∨t2

t1∧t2

ρ2(z)g0(y, dz)dy

+

∫ θ2

θ1

∫ t2

−∞
ρ2(z)g0(y, dz)dy

}1/2

(6.8)

for θ1 ≤ θ2.

We also need a result regarding the weak convergence of a bootstrapped
version of G(n)

ρ . The corresponding process is defined by

Ĝ(n)
ρ (θ, t) =

1√
nΔn

�nθ�∑
i=1

ξiρ
(
Δn

i X
(n)

)
1(−∞,t]

(
Δn

i X
(n)

)
1{|Δn

i X
(n)|>vn}, (6.9)

for (θ, t) ∈ [0, 1]×R, where the sequence of multipliers (ξi)i∈N satisfies Assump-
tion 3.6. The proof is given in Section B of the supplement.

Theorem 6.4. If Assumption 2.3 holds and the multipliers (ξi)i∈N satisfy As-

sumption 3.6, we have Ĝ
(n)
ρ �ξ Gρ in �∞([0, 1] × R), where the process Gρ is

defined in Theorem 6.3.

6.3. Proofs of the results in Section 3

Proof of Theorem 3.1. For each (θ, t) ∈ [0, 1]× R, n ∈ N we have under H
(loc)
1

T(n)
ρ (θ, t) = hn

(
G(n)

ρ

)
(θ, t) +

√
nΔn

(
Nρ(g

(n); θ, t)− �nθ�
n

Nρ(g
(n); 1, t)

)
= hn

(
G(n)

ρ

)
(θ, t) +

√
nΔn

(
θ − �nθ�

n

)∫ t

−∞
ρ(z)ν0(dz)
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+
(
Nρ(g1; θ, t)−

�nθ�
n

Nρ(g1; 1, t)
)

+
√
nΔn

(
Nρ(Rn; θ, t)−

�nθ�
n

Nρ(Rn; 1, t)
)
,

with the mappings hn : �∞([0, 1]× R) → �∞([0, 1]× R) defined by

hn(f)(θ, t) = f(θ, t)− �nθ�
n

f(1, t), (n ∈ N), h0(f)(θ, t) = f(θ, t)− θf(1, t).

(6.10)

Thus, by Assumption 2.3(a) we obtain T
(n)
ρ (θ, t) = hn

(
G

(n)
ρ

)
(θ, t)+Tρ,g1(θ, t)+

o(1), where the o-term is deterministic. By the same reasoning as in the proof of
Theorem 2.6 in Bücher et al. (2017) it can be seen that hn

(
G(n)

ρ

)
� h0

(
Gρ

)
= Tρ

in �∞([0, 1]×R). As a consequence, Slutsky’s lemma (Example 1.4.7 in Van der
Vaart and Wellner (1996)) yields the assertion, since the tight process Tρ is
separable (see Lemma 1.3.2 in the previously mentioned reference).

Proof of Proposition 3.3. (6.5) in the proof of Proposition 6.2 shows that As-
sumption 6.1(a3) is also valid for 2p instead of p. Thus, Theorem 6.3 also holds
with the function ρ replaced by ρ2. As a consequence, we have N (n)

ρ2 (1, t0) −
Nρ2(g(n); 1, t0) = oP(1). By (2.7) we obtain

Nρ2

(
g(n); 1, t0

)
=

∫ t0

−∞
ρ2(z)ν0(dz) +

1√
nΔn

∫ 1

0

∫ t0

−∞
ρ2(z)g1(y, dz)dy+

+

∫ 1

0

∫ t0

−∞
ρ2(z)Rn(y, dz)dy =

∫ t0

−∞
ρ2(z)ν0(dz) + o(1).

Finally, (N (n)

ρ2 (1, t0))
−1/21{N(n)

ρ2
(1,t0)>0} = (

∫ t0
−∞ ρ2(z)ν0(dz))

−1/2+oP(1) follows

due to
∫ t0
−∞ ρ2(z) ν0(dz) > 0. Thus, Theorem 3.1, the continuous mapping theo-

rem and Slutsky’s lemma (Example 1.4.7 in Van der Vaart and Wellner (1996))
yield

V
(n)
ρ,t0(θ) �

(∫ t0

−∞
ρ2(z)ν0(dz)

)−1/2(
Tρ(θ, t0) + Tρ,g1(θ, t0

)
= K(θ) + V̄

(g1)
ρ,t0 (θ),

in �∞([0, 1]), because the process (
∫ t0
−∞ ρ2(z)ν0(dz))

−1/2Tρ(·, t0) is a tight mean
zero Gaussian process with covariance function K(θ1, θ2) = (θ1∧θ2)−θ1θ2.

Proof of Theorem 3.7. Recall the Lipschitz continuous functions hn : �∞([0, 1]

×R) → �∞([0, 1]×R), (n ∈ N0) defined in (6.10). Then we have T̂(n)
ρ = hn(Ĝ

(n)
ρ )

and Proposition 10.7 in Kosorok (2008) together with Theorem 6.4 give h0(Ĝ
(n)
ρ )

�ξ h0(Gρ) in �∞([0, 1]× R). Moreover, we have

sup
(θ,t)∈[0,1]×R

∣∣hn(Ĝ
(n)
ρ )(θ, t)− h0(Ĝ

(n)
ρ )(θ, t)

∣∣ =
= sup

(θ,t)∈[0,1]×R

∣∣(θ − �nθ�
n

)
Ĝ(n)

ρ (1, t)
∣∣ = o(1)×OP(1) = oP(1)
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and thus Lemma E.1 yields T̂
(n)
ρ �ξ h0(Gρ). The covariance structure (3.8) of

h0(Gρ) = Tρ can be obtained using (6.7).

Proof of Proposition 3.10. First, we show (3.12) with a reasoning which is simi-
lar to the proof of Proposition F.1 in the supplement to Bücher and Kojadinovic
(2016).

Fix α ∈ (0, 1) \ Q. According to Proposition E.2 and the continuous map-
ping theorem we have (T (n)

ρ , T̂ (n)

ρ,ξ(1)
, . . . , T̂ (n)

ρ,ξ(B)) � (Tρ,g1 , Tρ,(1), . . . , Tρ,(B)) in

(RB+1,BB+1) for fixed B ∈ N, where Tρ,(1), . . . , Tρ,(B) are independent copies
of the limit Tρ in Corollary 3.9. Furthermore, let Ln,B be the empirical c.d.f.

based on the observations T̂ (n)

ρ,ξ(1)
, . . . , T̂ (n)

ρ,ξ(B) and let LB be the empirical c.d.f.
calculated from Tρ,(1), . . . , Tρ,(B). Due to the right continuity of Ln,B we have

P
(
T (n)
ρ ≥ q̂

(B)
1−α

(
T (n)
ρ

))
= P

(
Ln,B(T

(n)
ρ ) ≥ 1− α

)
.

Moreover, using Corollary 1.3 and Remark 4.1 in Gaenssler et al. (2007) as
well as Assumption 2.3(a3) and the covariance structure (3.3) of the Gaussian
process Tρ in Theorem 3.1 it follows that Tρ has a continuous c.d.f. Thus, the
function Ψ(B) : RB+1 → R given by Ψ(B)(x0, x1, . . . , xB) = B−1

∑B

i=1 1(xi ≤
x0) is almost surely continuous with respect to the image measure (Tρ,g1 , Tρ,(1),
. . . , Tρ,(B))(P). As a consequence, we have Ln,B(T

(n)
ρ ) � LB(Tρ,g1) as n → ∞

and with the Portmanteau theorem we obtain

lim
n→∞

P
(
T (n)
ρ ≥ q̂

(B)
1−α

(
T (n)
ρ

))
= P

(
LB(Tρ,g1) ≥ 1− α

)
,

because 1−α /∈ {0, 1
B , . . . , B−1

B , 1}. By the Glivenko-Cantelli theorem for every
ε ∈ (0, 1− α) we can choose B0(ε) ∈ N such that

P
(
sup
x∈R

|LB(x)− Lρ(x)| ≥ ε
)
≤ ε, (6.11)

for all B ≥ B0(ε), since Tρ,(1), . . . , Tρ,(B) are i.i.d. with distribution function Lρ.
Thus, for every such B ∈ N we have

P
(
LB(Tρ,g1) ≥ 1− α

)
= P

(
LB(Tρ,g1)− Lρ(Tρ,g1) + Lρ(Tρ,g1) ≥ 1− α

)
≤ P

(
LB(Tρ,g1)− Lρ(Tρ,g1) ≥ ε

)
+ P

(
Lρ(Tρ,g1) ≥ 1− α− ε

)
≤ ε+ P

(
Lρ(Tρ,g1) ≥ 1− α− ε

) ε↓0→ P
(
Lρ(Tρ,g1) ≥ 1− α

)
and we obtain

lim sup
B→∞

P
(
LB(Tρ,g1) ≥ 1− α

)
≤ P

(
Lρ(Tρ,g1) ≥ 1− α

)
. (6.12)

The terms on both sides of inequality (6.12) are increasing in α and the right-
hand side is right continuous in α. As a consequence, (6.12) is also valid for each
α ∈ (0, 1) ∩Q. Furthermore, we have

lim inf
B→∞

P
(
LB(Tρ,g1) ≥ 1− α

)
≥ P

(
Lρ(Tρ,g1) > 1− α

)
, (6.13)
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because according to (6.11)

P
(
LB(Tρ,g1) ≥ 1− α

)
= P

(
LB(Tρ,g1)− Lρ(Tρ,g1) + Lρ(Tρ,g1) ≥ 1− α

)
≥ P

(
Lρ(Tρ,g1) ≥ 1− α+ ε

)
− ε

ε↓0→ P
(
Lρ(Tρ,g1) > 1− α

)
holds. Both sides of (6.13) are increasing in α and the right-hand side is left
continuous in α. Thus, (6.13) is also true for α ∈ (0, 1) ∩ Q. Finally, (3.14)
can be shown by exactly the same steps as above and (3.13) is an immediate
consequence of the Portmanteau theorem.

Proof of Corollary 3.12. Under H0 we have Tρ,g1 = 0 and Tρ,g1 = Tρ is dis-
tributed acccording to Lρ. Due to ν0 �= 0, Assumption 2.3(a3) and the covari-
ance structure (3.3) of Tρ the c.d.f. Lρ is continuous in virtue of Corollary 1.3
and Remark 4.1 in Gaenssler et al. (2007). As a consequence, Lρ(Tρ,g1) = Lρ(Tρ)
is uniformly distributed on (0, 1) and we have P

(
Lρ(Tρ) > 1−α

)
= P

(
Lρ(Tρ) ≥

1 − α
)
= α for all α ∈ (0, 1). Hence, (3.15) follows from (3.12) and the claim

(3.16) can be obtained by a similar reasoning using (3.13) as well as (3.14).

Proof of Proposition 3.14. As in the proof of Proposition 3.3 we obtain

sup
(θ,t)∈[0,1]×R

∣∣N (n)
ρ (θ, t)−Nρ(g0; θ, t)

∣∣ = oP(1).

(nΔn)
−1/2T(n)

ρ (θ, t) is given by N (n)
ρ (θ, t)− �nθ�

n N (n)
ρ (1, t) according to (3.2). Con-

sequently, a simple calculation shows

(nΔn)
−1/2T(n)

ρ (θ, t) = Nρ(g0; θ, t)− θNρ(g0; 1, t) + oP(1) = T ρ
(1)(θ, t) + oP(1)

under H1, where the o-term is uniform in (θ, t) ∈ [0, 1]× R.

Proof of Proposition 3.13. By the continuous mapping theorem, Theorem 3.7
and Remark 3.5(ii) we have T̂ (n)

ρ,ξ(b)
= OP(1) and Ŵ (n,t0)

ρ,ξ(b)
= OP(1) for all b ∈

{1, . . . , B}. Therefore, it suffices to show P(V (n)
ρ,t0

≥ K) → 1 and P(W (n,t0)
ρ ≥

K) → 1 for every K > 0 under H(ρ,t0)

1 and P(T (n)
ρ ≥ K) → 1 for each K > 0

under H1.
According to the proof of Proposition 3.3 and Proposition 3.14 the quantities

(nΔn)
−1/2V (n)

ρ,t0
and (nΔn)

−1/2W (n,t0)
ρ converge to a constant in (0,∞) in outer

probability under H(ρ,t0)

1 , because |T ρ

(1)(θ0, t0)| > 0 in this case. Furthermore,
due to Assumption 2.3(a3) we have sup(θ,t)∈[0,1]×R |T ρ

(1)(θ, t)| > 0 under H1 and
(nΔn)

−1/2T (n)
ρ = sup(θ,t)∈[0,1]×R |T ρ

(1)(θ, t)|+ oP(1), because of Proposition 3.14.
Thus, the assertion follows from nΔn → ∞.

Proof of Proposition 3.15. According to Proposition 3.14 the random functions
θ �→ supt∈R |(nΔn)

−1/2T(n)
ρ (θ, t)| converges weakly in �∞([0, 1]) to the continuous

function θ �→ supt∈R |T ρ

(1)(θ, t)|, which due to Assumption 2.3(a3) attains a
unique maximum at θ0 under H1. Therefore, the claim for H1 follows from the
argmax-continuous mapping theorem (Theorem 2.7 in Kim and Pollard (1990)).
The assertion regarding H(ρ,t0)

1 follows with a similar reasoning.
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6.4. Proofs of the results in Section 4

Proof of Lemma 4.1. If the kernel g0(·, dz) is Lebesgue almost everywhere con-
stant on [0, θ], we have D(g0)

ρ (ζ, θ, t) = 0 for all 0 ≤ ζ ≤ θ and t ∈ R, since

ζ−1
∫ ζ

0

∫ t

−∞ ρ(z)g0(y, dz)dy is constant on (0, θ].

If on the other hand D(g0)
ρ (ζ, θ, t) = 0 for all ζ ∈ [0, θ] and t ∈ R we have

ζ∫
0

∫ t

−∞
ρ(z)g0(y, dz)dy = ζ

(1
θ

∫ θ

0

∫ t

−∞
ρ(z)g0(y, dz)dy

)
=: ζAθ(t)

for each ζ ∈ [0, θ] and t ∈ R. Therefore,
∫ t

−∞ ρ(z)g0(y, dz) = Aθ(t) holds for
each fixed t ∈ R and every y ∈ [0, θ] \ M(t) by Assumption 2.3(a4) and the
fundamental theorem of calculus. Consequently,

t∫
−∞

ρ(z)g0(y, dz) = Aθ(t) (6.14)

holds for every t ∈ Q and each y ∈ [0, θ] outside the Lebesgue null set
⋃

t∈Q M(t).

According to Assumption 2.3 the function y �→
∫
(1 ∧ |z|p)g0(y, dz) is bounded

on [0, 1]. Hence, by Lebesgue’s dominated convergence theorem and the assump-
tions on ρ the quantities on both sides of (6.14) are right-continuous in t ∈ R.
As a consequence, (6.14) holds for every t ∈ R and each y ∈ [0, θ] outside the
Lebesgue null set

⋃
t∈Q M(t). Thus, by the uniqueness theorem for measures the

kernel ρ(z)g0(y, dz) is Lebesgue almost everywhere on [0, θ] equal to the finite
signed measure ηθ with measure generating function t �→ Aθ(t) of bounded vari-
ation. Now, recall that g0(y, dz) does not charge {0}, so by Assumption 2.3(a3)
the kernel g0(y, dz) is Lebesgue almost everywhere on [0, θ] equal to the measure
with density (1/ρ(z))1{ρ(z) �=0}ηθ(dz).

Proof of Theorem 4.4. We consider the functional Λ: �∞([0, 1]×R) → �∞(C ×
R) defined by

Λ(f)(ζ, θ, t) := f(ζ, t)− ζ

θ
f(θ, t). (6.15)

As ‖Λ(f1)− Λ(f2)‖C×R ≤ 2‖f1 − f2‖[0,1]×R the mapping Λ is Lipschitz contin-
uous. Thus, by Theorem 6.3 and the continuous mapping theorem Λ(G(n)

ρ ) con-
verges weakly in �∞(C×R) to the tight mean zero Gaussian processHρ := Λ(Gρ)

with covariance structure (4.11). Furthermore, we have H
(n)
ρ = Λ(G

(n)
ρ )+D

(g1)
ρ +√

nΔnD
(Rn)
ρ = Λ(G

(n)
ρ ) + D

(g1)
ρ + o(1), where the o-term is deterministic and

uniform in (ζ, θ, t) ∈ C × R by Assumption 2.3. Finally, the desired weak con-
vergence follows using Slutsky’s lemma (Example 1.4.7 in Van der Vaart and
Wellner (1996)) and the fact that Hρ is separable as it is tight (see Lemma 1.3.2
in the previously mentioned reference).
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Proof of Theorem 4.5. We have Ĥ(n)
ρ = Λ(Ĝ(n)

ρ ) and Hρ = Λ(Gρ) with the Lip-
schitz continuous mapping Λ defined in (6.15). Thus, the assertion follows from
Proposition 10.7 in Kosorok (2008).

Proof of Theorem 4.7. 4.8 and 4.9. The assertions follow by a similar reasoning
as given in the proof of Theorem 4.2, 4.3 and 4.4 in Hoffmann et al. (2017),
respectively.

Proof of Theorem 4.10. We start with a proof of ϕ∗
n

P→ 0 which is equivalent to

κ̂
(αn,ρ)
n,Bn

(r)/
√
nΔn

P→ 0. Therefore, we have to show

P
(
κ̂

(αn,ρ)
n,Bn

(r)/
√

nΔn ≤ x
)
= P

( 1

Bn

Bn∑
i=1

1{Ĥ(n,i)
ρ,∗ (θ̂∗

n)≤(
√
nΔnx)1/r} ≥ 1− αn

)
→ 1,

(6.16)

for arbitrary x > 0, by the definition of κ̂
(αn,ρ)
n,Bn

(r) in (4.16). Since the

1{Ĥ(n,i)
ρ,∗ (θ̂∗

n)≤(
√
nΔnx)1/r} − Pξ

(
Ĥ

(n)
ρ,∗(θ̂

∗
n) ≤ (

√
nΔnx)

1/r
)
, i = 1, . . . , Bn,

are pairwise uncorrelated with mean zero and bounded by 1, we have

P

(∣∣∣ 1

Bn

Bn∑
i=1

1{Ĥ(n,i)
ρ,∗ (θ̂∗

n)≤(
√
nΔnx)1/r} − Pξ

(
Ĥ

(n)
ρ,∗(θ̂

∗
n) ≤ (

√
nΔnx)

1/r
)∣∣∣ > αn/2

)
≤ 4α−2

n B−1
n → 0.

Therefore, in order to prove (6.16), it suffices to verify

P

(
Pξ

(
Ĥ

(n)
ρ,∗(θ̂

∗
n) ≤ (

√
nΔnx)

1/r
)
< 1− αn/2

)
≤ 2

αn
P

(
Ĥ

(n)
ρ,∗(θ̂

∗
n) > (

√
nΔnx)

1/r
)

≤ 2α−1
n P(QC

n )

+ 2α−1
n P

({
2 sup

t∈R

sup
θ∈[0,1]

|Ĝ(n)
ρ (θ, t)| > (

√
nΔnx)

1/r
}
∩Qn

)
→ 0,

(6.17)

with Qn the set defined in (A.16). The first inequality in the above display
follows with the Markov inequality and the last inequality in (6.17) is a conse-

quence of the fact that Ĥ(n)
ρ,∗(θ̂∗n) ≤ Ĥ

(n)
ρ,∗(1) ≤ 2 supt∈R supθ∈[0,1] |Ĝ(n)

ρ (θ, t)|. Due

to Lemma C.5 in part C of the supplement we obtain P
(
QC

n

)
≤ KnΔ1+τ

n and
consequently α−1

n P(QC
n ) → 0. For the second summand on the right-hand side

of (6.17) the definition of Ĝ(n)
ρ in (6.9) gives

E

{
sup
t∈R

sup
θ∈[0,1]

|Ĝ(n)
ρ (θ, t)|1Qn

}
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≤ 1√
nΔn

n∑
i=1

E
(
|ξi||ρ(Δn

i X
(n))|1{|Δn

i X
(n)|>vn}1Qn

)
≤ K

√
nΔn.

The final estimate above follows using Lemma C.21 in part C of the supplement,
E|ξi| ≤ 1 for every i = 1, . . . , n and independence of the multipliers and the other
involved quantities. Therefore, with the Markov inequality we obtain

α−1
n P

({
2 sup

t∈R

sup
θ∈[0,1]

|Ĝ(n)
ρ (θ, t)| > (

√
nΔnx)

1/r
}
∩Qn

)

≤ K
(
(nΔn)

1−r
2r αn

)−1

→ 0,

by the assumptions on the involved sequences. Thus, we conclude β∗
n

P→ 0.

Next we show κ̂
(αn,ρ)
n,Bn

(r)
P→ ∞, which is equivalent to

P
(
κ̂

(αn,ρ)
n,Bn

(r) ≤ x
)
= P

( 1

Bn

Bn∑
i=1

1{Ĥ(n,i)
ρ,∗ (θ̂∗

n)≤x1/r} ≥ 1− αn

)
→ 0,

for each x > 0. By the same considerations as in the previous paragraph it is
sufficient to show

P

(
Pξ

(
Ĥ

(n)
ρ,∗(θ̂

∗
n) > x1/r

)
≤ 2αn

)
→ 0.

Let t0 ∈ R with Nρ2(θ0, t0) > 0. By continuity of the function ζ �→ Nρ2(ζ, t0)
we can find 0 < ζ̄ < θ̄ < θ0 with

Nρ2(ζ̄, t0) > 0. (6.18)

As Ĥ
(n)
ρ (ζ̄, θ̄, t0) ≤ Ĥ

(n)
ρ,∗(θ̂∗n) =⇒ Pξ

(
Ĥ

(n)
ρ (ζ̄, θ̄, t0) > x1/r

)
≤ Pξ

(
Ĥ

(n)
ρ,∗(θ̂∗n) >

x1/r
)
on the set {θ̄ < θ̂∗n} and consistency of the preliminary estimate it further

suffices to prove

P

(
Pξ

(
Ĥ

(n)
ρ,∗(θ̂

∗
n) > x1/r

)
≤ 2αn, θ̄ < θ̂∗n

)
≤ P

(
Pξ

(
Ĥ(n)

ρ (ζ̄ , θ̄, t0) > x1/r
)
≤ 2αn

)
→ 0. (6.19)

For a proof (6.19) we use a Berry-Esseen type result. Recall the notation

Ĥ
(n)
ρ (ζ̄, θ̄, t0) =

1√
nΔn

n∑
j=1

B̂n
j ξj from (4.12) with B̂n

j = (1{j≤�nζ̄�} − ζ̄
θ̄
1{j≤�nθ̄�})

×Ân
j , where

Ân
j = ρ(Δn

j X
(n))1(−∞,t0](Δ

n
j X

(n))1{|Δn
j X

(n)|>vn}, j = 1, . . . , n.

It is easy to see that Ŵ 2
n := Eξ(Ĥ

(n)
ρ (ζ̄, θ̄, t0))

2 = 1
nΔn

n∑
j=1

(B̂n
j )

2. Thus, Theorem

2.1 in Chen and Shao (2001) yields
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sup
x∈R

∣∣∣Pξ

(
Ĥ(n)

ρ (ζ̄, θ̄, t0) > x
)
− (1− Φ(x/Ŵn))

∣∣∣
≤ K

{ n∑
i=1

EξÛ
2
i,n1{|Ûi,n|>1} +

n∑
i=1

Eξ|Ûi,n|31{|Ûi,n|≤1}

}
, (6.20)

if Ŵn > 0 with Ûi,n =
B̂n

i ξi√
nΔnŴn

and where Φ denotes the standard normal

distribution function. Before we proceed further in the proof of (6.19), we first
show

1

Ŵ 2
n

=
nΔn

n∑
j=1

(B̂n
j )

2

= OP(1), (6.21)

that is lim
M→∞

lim sup
n→∞

P
(
nΔn > M

n∑
j=1

(B̂n
j )

2
)
= 0. Let M > 0. Then a straight-

forward calculation gives

P

(
nΔn > M

n∑
j=1

(B̂n
j )

2
)
≤ P

(
nΔn > M ′

�nζ̄�∑
j=1

(Ân
j )

2
)
= P

(
1/M ′ > N

(n)
ρ2 (ζ̄, t0)

)
,

with M ′ = M(1− ζ̄/θ̄)2. Consequently, with (6.18) we obtain (6.21) due to

N
(n)
ρ2 (ζ̄, t0) = Nρ2(g(n); ζ̄, t0) + oP(1) = Nρ2(g0; ζ̄, t0) + oP(1),

because Theorem 6.3 also holds for ρ2 since Assumption 6.1 is also valid for
2p instead of p (cf. (6.5) in the proof of Proposition 6.2). Recall that our main
objective is to show (6.19) and thus we consider the Berry-Esseen bound on
the right-hand side of (6.20). For the first summand we distinguish two cases
according to the assumptions on the multiplier sequence.

Let us discuss the case of bounded multipliers first. For M > 0 we have

|Ûi,n| ≤
√
MK√
nΔn

for all i = 1, . . . , n on the set {1/Ŵ 2
n ≤ M}, since |B̂n

i | is

bounded. As a consequence,

n∑
i=1

EξÛ
2
i,n1{|Ûi,n|>1} = 0 (6.22)

for large n ∈ N on the set {1/Ŵ 2
n ≤ M}.

In the situation of normal multipliers, recall that there exist constants K1,
K2 > 0 such that for ξ ∼ N (0, 1) and y > 0 large enough we have

Eξξ
21{|ξ|>y} =

2√
2π

∫ ∞

y

z2e−z2/2dz ≤ KP(N (0, 2) > y) ≤ K1 exp(−K2y
2).

(6.23)
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Thus, we can calculate for n ∈ N large enough on the set {1/Ŵ 2
n ≤ M}

n∑
i=1

EξÛ
2
i,n1{|Ûi,n|>1} =

n∑
i=1

( n∑
j=1

(B̂n
j )

2
)−1

(B̂n
i )

2Eξξ
2
i 1{|ξi|>(

n∑
j=1

(B̂n
j )2)1/2/|B̂n

i |}

≤ K
n∑

i=1

( n∑
j=1

(B̂n
j )

2
)−1

Eξξ
2
i 1{|ξi|>(

n∑
j=1

(B̂n
j )2)1/2/K}

≤ KM

nΔn

n∑
i=1

Eξξ
2
i 1{|ξi|>(nΔn/M)1/2/K}

≤ K1

Δn
exp(−K2nΔn),

where K1 and K2 depend on M . The first inequality in the display above uses
boundedness of |B̂n

i | again and the last one follows with (6.23). Now, accord-
ing to Assumption 2.3(b) let 0 < t2 ≤ 1 and δ > 0 with n−t2+δ = o(Δn).
Furthermore, define δ̄ > 0 via 1 + δ̄ = 1/(t2 − δ) and q̄ := 1/δ̄. Then we
have nΔ1+δ̄

n → ∞ and for n ≥ N(M) ∈ N on the set {1/Ŵ 2
n ≤ M}, using

exp(−K2nΔn) ≤ (nΔn)
−q̄, we conclude

n∑
i=1

EξÛ
2
i,n1{|Ûi,n|>1} ≤ K1Δ

−1
n (nΔn)

−q̄ = K1

(
nΔ1+δ̄

n

)−q̄
. (6.24)

We now consider the second term on the right-hand side of (6.20), for which

n∑
i=1

Eξ|Ûi,n|31{|Ûi,n|≤1} ≤
n∑

i=1

( n∑
j=1

(B̂n
j )

2
)−3/2

|B̂n
i |3Eξ|ξi|3

≤ K

(nΔn)3/2

n∑
i=1

|B̂n
i |

holds on {1/Ŵ 2
n ≤ M}, using boundedness of |B̂n

i | again. With Lemma C.21 we
see that

E

( n∑
i=1

|B̂n
i |1Qn

)
≤ 2E

( n∑
i=1

|Ân
i |1Qn

)
≤ KnΔn.

Consequently,

P

({
1/Ŵ 2

n ≤ M and K

n∑
i=1

Eξ|Ûi,n|31{|Ûi,n|≤1} > (nΔn)
−1/4

}
∩Qn

)

≤ P

({ K

(nΔn)3/2

n∑
i=1

|B̂n
i | > (nΔn)

−1/4
}
∩Qn

)
≤ K(nΔn)

−1/4 (6.25)

follows. Thus, from (6.22), (6.24) and (6.25) we see that with K > 0 from (6.20)
for each M > 0 there exists a K3 > 0 such that
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P

(
1/Ŵ 2

n ≤ M and K
{ n∑

i=1

EξÛ
2
i,n1{|Ûi,n|>1} +

n∑
i=1

Eξ|Ûi,n|31{|Ûi,n|≤1}

}

> K3((nΔn)
−1/4 + (nΔ1+δ̄

n )−q̄)
)
→ 0. (6.26)

Now we can show (6.19). Let η > 0 and according to (6.21) choose an M > 0
with P(1/Ŵ 2

n > M) < η/2 for all n ∈ N. For this M > 0 choose a K3 > 0 such
that the probability in (6.26) is smaller than η/2 for large n. Then for n ∈ N

large enough we have

P

(
Pξ

(
Ĥ(n)

ρ (ζ̄, θ̄, t0)) > x1/r
)
≤ 2αn

)
<

P

(
(1− Φ(x1/r/Ŵn)) ≤ 2αn +K3((nΔn)

−1/4 + (nΔ1+δ̄
n )−q̄)

and 1/Ŵ 2
n ≤ M

)
+ η = η,

using (6.20) and the fact, that if 1/Ŵ 2
n ≤ M there exists a c′ > 0 with (1 −

Φ(x1/r/Ŵn)) > c′.

Thus, we have shown κ̂
(αn,ρ)
n,Bn

(r)
P→ ∞ and it remains to prove (4.17). Let

K = ((1 + ε)/c)1/� > (1/c)1/� for some ε > 0. Then

P

(
θ̂(n)ρ (κ̂

(αn,ρ)
n,Bn

(r)) > θ0 +Kϕ∗
n

)
≤ P

(√
nΔnD

(n)
ρ,∗(θ) ≤ κ̂

(αn,ρ)
n,Bn

(r) for some θ > θ0 +Kϕ∗
n

)
≤ P

(√
nΔnDρ(θ)−H

(n)
ρ,∗(1) ≤ κ̂

(αn,ρ)
n,Bn

(r) for some θ > θ0 +Kϕ∗
n

)
.

By (4.13) there exists a y0 > 0 with

inf
θ∈[θ0+Ky1,1]

Dρ(θ) = Dρ(θ0 +Ky1) ≥ (c/(1 + ε/2))(Ky1)
�

for all 0 ≤ y1 ≤ y0. Distinguishing the cases {ϕ∗
n > y0} and {ϕ∗

n ≤ y0} we get

due to ϕ∗
n

P→ 0

P

(
θ̂(n)ρ (κ̂

(αn,ρ)
n,Bn

(r)) > θ0 +Kϕ∗
n

)
≤ P

(√
nΔn(c/(1 + ε/2))(Kε∗n)

� −H
(n)
ρ,∗(1) ≤ κ̂

(αn,ρ)
n,Bn

(r)
)
+ o(1)

≤ P (1)
n + P (2)

n + o(1)

with

P (1)
n = P

(√
nΔn(c/(1 + ε/2))(Kϕ∗

n)
� −H

(n)
ρ,∗(1) ≤ κ̂

(αn,ρ)
n,Bn

(r)

and H
(n)
ρ,∗(1) ≤ bn

)
,

P (2)
n = P

(
H

(n)
ρ,∗(1) > bn

)
,
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where bn :=

√
κ̂

(αn,ρ)
n,Bn

(r). Due to the choice K =
(
(1 + ε)/c

)1/�

and the

definition of ϕ∗
n it is clear that P (1)

n = o(1), because κ̂
(αn,ρ)
n,Bn

(r)
P→ ∞.

Concerning P (2)
n let Fn be the distribution function of H

(n)
ρ,∗(1) and let F

be the distribution function of Hρ,∗(1). Then according to Corollary 1.3 and
Remark 4.1 in Gaenssler et al. (2007) the function F is continuous, because
Nρ2(θ0, t0) > 0 for some t0 ∈ R. As a consequence, by Theorem 4.4 and the
continuous mapping theorem Fn converges pointwise to F . Thus, for η > 0
choose an x > 0 with 1− F (x) < η/2 and conclude

P (2)
n ≤ P(bn ≤ x) + 1− Fn(x) ≤ P(bn ≤ x) + 1− F (x) + |Fn(x)− F (x)| < η,

for n ∈ N large enough, because of κ̂
(αn,ρ)
n,Bn

(r)
P→ ∞.

Proof of Proposition 4.13, Corollary 4.14 and Proposition 4.15. The assertions
can be obtained by a similar reasoning as in the proofs of Proposition 3.10,
Corollary 3.12 and Proposition 3.13 and we omit the details.

Proof of the results in Example 2.5, Example 4.3 and Example 4.11(2).

(1) First we show that a transition kernel of the form (2.9) belongs to G(β̂, p̂)
and the function ρL,p̂ satisfies Assumption 2.3(a2) and (a3) for p = p̂. Let Â
denote a bound for A : [0, 1] → (0,∞), then for z ∈ (−1, 1) \ {0} we obtain

sup
y∈[0,1]

A(y)hβ(y),p(y)(z) ≤ Â sup
y∈[0,1]

|z|−(1+β(y)) ≤ Â|z|−(1+β̂),

so Definition 2.1(1) is satisfied. Furthermore, for n ∈ N we have

sup
z∈Cn

sup
y∈[0,1]

A(y)hβ(y),p(y)(z) ≤ Â sup
y∈[0,1]

n1+β(y) ≤ Ân1+β̂ ,

which yields Definition 2.1(2). Definition 2.1(3) also holds, because for |z| >
2 we obtain

sup
y∈[0,1]

A(y)hβ(y),p(y)(z) ≤ Â sup
y∈[0,1]

|z|−p(y) ≤ Â|z|−(2p̂∨2)−ε,

since p̂ > 1. Obviously, ρL,p̂ : R → R is a bounded function with ρL,p̂(0) = 0
and with the continuous derivative

ρ′L,p̂(z) = L sign(z)×

⎧⎪⎨
⎪⎩
2p̂|z|p̂−1, for 0 ≤ |z| ≤ 1,

2p̂(2− |z|), for 1 ≤ |z| ≤ 2,

0, for |z| > 2.

Consequently, there exists a K > 0 such that |ρ′L,p̂(z)| ≤ K|z|p̂−1 holds
for each z ∈ R and Assumption 2.3(a2) is satisfied. Moreover, Assumption
2.3(a3) is valid as well, since ρL,p̂(1) > 0 and ρ′L,p̂(z) ≥ 0 on [1, 2].
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(2) Now we show that if additionally (4.7) and (4.8) are satisfied, k0 < ∞ holds
and Nk(t) is a bounded function on R for each k ∈ N0 as stated in Example
4.11(2). To this end, elementary calculations show that the function N̄ is
given by N̄(y, t) = ΥL,p̂(Ā(y), β̄(y), p̄(y), t) with

ΥL,p̂(a, β, p, t) =

La×

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

2+p̂
p−1 |t|1−p, for t ≤ −2
2+p̂
p−12

1−p + 4− 2p̂
3 − 2p̂t2 − p̂

3 t
3 + (2− 3p̂)t, for − 2 ≤ t ≤ −1

2+p̂
p−12

1−p + 2 + 2p̂
3 + 2

p̂−β (1 + sign(t)|t|p̂−β), for − 1 ≤ t ≤ 1
2+p̂
p−12

1−p + 2p̂+ 4
p̂−β + 2p̂t2 − p̂

3 t
3 + 2t− 3p̂t, for 1 ≤ t ≤ 2

4+2p̂
p−1 21−p + 4

p̂−β + 4p̂
3 + 4 + 2+p̂

1−p t
1−p, for t ≥ 2.

(6.27)

Furthermore, it is well known from complex analysis that there is a domain
U ⊂ U∗ ⊂ C with holomorphic functions A∗ : U∗ → C, β∗ : U∗ → Cp̂− :=
{u ∈ C | Re(u) < p̂} and p∗ : U∗ → C1+ := {u ∈ C | Re(u) > 1} such that
Ā, β̄ and p̄ are the restrictions of A∗, β∗ and p∗ to U . Moreover, it can be
seen from (6.27) that for fixed t ∈ R the mapping (a, β, p) �→ ΥL,p̂(a, β, p, t)
is partially holomorphic on C × Cp̂− × C1+, that is it is holomorphic in
each of the variables a, β and p when the remaining variables are fixed. By
a deep result of complex analysis in several variables which dates back to
Hartogs (1906) this implies that (a, β, p) �→ ΥL,p̂(a, β, p, t) is holomorphic
on C× Cp̂− × C1+ for fixed t ∈ R (see also Remark 1.2.28 in Scheidemann
(2005)). Additionally, by Proposition 1.2.2(5) in Scheidemann (2005) the
function Ξ : U∗ → C × Cp̂− × C1+ with Ξ(y) := (A∗(y), β∗(y), p∗(y)) is
holomorphic and thus for each fixed t ∈ R the mapping y �→ N̄(y, t) is
real analytic, because it is the restriction of the holomorphic function y �→
ΥL,p̂(Ξ(y), t) to U . Consequently, by shrinking the set U if necessary, we
have the power series expansion

N̄(y, t) =
∞∑
k=0

Nk(t)

k!
(y − θ0)

k, (6.28)

for every y ∈ U and t ∈ R. If k0 = ∞, then for any k ∈ N and t ∈ R we
have Nk(t) = 0. Thus, we obtain for some constant K > 0

ΨL,p̂(y) +K
Ā(y)

1− p̄(y)
t1−p̄(y) = N0(t) (6.29)

for each t ≥ 2 and y ∈ U , where

ΨL,p̂(y) = LĀ(y)
( 4 + 2p̂

p̄(y)− 1
21−p̄(y) +

4

p̂− β̄(y)
+

4p̂

3
+ 4

)
. (6.30)

Taking the derivative with respect to y ∈ U on both sides of (6.29) yields
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Ψ′
L,p̂(y) +K

Ā′(y)(1− p̄(y)) + Ā(y)p̄′(y)

(1− p̄(y))2
t1−p̄(y)

− p̄′(y)
KĀ(y)

1− p̄(y)
log(t)t1−p̄(y) = 0, (6.31)

for each y ∈ U and t ≥ 2. Hence, p̄′(y) is equal to zero for each y ∈ U ,
because otherwise the display above is not valid for each t ≥ 2. This fact
together with (6.31) gives

Ψ′
L,p̂(y) +K

Ā′(y)

1− p̄(y)
t1−p̄(y) = 0,

for all y ∈ U and t ≥ 2. Consequently, Ā′(y) = 0 holds for every y ∈ U and
with (6.30) we obtain

Ψ′
L,p̂(y) = 4LĀ(θ0)β̄

′(y)(p̂− β̄(y))−2 = 0, (y ∈ U)

which implies β̄′(y) = 0 for all y ∈ U . Thus, k0 = ∞ contradicts the
assumption that at least one of the functions Ā, β̄ and p̄ is non-constant.
The following consideration will be helpful in order to show that Nk(t) is
bounded in t ∈ R for each k ∈ N0. Let f1, f2 : U × R → R be functions,
which are arbitrarily often differentiable with respect to y ∈ U for fixed
t ∈ R such that for each � ∈ N0 the �-th derivatives with respect to y satisfy

sup
t∈R

{|f (�)
1 (θ0, t)| ∨ |f (�)

2 (θ0, t)|} ≤ K(K�)�

for some constant K > 0 which does not depend on �. (Here we set 00 := 1.)
Then by the product formula for higher derivatives we obtain for the �-th
derivative with respect to y of the product of f1 and f2

sup
t∈R

|(f1f2)(�)(θ0, t)| = sup
t∈R

∣∣∣ �∑
j=0

(
�

j

)
f
(j)
1 (θ0, t)f

(�−j)
2 (θ0, t)

∣∣∣
≤ K2(K�)�

�∑
j=0

(
�

j

)
≤ K(K�)�.

Observing (6.27) now yields a constant K > 0 such that

sup
t∈R

|N�(t)| ≤ K(K�)� (6.32)

for each � ∈ N0 as soon as we can show that there exists a K > 0 such that
for every � ∈ N0 the following bounds for the derivatives hold

|Ā(�)(θ0)| ≤ K(K�)�, (6.33)∣∣∣( 1

p̄(y)− 1

)(�)

(θ0)
∣∣∣ ≤ K(K�)�, (6.34)
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∣∣∣( 1

p̂− β̄(y)

)(�)

(θ0)
∣∣∣ ≤ K(K�)�, (6.35)

sup
t≥2

∣∣∣(t1−p̄(y)
)(�)

(θ0)
∣∣∣ ≤ K(K�)�, (6.36)

sup
t∈[0,1]

∣∣∣(tp̂−β̄(y)
)(�)

(θ0)
∣∣∣ ≤ K(K�)�. (6.37)

Let Ā(y) =
∑∞

�=0 A�(y − θ0)
� be the power series expansion of the real

analytic function Ā around θ0. By the definition of real analytic functions
this power series has a positive radius of convergence and due to the Cauchy-
Hadamard formula this is equivalent to the existence of a constant K > 0
with |A�| ≤ K�+1 for each � ∈ N0. Thus, because of Ā(�)(θ0) = �!A� for
each � ∈ N0, (6.33) follows. By assumption in Example 4.3 we have β̄(y) ≤
β̂ ≤ 1 ∨ β̂ < p̂ < p̄(y) for each y ∈ U . As a consequence, the functions
y �→ 1

p̄(y)−1 and y �→ 1
p̂−β̄(y)

are real analytic on U as compositions of real

analytic functions. So the same reasoning as above yields (6.34) and (6.35).
Let the affine linear functions β̄ and p̄ be given by β̄(y) = β0 + β1(y − θ0)
and p̄(y) = p0 + p1(y − θ0). Then for � ∈ N0, t > 0 we have

(
t1−p̄(y)

)(�)

(θ0) = t1−p0(−p1 log(t))
�,

and for � ∈ N0 let h(1)

� : (0,∞) → R be defined by h(1)

� (t) = t1−p0(log(t))�.
h(1)

0 is clearly bounded in t ≥ 2 due to p0 > 1 and for � ∈ N the only possible
roots of the derivative of h(1)

� in t ∈ (0,∞) are t = 1 and t = exp{�/(p0−1)}.
Thus, we obtain for the supremum in (6.36)

sup
t≥2

∣∣∣(t1−p(y)
)(�)

(θ0)
∣∣∣ ≤ |p1|� max

{
21−p0 log(2)�,

( �

p0 − 1

)�

e−�
}
≤ K(K�)�

for each � ∈ N0, because limt→∞ h(1)

� (t) = 0. Similarly, we have for � ∈ N0,
t > 0 (

tp̂−β̄(y)
)(�)

(θ0) = tp̂−β0(−β1 log(t))
�

and for � ∈ N0 let h(2)

� : (0, 1] → R be defined by h(2)

� (t) = tp̂−β0(log(t))�.
For � ∈ N the only possible roots in (0, 1] of the derivative of h(2)

� are t = 1
and t = exp{−�/(p̂− β0)}. As a consequence, we obtain for each � ∈ N0 for
the supremum in (6.37)

sup
t∈[0,1]

∣∣∣(tp̂−β̄(y)
)(�)

(θ0)
∣∣∣ ≤ |β1|�

( �

p̂− β0

)�

e−� ≤ K(K�)�,

because limt→0 h
(2)

� (t) = 0. Notice that for t = 0 the function y �→ tp̂−β̄(y) is
zero constant and for � = 0 the function t �→ tp̂−β0 is bounded by 1 on [0, 1]
due to p̂ > β0.
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(3) The expansion (4.18) can be deduced along the same lines as in step (3) of
the proof of the results in Example 2.3 and Example 4.6(2) in Hoffmann
et al. (2017) by using (6.28) and (6.32) instead of their equations (6.58) and
(6.61). Furthermore, due to expansion (4.18) the quantity defined in (4.3)
is clearly given by θ0.

Supplementary Material

Supplement: Proofs and technical details
(doi: 10.1214/19-EJS1610SUPP; .pdf).
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