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Abstract: We study nonparametric Bayesian statistical inference for the
parameters governing a pure jump process of the form

Yt =

N(t)∑
k=1

Zk, t ≥ 0,

where N(t) is a standard Poisson process of intensity λ, and Zk are drawn
i.i.d. from jump measure μ. A high-dimensional wavelet series prior for the
Lévy measure ν = λμ is devised and the posterior distribution arises from
observing discrete samples YΔ, Y2Δ, . . . , YnΔ at fixed observation distance
Δ, giving rise to a nonlinear inverse inference problem. We derive con-
traction rates in uniform norm for the posterior distribution around the
true Lévy density that are optimal up to logarithmic factors over Hölder
classes, as sample size n increases. We prove a functional Bernstein–von
Mises theorem for the distribution functions of both μ and ν, as well as for
the intensity λ, establishing the fact that the posterior distribution is ap-
proximated by an infinite-dimensional Gaussian measure whose covariance
structure is shown to attain the information lower bound for this inverse
problem. As a consequence posterior based inferences, such as nonparamet-
ric credible sets, are asymptotically valid and optimal from a frequentist
point of view.
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1. Introduction

While the Bayesian approach to inverse problems is widely used in scientific and
statistical practice, very little theory is available that explains why Bayesian al-
gorithms should be trusted to provide objective solutions of inverse problems in
the presence of statistical noise, particularly in infinite-dimensional, non-linear
cases which naturally arise in applications, see [32, 11]. In the recent contribu-
tions [28, 24, 21] proof techniques were developed that can be used to derive
theoretical guarantees for posterior-based inference, based on suitably chosen
priors, in various settings, including inverse problems arising with diffusion pro-
cesses, X-ray tomography or elliptic partial differential equations. A main idea
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of [24, 21] is that a careful analysis of the ‘Fisher information operator’ inducing
the statistical observation scheme combined with tools from Bayesian nonpara-
metrics [6, 7] can be used to derive sharp results about the frequentist behaviour
of posterior distributions in general inverse problems.

The analysis of the ‘information operator’ depends highly on the particular
problem at hand, and in the present article we continue this line of investigation
in a statistical inverse problem very different from the ones considered in [28,
24, 21], namely in the problem of recovering parameters of a stochastic jump
process from discrete observations. Statistically speaking, the inverse problem
is a ‘missing observations’ problem that arises from the fact that we do not
observe all the jumps and need to ‘decompound’ the effect of possibly seeing an
accumulation of jumps without knowing how many have occurred. This has been
studied from a non-Bayesian perspective for certain classes of Lévy processes by
several authors, we mention here the seminal papers [3, 2, 37, 22] – see also [1] for
various further references – and [26, 33, 27, 10] relevant for the results obtained in
the present paper. A typical estimation method used in several of these articles
is based on spectral regularisation techniques built around the fact that the
Lévy measure identifying all parameters of the jump process can be expressed
in the Fourier domain by the Lévy-Khintchine formula (see (3) below).

Given the sophistication of the non-linear estimators proposed so far in
the ‘decompounding problem’ just described, one may wonder if a ‘principled’
Bayesian approach that just places a standard high-dimensional random series
prior on the unknown Lévy measure can at all return valid posterior inferences,
for example in the sense of frequentist’s coverage of credible sets, in such a
measurement scheme. In the present article we provide some answers to this
question in the prototypical setting where one observes discrete increments of a
compound Poisson processes at fixed observation distance Δ > 0. To lift some
of the technicalities occurring in the proofs we restrict ourselves to periodic and
hence compactly supported processes, and – to avoid identifiability problems
arising in the periodic case – to small enough Δ. We show that the posterior
distribution optimally recovers all parameters of the jump process, both in terms
of convergence rates for the Lévy density ν and in terms of efficient inference for
the intensity of the Poisson process and the distribution function of the jump
measure μ. For the latter we obtain functional Bernstein–von Mises theorems
which are the Bayesian analogues of the ‘Donsker-type’ central limit theorems
obtained in [26], [10] for frequentist regularisation estimators. Just as in [24],
our proofs are inspired by techniques put forward in [6, 7, 4, 8, 5] in ‘direct’
problems. However, due to the different structure of the jump process model, our
proofs need to depart from those in [24] in various ways, perhaps most notably
since we have to consider a prior with a larger support ellipsoid, and hence need
to prove initial contraction rates for our posterior distribution by quite different
methods than is commonly done, see Section 5. The inversion of the information
operator in the jump process setting also poses some surprising subtleties that
nicely reveal finer properties of the inference problem at hand – our explicit
construction of the inverse information operator in Section 3.2 also gives new,
more direct proofs of the semi-parametric lower bounds obtained in [33] (whose



3516 R. Nickl and J. Söhl

lower bounds admittedly hold in a more general setting than ours). Finally we
should mention that substantial work – using tools from empirical process the-
ory – is required in our setting when linearising the likelihood function to obtain
quantitative LAN-expansions since, in contrast to [24], our observation scheme
is far from Gaussian. In this sense the techniques we develop here are relevant
also beyond compound Poisson processes, although, as argued above, the theory
for non-linear inverse problems is largely constrained by any specific case one is
studying.

The paper is structured as follows: In Section 2 we give basic definitions and
describe the model and prior. In Section 3 we state the contraction rates in
supremum norm, the Cramér–Rao lower bound as well as the Bernstein–von
Mises theorems in multi-scale spaces and for functionals of the Lévy measure.
Section 4 contains the proof of the contraction rates and of the multi-scale
Bernstein–von Mises theorem. Sections 5-10 contain the remaining proofs.

2. Model and prior

2.1. Basic definitions

Let (N(t) : t � 0) be a standard Poisson process of intensity λ > 0. Let μ be
a probability measure on (−1/2, 1/2] such that μ({0}) = 0, and let Z1, Z2, . . .
be an i.i.d. sequence of random variables drawn from μ. In what follows we
view I = (−1/2, 1/2] as a compact group under addition modulo 1. Then the
(periodic) compound Poisson process taking values in (−1/2, 1/2] is defined as

Yt =

N(t)∑
k=1

Zk, t � 0, (1)

where Y0 = 0 almost surely, by convention. The process (Yt : t � 0) is a
pure jump Lévy process on I = (−1/2, 1/2] with Lévy measure dν = λdμ. We
observe this process at fixed observation distance Δ, namely YΔ, Y2Δ, . . . , YnΔ,
and define the increments of the process

X1 = YΔ, X2 = Y2Δ − YΔ, . . . , Xn = YnΔ − Y(n−1)Δ. (2)

The Xk’s are i.i.d. random variables drawn from the infinitely divisible distri-
bution Pν = Pν,Δ which has characteristic function (Fourier transform)

ϕν(k) = FPν(k) = exp

(
Δ

∫
I

(e2πikx − 1)dν

)
, k ∈ Z, (3)

e.g., by the Lévy–Khintchine formula for Lévy processes in compact groups
(Chapter IV.4 in [29]). Obviously (ϕν(k) : k ∈ Z) identifies Pν but under the
hypotheses we will employ below it will also identify ν and thus the law of the
jump process (Yt : t � 0). The inverse problem is to recover ν from i.i.d. samples
drawn from the probability measure Pν .
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We denote by C(I) the space of bounded continuous functions on I equipped
with the uniform norm ‖ · ‖∞, and let M(I) = C(I)∗ denote the (dual) space
of finite signed (Borel) measures on I. For κ1, κ2 ∈ M(I) their convolution is
defined by

κ1 ∗ κ2(g) =

∫
I

∫
I

g(x+ y)dκ1(x)dκ2(y), g ∈ C(I),

and the last identity holds in fact for arbitrary g ∈ L∞(I) by approximation,
see Proposition 8.48 in [14]. This coincides with the usual definition of convo-
lution of functions when the measures involved have densities with respect to
the Lebesgue measure. We shall freely use standard properties of convolution
integrals, see, e.g., Section 8.2 in [14].

An equivalent representation of Pν is by the infinite convolution series

Pν = e−Δν(I)
∞∑
k=0

Δkν∗k

k!
(4)

where ν0 = δ0, ν
∗1 = ν, ν∗2 = ν ∗ ν and ν∗k is the k − 1-fold convolution of ν

with itself. [To see this just check the obvious fact that the Fourier transform
of the last representation coincides with ϕν in (3), and use injectivity of the
Fourier transform.]

We will denote by PN
ν the infinite product measures describing the laws of

infinite sequences of i.i.d. samples (2) arising from a compound Poisson process
with Lévy measure ν, and Eν will denote the corresponding expectation opera-
tor. We denote by Lp = Lp(I), 1 � p < ∞, the standard spaces of functions f for
which |f |p is Lebesgue-integrable on I, whereas, in slight abuse of notation, for a
finite measure κ we will denote by Lp(κ), 1 � p � ∞, the corresponding spaces
of κ-integrable functions on I, predominantly for the choices κ = ν, κ = Pν .
The spaces L2(I), L2(κ) are Hilbert spaces equipped with natural inner prod-
ucts 〈·, ·〉, 〈·, ·〉L2(κ), respectively. The symbol L∞(I) denotes the usual space of
bounded measurable functions on I normed by ‖ · ‖∞. We also write �,≈ for
(in-)equalities that hold up to fixed multiplicative constants, and employ the
usual oP , OP -notation to indicate stochastic orders of magnitude of sequences
of random variables.

2.2. Likelihood, prior and posterior

We study here the problem of conducting nonparametric Bayesian inference
on the parameters ν, μ, λ, assuming a regularity constraint ν ∈ Cs(I), s > 0,
where Cs is the usual Hölder space over I normed by ‖ · ‖Cs (when s ∈ N
these are the ordinary spaces of s-times continuously differentiable functions,
e.g., Section 2.2.2 in [34]). To define the likelihood function we need a common
dominating measure for the statistical model (Pν : ν ∈ V) where V is some family
of Lévy measures possessing densities with respect to Lebesgue measure Λ with
density Λ = 1(−1/2,1/2]. Since Λ is idempotent – Λ∗Λ =

∫
I
Λ(·−y)Λ(y)dy = Λ –
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we can consider the resulting compound Poisson measure PΛ = e−Δδ0 + (1 −
e−Δ)Λ as a fixed reference measure on I. Then for any absolutely continuous ν
on I the densities pν of Pν with respect to PΛ exist. The likelihood function of
the observations X1, . . . , Xn is defined as

Ln(ν) =

n∏
i=1

pν(Xi), ν ∈ V . (5)

We also write �n(ν) = logLn(ν) for the log-likelihood function. Next, if Π is
a prior distribution on a σ-field SV of V such that the map (ν, x) 	→ pν(x) is
jointly measurable, then standard arguments imply that the resulting posterior
distribution given observations X1, . . . , Xn is

Π(B|X1, . . . , Xn) =

∫
B
Ln(ν)dΠ(ν)∫

V Ln(ν)dΠ(ν)
. (6)

We shall model an s-regular function by a high-dimensional product prior ex-
pressed through a wavelet basis: Let{

ψlk : k = 0, . . . , (2l ∨ 1)− 1, l = −1, . . . , J − 1
}
, J ∈ N, (7)

form a periodised Daubechies’ type wavelet basis of L2 = L2(I), orthogonal for
the usual L2-inner product 〈·, ·〉 (described in Section 4.3.4 in [18]; where the
constant ‘scaling function’ is written as the first element ψ−1,0 ≡ 1, in slight
abuse of notation). Basic localisation and approximation properties of this basis
are, for any g ∈ Cs(I) and j ∈ N,

sup
x∈I

∑
k

|ψjk(x)| � 2j/2, |〈g, ψjk〉| � ‖g‖Cs2−j(s+1/2),

‖PVj (g)− g‖L2(I) � ‖g‖Cs2−js, (8)

where PVj is the usual L2-projector onto the linear span Vj of the ψlk’s with
l � j − 1.

Now consider the random function

v =
∑

l�J−1

∑
k

alulkψlk(·), al = 2−l(l2 + 1)−1, J ∈ N, (9)

where ulk are i.i.d. uniform U(−B,B) random variables, and B is a fixed con-
stant. The support of this prior is isomorphic to the hyper-ellipsoid

VB,J :=
J−1∏
l=−1

(−Bal, Bal)
2l∨1 ⊆ R2J

of wavelet coefficients. To model an s-regular Lévy measure ν we define the
random function

ν = ev, Π = ΠJ = the law L(ν) of ν in VB,J (10)
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and shall choose J = Jn such that 2J grows as a function of n approximately as

2J ≈ n
1

2s+1 . (11)

We note that the weights al = 2−l(l2 + 1)−1 ensure that the random function
v has some minimal regularity, in particular is contained in a bounded subset
of C(I).

Throughout we shall work under the following assumption on the Lévy mea-
sure and on the prior identifying the law of the compound Poisson process
generating the data.

Assumption 1. Assume the true Lévy measure ν0 has a Lebesgue density, still
denoted by ν0, which is contained in Cs(I) for some s > 5/2, that ν0 is bounded
away from zero on I, and that for v0 = log ν0 and some γ > 0,

|〈v0, ψlk〉| � (B − γ)al ∀l, k, (12)

where al was defined in (9). Assume moreover that B,Δ are such that λ =∫
I
ν < π/Δ for all ν in the support of the prior.

The assumption s > 5/2 (in place of, say, s > 1/2) may be an artefact of our
proof methods (which localise the likelihood function by an initially suboptimal
contraction rate) but, in absence of a general ‘Hellinger-distance’ testing theory
(cf. Appendix D in [16] or Section 7.1 in [18]) for the inverse problem considered
here, appears unavoidable.

The assumption (12) with γ > 0 guarantees that the true Lévy density is an
‘interior’ point of the parameter space VB,J for all J – a standard requirement
if one wishes to obtain Gaussian asymptotics for posterior distributions.

Finally, the bound on λ ensures identifiability of ν, and thus of the law of the
compound Poisson process, from the measure Pν generating the observations.
That such an upper bound is necessary is a consequence of the fact that we are
considering the periodic setting, see the discussion after Assumption 19 below.
For the present parameter space VB,J , Assumption 1 enforces a fixed upper
bound on Δ – alternatively for a given value of Δ we could also renormalise ν
by a large enough constant to make the intensities λ small enough, but we avoid
this for conciseness of exposition.

3. Main results

3.1. Supremum norm contraction rates

Even though the standard ‘Hellinger-distance’ testing theory to obtain contrac-
tion rates is not directly viable in our setting, following ideas in [4] we can use
the Bernstein–von Mises techniques underlying the main theorems of this paper
to obtain (near-) optimal contraction rates for the Lévy density ν0 in supre-
mum norm loss. The idea is basically to represent the norm by a maximum over
suitable collections of linear functionals, and to then treat each functional indi-
vidually by semi-parametric methods. It can be shown that the minimax rate
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of estimation for Lévy densities in Cs(I) with respect to the supremum loss is
(logn/n)s/(2s+1), see [9] for a discussion. The following theorem achieves this
rate up to the power of the log-factor.

Theorem 2. Suppose that X1, . . . , Xn are generated from (2) and grant As-
sumption 1. Let Π(·|X1, . . . , Xn) be the posterior distribution arising from prior
Π = ΠJ in (10) with J as in (11). Then for every κ > 3 we have as n → ∞
that

Π
(
ν : ‖ν − ν0‖∞ > n−s/(2s+1) logκ n|X1, . . . , Xn

)
→PN

ν0 0.

Unlike in the standard i.i.d. setting in [4], we cannot rely on an initial optimal
contraction rate in Hellinger distance for ν, which introduces new difficulties
when dealing with ‘semi-parametric bias terms’. Our proofs (via Lemma 14
below) overcome these problems at the expense of an additional logκ n-factor.

The only comparable posterior contraction rate result of this kind we are
aware of in the literature can be found in [20], who obtain contraction rates for
the Hellinger distance h(Pν ,Pν0) between the infinitely divisible distributions
Pν ,Pν0 induced by the Lévy measures ν, ν0. Without any sharp ‘stability esti-
mates’ that would allow to derive optimal bounds on the distance ‖ν−ν0‖∞, or
even just on ‖ν − ν0‖L2 , in terms of h(Pν ,Pν0), the results in [20] do a fortiori
not imply any guarantees for Bayesian inference on the statistically relevant
parameters ν, μ, λ.

The above contraction rate result shows that the Bayesian method works in
principle and that estimators that converge with the minimax optimal rate up
to log-factors can be derived from the posterior distribution, see [15].

3.2. Information geometry of the jump process model

3.2.1. LAN-expansion of the log-likelihood ratio process

In order to formulate, and prove, Bernstein–von Mises type theorems, and to
derive a notion of semi-parametric optimality of the limit distributions that
will occur, we now obtain, for Ln the likelihood function defined in (5), the
LAN-expansion of the log-likelihood ratio process

�n(νh,n)− �n(ν) = log
Ln(νh,n)

Ln(ν)
, n ∈ N,

of the observation scheme considered here, in perturbation directions νh,n that
are additive on the log-scale. This will induce the score operator for the model
and allow us to derive the inverse Fisher information (Cramér–Rao lower bound)
for a large class of semi-parametric subproblems. Some ideas of what follows are
implicit in the work by Trabs (2015), although we need a finer analysis for our
results, including inversion of the score operator itself.

Proposition 3 (LAN expansion). Let ν = ev be a Lévy density that is bounded
and bounded away from zero, and for h ∈ L∞(I) consider a perturbation νh,n =
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ev+h/
√
n. Then if Xi ∼i.i.d. Pν we have

�n(νh,n)− �n(ν) =
1√
n

n∑
i=1

Aν(h)(Xi)−
1

2
‖Aν(h)‖2L2(Pν)

+ oPN
ν
(1), (13)

where the score operator is given by the Radon–Nikodym density

Aν(h) ≡ Δ
d(hν −

∫
I
hdν · δ0) ∗ Pν

dPν
. (14)

The operator Aν defines a continuous linear map from L2(ν) into L2
0(Pν) :={

g ∈ L2(Pν) :
∫
I
gdPν = 0

}
.

The proposition is proved in Section 7.

In the remainder of this section we study properties of Aν and of its adjoint
A∗

ν , in particular we construct certain inverse mappings. Due to the presence of
the Dirac measure in (14) some care has to be exercised when identifying the
natural domain of the inverse of the ‘information’ operator A∗

νAν . In particular
we can invert A∗

νAν only along directions ψ for which ψ(0) = 0. An intuitive
explanation is that the axiomatic property ν({0}) = 0 is required for ν to
identify the law of the compound Poisson process (otherwise ‘no jumps’ and
‘jumps of size zero’ are indistinguishable), and as a consequence when making
inference on the functional

∫
I
ψdν one should a priori restrict to

∫
I
ψ1{0}cdν,

a fact that features in the Cramér–Rao information lower bound (25) to be
established below.

3.2.2. Derivation of the (right-)inverse of the score operator

To proceed we will set Δ = 1 without loss of generality for the moment. If
κ ∈ M(I) is a finite signed measure on I and g : I → R a function such
that

∫
I
|g|d|κ| < ∞, we use the notation gκ for the element of M(I) given

by (gκ)(A) =
∫
A
gdκ, A a Borel subset of I. Then, for a fixed Lévy density

ν ∈ L∞(I), consider the operator

h 	→ Aν(h) :=
d[(νh) ∗ Pν ]

dPν
(x)−

[∫
I

d(νh)

]
, x ∈ I, (15)

defined on the subset of M(I) given by

D ≡ {κ = κa + cδ0, κa ∈ M(I) has Lebesgue-density ha ∈ L2(ν); c ∈ R}.

This operator serves as an extension of Aν from (14) to the larger domain D. It
still takes values in L2

0(Pν); in fact δ0 is in the kernel of Aν since

Aν(δ0) =
ν(0)dPν

dPν
−
∫
I

ν(x)dδ0(x) = ν(0)− ν(0) = 0, (16)
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but extending Aν formally to D is convenient since the inverse of Aν to be
constructed next will take values in D. Define

πν = eν(I)
∞∑

m=0

(−1)mν∗m

m!
, (17)

a finite signed measure for which Pν ∗πν = δ0 (by checking Fourier transforms).
Formally, up to a constant, πν equals the inverse Fourier transform F−1(1/ϕν) of
1/ϕν , and convolution with πν can be thought of as a ‘deconvolution operation’.

Lemma 4. Assume the Lévy density ν ∈ L∞(I) is bounded away from zero
on I. The operator Aν : D → L2

0(Pν) from (15) has inverse

Ãν : L2
0(Pν) → D, Ãν(g) :=

1

ν(·)πν ∗ (gPν)(·), (18)

in the sense that AνÃν = Id on L2
0(Pν).

Proof. For any g ∈ L2
0(Pν), by the Cauchy–Schwarz inequality, gPν defines a

finite signed measure, so that Ãν is well-defined and takes values in M(I). Since
Pν ∗ πν = δ0 the Radon–Nikodym theorem (Theorem 5.5.4 in [12]) implies

d [Pν ∗ πν ∗ (gPν)]

dPν
=

d(gPν)

dPν
= g, Pν a.s..

We then have

Aν(Ãν(g)) =
d [Pν ∗ πν ∗ (gPν)]

dPν
−
∫
I

d[πν ∗ (gPν)] = g, (19)

where the second term vanishes since for such g, by the definition of convolution,∫
I

d[πν ∗ (gPν)] =

∫
I

gdPν

∫
I

dπν = 0.

That Ãν takes values in D is immediate from the definition of πν and (4).

3.2.3. The adjoint score operator

We now calculate the adjoint operator of Aν .

Lemma 5. Assume the Lévy density ν ∈ L∞(I) is bounded away from zero on I.
If we regard Aν from (14) as an operator mapping the Hilbert spaces L2(ν) into
L2
0(Pν) then its adjoint A∗

ν : L2
0(Pν) → L2(ν) is given by A∗

ν(w) = ΔPν(−·) ∗w.
Proof. We set without loss of generality Δ = 1. Let h ∈ L2(ν) and w ∈ C(I) ⊆
L2(Pν) such that

∫
wdPν = 0. Then by Fubini’s theorem

〈Aν(h), w〉L2(Pν) =

∫
I

Aν(h)wdPν =

∫
I

wd(Pν ∗ (hν))−
∫

hν

∫
wdPν
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=

∫
I

∫
I

w(x+ y)h(x)ν(x)dxdPν(y) =

∫
I

h(Pν(−·) ∗ w)dν = 〈h,A∗
ν(w)〉L2(ν)

so that the formula for the adjoint holds on the dense subspace C(I) of L2
0(Pν).

The Cauchy–Schwarz inequality implies that Pν(−·)∗w ∈ L2(ν) so that the case
of general w ∈ L2

0(Pν) follows from standard approximation arguments.

Inspecting the formula for A∗
ν we can formally define the ‘inverse’ map

(A∗
ν)

−1(g) = πν(−·) ∗ g with (πν(−·) ∗ g)(x) =
∫
I

g(x+ y)dπν(y), g ∈ L2(PΛ),

for ν ∈ L∞(I) and scaled by 1/Δ if Δ �= 1. If g ∈ L∞(I) satisfies g(0) = 0 then
using Pν ∗ πν = δ0 (cf. after (17)) we have that (A∗

ν)
−1(g) ∈ L2

0(Pν) since∫
I

(A∗
ν)

−1(g)dPν =

∫
I

πν(−·) ∗ g dPν =

∫
I

g d(Pν ∗ πν) = g(0) = 0. (20)

3.2.4. Inverse information operator and least favourable directions

Now let ψ ∈ L∞(I) be arbitrary but such that ψ(0) = 0, for instance we can
take ψ1{0}c for any ψ ∈ C(I). If ν ∈ L∞(I) is bounded away from zero then
ψ/ν ∈ L2(PΛ) and by what precedes (A∗

ν)
−1(ψ/ν) ∈ L2

0(Pν) and hence in view
of Lemma 4 we can define, for any such ψ, the new function

ψ̃d = −Ãν

[
(A∗

ν)
−1

(
ψ

ν

)]
(21)

as an element of D. Concretely, in view of (4), (17), (when Δ = 1, otherwise
divide the right hand side in the following expression by Δ2)

ψ̃d = −Ãν

[
πν(−·) ∗ ψ

ν

]
= −1

ν
πν ∗
((

πν(−·) ∗ ψ

ν

)
Pν

)
(·). (22)

We can then write ψ̃d = ψ̃ + cδ0 where

ψ̃ = ψ̃d − cδ0 (23)

is the part of ψ̃d that is absolutely continuous with respect to Lebesgue measure
Λ, and cδ0 is the discrete part (for some constant c).

The content of the next lemma is that ψ̃ allows to represent the LAN inner
product

〈f, g〉LAN ≡ 〈Aν(f), Aν(g)〉L2(Pν), f, g ∈ L2(ν), (24)

in the standard L2-inner product 〈·, ·〉 of L2(I).

Lemma 6. Assume the Lévy density ν ∈ L∞(I) is bounded away from zero

on I. If ψ ∈ L∞(I) satisfies ψ(0) = 0 then for all h ∈ L2(ν) and ψ̃d, ψ̃ given as
in (22), (23),∫

I

Aν(h)Aν(ψ̃)dPν =

∫
I

Aν(h)Aν(ψ̃d)dPν = −〈h, ψ〉.
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Proof. From (16) and (23) we have Aν(ψ̃d − ψ̃) = 0, so the first identity is

immediate. By Lemma 4 and the definition of ψ̃d we see Aν(ψ̃d) = −πν(−·) ∗
(ψ/ν) in L2

0(Pν) and from Lemma 5 we hence deduce∫
I

Aν(h)Aν(ψ̃d)dPν = −
∫
I

h[Pν(−·) ∗ πν(−·) ∗ (ψ/ν)]ν = −
∫
I

hψ,

using also that Pν(−·) ∗ πν(−·) = δ0 (cf. after (17)).

3.2.5. Cramér–Rao information lower bound

Using the LAN expansion and the previous lemma we derive the Cramér–Rao
lower bound for 1/

√
n-consistently estimable functional parameters of the Lévy

measure of a compound Poisson process, following the theory laid out in Chapter
25 in [35]. We recall some standard facts from efficient estimation in Banach
spaces: assume for all h in some linear subspace H of a Hilbert space with
Hilbert norm ‖ · ‖LAN that the LAN expansion

log
dPn

v+h/
√
n

dPn
v

= Δn(h)−
1

2
‖h‖2LAN , v ∈ H,

holds, where Pn
v are laws on some measurable space Xn and where Δn(h) →d

Δ(h) as n → ∞ with Δ(h) ∼ N(0, ‖h‖2LAN ), h ∈ H. Consider a map

K : (H, ‖ · ‖LAN ) → R

that is suitably differentiable with continuous linear derivative map κ : H →
R. By Theorem 3.11.5 in [36] the Cramér–Rao information lower bound for
estimating the parameter K(ν) is given by ‖κ∗‖2LAN where κ∗ is the Riesz-
representer of the map κ : (H, ‖ · ‖LAN ) → R.

We now apply this in the setting of the LAN expansion obtained from Propo-
sition 3, with laws Pn

v parametrised by v = log ν, tangent space H = L∞ and
LAN-norm ‖h‖LAN = ‖Aν0h‖L2(Pν0 )

, where Aν0 : (H, ‖ · ‖L2(ν0)) → L2
0(Pν0) is

the score operator studied above corresponding to the true absolutely contin-
uous Lévy density ν0 generating the data (note that the central limit theorem
ensures Δn(h) →d Δ(h) for these choices). For ψ ∈ L∞(I) we consider the map

K : v 	→
∫
I

ψν =

∫
I

ψev,

which can be linearised at ν0 with derivative

κ : h 	→
∫
I

ψhν0 = 〈ψ(0), h〉L2(ν0) =

∫
I

ψ1{0}cν0h,

where by definition ψ(0) = ψ1{0}c . Using Lemma 6 we have

κ(h) = 〈ψ(0)ν0, h〉 = −〈 ˜(ψ(0)ν0)d, h〉LAN ≡ 〈κ∗, h〉LAN .
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We conclude that the Cramér–Rao information lower bound for estimating∫
I
ψν0 from discretely observed increments of the compound Poisson process

equals

‖κ∗‖2LAN = ‖Aν0(
˜(ψ(0)ν0)d)‖

2
L2(Pν0 )

= ‖(A∗
ν0
)−1[ψ(0)]‖2L2(Pν0 )

= ‖πν(−·) ∗ (ψ1{0}c)‖2L2(Pν0 )
, (25)

where we used Lemma 4 in the second equality. Note that the last identity holds
under the notational assumption Δ = 1 employed in the preceding arguments
and the far right hand side needs to be scaled by 1/Δ2 when Δ �= 1.

3.3. A multi-scale Bernstein–von Mises theorem

We now formulate a Bernstein–von Mises theorem that entails a Gaussian ap-
proximation of the posterior distribution arising from prior (10) in an infinite-
dimensional multi-scale space. We will show in the next subsection how one
can deduce from it various Bernstein–von Mises theorems for statistically rel-
evant aspects of ν, μ, λ. Following [7] (see also p.596f. in [18]) the idea is to
study the asymptotics of the measure induced in sequence space by the action
(〈ν, ψlk〉) of draws ν ∼ Π(·|X1, . . . , Xn) of the conditional posterior distribution
on the wavelet basis {ψlk} from (7). In sequence space we introduce weighted
supremum norms

‖x‖M(w) = sup
l

maxk |xlk|
wl

, M(w) = {(xlk) : ‖x‖M(w) < ∞}, (26)

with monotone increasing weighting sequence (wl) to be chosen. Define further
the closed separable subspace M0(w) of M(w) consisting of sequences for which
w−1

l maxk |xlk| converges to zero as l → ∞, equipped with the same norm.
The Bernstein–von Mises theorem will be derived for the case where the

posterior distribution is centred at the random element ν̂(J) = (ν̂(J)l,k) of
M0(w) defined as follows

ν̂(J)l,k ≡
∫
I

ψlkν0 +
1

n

n∑
i=1

(A∗
ν0
)−1[ψlk1{0}c ](Xi), l � J − 1, k, (27)

with the convention that ν̂(J)l,k = 0 whenever l � J (the operator (A∗
ν0
)−1 was

defined just after Lemma 5 above). A standard application of the central limit
theorem and of (20) implies as n → ∞ and under PN

ν0
that, for every fixed k, l,

√
n
(
ν̂(J)l,k −

∫
I

ψlkν0
)
→d N(0, ‖(A∗

ν0
)−1[ψlk1{0}c ]‖2L2(Pν0 )

),

and hence in view of (25) the random variable ν̂(J) is a natural centring for a
Bernstein–von Mises theorem. Since ν ∈ L∞(I) the law of

√
n(ν− ν̂(J)) defines

a probability measure in the space M0(ω) for ω as in the next theorem. Next,
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denote by Nν0 the law L(X) of the centred Gaussian random variable X on
M(w) whose coordinate process has covariances

EXl,kXl′,k′ = 〈(A∗
ν0
)−1(ψlk1{0}c), (A∗

ν0
)−1(ψl′k′1{0}c)〉L2(Pν0 )

.

The proof of the following theorem implies in particular that Nν0 is a tight
Gaussian probability measure concentrated on the space M0(w) where weak
convergence occurs. Recall (Theorem 11.3.3 in [12]) that weak convergence of
a sequence of probability measures on a separable metric space (S, d) can be
metrised by the bounded Lipschitz (BL) metric

βS(κ, κ
′) = sup

F :S→R,‖F‖Lip�1

∣∣∣∣∫
S

F (s)d(κ− κ′)(s)

∣∣∣∣ ,
‖F‖Lip = sup

s∈S
|F (s)|+ sup

s 
=t,s,t∈S

|F (s)− F (t)|
d(s, t)

.

Theorem 7. Suppose that X1, . . . , Xn are generated from (2) and grant As-
sumption 1. Let Π(·|X1, . . . , Xn) be the posterior distribution arising from prior
Π = ΠJ in (10) with J as in (11). Let βM0(ω) be the BL metric for weak conver-
gence of laws in M0(ω), with ω = (ωl) satisfying ωl/l

4 ↑ ∞ as l → ∞. Let ν̂J
be the random variable in M0(ω) given by (27). Then for ν ∼ Π(·|X1, . . . , Xn)
and Nν0 as above we have in PN

ν0
-probability, as n → ∞,

βM0(ω)

(
L
(√

n(ν − ν̂(J))|X1, . . . , Xn

)
,Nν0

)
→ 0.

Theorem 7 is proved in Section 4.4 and has various implications for posterior-
based inference on the parameter ν. Arguing as in [7], Section 4.2, we could
construct credible bands for the unknown Lévy density ν with L∞-diameter
shrinking at the rate as in Theorem 2 from Bayesian multi-scale credible bands.
We will leave this application to the reader and instead focus on inference on
functionals of the Lévy measure ν that are continuous, or differentiable, for
‖ · ‖M(ω) (see Section 4.1 in [7], [5]).

Theorem 7 assumes a certain growth at infinity of the weight sequence ωl.
The requirement ωl/

√
l ↑ ∞ is necessary for the limit process to be a tight

Gaussian Borel probability measure in the space M0(ω), see [7]. Similar to the
presence of an additional log-factor in Theorem 2, here we need to impose the
slightly more restrictive condition ωl/l

4 ↑ ∞ for the control of semi-parametric
bias terms in our proofs.

3.4. Bernstein–von Mises theorem for functionals of the Lévy
measure

We now deduce from Theorem 7 Bernstein–von Mises theorems for the func-
tionals

V (t) =

∫ t

−1/2

ν(x)dx, t ∈ I,
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which for t = 1/2 also includes the intensity λ =
∫
I
dν = V (1/2) of the underly-

ing Poisson process. From the usual ‘Delta method’ we can then also deduce a
Bernstein–von Mises theorem for the distribution function M(t) =

∫
I
1(−1/2,t]dμ

of the jump measure μ = ν/λ = ν/
∫
I
ν. The key to this is the following lemma,

proved in (the proof of) Theorem 4 of [7].

Lemma 8. Suppose the weights (ωl) satisfy
∑

l 2
−l/2ωl < ∞. Then the mapping

L : (νlk) 	→ V =

∫ ·

0

∑
l,k

νlkψlk

is linear and continuous from M0(ω) to L∞(I) for the respective norm topolo-
gies.

For the next theorem we require some more definitions: We denote V0(t) =∫ t
−1/2

ν0(x)dx. Let NV0 be the law of the tight Gaussian random variable in

L∞(I) given by L(Z), Z ∼ Nν0 . We define lν0 to be the linear mapping L∞(I) →
L∞(I) with lν0 [h] = (hV0(

1
2 ) − V0h(

1
2 ))/V

2
0 (

1
2 ). Finally we denote by N ′

M0
the

law of the tight Gaussian random variable in L∞(I) given by lν0 [L(Z)].

The measures NV0 ,N ′
M0

have separable range in the image in L∞(I) of
M0(ω) under a continuous map. The metrisation of weak convergence of laws
towards NV0 ,N ′

M0
in the non-separable space L∞ by βL∞(I) thus remains valid

(Theorem 3.28 in [13]).

Theorem 9. Suppose that X1, . . . , Xn are generated from (2) and grant As-
sumption 1. Let ν ∼ Π(·|X1, . . . , Xn) be a draw from the posterior distribution
arising from prior Π = ΠJ in (10) with J as in (11) and let L be the lin-
ear mapping from Lemma 8. Conditional on X1, . . . , Xn define V = L(ν) and

V̂ = L(ν̂J) where ν̂J is given in (27).

Then we have as n → ∞ and in PN
ν0
-probability that

βL∞(I)

(
L(

√
n(V − V̂ )|X1, . . . , Xn),NV0

)
→ 0.

In particular if Nλ0 is the law on R of L(Z)( 12 ) then as n → ∞,

βR

(
L(

√
n(V ( 12 )− V̂ ( 12 ))|X1, . . . , Xn), Nλ0

)
→PN

ν0 0.

Moreover, if M = V/V (12 ) and M̂ = V̂ /V̂ ( 12 ), then as n → ∞,

βL∞(I)

(
L(

√
n(M − M̂)|X1, . . . , Xn),N ′

M0

)
→PN

ν0 0.

Proof. The first two limits are immediate consequences of Theorem 7, Lemma 8
and the continuous mapping theorem. For the last limit we apply the Delta
method for weak convergence ([35], Theorem 20.8) to the map V 	→ V/V ( 12 ),
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which is Fréchet differentiable from L∞(I) → L∞(I) at any ν ∈ L∞(I) that is
bounded away from zero, with derivative lν .

Arguing just as before (25) one shows that the above Gaussian limit distri-
butions all attain the semi-parametric Cramér–Rao lower bounds for the prob-
lems of estimating V,M, λ = V ( 12 ), respectively. In particular they imply that
‘Bayesian credible sets’ are optimal asymptotic frequentist confidence sets for
these parameters – the arguments are the same as in [7], Section 4.1, and hence
omitted. These results are the ‘Bayesian’ versions of the Donsker type limit
theorems obtained for frequentist estimators in [26, 10], where the same limit
distributions were obtained.

3.5. Concluding remarks

Adaptive prior choices Our series prior is defined via asymptotic growth of
J (see (11)) that depends on n and on knowledge of the smoothness s. A possible
extension of our work would be to make the results adaptive to the choice of
J , e.g., by placing a hyperprior on J ∈ N whose probability mass function is
proportional to exp(−c2JL(J)) with L(J) = J or = 1. While it seems possible to
prove an upper bound for 2J of order (n/ logn)1/(2s+1) with such a hyperprior,
it is unclear whether a corresponding lower bound holds as well. Small values
of J can entail a large bias and the control of the semi-parametric bias poses
considerable difficulties in our proofs. As in [31], a self-similarity condition on ν
may help to overcome such problems, but this is beyond the scope of the present
paper.

Scaling of the observation distance Δ For identifiability reasons, Assump-
tion 1 imposes an upper bound on the (fixed) distance between observations Δ.
Otherwise the observation distance Δ enters the contraction rate result in The-
orem 2 only via multiplicative constants. In the Bernstein–von Mises results
(Theorems 7 and 9), the limiting processes scale with 1/Δ, as can be seen from
the scaling of (A∗

ν)
−1 before equation (20). This suggests that ‘high-frequency’

analogues of our Bernstein–von Mises results, comparable to those in [27], should
hold true as well, with convergence rate 1/

√
nΔ instead of 1/

√
n.

Bernstein–von Mises theorems for general inverse problems This pa-
per builds on key ideas for nonparametric Bernstein–von Mises theorems in
direct models [6, 7, 4, 8, 5]. For inverse problems previous work on Bernstein–
von Mises theorems treated regression-type problems where the likelihood has a
more explicit Gaussian structure, see [24, 21] and also the more recent con-
tributions [19, 25]. In our jump process setting, the log-likelihood function
does not have the form of a Gaussian process, but we show how empirical
process methods [18] can be used to obtain exact Gaussian posterior asymp-
totics in such situations as well. Our proof techniques are thus potentially rel-
evant for other models with independent and identically distributed observa-
tions.
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4. Proofs of the main theorems

4.1. Asymptotics for the localised posterior distribution

The first step will be to localise the posterior distribution near the ‘true’ ν0 ∈ Cs

by obtaining a preliminary (in itself sub-optimal) contraction rate for the prior
Π from (10). Recall the notation v = log ν and define

Dn,M :=
{
ν : v ∈ VB,J , ‖v − v0‖L2 � MεL

2

n , ‖v − v0‖∞ � MεL
∞

n

}
(28)

with M a constant and

εL
2

n = n− s−1/2
2s+1 (logn)1/2+δ, εL

∞

n = n− s−1
2s+1 (logn)1/2+δ

for any δ > 1/2. We have the following

Proposition 10. For Dn,M as in (28), prior Π arising from (10) with J chosen
as in (11) and under Assumption 1, we have for any s > 5/2, δ > 1/2 and every
M large enough

Π(Dc
n,M |X1, . . . , Xn) →PN

ν0 0 (29)

as n → ∞. In particular we can choose M in (28) large enough so that the last
convergence to zero occurs also for Dn,M/2 replacing Dn,M . Moreover, on the
set Dn,M we also have the same contraction rates for ν − ν0 in place of v − v0
with a possibly larger constant M .

Proof. This is proved in Section 5 below.

As a consequence of the previous proposition together with the notation
ΠDn,M := ΠDn,M (·|X1, . . . , Xn) for the posterior measure arising from the prior
Π(· ∩Dn,M )/Π(Dn,M ) instead of from Π, we can deduce the basic inequality

sup
B∈SV

|Π(B|X1, . . . , Xn)−ΠDn,M (B|X1, . . . , Xn)|

� 2Π(Dc
n,M |X1, . . . , Xn) →PN

ν0 0 (30)

as n → ∞. We now study certain Laplace-transform functionals of the localised
posterior measure ΠDn,M . We use the shorthand notation VJ for the L2-closed
linear space spanned by the wavelets up to level J and gJ = PVJ

(g) for the
wavelet projection of g ∈ L2(I) onto VJ . For a fixed function η : I → R,
consider a perturbation of ν given by

νt = νηt := evt , (31)

vt = v + δn

( t

δn
√
n
η + v0,J − v

)
= (1− δn)v + δn

( t

δn
√
n
η + v0,J

)
,

where 0 < t < ∞ and δn → 0 such that δn
√
n → ∞ is a sequence to be chosen.

That the perturbation νt equals a convex combination of points will be useful to
deal with the fact that our parameter space has a boundary (see also [23, 24]).
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We have the following key proposition, giving general conditions under which
a (sub-) Gaussian approximation for the Laplace transform of general function-
als F (ν) of the posterior distribution holds. Its proof is given in Section 6.

Proposition 11. Under the hypotheses of Proposition 10, suppose δn is chosen
such that (61) is satisfied and let Hn ⊆ L∞(I) be such that (62), (63) hold
uniformly for all η ∈ Hn. If T > 0 and if F : V → R is any fixed measurable
function then

EΠDn,M
[
et

√
nF (ν)

∣∣∣X1, . . . , Xn

]
= exp

{ t2
2
‖Aν0(η)‖2L2(Pν0 )

− t√
n

n∑
i=1

Aν0(η)(Xi) + rn

}
× Zn

where rn = OPN
ν0
(an) as n → ∞ with a nonstochastic null sequence an → 0 that

is uniform in |t| � T , η ∈ Hn; and where

Zn =

∫
Dn,M

eSn(ν)+	n(νt)dΠ(ν)∫
Dn,M

e	n(ν)dΠ(ν)
, νt as in (31),

Sn(ν) = t
√
n
(
F (ν) +

∫
Aν0(v − v0)Aν0(η)dPν0

)
, v = log ν, v0 = log ν0,

and Aν : L2(ν) → L2
0(Pν) was defined in Proposition 3.

Given a functional F of interest, we can use Proposition 11 to show Bernstein–
von Mises theorems by selecting appropriate η so that S(ν) vanishes (or con-
verges to zero). When this is the case it remains to deal with Zn by a change of
measure argument for ν 	→ νt.

4.2. Change of measure in the posterior

We now study the ratio Zn for η, δn satisfying certain conditions, and under
the assumption that supν∈Dn,M

|Sn(ν)| is either O(1) or o(1). Note that by
Assumption 1, v0 = log ν0 is an ‘interior’ point of the support

VB,J =

J−1∏
l=−1

(−Bal, Bal)
2l∨1 ⊆ R2J , al = 2−l(l2 + 1)−1,

of the prior Π. We shall require that (t/δn
√
n)η+ v0,J is also contained in VB,J ,

implied by

t|〈η, ψlk〉| � γ2−l(l2 + 1)−1
√
nδn ∀l < J − 1, k, 〈η, ψlk〉 = 0 ∀l > J.

(32)

Note that under (32) the function vt from (31) is a convex combination of
elements v, (t/δn

√
n)η + v0,J of VJ,B and hence itself contained in the support
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VJ,B of Π. We can thus write∫
Dn,M

e	n(νt)dΠ(ν)∫
Dn,M

e	n(ν)dΠ(ν)
=

∫
Dt

n,M
e	n(ν) dΠ

t(ν)
dΠ(ν) dΠ(ν)∫

Dn,M
e	n(ν)dΠ(ν)

,

where Πt is the law of νt, absolutely continuous with respect to Π, and where

Dt
n,M = {νt : ν ∈ Dn,M}.

The measure Πt corresponds to transforming each coordinate vlk of the 2J -
dimensional product integral defining the prior Π into the convex combination
vt,lk = (1 − δn)vlk + δnit,lk where it,lk = 〈 t

δn
√
n
η + v0,J , ψlk〉 is a deterministic

(under Π) point in (−Bal, Bal) = Il,B for every k, l � J . The density of the
law of vt,lk with respect to vlk is constant on a subinterval of Il,B of length
2B(1−δn) and thus has constant density (1−δn)

−1. The density of the product
integrals is then also constant in v and equal to(

1

1− δn

)2J

= 1 + o(1) whenever 2Jδn = o(1), (33)

independently of ν. We conclude that if (32), (33) hold then∫
Dn,M

e	n(νt)dΠ(ν)∫
Dn,M

e	n(ν)dΠ(ν)
= (1 + o(1))×

∫
Dt

n,M
e	n(ν)dΠ(ν)∫

Dn,M
e	n(ν)dΠ(ν)

(34)

= (1 + o(1))×
Π(Dt

n,M |X1, . . . , Xn)

Π(Dn,M |X1, . . . , Xn)
,

where the last identity follows from renormalising both numerator and denom-
inator by

∫
V e	n(ν)dΠ(ν). The numerator in the last expression is always less

than or equal to one and by Proposition 10 the denominator converges to one
in probability, so that we have

Lemma 12. Suppose supν∈Dn,M
|Sn(ν)| = O(1) holds as n → ∞ and assume

η, δn, t are such that (32), (33) hold. Then the random variable Zn in Proposi-
tion 11 is OPN

ν0
(1), uniformly in η, as n → ∞.

To prove the exact asymptotics in the Bernstein–von Mises theorem we need:

Lemma 13. Suppose η, δn are such that (32), (33) hold and assume in addition
that ‖η‖∞ � d for some fixed constant d.

A) Let Dn,M be as in (28) and define the set Dt
n,M = {νt : ν ∈ Dn,M}. Then

for all n � n0(t) and M large enough we have Dn,M/2 ⊆ Dt
n,M and thus by

Proposition 10 also Π(Dt
n,M |X1, . . . , Xn) → 1 in PN

ν0
-probability.

B) Assume also that supν∈Dn,M
|Sn(ν)| = o(1) then Zn from Proposition 11

satisfies Zn = 1 + oPN
ν0
(1) as n → ∞.



3532 R. Nickl and J. Söhl

Proof. A) Let ν ∈ Dn,M/2 be arbitrary. We need to show that there exists
ζ = ζ(ν) ∈ Dn,M such that ζt = ν. For v = log ν notice that by definition

of Dn,M/2 we have ‖v − v0,J‖L2 � ‖v − v0‖L2 � (M/2)εL
2

n and similarly ‖v −
v0,J‖∞ � (M/2)εL

∞

n . Now define ζ = ez where

z = z(ν) := v0,J +
(v − v0,J)− t√

n
η

1− δn
, ν ∈ Dn,M/2.

Then by definition

zt = (1− δn)z +
t√
n
η + δnv0,J

= (1− δn)v0,J + (v − v0,J)−
t√
n
η +

t√
n
η + δnv0,J = v

so ζt(ν) = ν follows. It remains to verify that also ζ(ν) ∈ Dn,M for every
ν ∈ Dn,M/2. To see this we let n large enough such that in particular δn < 1/4
and then

‖z(ν)− v0‖L2 � ‖v0 − v0,J‖L2 +
4

3
‖v − v0,J‖L2 +

4t

3
√
n
‖η‖L2 � MεL

2

n (35)

using ‖v0 − v0,J‖L2 � 2−Js = o(εL
2

n ) from (8) and also 1/
√
n = o(εL

2

n ). The
same arguments imply

‖z(ν)− v0‖∞ � MεL
∞

n .

Finally we need to check that z(ν) ∈ VJ,B holds true. We notice that for all
l � J

|〈z(ν)− v0, ψlk〉| � ‖z(ν)− v0‖L2 � γ2−l(l2 + 1)−1 = γal

is implied by

εL
2

n ≈ n− s−1/2
2s+1 (log n)1/2+δ = o(2−J(J2 + 1)−1), s > 5/2,

for n large enough, so that from Assumption 1 and (35) we deduce

|〈z(ν), ψlk〉| � |〈v0, ψlk〉|+ |〈z(ν)− v0, ψlk〉| � (B − γ)al + γal, l � J − 1,

for n large enough, hence ζ ∈ VJ,B . The last claim in Part A) now follows
directly from Proposition 10, and Part B) also follows, from (34).

4.3. Proof of Theorem 2

Given the results from Sections 4.1, 4.2, the proof follows ideas in [4]. By (30)
it suffices to prove the theorem with the posterior Π(·|X1, . . . , Xn) replaced
by ΠDn,M (·|X1, . . . , Xn). Using that ν = ev are uniformly bounded and that
vJ = PVJ

v = v for v ∼ ΠDn,M (·|X1, . . . , Xn), we can write

‖ν − ν0‖∞ � ‖v − v0‖∞ ≤ ‖vJ − v0,J‖∞ + ‖v0,J − v0‖∞.
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The second term is of deterministic order 2−Jns = O(n−s/(2s+1)) by (8) and
since v0 = log ν0 ∈ Cs, so it remains to deal with the first. We can write, using
(8) again,

‖vJ − v0,J‖∞ = sup
x

∣∣∣∣ ∑
	<J,m

〈v − v0, ψ	m〉ψ	m(x)

∣∣∣∣
�
∑
	<J

2	/2√
n
(logn)1/2+δ max

m=0,...,2�−1

√
n

(logn)1/2+δ
|〈v − v0, ψ	m〉|

� 2J/2(J + 1)√
n

(log n)1/2+δ max
	<J,m=0,...,2�−1

√
n |〈v − v0, c	Jψ	m〉| ,

(36)

where we have set c	J = 2�/2

2J/2 (logn)
−1/2−δ, bounded by 1 since � � J .

Fix � < J,m for the moment and let ψ̃ ≡ (ψ̃)	m be the absolutely continuous

part (23) of ψ̃d from (21) where we choose ψ = c	Jψ	m1I\{0}. We will apply
Proposition 11 to the functional F (ν) = 〈v − v0, c	Jψ	m〉 and for the choices

η = ψ̃J and δn =
K2J(J2 + 1)√

n
, (37)

where K > 0 is a constant. To bound the term Sn(ν) in Proposition 11 we need
the following approximation lemma.

Lemma 14. For any ψ = c	Jψ	m1I\{0} with fixed � < J,m, let ψ̃d be the

corresponding finite measure defined in (21), let ψ̃ be its absolutely continuous

part from (23), and let ψ̃J = PVJ
(ψ̃) be its wavelet projection onto VJ . Then we

have, for some constant c0 independent of �,m, J , that∣∣∣∣c	J ∫
I

(v − v0)ψ	m +

∫
I

Aν0(v − v0)Aν0(ψ̃J)dPν0

∣∣∣∣ ≤ c0
‖ν − ν0‖L2

2J(log n)1/2+δ
.

Proof. We notice that Lemma 6 implies

c	J

∫
I

(v − v0)ψ	m = c	J

∫
I

(v − v0)ψ	m1I\{0} = −
∫
I

Aν0(v − v0)Aν0(ψ̃)dPν0 ,

so that by linearity of the operator Aν0 and Lemma 5 it suffices to bound∫
I

Aν0(v − v0)Aν0(ψ̃J − ψ̃)dPν0 =

∫
I

ν0A
∗
ν0
[Aν0(v − v0)](ψ̃J − ψ̃)

=
∑
l>J

∑
k

〈h(ν, ν0), ψlk〉〈ψ̃, ψlk〉,

where we have used Parseval’s identity, and the shorthand notation h(ν, ν0) :=

ν0A
∗
ν0
[Aν0(v−v0)]. Now ψ̃ is the absolutely continuous part of ψ̃d which accord-

ing to (22) (with Δ = 1 without loss of generality) is given by

ψ̃d = − 1

ν0
πν0 ∗

((
πν0(−·) ∗ ψ

ν0

)
Pν0

)
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= −e2ν0(I)

ν0

( ∞∑
ι=0

∞∑
κ=0

(−1)ι+κ

ι!κ!

(
ν∗ι0 ∗ ν0(−·)∗κ ∗ ψ

ν0

)
Pν0

)
.

By standard properties of convolutions, using (4) and since ψ/ν0 is absolutely

continuous, removing the discrete part of ψ̃d means removing Dirac measure
from the series expansion of Pν0 – denote the resulting absolutely continuous

measure by Pν0 . First we consider the part ψ̄ of ψ̃ corresponding to the terms
in the last series where either ι > 0 or κ > 0, so that not all of the convolution
factors in

ν∗ι0 ∗ ν0(−·)∗κ ∗ ψ

ν0

are Dirac measures δ0. Since Cs(I), s > 5/2, is imbedded into the standard
periodic Sobolev spaceHα(I), α � 2, we can use the basic convolution inequality
‖f ∗ g‖Cα(I) � ‖f‖Hα(I)‖g‖L2 , α = 0, 2, (proved, e.g., just as Lemma 4.3.18 in
[18]), the fact that ψ/ν0 = c	Jψ	m/ν0 is bounded in L2 = H0, and the multiplier
property ‖fg‖H2 � ‖f‖C2‖g‖H2 combined with the fact that the density of Pν0

is contained in Cs(I) ⊆ C2(I), to deduce that ψ̄ is contained in C2(I) and thus,
by (8)∣∣∣∣∑

l>J

∑
k

〈h(ν, ν0), ψlk〉〈ψ̄, ψlk〉
∣∣∣∣ �∑

l>J

‖〈h(ν, ν0), ψl·〉‖L2‖〈ψ̄, ψl·〉‖L2

�
∑
l>J

‖ν − ν0‖L22−2l � ‖ν − ν0‖L22−2J ,

which is of the desired order.
Setting ι = κ = 0 in the preceding representation of ψ̃ and using the con-

volution series representation of Pν0 (without discrete part) yields the ‘critical’
term which is given by −ψg where

g = c
1

ν20

∞∑
j=1

ν∗j0
j!

,

for a suitable constant c > 0. By arguments similar to above the function g is at
least in C2 and for xlk the mid-point of the support set Slk of ψlk (an interval
of width O(2−l) at most) we can write

〈ψ	mg, ψlk〉 =
∫
I

ψ	m(g − g(xlk) + g(xlk))ψlk

=

∫
I

ψ	mψlk(g − g(xlk)) + g(xlk)

∫
I

ψ	mψlk.

The last term vanishes by orthogonality (� � J < l), and using the mean value
theorem the absolute value of the first is bounded by

‖g′‖∞
∫
Slk

|x− xlk||ψ	m(x)||ψlk(x)|dx � 2−l

∫
I

|ψ	m(x)||ψlk(x)|dx.
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Then, using (8) and the standard convolution inequalities for L2-norms,∑
l>J

2−l
∑
k

|〈h(ν, ν0), ψlk〉|
∫
I

|ψ	m||ψlk|

�
∑
l>J

2−l‖h(ν, ν0)‖L2

∫
I

|ψ	m(x)|
∑
k

|ψlk(x)|dx

�
∑
l>J

2−l/2‖h(ν, ν0)‖L2‖ψ	m‖L1 � 2−J/22−	/2‖ν − ν0‖L2

Scaling the last estimate by a multiple of c	J = 2	/2−J/2(log n)−1/2−δ leads to
the result.

Conclude from Proposition 10 and our choice of J that

sup
ν∈Dn,M

|Sn(ν)| �
√
n‖ν − ν0‖L2

2J(log n)1/2+δ
�

√
nn−(s+1/2)/(2s+1) = O(1).

Simple calculations (using that (22) implies that ψ̃J , 2
−J/2ψ̃J are uniformly

bounded in L2, L∞, respectively, proved by arguments similar to those used in
Lemma 14) show that for s > 5/2 the three conditions (61), (62), (63) and the
two conditions (32), (33) are all satisfied for such η, δn chosen as in (37) and
K large enough. We thus deduce from Proposition 11 and Lemma 12 that for
some sequence Cn = OPN

ν0
(1) and |t| � T ,

EΠDn,M
[
et

√
n
∫
(v−v0)c�Jψ�m |X1, . . . , Xn

]
� Cn exp

{ t2
2
‖ψ̃J‖2LAN − t√

n

n∑
k=1

Aν0(ψ̃J)(Xk)
}
.

If we define ν̃	m = − 1
n

∑n
k=1 Aν0(ψ̃J)(Xk) + c	J

∫
v0ψ	m then for |t| � T this

becomes the sub-Gaussian estimate

EΠDn,M
[
et

√
n(c�J

∫
vψ�m−ν̃�m)|X1, . . . , Xn

]
� Cn exp

{ t2
2
‖ψ̃J‖2LAN

}
(38)

for the stochastic process Z	,m = (c	J
∫
vψ	m − ν̃	m)|X1, . . . , Xn conditional on

X1, . . . , Xn, with constants η, t uniform. We can then decompose

√
nc	J |〈v − v0, ψ	m〉| �

√
n|Z	,m|+

∣∣∣∣ 1√
n

n∑
k=1

Aν0((ψ̃	m)J)(Xk)

∣∣∣∣,
and the maximum over 2J many variables in (36) can now be estimated by the
sum of the maxima of each of the preceding processes. For the first process we
observe that the sub-Gaussian constants are uniformly bounded through

‖ψ̃J‖2LAN = ‖Aν0(ψ̃J)‖2L2(Pν0 )
� ‖ψ̃J‖2L2(I) � ‖ψ̃‖L2(I) � ‖ψ	m‖2L2(I) � 1, (39)
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using Lemma 26, that ν0 ∈ L∞ is bounded away from zero, that PVJ
is a

L2-projector, combined with standard convolution inequalities. Using the sub-
Gaussian estimate for |t| � T , the display in the proof of Lemma 2.3.4 in
[18] yields that this maximum has expectation of order at most O(J) with PN

ν0
-

probability as close to one as desired. To the maximum of the second (empirical)
process we apply Lemma 3.5.12 in [18] (and again Lemma 26 combined with
the inequality in the previous display and also that ‖g‖∞ � 2J/2‖g‖L2 for any
g ∈ VJ) to see that its PN

ν0
-expectation is of order O(

√
J +J2J/2/

√
n) = O(

√
J)

uniformly in � � J,m. Feeding these bounds into (36) we see that on an event
of PN

ν0
-probability as close to one as desired,

EΠDn,M
[‖ν − ν0‖∞|X1, . . . , Xn] � 2J/2J√

n
(log n)1/2+δJ � 2J/2√

n
(log n)5/2+δ.

(40)
Since δ > 1/2 was arbitrary an application of Markov’s inequality completes the
proof.

4.4. Proof of Theorem 7

Given results from Sections 4.1, 4.2, the proof follows ideas in [7]. Let ν̂(J)
be the random element of M0(w) from (27) with J chosen as in (11). For
Dn,M as in (28) let ΠDn,M (·|Xn, . . . , Xn) be as before (30), and suppose ν ∼
ΠDn,M (·|X1, . . . , Xn). In view of (30), and since the total variation distance dom-
inates the metric βM0(ω), it suffices to prove the result for ΠDn,M (·|X1, . . . , Xn)

replacing Π(·|X1, . . . , Xn). Let Π̃n denote the laws of
√
n(ν−ν̂(J)) conditionally

on X1, . . . , Xn and let Nν0 be the Gaussian probability measure on M0(w) de-
fined (cylindrically) before Theorem 7, arising from the law of X = (Xl,k). The
following norm estimate is the main step to establish tightness of the process Z
in M0(ω).

Lemma 15. For any monotone increasing sequence w̄ = (w̄l), w̄l/l
4 � 1, if

Z equals either X or the process
√
n(ν − ν̂(J))|X1, . . . , Xn, then for some fixed

constant C > 0 we have

E
[
‖Z‖M0(w̄)

]
= E
[
sup
l

w̄−1
l max

k
|Zl,k|

]
≤ C, (41)

where in case Z =
√
n(ν− ν̂(J))|X1, . . . , Xn the operator E denotes conditional

expectation EDn,M [·|X1, . . . , Xn] and the inequality holds with PN
ν0
-probability as

close to one as desired.

Proof. We first consider the more difficult case where Z is the centred and scaled
posterior process. We decompose, with νJ = PVJ

(ν),

√
n(ν − ν̂(J)) =

√
n(νJ − ν̂(J)) +

√
n(ν0 − ν0,J) +

√
n[(ν − ν0)− (ν − ν0)J ].

The second term on the right hand side has multi-scale norm ‖ν0 − ν0,J‖M(w)

bounded by 2−J(s+1/2)w−1
J = o(1/

√
n) in view of (8), ‖ψlk‖L1 � 2−l/2. Similarly
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the expectation of the multi-scale norm of the third term is bounded by∫
‖ν − ν0 − (ν − ν0)J‖M(w)dΠ

Dn,M (ν|X1, . . . , Xn)

=

∫
sup
l>J

w−1
l max

k
|〈ν − ν0, ψlk〉|dΠDn,M (ν|X1, . . . , Xn)

� w−1
J sup

l>J
max

k
‖ψlk‖L1

∫
‖ν − ν0‖∞dΠDn,M (ν|X1, . . . , Xn)

� 2−J/22J/2

J4
√
n

log5/2+δ n = oPN
ν0
(1/

√
n),

using (40). We turn to bounding the multi-scale norm of the first term, corre-
sponding to

√
n‖νJ − ν̂(J)‖M(w) =

√
n sup

l<J
w−1

l max
k

∣∣∣∣∫
I

νψlk − ν̂(J)lk

∣∣∣∣ .
The first term in the decomposition∫

I

νψlk − ν̂(J)lk =

∫
I

(ν − ν0)ψlk −
(
ν̂(J)lk −

∫
I

ν0ψlk

)
≡
∫
I

(ν − ν0)ψlk −Wlk

(42)
equals∫

I

(ν − ν0)ψlk =

∫
I

(ev − ev0)ψlk =

∫
I

(v − v0)ν0ψlk +O(‖ν − ν0‖2∞), (43)

and the quadratic remainder is of order o(1/
√
n) uniformly in k, l by definition

of Dn,M and since s > 5/2.

Lemma 16. Let ψ = ν0ψlk1I\{0} for some l < J, k with corresponding ψ̃ =

(ψ̃)lk from (21), (23) and wavelet approximation ψ̃J ∈ VJ . We have∣∣∣∣∫
I

Aν0(v − v0)Aν0(ψ̃J)dPν0 +

∫
I

(v − v0)ν0ψlk

∣∣∣∣ � ‖ν − ν0‖∞2−J .

Proof. The proof requires only notational adaptation of the proof of Lemma 14,
except for the last display, where now we use Lemma 26 (and its variant for A∗

ν)
in the estimate |〈h(ν, ν0), ψlk〉| ≤ ‖h(ν, ν0)‖∞‖ψlk‖L1 � 2−l/2‖ν − ν0‖∞ so that
scaling by c	J is not necessary.

The upper bound in the display of Lemma 16 has EDn,M [·|X1, . . . , Xn]-
expectation of order o(1/

√
n) in view of (40). We now apply Proposition 11

to the functional

F (ν) ≡ Flk(ν) = −
∫
I

Aν0(v − v0)Aν0(ψ̃J)dPν0 , (44)

with choices δn = K2J(J2 + 1)/
√
n for K > 0 a large enough constant and

η = ψ̃J . Simple calculations (using that ψ̃J , 2
−J/2ψ̃J are uniformly bounded in
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L2, L∞, respectively) show that for s > 5/2 the three conditions (61), (62), (63)
and the two conditions (32), (33) are all satisfied. Conclude from Proposition 11
and Lemma 12 that

EΠDn,M
[
et

√
nF (ν)|X1, . . . , Xn

]
� Cn exp

{
t2

2
‖ψ̃J‖2LAN− t√

n

n∑
k=1

Aν0(ψ̃J)(Xk)

}
for |t| � T , or equivalently, if Vlk = 1

n

∑n
k=1 Aν0(ψ̃J)(Xk), then for some C ′

n =
OPN

ν0
(1),

EΠDn,M
[
et

√
nF (ν)+t

√
nVlk |X1, . . . , Xn

]
� C ′

n exp

{
t2

2
‖ψ̃J‖2LAN

}
. (45)

Arguing just as in (39) the sub-Gaussian constants ‖ψ̃J‖2LAN are bounded by a
fixed constant. We then have, for M a fixed constant and using wl � l,

EΠDn,M

[
sup
l<J

w−1
l max

k

∣∣√nFlk(ν) +
√
nVlk

∣∣∣∣∣∣X1, . . . , Xn

]
� M +

∫ ∞

M

ΠDn,M

(
sup
l<J

l−1 max
k

∣∣√nFlk(ν) +
√
nVlk

∣∣ > u

∣∣∣∣X1, . . . , Xn

)
du

We bound the tail integrals using (45) as follows:∑
l<J,k

∫ ∞

M

ΠDn,M
(∣∣√nFlk(ν) +

√
nVlk

∣∣ > lu|X1, . . . , Xn

)
du

�
∑
l<J,k

∫ ∞

M

ΠDn,M

(
eT |√nFlk(ν)+

√
nVlk| > eTlu|X1, . . . , Xn

)
du

�
∑
l<J,k

∫ ∞

M

EΠDn,M
[
eT |√nFlk(ν)+

√
nVlk||X1, . . . , Xn

]
e−Tludu

� C ′
n

∑
l<J

2l
∫ ∞

M

e−Tludu � C ′
n

∑
l<J

2le−TMl = OPN
ν0
(1)

for M large enough. Moreover, one proves Eν0 supl<J w−1
l maxk |Vlk| � 1/

√
n

and also Eν0 supl<J w−1
l maxk |Wlk| � 1/

√
n just as in the proof of Theo-

rem 1 in [7] (or Theorem 5.2.16 in [18]), using Bernstein’s inequality com-
bined with the previous bound on the sub-Gaussian constants and a uniform
bound of order 2J/2 (proved just as after (39)) on the envelopes ‖Aν0(ψ̃J)‖∞,
‖(A∗

ν0
)−1(ψlk1{0}c)‖∞, l � J , of the empirical processes involved. Combining

what precedes with Lemma 16 (and the remark after it), (42), (43) proves (41)
for the ‘posterior’ process. The Gaussian process X admits by definition the
same (sub-) Gaussian bound as in (45) so that the result follows from the same
arguments just given.

The inequality (41) implies in particular that for any weighting sequence ω
as in Theorem 7, the processes Z concentrate in the separable subspace M0(ω)
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of M(ω), and their laws define tight (in the case of Nν0 , Gaussian) Borel prob-
ability measures in it (by Ulam’s theorem, see p.225 in [12]). Then, using the
estimate (41) and arguing as in the proof of Proposition 6 in [7] (or in The-
orem 7.3.20 in [18]), Theorem 7 will follow if we can establish convergence

of the finite-dimensional distributions Π̃n ◦ P−1
VL

towards those of Nν0 ◦ P−1
VL

,
L ∈ N fixed, as n → ∞, where PVL

is the projection operator onto the finite-
dimensional subspace VL of M0(w) corresponding to the first 2L coordinates
(xlk : l � L, k). For this we proceed as in the previous lemma, combining (42),
(43) with Lemma 16 and the definition of Wlk, to reduce the problem to showing
for ν ∼ ΠDn,M (·|X1, . . . , Xn) weak convergence in probability of the conditional
laws of

Yn ≡ −
√
n

∫
I

Aν0(v − v0)Aν0(ψ̃J)dPν0 −
1√
n

n∑
i=1

(A∗
ν0
)−1(ψlk1{0}c)(Xi),

to the law of Nν0 for every fixed k, l � L ∈ N. Applying Proposition 11 as

after (44) combined with Lemma 13 (for k, l fixed the corresponding ψ̃J ’s are
bounded in L∞) gives convergence of Zn in Proposition 11 to one and hence
one has, as n → ∞ and for all t,

EΠDn,M [
etYn |X1, . . . , Xn

]
= (1 + oPN

ν0
(1)) exp

{
t2

2
‖Aν0(ψ̃J)‖2L2(Pν0 )

}
exp(tρn)

where

ρn = − 1√
n

n∑
i=1

(A∗
ν0
)−1(ψlk1{0}c)(Xi)−

1√
n

n∑
i=1

Aν0(ψ̃J)(Xi).

Using Lemma 4, (21), Aν(ψ̃d−ψ̃) = 0 by (16) and (23), and then also Lemma 26

combined with ψ̃ ∈ L2 one has

‖Aν0(ψ̃J) + (A∗
ν0
)−1(ψlk1{0}c)‖L2(Pν0 )

= ‖Aν0(ψ̃J)−Aν0(ψ̃)‖L2(Pν0 )

� ‖ψ̃J − ψ̃‖L2(I) → 0

as J → ∞, in particular by Chebyshev’s inequality ρn = oPN
ν0
(1) for every

fixed l � L, k. Thus the Laplace-transforms of each such coordinate projection
converge to the Laplace transform of the correct normal limit distribution, for
all t,

EΠDn,M [
etYn |X1, . . . , Xn

]
=(1+oPN

ν0
(1))×exp

{
t2

2
‖(A∗

ν0
)−1(ψlk1{0}c)‖2L2(Pν0 )

}
,

and convergence in distribution now follows from standard arguments (see, e.g.,
Proposition 29 in [24]). This argument extends directly to all linear combinations∑

l�L,k al,kψlk, so that we can apply the Cramer–Wold device to obtain joint
convergence in VL for any L ∈ N. The proof is complete.
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5. Proof of Proposition 10

We first derive a general contraction theorem from which we will deduce Propo-
sition 10 (after Proposition 23). We follow the usual ‘testing and small ball prob-
ability approach’ (as in Theorem 7.3.1 in [18], see also [16]), which in our setting
gives the following starting point to prove contraction rates, where K(Pν ,Pν′)
denotes the usual Kullback–Leibler (KL-) divergence between two probability
measures Pν ,Pν′ .

Proposition 17. Consider a prior Π on a σ-field SV of some set V of Lévy
measures for which the map (ν, x) 	→ pν(x), defined before (5) is jointly mea-
surable. Let d be some metric on V such that ν 	→ d(ν, ν′) is measurable for
all ν′ ∈ V. Suppose for some sequence εn → 0 such that

√
nεn → ∞, constant

C > 0 and n large enough we have

Π

(
ν ∈ V : K(Pν0 ,Pν) � ε2n,VarPν0

(
log

dPν

dPν0

)
� ε2n

)
� e−Cnε2n

and that for Vn ⊆ V such that Π(V \ Vn) � Le−(C+4)nε2n we can find tests
Ψn = Ψ(X1, . . . , Xn) and δn > 0,M0 > 0, such that

Eν0Ψn → 0, sup
ν∈Vn, d(ν,ν0)�M0δn

Eν(1−Ψn) � Le−(C+4)nε2n .

Then if Π(·|X1, . . . , Xn) is the posterior distribution from (6) we have, for every
M � M0,

Π(ν : d(ν, ν0) � Mδn|X1, . . . , Xn) → 0

as n → ∞ in PN
ν0
-probability.

As in previously studied ‘inverse problems’ settings [30, 28, 24], to apply
this proposition with a metric d different from the Hellinger distance h(Pν ,Pν0)
requires new approaches to the construction of frequentist tests, and as in these
references we use tools from ‘concentration of measure’ theory put forward in
[17], where we initially choose for d the weak (or ‘robust’) metric induced by
the norm ‖ · ‖H(δ) of

H(δ) =

{
f : ‖f‖2H(δ) =

∑
l,k

2−ll−2δ〈f, ψlk〉2 < ∞
}
, δ > 1/2, (46)

a negative order Sobolev space. Contraction rates in stronger norms will then
be deduced from interpolation arguments. Before doing so, however, we need to
calculate KL-divergences for the observation scheme relevant in our context, and
show that they can be bounded in terms of the distance of their Lévy measures.

Lemma 18. Let D > 0 such that e−D � dν/dΛ � eD and e−D � dν0/dΛ � eD

on I. Then there exists KD > 0 such that

K(Pν0 ,Pν) =

∫
I

log
dPν0

dPν
dPν0 � KD‖ν − ν0‖2L2 ,
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VarPν0

(
log

dPν

dPν0

)
�
∫
I

(
log

dPν

dPν0

)2
dPν0 � KD‖ν − ν0‖2L2 .

Proof. We define the path s 	→ exp(s(v−v0)+v0) = ν(s), s ∈ [0, 1], from ν0 to ν
and consider the function f(s) =

∫
log(dPν(s)/dPν0)dPν0 . Observing f(0) = 0 a

Taylor expansion at s = 0 yields some s ∈ [0, 1] such that f(1) = f ′(0)+ 1
2f

′′(s).
By the upper and lower bounds on the Lévy densities the differentiation may
be performed under the integral and we obtain∫

log
dPν0

dPν
dPν0 = −

∫
d d
ds Pν(s)

dPν(s)

∣∣∣∣
s=0

+
1

2

d d2

ds2 Pν(s)

dPν(s)

− 1

2

(d d
ds Pν(s)

dPν(s)

)2
dPν0

= −
∫

Aν0(v − v0)dPν0

− 1

2

∫
Aν(s)((v − v0)

2) +Aν(s)(v − v0, v − v0)− (Aν(s)(v − v0))
2dPν0

= −1

2

∫
Aν(s)((v − v0)

2) +Aν(s)(v − v0, v − v0)− (Aν(s)(v − v0))
2dPν0

� ‖Aν(s)((v − v0)
2)‖L1(P

ν(s) ) + ‖Aν(s)(v − v0, v − v0)‖L1(P
ν(s) )

+ ‖Aν(s)(v − v0)‖2L2(P
ν(s) )

,

where the last step contains a change of measure from Pν0 to Pν(s) such that we
may now apply Lemma 26∫

log
dPν0

dPν
dPν0 � ‖(v − v0)

2‖L1(ν(s)) + ‖v − v0‖2L1(ν(s)) + ‖v − v0‖2L2(ν(s))

� ‖v − v0‖2L2(ν(s)) � ‖v − v0‖2L2 � ‖ν − ν0‖2L2 .

For the second inequality we consider the following function g and its derivatives

g(s) =

∫ (
log

dPν(s)

dPν0

)2
dPν0 ,

g′(s) =

∫
2
(
log

dPν(s)

dPν0

)d d
dsPν(s)

dPν(s)

dPν0 ,

g′′(s) =

∫
2
(
log

dPν(s)

dPν0

)((d d
dsPν(s)

dPν(s)

)2
+

d d2

ds2Pν(s)

dPν(s)

−
(d d

dsPν(s)

dPν(s)

)2)
dPν0

=

∫
2
(
log

dPν(s)

dPν0

)d d2

ds2Pν(s)

dPν(s)

dPν0 .

Observing g(0) = g′(0) = 0 we obtain by a Taylor expansion g(1) = g′′(s) for
some s ∈ [0, 1] and thus∫ (

log
dPν

dPν0

)2
dPν0

=

∫
2
(
log

dPν(s)

dPν0

)d d2

ds2Pν(s)

dPν(s)

dPν0 �
∫ ∣∣∣d d2

ds2Pν(s)

dPν(s)

∣∣∣dPν(s)
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� ‖Aν(s)((v − v0)
2)‖L1(P

ν(s) ) + ‖Aν(s)(v − v0, v − v0)‖L1(P
ν(s) )

� ‖(v − v0)
2‖L1(ν(s)) + ‖v − v0‖2L1(ν(s))

� ‖v − v0‖2L2 + ‖v − v0‖2L1 � ‖v − v0‖2L2 � ‖ν − ν0‖2L2 .

Assumption 19. The intensity λ of ν satisfies λ < π/Δ.

For Lévy processes on R the Lévy measure can be identified by taking the
complex logarithm of the characteristic function of Pν in such a way that the
resulting function is continuous. (This is known as the distinguished logarithm.)
For Lévy processes on a circle the characteristic function is defined only on the
integer lattice and a continuous version of the logarithm cannot be defined. How-
ever, this problem can be resolved by assuming λ < π/Δ since then the expo-
nent in the Lévy-Khintchine representation always coincides with the principle
branch of the logarithm of the characteristic function, ensuring identifiability.
This condition is sharp as the following examples show.

Examples. By the Lévy–Khintchine representation (3) we see that Pν1 and Pν2

coincide if F ν1(k) equals F ν2(k) modulo multiples of 2πi/Δ for all k ∈ Z.

1. For ν1 = (π/Δ)δ1/4 and ν2 = (π/Δ)δ−1/4 we have F ν1(k) = F ν2(k) for
all even k and F ν1(k) = F ν2(k)+(2π/Δ)i or F ν1(k) = F ν2(k)−(2π/Δ)i
for all odd k. This shows that the intensity bound in Assumption 19 is
sharp.

2. For ν1(x) = (4π/Δ)(sin(2πx))+ and ν2(x) = (4π/Δ)(sin(2πx))− we have
F ν1(1) = F ν2(1)+ (2π/Δ)i and F ν1(−1) = F ν2(−1)− (2π/Δ)i. For all
other k it can be shown that F ν1(k) = F ν2(k). This demonstrates that
there exist nonidentifiable Lévy measures which are absolutely continuous
with respect to Lebesgue measure.

Lemma 20. For any c, x,D > 0, δ > 1/2, and integer K � 2, there exist
constants R1(c,D,Δ) > 0, R2(c,D,Δ) > 0 and an estimator ν̂ = ν̂(X1, . . . , Xn)
such that

sup
ν:‖ν‖L1<π/Δ,‖ν‖L2�c

PN
ν

(
‖ν̂ − ν‖H(δ) > R1

(√
logK + x√

n
+

1√
K

))

≤ e−Dx2

+
e−

nR2
log K

R2
. (47)

Proof. We first show the above concentration inequality with ‖ν̂ − ν‖H(δ) re-

placed by |λ̂−λ|, where λ =
∫
I
ν = (Fν)(0) is the intensity and λ̂ is an estimator

defined as follows: Let ϕn(k) = (1/n)
∑n

j=1 exp{2πikXj} be the empirical char-

acteristic function, set Φn(k) = Δ−1 logϕn(k) for ϕn(k) �= 0 and Φn(k) = 0 oth-
erwise, where we take the principal branch of the complex logarithm. For K � 2
consider the estimator λ̂ = −(1/K)

∑K
k=1 ReΦn(k). The Lévy–Khintchine rep-

resentation (3) yields Φν(k) := Δ−1 logϕν(k) = Fν(k)−λ, where thanks to the
restriction ‖ν‖L1 < π/Δ the imaginary part on the r.h.s. lies in (−π/Δ, π/Δ)
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and hence log is the logarithm in the principle branch. We obtain

λ̂− λ = − 1

K

K∑
k=1

Re(Φn(k)− Φν(k))−
1

K

K∑
k=1

(ReΦν(k) + λ)

= − 1

K

K∑
k=1

Re(Φn(k)− Φν(k))−
1

K

K∑
k=1

ReFν(k) (48)

In order to linearise the first term in previous equation we define the event

An =

{∥∥∥∥ϕn − ϕν

ϕν

∥∥∥∥
K

� 1

2

}
with ‖f‖K = sup

|k|�K

|f(k)|.

It holds | log(1+ z)− z| � 2|z|2 for |z| � 1/2. Thus we have on the event An for
|k| � K

Φn(k)− Φν(k) =
1

Δ
log

(
ϕn(k)− ϕν(k)

ϕν(k)
+ 1

)
=

1

Δ

{
ϕn(k)− ϕν(k)

ϕν(k)
+O

(∣∣∣ϕn(k)− ϕν(k)

ϕν(k)

∣∣∣2)} .

The first term in (48), up to linearisation, is purely stochastic and bounded
by a term of the form

1

ΔK

K∑
k=1

|ϕn(k)− ϕν(k)|
|ϕν(k)|

.

Since ‖ν‖1 < π/Δ we know that supk |1/ϕν(k)| � c′ for some constant c′ =
c′(Δ). For the numerator we consider the 4K + 4 random variables

± Re(ϕn(−K)− ϕν(−K)), . . . ,±Re(ϕn(K)− ϕν(K)),

± Im(ϕn(−K)− ϕν(−K)), . . . ,± Im(ϕn(K)− ϕν(K))

and denote them by Zj with j = 1, . . . , 4K + 4. These have bounded differ-
ences with constant c2 = 4/n which follows from using example b) before The-
orem 3.3.14 in [18] and observing that e2πik(·) are uniformly bounded by 1.

Applying this theorem we have EeλZj � eλ
2c2/8 = eλ

2/(2n). By Lemma 2.3.4 in
[18] we further obtain that

E

[
max

j=1,...,4K+4
Zj

]
�
√

2

n
log(4K + 4)

and denoting Z = max|k|�K |ϕn(k)− ϕν(k)| we have

E[Z] � 2E

[
max
|k|�K

(Re(ϕn(k)− ϕν(k)), Im(ϕn(k)− ϕν(k)))

]
�
√

8

n
log(4K + 4) �

√
logK

n
.
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For the concentration around the mean we observe that Z itself also has bounded
differences with c2 = 4/n and applying Theorem 3.3.14 in [18] yields

P(Z � EZ + t) � e−2t2/c2 = e−nt2/2, P(Z � EZ − t) � e−nt2/2.

This shows that the linearisation of the first term in (48) is bounded by a multi-
ple of (

√
logK+x)/

√
n. On An we can bound the remainder in the linearisation

by a multiple of the same quantity. For n/ logK large enough EZ is smaller than
1/(4c′) and we can bound P(Ac

n) by exp(−R2n) � exp(−R2n/ logK) using the
concentration of Z. The bound P(Ac

n) � (1/R2) exp(−R2n/ logK) for all n and
K is obtained by choosing a possibly smaller constant R2.

For the bias we bound, using the Cauchy–Schwarz inequality,∣∣∣∣∣ 1K
K∑

k=1

ReFν(k)

∣∣∣∣∣ � K−1/2

√√√√ K∑
k=1

|Fν(k)|2 ≤ ‖ν‖L2√
K

,

which explains the second regime in the inequality in Lemma 20.
Now to estimate ν we first estimate Fν(k), k �= 0, by F ν̂(k) = (Φn(k) +

λ̂)1[−K,K](k), where K is a spectral cut-off parameter. By standard theory of
Sobolev spaces on the unit circle, an equivalent norm on H(δ) is given by

‖f‖′H(δ) =
∑
k

|Ff(k)|2k−1(log(e+ k))−2δ.

Using that
∑

k k
−1(log(e+ k))−2δ converges for δ > 1/2 we obtain

‖ν̂ − ν‖2H(δ) =
∑
k

k−1(log(e+ k))−2δ|F ν̂(k)−Fν(k)|2

=
∑

|k|�K

k−1(log(e+ k))−2δ|Φn(k)− Φν(k) + λ̂− λ|2

+
∑

|k|>K

k−1(log k)−2δ|Fν(k)|2

� (λ̂− λ)2 +
∑

|k|�K

k−1(log(e+ k))−2δ|Φn(k)− Φν(k)|2

+
∑

|k|>K

k−1(log(e+ k))−2δ|Fν(k)|2

� (λ̂− λ)2 + max
|k|�K

|Φn(k)− Φν(k)|2 + ‖ν‖2L2/K,

which, repeating the above, gives the same bounds as those obtained for error
of the intensity λ̂− λ.

The proof of the following proposition is contained in Section 8.

Proposition 21. Denote V = {ν ∈ V : ‖ν‖L1 < π/Δ and ‖ν‖L2 � c} for some
c,Δ > 0. Let εn be such that

√
(logn)/n � εn and εn = o(1/

√
logn). Then for
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ν0 ∈ V there exists a sequence of tests (indicator functions) Ψn ≡ Ψ(X1, . . . , Xn)
such that for every C > 0, there exist M = M(C, c,Δ) > 0 such that for all n
large enough

Eν0 [Ψn] →n→∞ 0, sup
ν∈V:‖ν−ν0‖H(δ)�Mεn

Eν [1−Ψn] � 2e−(C+4)nε2n .

Proposition 22. Suppose we have for some constants c, C,D > 0, for a se-
quence εn such that

√
(logn)/n � εn and εn = o(1/

√
logn), for ν0 such that

e−D � dν0/dΛ � eD, for some prior Π on a set {ν ∈ V : e−D � dν/dΛ � eD}
of Lévy measures bounded from above and away from zero, for n large enough
and with KD from Lemma 18 that

Π
(
ν ∈ V : ‖ν − ν0‖L2 � εn/

√
KD

)
� e−Cnε2n (49)

and that

Π(ν ∈ V : ‖ν‖L1 � π/Δ or ‖ν‖L2 > c) � Le−(C+4)nε2n . (50)

If Π(·|X1, . . . , Xn) is the posterior distribution from (6), then there exists M0

such that for every M � M0, as n → ∞ and in PN
ν0
-probability,

Π(ν : ‖ν − ν0‖H(δ) � Mεn|X1, . . . , Xn) → 0.

Proof. Starting with Proposition 17 we replace the condition on the Kullback–
Leibler neighbourhood by a condition on a L2 neighbourhood using Lemma 18.
Further we choose Vn = {ν ∈ V : ‖ν‖L1 < π/Δ, ‖ν‖L2 � c}, d(ν, ν0) = ‖ν −
ν0‖H(δ) and δn = εn. The existence of tests follows by Proposition 21.

Proposition 23. Grant Assumption 1 for some s > 5/2, B > 0, and set

εn = n−s/(2s+1)(log n)1/2. (51)

For the choice J = Jn with 2Jn ≈ n1/(2s+1) the prior (10) satisfies for n large
enough the small ball probability condition (49).

The above proposition is proved in Section 9. We now turn to the proof of
Proposition 10. When modelling an s-regular function ν, and when ν0 ∈ Cs as
well, Proposition 23 shows (49) for the choice εn ≈ n−s/(2s+1)(logn)1/2, and so
we obtain the lower bound on the small ball probabilities. By Assumption 1 we
have ‖ν‖L1 < π/Δ and we also see that the prior concentrates almost surely on
a fixed L∞- (and then also L2-) ball since ‖v‖2∞ �

∑
l 2

−l/2, thus (50) holds for
Π too. As a consequence we obtain

Π(ν : ‖ν − ν0‖H(δ) � Mεn|X1, . . . , Xn) →PN

ν0 1. (52)

Restricting to this event we can further bound L2-distances: by v0 = log ν0 ∈ Cs

and (8) and using Lemma 24 below (and the remark before it) we have on an
event with posterior probability tending to one

‖ν − ν0‖2L2 � ‖v − v0‖2L2 =
∑
l<J

∑
k

〈v − v0, ψlk〉2 +
∑
l�J,k

〈v0, ψlk〉2
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� 2JJ2δ‖v − v0‖2H(δ) +O(2−2Js) � 2JJ2δ‖ν − ν0‖2H(δ) +O(2−2Js) � 2JJ2δε2n

so that, as n → ∞,

Π(ν : ‖ν − ν0‖L2 � C2J/2Jδεn|X1, . . . , Xn) →PN

ν0 0

and further using that with posterior probability tending to one

‖ν − ν0‖∞ � ‖v − v0‖∞ =
∑
l<J

2l/2 max
k

|〈v − v0, ψlk〉|+
∑
l�J

2l/2 max
k

|〈v0, ψlk〉|

� 2J/2‖v − v0‖L2 +O(2−Js) � 2JJδεn

which also implies that

Π(ν : ‖ν − ν0‖∞ � C2JJδεn|X1, . . . , Xn) →PN

ν0 0.

For δ > 1/2 we have posterior contraction with rates εL
2

n and εL
∞

n in L2 and
L∞, respectively, where

εL
2

n = n− s−1/2
2s+1 (log n)1/2+δ and εL

∞

n = n− s−1
2s+1 (log n)1/2+δ.

Estimating ‖v−v0‖Lp � ‖ν−ν0‖p for p = 2,∞ implies Proposition 10. Moreover,

using (εL
p

n )p � (εL
∞

n )p−2(εL
2

n )2 we obtain for contraction in Lp the rate

εL
p

n = n− s+1/p−1
2s+1 (logn)1/2+δ. (53)

It remains to prove Lemma 24. Let us introduce the spaces

B(δ) =

{
f : ‖f‖2B(δ) =

∑
l,k

2ll2δ〈f, ψlk〉2 < ∞
}
, δ > 1/2,

which are equal to the (logarithmically refined) Sobolev spaces H1/2,δ(I). As
in Proposition 4.3.12 in [18] one shows that H(δ) is the topological dual space
of B(δ). We further see directly from the definition of the prior that v = log ν
satisfies

‖v‖2B(δ′) =
∑
l,k

2ll2δ
′
a2l u

2
lk �
∑
l�J

l2δ
′−4 � c, any δ′ < 3/2,

and one further shows that also ‖ν‖B(δ′) = ‖ev‖B(δ′) is bounded by a fixed
constant Π-almost surely (e.g., using the modulus of continuity characterisation
of the B(δ)-norm, proved as in Section 4.3.5 in [18]). This justifies the application
of the following lemma with 1/2 < δ < δ′ < 3/2 in the above estimate. The
lemma is proved in Section 10.

Lemma 24. a) For any ν, ν0 ∈ B(δ), δ > 1/2, such that ν, ν0 are bounded away
from zero on I and such that ‖ν − ν0‖B(δ) → 0, we have ‖ log ν − log ν0‖H(δ) �
‖ν − ν0‖H(δ).

b)If ‖ν − ν0‖H(δ) → 0 and ν, ν0 are uniformly bounded in B(δ′), then for any
δ < δ′ we have ‖ν − ν0‖B(δ) → 0.
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6. Proof of Proposition 11

Using the definition of Sn(ν) and the formula for the posterior distribution we
obtain

EΠDn,M
[
et

√
nF (ν)

∣∣∣X1, . . . , Xn

]
= EΠDn,M

[
eSn(ν)−t

√
n
∫
Aν0 (v−v0)Aν0 (η)dPν0

∣∣∣X1, . . . , Xn

]
(54)

=

∫
Dn,M

eSn(ν)−t
√
n
∫
Aν0 (v−v0)Aν0 (η)dPν0+	n(ν)dΠ(ν)∫

Dn,M
e	n(ν)dΠ(ν)

.

By Assumption 1 we have s > 5/2 so that by Remark 28 condition (63) implies
condition (64) and we conclude that the entire Assumption 27 is satisfied. By
Lemma 29, the choice of J as in (11), Assumption 27 and the Lp-contraction
rates (53) derived from Proposition 10 we have that Assumption 25 is satisfied.
In Section 6.2 we prove that under Assumption 25

− t
√
n

∫
Aν0(v − v0)Aν0(η)dPν0 + �n(ν) (55)

=
t2

2
‖Aν0(η)‖2L2(Pν0 )

− t√
n

n∑
k=1

Aν0(η)(Xk) + �n(νt) + r′n(ν),

where supν∈Dn,M
|r′n(ν)| = oPN

ν0
(1) with the nonstochastic null sequence implicit

in the oPN
ν0

notation uniform in η ∈ Hn. Since the first two terms on the right

hand side do not depend on ν they can be taken outside the posterior integral
in (54) so that

EΠDn,M
[
et

√
nF (ν)

∣∣∣X1, . . . , Xn

]
= exp

{
t2

2
‖Aν0(η)‖2L2(Pν0 )

− t√
n

n∑
k=1

Aν0(η)(Xk)

}

×
∫
Dn,M

eSn(ν)+	n(νt)+r′n(ν)dΠ(ν)∫
Dn,M

e	n(ν)dΠ(ν)
.

By the mean value theorem for integrals r′n(ν) can be replaced by rn not depend-
ing on ν with |rn| � supν∈Dn,M

|r′n(ν)| = oPN
ν0
(1) in the above display finishing

the proof of the proposition.
In order to prove the crucial perturbation approximation (55), we first need to

obtain formulas for the directional derivatives of the likelihood function, which
is done in the next section.

6.1. Directional derivatives of the likelihood function

We fix a positive and absolutely continuous Lévy measure ν0 = λ0μ0 with
corresponding infinitely divisible distribution Pν0 . We set v0 = log ν0 so that
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ν0 = exp v0 and parametrise a path away from ν0 as

ν(s) = exp(s(v − v0) + v0), s ∈ [0, 1].

The resulting compound Poisson measure can be identified in the Fourier domain
as

FPν(s+h)(k) = exp

(
Δ

∫
(e2πikx − 1)dν(s+h)(x)

)
= exp

(
Δ

∫
(e2πikx − 1)ν(s)(x)eh(v−v0)(x)dx

)
= exp

(
Δ

∫
(e2πikx − 1)ν(s),h(x)dx+Δ

∫
(e2πikx − 1)ν(s)(x)dx

)
= FPν(s)(k)× exp

(
Δ

∫
(e2πikx − 1)ν(s),h(x)dx

)
,

where ν(s),h(x) := ν(s)(x)
(
eh(v−v0)(x) − 1

)
is a finite signed measure on I. One

checks by the usual properties of convolution and definition of ez that the second
factor in the last product is the Fourier transform of the finite signed measure

e−Δν(s),h(I)
∞∑
k=0

Δk(ν(s),h)∗k

k!

and so we conclude by injectivity of F that

Pν(s+h) = e−Δν(s),h(I)
∞∑
k=0

Δk(ν(s),h)∗k

k!
∗ Pν(s) . (56)

Let Λ denote the Lebesgue (probability) measure on I. We observe that the
resulting compound Poisson measure is of the form PΛ = e−Δδ0 + (1− e−Δ)Λ.
Both Pν(s) and Pν(s+h) are absolutely continuous with respect to PΛ. We will
now determine the first five derivatives of dPν(s) /dPΛ. To this end we expand
(56) in terms of h. We start with the factor in front of the sum and expand

e−Δν(s),h(I) = exp

(
−Δ

∫
(eh(v−v0)(x) − 1)dν(s)

)
= exp

(
−Δ

∫
h(v − v0)(x) +

h2

2
(v − v0)

2(x) +
h3

6
(v − v0)

3(x) +O(h4)dν(s)
)

= 1−Δ

∫
h(v − v0)(x) +

h2

2
(v − v0)

2(x) +
h3

6
(v − v0)

3(x)dν(s)

+
Δ2

2

(∫
h(v − v0)(x) +

h2

2
(v − v0)

2(x) +
h3

6
(v − v0)

3(x)dν(s)
)2

− Δ3

6

(∫
h(v − v0)(x) +

h2

2
(v − v0)

2(x) +
h3

6
(v − v0)

3(x)dν(s)
)3

+O(h4)
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= 1−Δh

∫
v − v0dν

(s) −Δ
h2

2

∫
(v − v0)

2dν(s) −Δ
h3

6

∫
(v − v0)

3dν(s)

+
Δ2

2
h2

(∫
v − v0dν

(s)

)2

+
Δ2

2
h3

∫
v − v0dν

(s)

∫
(v − v0)

2dν(s)

− Δ3

6
h3

(∫
v − v0dν

(s)

)3

+O(h4).

From the definition of ν(s),h we observe that (ν(s),h)∗k = O(hk). Using (56) we
obtain

dPν(s+h)

dPΛ
− dPν(s)

dPΛ
=

d

dPΛ

{
e−Δν(s),h(I)

∞∑
k=0

Δk(ν(s),h)∗k

k!
∗ Pν(s) − Pν(s)

}
=

d

dPΛ

{(
1−Δh

∫
v − v0dν

(s) −Δ
h2

2

∫
(v − v0)

2dν(s)

−Δ
h3

6

∫
(v − v0)

3dν(s) +
Δ2

2
h2

(∫
v − v0dν

(s)

)2

+
Δ2

2
h3

∫
v − v0dν

(s)

∫
(v − v0)

2dν(s) − Δ3

6
h3

(∫
v − v0dν

(s)

)3

+O(h4)

)
(
δ0 +Δν(s)(eh(v−v0)(x) − 1) +

Δ2

2
(ν(s)(eh(v−v0)(x) − 1))∗2

+
Δ3

6
(ν(s)(eh(v−v0)(x) − 1))∗3 +O(h4)

)
∗ Pν(s) −Pν(s)

}
.

To find the first derivative we gather all terms that are linear in h and obtain

d

dPΛ

{(
Δν(s)h(v − v0)−Δh

∫
v − v0dν

(s)δ0

)
∗ Pν(s)

}
= hΔ

d((ν(s)(v − v0)) ∗ Pν(s) −
∫
v − v0dν

(s) Pν(s))

dPΛ
.

This gives the first derivative

d

ds

dPν(s)

dPΛ
= Δ

d((ν(s)(v − v0)) ∗ Pν(s) −
∫
v − v0dν

(s) Pν(s))

dPΛ
.

Gathering all terms quadratic in h we find

d

dPΛ

{(
Δν(s)

h2

2
(v − v0)

2 +
Δ2

2
(ν(s)h(v − v0))

∗2

−Δ2h

∫
v − v0dν

(s)ν(s)h(v − v0)−
Δh2

2

∫
(v − v0)

2dν(s)δ0

+
Δ2h2

2

(∫
v − v0dν

(s)

)2

δ0

)
∗ Pν(s)

}
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=
h2

2

d

dPΛ

{(
Δν(s)(v − v0)

2 −Δ

∫
(v − v0)

2dν(s)δ0 +Δ2(ν(s)(v − v0))
∗2

− 2Δ2

∫
v − v0dν

(s)(v − v0)ν
(s) +Δ2

(∫
v − v0dν

(s)

)2

δ0

)
∗ Pν(s)

}
.

And this gives the second derivative

d2

ds2
dPν(s)

dPΛ
=

d

dPΛ

{
Δ((v − v0)

2ν(s)) ∗ Pν(s) −Δ

∫
(v − v0)

2dν(s) Pν(s)

+Δ2

(
((v − v0)ν

(s))− δ0

∫
(v − v0)dν

(s)

)∗2
∗ Pν(s)

}
.

Finally we gather all terms which are cubic in h. This yields

d

dPΛ

{(
Δν(s)

h3

6
(v − v0)

3 +Δ2

(
(ν(s)h(v − v0)) ∗

(
ν(s)

h2

2
(v − v0)

2
))

+
Δ3

6
(ν(s)h(v − v0))

∗3

−Δ2h

∫
v − v0dν

(s)ν(s)
h2

2
(v − v0)

2 −Δ3h

∫
v − v0dν

(s) 1

2
(ν(s)h(v − v0))

∗2

+
h2

2

(
Δ3
(∫

v − v0dν
(s)
)2

−Δ2

∫
(v − v0)

2dν(s)
)
ν(s)h(v − v0)

− h3Δ3

6

(∫
v − v0dν

(s)

)3

δ0

− h3Δ

6

∫
(v − v0)

3dν(s)δ0 +
h3Δ2

2

∫
v − v0dν

(s)

∫
(v − v0)

2dν(s)δ0

)
∗ Pν(s)

}
.

In this way we obtain the third derivative

d3

ds3
dPν(s)

dPΛ
=

d

dPΛ

{
Δ((v − v0)

3ν(s)) ∗ Pν(s) −Δ

∫
(v − v0)

3dν(s) Pν(s)

+ 3Δ2

(
((v − v0)ν

(s))− δ0

∫
(v − v0)dν

(s)

)
∗
(
((v − v0)

2ν(s))− δ0

∫
(v − v0)

2dν(s)
)
∗ Pν(s)

+Δ3

(
((v − v0)ν

(s))− δ0

∫
(v − v0)dν

(s)

)∗3
∗ Pν(s)

}
.

In a similar way we obtain for the fourth and fifth derivative

d4

ds4
dPν(s)

dPΛ
=

d

dPΛ

{
Δ((v − v0)

4ν(s)) ∗ Pν(s) −Δ

∫
(v − v0)

4dν(s) Pν(s)

+ 3Δ2

(
((v − v0)

2ν(s))− δ0

∫
(v − v0)

2dν(s)
)∗2

∗ Pν(s)
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+ 4Δ2

(
((v − v0)ν

(s))− δ0

∫
(v − v0)dν

(s)

)
∗
(
((v − v0)

3ν(s))− δ0

∫
(v − v0)

3dν(s)
)
∗ Pν(s)

+ 6Δ3

(
((v − v0)ν

(s))− δ0

∫
(v − v0)dν

(s)

)∗2

∗
(
((v − v0)

2ν(s))− δ0

∫
(v − v0)

2dν(s)
)
∗ Pν(s)

+Δ4

(
((v − v0)ν

(s))− δ0

∫
(v − v0)dν

(s)

)∗4
∗ Pν(s)

}
,

d5

ds5
dPν(s)

dPΛ
=

d

dPΛ

{
Δ((v − v0)

5ν(s)) ∗ Pν(s) −Δ

∫
(v − v0)

5dν(s) Pν(s)

+ 10Δ2

(
((v − v0)

2ν(s))− δ0

∫
(v − v0)

2dν(s)
)

∗
(
((v − v0)

3ν(s))− δ0

∫
(v − v0)

3dν(s)
)
∗ Pν(s)

+ 5Δ2

(
((v − v0)ν

(s))− δ0

∫
(v − v0)dν

(s)

)
∗
(
((v − v0)

4ν(s))− δ0

∫
(v − v0)

4dν(s)
)
∗ Pν(s)

+ 10Δ3

(
((v − v0)ν

(s))− δ0

∫
(v − v0)dν

(s)

)∗2

∗
(
((v − v0)

3ν(s))− δ0

∫
(v − v0)

3dν(s)
)
∗ Pν(s)

+ 15Δ3

(
((v − v0)

2ν(s))− δ0

∫
(v − v0)

2dν(s)
)∗2

∗
(
((v − v0)ν

(s))− δ0

∫
(v − v0)dν

(s)

)
∗ Pν(s)

+ 10Δ4

(
((v − v0)ν

(s))− δ0

∫
(v − v0)dν

(s)

)∗3

∗
(
((v − v0)

2ν(s))− δ0

∫
(v − v0)

2dν(s)
)
∗ Pν(s)

+Δ5

(
((v − v0)ν

(s))− δ0

∫
(v − v0)dν

(s)

)∗5
∗ Pν(s)

}
.

Let L2
0(Pν) := {g ∈ L2(Pν) :

∫
gdPν = 0}. Motivated by the structure of the

derivatives we define the multilinear form

Aν |L2(ν)⊗k : L2(ν)⊗k → L2
0(Pν), (57)
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(w1, . . . , wk) 	→ Δk d((w1ν − δ0
∫
w1dν) ∗ · · · ∗ (wkν − δ0

∫
wkdν) ∗ Pν)

dPν
.

In view of the derivatives of the log-likelihood we divide the derivatives by
dPν(s) /dPΛ. Then the dominating measure PΛ cancels and we suppress it in
the notation. We obtain the following expressions

d d
ds Pν(s)

dPν(s)

= Aν(s)(v − v0),

d d2

ds2 Pν(s)

dPν(s)

= Aν(s)(v − v0)
2 +Aν(s)(v − v0, v − v0),

d d3

ds3 Pν(s)

dPν(s)

= Aν(s)(v − v0)
3 + 3Aν(s)(v − v0, (v − v0)

2)

+Aν(s)(v − v0, v − v0, v − v0),

d d4

ds4 Pν(s)

dPν(s)

= Aν(s)(v − v0)
4 + 4Aν(s)(v − v0, (v − v0)

3)

+ 3Aν(s)((v − v0)
2, (v − v0)

2) + 6Aν(s)(v − v0, v − v0, (v − v0)
2)

+Aν(s)(v − v0, v − v0, v − v0, v − v0)

d d5

ds5 Pν(s)

dPν(s)

= Aν(s)(v − v0)
5 + 5Aν(s)(v − v0, (v − v0)

4)

+ 10Aν(s)((v − v0)
2, (v − v0)

3) + 10Aν(s)(v − v0, v − v0, (v − v0)
3)

+ 15Aν(s)((v − v0)
2, (v − v0)

2, v − v0)

+ 10Aν(s)(v − v0, v − v0, v − v0, (v − v0)
2)

+Aν(s)(v − v0, v − v0, v − v0, v − v0, v − v0).

With the densities at hand we can determine the derivatives of the empirical
log-likelihood

D�n(ν0)[v − v0] =

n∑
j=1

d d
ds Pν(s)

dPν(s)

∣∣∣∣
s=0

(Xj),

D2�n(ν0)[v − v0, v − v0] =
n∑

j=1

d d2

ds2 Pν(s)

dPν(s)

∣∣∣∣
s=0

(Xj)−
n∑

j=1

(
d d
ds Pν(s)

dPν(s)

)2∣∣∣∣
s=0

(Xj)

D3�n(ν
(s))[v − v0, v − v0, v − v0]

=

n∑
j=1

d d3

ds3 Pν(s)

dPν(s)

(Xj)− 3

n∑
j=1

d d2

ds2 Pν(s)

dPν(s)

(Xj)
d d
ds Pν(s)

dPν(s)

(Xj)

+ 2

n∑
j=1

(
d d
ds Pν(s)

dPν(s)

(Xj)

)3

D4�n(ν
(s))[v − v0, v − v0, v − v0, v − v0]
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=

n∑
j=1

d d4

ds4 Pν(s)

dPν(s)

(Xj)− 4

n∑
j=1

d d3

ds3 Pν(s)

dPν(s)

(Xj)
d d
ds Pν(s)

dPν(s)

(Xj)

− 3

n∑
j=1

(
d d2

ds2 Pν(s)

dPν(s)

(Xj)

)2

+ 12

n∑
j=1

d d2

ds2 Pν(s)

dPν(s)

(Xj)

(
d d
ds Pν(s)

dPν(s)

(Xj)

)2

− 6

n∑
j=1

(
d d
ds Pν(s)

dPν(s)

(Xj)

)4

D5�n(ν
(s))[v − v0, v − v0, v − v0, v − v0, v − v0]

=

n∑
j=1

d d5

ds5 Pν(s)

dPν(s)

(Xj)− 5

n∑
j=1

d d4

ds4 Pν(s)

dPν(s)

(Xj)
d d
ds Pν(s)

dPν(s)

(Xj)

+ 20

n∑
j=1

d d3

ds3 Pν(s)

dPν(s)

(Xj)

(
d d
ds Pν(s)

dPν(s)

(Xj)

)2

− 10

n∑
j=1

d d3

ds3 Pν(s)

dPν(s)

(Xj)
d d2

ds2 Pν(s)

dPν(s)

(Xj)

− 60
n∑

j=1

d d2

ds2 Pν(s)

dPν(s)

(Xj)

(
d d
ds Pν(s)

dPν(s)

(Xj)

)3

+ 30

n∑
j=1

(
d d2

ds2 Pν(s)

dPν(s)

(Xj)

)2 d d
ds Pν(s)

dPν(s)

(Xj) + 24

n∑
j=1

(
d d
ds Pν(s)

dPν(s)

(Xj)

)5

.

The previous quantities simply denote one-dimensional derivatives of the em-
pirical log-likelihood along the curve ν(s). These derivatives can be viewed as
values on the diagonal of symmetric multilinear forms and by means of polar-
ization we extend the derivatives to symmetric multilinear forms.

6.2. Likelihood expansion

In this section we will use a likelihood expansion to show the statement used in
Section 6 that

− t
√
n

∫
Aν0(v − v0)Aν0(η)dPν0 + �n(ν)

=
t2

2
‖Aν0(η)‖2L2(Pν0 )

− t√
n

n∑
k=1

Aν0(η)(Xk) + �n(νt) + r′n(ν),

where supν∈Dn,M
|r′n(ν)| = oPN

ν0
(1). Let εL

p

n with 2 < p < ∞ be rates such that

for
Dn,p = Dn,p,M :=

{
ν : v ∈ VB,J , ‖v − v0‖Lp � MεL

p

n

}
we have

Π(Dc
n,p|X1, . . . , Xn) →PN

ν0 0.
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For example we can take (εL
p

n )p = (εL
∞

n )p−2(εL
2

n )2. Setting ωLp

n = tn−1/2‖η‖Lp+
δnε

Lp

n we work under the following conditions.

Assumption 25. Let Hn ⊆ L∞(I). Assume J , δn, ε
Lp

n and ωLp

n satisfy uni-
formly over η ∈ Hn

2−Js = o(εL
2

n ), 2−Js = o(εL
∞

n ), (bias conditions)

√
nδnε

L2

n 2J/2
√
log

c

εL2

n

= o(1), (for term II)

2J/2√
n

√
log

c

εL2

n

� εL
2

n , (first term dominates in II)

nδn
(
εL

2

n

)2
= o(1), (for centring of III(ii))

t‖η‖∞εL
2

n 2J/2
√
log

c

εL2

n

= o(1), (for term III(i))

t2√
n
‖η‖2L4 = o(1), (for deviation from mean of IV (i))

tδn
√
n‖η‖L2εL

2

n = o(1), (for centring of IV (iii))

nωL3

n

(
εL

3

n

)2
= o(1), n

(
ωL3

n

)3
= o(1), (for centring of third derivative)

nωL4

n

(
εL

4

n

)3
= o(1), n

(
ωL4

n

)4
= o(1), (for centring of fourth derivative)

n
(
εL

5

n

)5
= o(1), n

(
ωL5

n

)5
= o(1), (for centring of fifth derivative)

√
n
(
εL

∞

n + ωL∞

n

)2(
εL

2

n + ωL2

n

)
2J/2
(
log

c

εL2

n + ωL2

n

)1/2

= o(1), (for Rn)

1√
n
2J/2
(
log

c

εL2

n + ωL2

n

)1/2

� εL
2

n + ωL2

n . (first term dominates in Rn)

We consider the following path from ν0 to ν, s 	→ exp(s(v− v0) + v0) = ν(s).
A Taylor expansion of the log-likelihood �n along this path gives

�n(ν)− �n(ν0) = D�n(ν0)[v − v0] +
1
2D

2�n(ν0)[v − v0, v − v0]

+ 1
6D

3�n(ν
(s))[v − v0, v − v0, v − v0],

where the first two terms denote first and second derivative at zero and the
last term denotes the third derivative at some intermediate point s ∈ [0, 1].
We will see later that the derivatives depend linearly on the directions. Thus it
is possible to extend them to symmetric multilinear forms. The corresponding

path from ν0 to νt = exp(vt) is u 	→ exp(u(vt − v0) + v0) = ν
(u)
t .

We recall the perturbation (31) and define δ̃n(v) by

vt = v + δn

( t

δn
√
n
η + v0,J − v

)
= v + δ̃n(v).
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With this definition we calculate

�n(ν)− �n(ν0)− (�n(νt)− �n(ν0))

= D�n(ν0)[v − v0]−D�n(ν0)[vt − v0] +
1
2D

2�n(ν0)[v − v0, v − v0]

− 1
2D

2�n(ν0)[vt − v0, vt − v0] +Rn

= D�n(ν0)[v − vt] +
1
2D

2�n(ν0)[v − v0, v − v0]

− 1
2D

2�n(ν0)[v − v0 + δ̃n(v), v − v0 + δ̃n(v)] +Rn

= −D�n(ν0)[(t/
√
n)η]− δnD�n(ν0)[v0,J − v]

−D2�n(ν0)[v − v0, δ̃n(v)]− 1
2D

2�n(ν0)[δ̃n(v), δ̃n(v)] +Rn

= I + II + III + IV +Rn,

where

Rn = 1
6D

3�n(ν
(s))[v − v0, v − v0, v − v0]− 1

6D
3�n(ν

(u)
t )[vt − v0, vt − v0, vt − v0]

with intermediate points s, u ∈ [0, 1].
We need to show that

I + II + III + IV +Rn = t
√
n

∫
Aν0(v − v0)Aν0(η)dPν0

+
t2

2
‖Aν0(η)‖2L2(Pν0 )

− t√
n

n∑
k=1

Aν0(η)(Xk) + r′n(ν).

(58)

The first term is given by I = − t√
n
D�n(ν0)[η] = − t√

n

∑n
k=1 Aν0 [η](Xk). For

the second term we have

II = −δnD�n(ν0)[v0,J − v] =
√
nδn

1√
n

n∑
k=1

Aν0(v − v0,J )(Xk) =
√
nδnGnfv,

where Gn =
√
n(Pν0,n −Pν0) is the empirical process and fv = Aν0(v − v0,J ).

On Dn,M we have ‖v − v0‖L2 � MεL
2

n and ‖v − v0‖∞ � MεL
∞

n . Using the
usual bias bounds ‖v0,J − v0‖L2 � 2−Js, ‖v0,J − v0‖∞ � 2−Js and the bias

condition in Assumption 25 we obtain ‖v− v0,J‖L2 � MεL
2

n and ‖v− v0,J‖∞ �
MεL

∞

n with a possibly larger constant M . We recall fv = Aν0(v − v0,J ) and
consider the finite dimensional class of functions

F :=
{
fv : v ∈ VB,J , ‖v − v0,J‖L2 � MεL

2

n , ‖v − v0,J‖∞ � MεL
∞

n

}
. (59)

We observe that there is D > 0 such that ‖v0‖∞ � D and ‖v‖∞ � D for all
v ∈ VB,J . We will bound the norms of functions in F using the following lemma.

Lemma 26. Let ‖v‖∞ � D and ν = exp(v). Then for Aν defined in (57) and
for 1 � p � ∞

‖Aν(w1, . . . , wk)‖Lp(Pν) � ‖w1‖Lp(ν) . . . ‖wk‖Lp(ν).

The constants only depends on k, D and Δ.
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Proof. We write ν for both the Lévy measure and its density. The measure

Pν can be written as a convolution exponential Pν = e−Δλ
∑∞

k=0
Δk

k! ν
∗k with

intensity λ = ν((−1/2, 1/2]). The function v is bounded such that the corre-
sponding Lévy density ν = exp(v) is bounded from above and bounded away
from zero. Likewise the intensity λ is bounded from above and bounded away
from zero. We denote by Λ the Lebesgue measure on [−1/2, 1/2]. Then dΛ

d Pν
is in

L∞(Pν) with norm bounded by a constant depending on D and Δ only. Defining

by Pa
ν = e−Δλ

∑∞
k=1

Δk

k! ν
∗k the absolutely continuous part with respect to the

Lebesgue measure Λ we see likewise that the density
d Pa

ν

dΛ is bounded in L∞(Λ)
from above depending on D and Δ only. By definition we have

‖Aν(w1, . . . , wk)‖Lp(Pν)

� Δk

∥∥∥∥d((w1ν − δ0
∫
w1dν) ∗ · · · ∗ (wkν − δ0

∫
wkdν) ∗ Pν)

dPν

∥∥∥∥
Lp(Pν)

.

The nominator consists of 2k terms and a typical term is of the from∫
w1dν . . .

∫
wjdν · (wj+1ν) ∗ · · · ∗ (wkν) ∗ Pν

and up to permutation and choice of j between 0 and k all terms are of this
form. So it suffices to bound∥∥∥∥d(∫ w1dν . . .

∫
wjdν · (wj+1ν) ∗ · · · ∗ (wkν) ∗ Pν)

dPν

∥∥∥∥
Lp(Pν)

� ‖w1‖L1(ν) . . . ‖wj‖L1(ν)

∥∥∥∥d((wj+1ν) ∗ · · · ∗ (wkν) ∗ Pν)

dPν

∥∥∥∥
Lp(Pν)

� ‖w1‖Lp(ν) . . . ‖wj‖Lp(ν)

∥∥∥∥d((wj+1ν) ∗ · · · ∗ (wkν) ∗ Pν)

dPν

∥∥∥∥
Lp(Pν)

.

For j = k this gives the desired bound and for j < k the previous line can be
bounded by

‖w1‖Lp(ν) . . . ‖wj‖Lp(ν)

∥∥∥∥d((wj+1ν) ∗ · · · ∗ (wkν) ∗ Pν)

dΛ

∥∥∥∥
Lp(Pν)

∥∥∥∥ dΛ

dPν

∥∥∥∥
L∞(Pν)

� ‖w1‖Lp(ν) . . . ‖wj‖Lp(ν)

∥∥∥∥d((wj+1ν) ∗ · · · ∗ (wkν) ∗ Pν)

dΛ

∥∥∥∥
Lp(Λ)

,

where we have used boundedness of dΛ
d Pν

and
d Pa

ν

dΛ . Young’s inequality for con-
volutions yields the bound

‖w1‖Lp(ν) . . . ‖wj‖Lp(ν) ‖wj+1ν‖L1(Λ) . . . ‖wk−1ν‖L1(Λ) ‖wkν‖Lp(Λ)

� ‖w1‖Lp(ν) . . . ‖wk‖Lp(ν)

and the lemma follows by treating all 2k terms in this way.
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We define v(u) =
∑

l�J−1

∑
k alulkψlk with al = 2−l(l2 + 1)−1. For u, u′ ∈

R2J we denote v = v(u), v′ = v(u′). Applying Lemma 26 with w1 = v − v′

yields ‖fv − fv′‖∞ � ‖v − v′‖∞ � ‖u − u′‖∞, where the constant only de-
pends on D and Δ. It follows that supQ ‖fv − fv′‖L2(Q) � ‖u − u′‖∞, where
the supremum is over all Borel probability measures Q. Consequently we have

supQ N(F , L2(Q), ε‖F‖L2(Q)) � (A/ε)2
J

, for some A � 2 and for 0 < ε < A and
where the envelope can be taken as a constant function F with constant only
depending on D and Δ.

Let σ2 = supf∈F Pν0 f
2. Lemma 26 yields

σ � sup
‖v−v0,J‖�MεL2

n

‖Aν0(v − v0,J )‖L2(Pν0 )

� sup
‖v−v0,J‖�MεL2

n

‖v − v0,J‖L2(ν0) � εL
2

n .

Then we have by Corollary 3.5.8 in [18] for some c > 0

E‖Gn‖F � εL
2

n 2J/2
√

log
c

εL2

n

+
1√
n
2J log

c

εL2

n

.

We obtain II = oP(1) using the conditions

√
nδnε

L2

n 2J/2
√

log
c

εL2

n

= o(1) and
2J/2√

n

√
log

c

εL2

n

� εL
2

n .

Next we consider the term III. It equals

−D2�n(ν0)[v − v0, δ̃n(v)]

= −n−1/2tD2�n(ν0)[v − v0, η]︸ ︷︷ ︸
(i)

+δnD
2�n(ν0)[v − v0, v − v0,J ]︸ ︷︷ ︸

(ii)

= − t√
n

n∑
j=1

d d2

ds2 Pν(s)

dPν(s)

∣∣∣∣
s=0

[v − v0, η](Xj)︸ ︷︷ ︸
(i)(a)

+
t√
n

n∑
j=1

(
d d
ds Pν(s)

dPν(s)

)2 ∣∣∣∣
s=0

[v − v0, η](Xj)︸ ︷︷ ︸
(i)(b)

+δn

n∑
j=1

d d2

ds2 Pν(s)

dPν(s)

∣∣∣∣
s=0

[v − v0, v − v0,J ](Xj)︸ ︷︷ ︸
(ii)(a)

−δn

n∑
j=1

(
d d
ds Pν(s)

dPν(s)

)2 ∣∣∣∣
s=0

[v − v0, v − v0,J ](Xj)︸ ︷︷ ︸
(ii)(b)

,
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where we understand the bilinear forms through polarization and by abuse of
notation ν(s) denotes a generic path.

The terms (i)(a) and (ii)(a) are both centred. The term (i)(b) is centred after
subtracting

√
n t

∫
Aν0(v − v0)Aν0(η)dPν0

yielding the corresponding term in (58). The centring of the term (ii)(b) is of
order

δnn

∣∣∣∣ ∫ Aν0(v − v0)Aν0(v − v0,J )dPν0

∣∣∣∣
� δnn

(
Eν0

[
(Aν0(v − v0))

2
])1/2 (

Eν0

[
(Aν0(v − v0,J))

2
])1/2

� δnn‖v − v0‖L2(ν0)‖v − v0,J‖L2(ν0) � δnn(ε
L2

n )2 = o(1).

We start with the term (i)(a). We define functions

fv = Aν0((v − v0)η) +Aν0(v − v0, η)

and consider the corresponding class of functions as in (59). For u, u′ ∈ R2J we
denote again v = v(u), v′ = v(u′) and apply Lemma 26 to the function fv − fv′ .
This yields

‖fv − fv′‖∞ � ‖η‖∞‖v − v′‖∞ � ‖η‖∞‖u− u′‖∞,

where the constant only depends on D and Δ. We choose the envelope F of the
class F as a constant function C‖η‖∞, where the constant C depends only on
D and Δ. Then the bound ‖fv − fv′‖∞ � ‖η‖∞‖u− u′‖∞ shows that we have

supQ N(F , L2(Q), ε‖F‖L2(Q)) � (A/ε)2
J

for some A � 2 and for all 0 < ε < A.
The next step is to bound σ2 = supf∈F Pν0 f

2. By Lemma 26 we have

σ = sup
f∈F

‖f‖L2(Pν0 )
� ‖η‖∞εL

2

n .

Corollary 3.5.8 in [18] allows to bound the empirical process appearing in
term (i)(a). For some c > 0 we obtain

E‖Gn‖F � ‖η‖∞ εL
2

n 2J/2
√
log

c

εL2

n

+
1√
n
‖η‖∞2J log

c

εL2

n

.

The conditions for the first term dominating the second term is the same as for
the term II. To bound the term (i)(a) we use

t‖η‖∞ εL
2

n 2J/2
√
log

c

εL2

n

= o(1).
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Next we treat term (i)(b), which is given by

t√
n

n∑
j=1

Aν0(v − v0)(Xj)Aν0(η)(Xj).

We define gv = Aν0(v − v0)Aν0(η) and fv = gv − Eν0 [gv]. So after centring the
term is given by tGnfv. We have by Lemma 26

‖gv − gv′‖∞ = ‖Aν0(v − v′)Aν0(η)‖∞ � ‖Aν0(v − v′)‖∞‖Aν0(η)‖∞
� ‖v − v′‖∞‖η‖∞

and thus also ‖fv − fv′‖∞ � ‖v− v′‖∞‖η‖∞. We consider the class of functions
F as in (59) corresponding to the functions of the form fv here and bound

σ = sup
f∈F

‖f‖L2(Pν0 )
� sup

‖v−v0‖L2�2MεL2
n

‖gv‖L2(Pν0 )

� sup
‖v−v0‖L2�2MεL2

n

‖Aν0(η)‖∞‖Aν0(v − v0)‖L2(Pν0 )
� ‖η‖∞εL

2

n .

Just as for term (i)(a) we apply now Corollary 3.5.8 in [18] with envelop pro-
portional to ‖η‖∞. So the conditions for term (ii)(b) are the same as for the
term (i)(a).

We move on to the term (ii)(a). We define

fvv′ = Aν0((v − v0)(v
′ − v0,J )) +Aν0(v − v0, v

′ − v0,J)

and fv = fvv. We now consider the class of functions F with this definition of
fv. Then we have

‖fv − fv′‖∞ � ‖fvv − fvv′‖∞ + ‖fvv′ − fv′v′‖∞ � εL
∞

n ‖v − v′‖∞.

Choosing the envelope as a constant function proportional to εL
∞

n we obtain

for the covering numbers supQ N(F , L2(Q), ε‖F‖L2(Q)) � (A/ε)2
J

. Turning to
σ we see

σ = sup
f∈F

‖f‖L2(Pν0 )
� εL

∞

n εL
2

n .

Again we apply Corollary 3.5.8 in [18], which gives the following bound for term
(ii)(a)

δn
√
nE‖Gn‖ � δn

√
nεL

∞

n εL
2

n 2J/2
√
log

c

εL2

n

+ δnε
L∞

n 2J log
c

εL2

n

.

This tends to zero by the assumption for the term II.
The only remaining term of III is (ii)(b). This term takes the from

−δn

n∑
j=1

Aν0(v − v0)(Xj)Aν0(v − v0,J)(Xj).
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With the definitions gvv′ = Aν0(v − v0)Aν0(v
′ − v0,J) and fv = gvv − Eν0 [gvv]

the term (ii)(b) can be written after centring as −δn
√
nGnfv and we bound

‖gvv − gv′v′‖∞ � ‖gvv − gvv′‖∞ + ‖gvv′ − gv′v′‖∞
� ‖v − v0‖∞‖v − v′‖∞ + ‖v − v′‖∞‖v′ − v0,J‖∞ � εL

∞

n ‖v − v′‖∞.

Consequently we also have ‖fv − fv′‖∞ � εL
∞

n ‖v − v′‖∞. We denote by F the
class of functions corresponding to fv as in (59) and further bound

σ = sup
f∈F

‖f‖L2(Pν0 )

� sup{‖gvv‖L2(Pν0 )
: ‖v − v0‖L2 � MεL

2

n , ‖v − v0‖L∞ � MεL
∞

n }
� sup{‖Aν0(v − v0)‖∞‖Aν0(v − v0,J)‖L2(Pν0 )

: ‖v − v0‖L2 � MεL
2

n , ‖v − v0‖L∞ � MεL
∞

n }
� εL

∞

n εL
2

n .

We see that (ii)(b) leads to the same condition as the term (ii)(a).
The term IV equals

− t2

2n
D2�n(ν0)[η, η]︸ ︷︷ ︸

(i)

−δ2n
2
D2�n(ν0)[v − v0,J , v − v0,J ]︸ ︷︷ ︸

(ii)

+
tδn√
n
D2�n(ν0)[η, v − v0,J ]︸ ︷︷ ︸

(iii)

= − t2

2n

n∑
j=1

d d2

ds2 Pν(s)

dPν(s)

∣∣∣∣
s=0

[η, η](Xj)︸ ︷︷ ︸
(i)(a)

+
t2

2n

n∑
j=1

(
d d
ds Pν(s)

dPν(s)

∣∣∣∣
s=0

[η](Xj)

)2

︸ ︷︷ ︸
(i)(b)

−δ2n
2

n∑
j=1

d d2

ds2 Pν(s)

dPν(s)

∣∣∣∣
s=0

[v − v0,J , v − v0,J ](Xj)︸ ︷︷ ︸
(ii)(a)

+
δ2n
2

n∑
j=1

(
d d
ds Pν(s)

dPν(s)

∣∣∣∣
s=0

[v − v0,J ](Xj)

)2

︸ ︷︷ ︸
(ii)(b)

+
tδn√
n

n∑
j=1

d d2

ds2 Pν(s)

dPν(s)

∣∣∣∣
s=0

[η, v − v0,J ](Xj)︸ ︷︷ ︸
(iii)(a)

− tδn√
n

n∑
j=1

(
d d
ds Pν(s)

dPν(s)

)2∣∣∣∣
s=0

[η, v − v0,J ](Xj)︸ ︷︷ ︸
(iii)(b)

.
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The terms (i)(a), (ii)(a) and (iii)(a) are centred. The term (i)(b) can be centred
by subtracting

t2

2
‖Aν0(η)‖2L2(Pν0 )

and gives the corresponding expression in (58). For the centring of term (ii)(b)
we subtract

δ2nn

2
‖Aν0(v − v0,J )‖2L2(Pν0 )

� δ2nn

2
‖v − v0,J‖2L2(ν0)

� δ2nn(ε
L2

n )2 = o(1).

To centre the term (iii)(b) we add tδn
√
nEν0 [Aν0(η)Aν0(v − v0,J )] and this is

bounded in absolute value by

|tδn
√
nEν0 [Aν0(η)Aν0(v − v0,J )]|
� tδn

√
n‖Aν0(η)‖L2(Pν0 )

‖Aν0(v − v0,J )‖L2(Pν0 )

� tδn
√
n‖η‖L2(ν0)‖v − v0,J‖L2(ν0) � tδn

√
n‖η‖L2εL

2

n = o(1).

For term (i)(a) we bound using Lemma 26

Eν0

⎡⎣(d d2

ds2 Pν(s)

dPν(s)

∣∣∣∣
s=0

[η, η]

)2
⎤⎦ � ‖Aν0η

2‖2L2(Pν0 )
+ ‖Aν0(η, η)‖

2
L2(Pν0 )

� ‖η2‖2L2(ν0)
+ ‖η‖4L2(ν0)

� ‖η‖4L4

and for term (i)(b) we bound using Lemma 26

Eν0

[
(Aν0(η))

4
]
= ‖Aν0(η)‖

4
L4(Pν0 )

� ‖η‖4L4 .

We conclude that after centring term (i) is of order OP(t
2n−1/2‖η‖2L4) and we

use t2n−1/2‖η‖2L4 = o(1).
The terms IV (ii) and IV (iii) are treated in the same way as the terms

III(ii) and III(i), respectively. Since the terms IV (ii) and IV (iii) both have
an additional factor δn, no extra condition is needed.

The remainder term can be expressed as

Rn = 1
3!D

3�n(ν0)[v − v0, v − v0, v − v0]− 1
3!D

3�n(ν0)[vt − v0, vt − v0, vt − v0]

+ 1
4!D

4�n(ν0)[v − v0, v − v0, v − v0, v − v0]

− 1
4!D

4�n(ν0)[vt − v0, vt − v0, vt − v0, vt − v0]

+ 1
5!D

5�n(ν
(s))[v − v0, v − v0, v − v0, v − v0, v − v0]

− 1
5!D

5�n(ν
(u)
t )[vt − v0, vt − v0, vt − v0, vt − v0, vt − v0]

= − 3
3!D

3�n(ν0)[δ̃n(v), v − v0, v − v0]− 3
3!D

3�n(ν0)[δ̃n(v), δ̃n(v), v − v0]

− 1
3!D

3�n(ν0)[δ̃n(v), δ̃n(v), δ̃n(v)]

− 4
4!D

4�n(ν0)[δ̃n(v), v − v0, v − v0, v − v0]
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− 6
4!D

4�n(ν0)[δ̃n(v), δ̃n(v), v − v0, v − v0]

− 4
4!D

4�n(ν0)[δ̃n(v), δ̃n(v), δ̃n(v), v − v0]

− 1
4!D

4�n(ν0)[δ̃n(v), δ̃n(v), δ̃n(v), δ̃n(v)]

+ 1
5!D

5�n(ν
(s))[v − v0, v − v0, v − v0, v − v0, v − v0]

− 1
5!D

5�n(ν
(u)
t )[vt − v0, vt − v0, vt − v0, vt − v0, vt − v0].

We start with the centring of the third derivatives. So the aim is to bound
Eν0 [|D3�n(ν0)[w1, w2, w3]|].

D3�n(ν0)[w,w,w]

=

n∑
j=1

d d3

dr3 Pν(r)

dPν(r)

∣∣∣∣
r=0

(Xj)︸ ︷︷ ︸
(a)

−3

n∑
j=1

d d2

dr2 Pν(r)

dPν(r)

∣∣∣∣
r=0

(Xj)
d d
dr Pν(r)

dPν(r)

∣∣∣∣
r=0

(Xj)︸ ︷︷ ︸
(b)

+2

n∑
j=1

(
d d
dr Pν(r)

dPν(r)

∣∣∣∣
r=0

(Xj)

)3

︸ ︷︷ ︸
(c)

.

The term (a) is centred. For term (b) we calculate using Hölder’s inequality

Eν0 [|(Aν0(w1w2) +Aν0(w1, w2))Aν0(w3)|]
� ‖Aν0(w1w2) +Aν0(w1, w2)‖L3/2(Pν0 )

‖Aν0(w3)‖L3(Pν0 )

� (‖w1w2‖L3/2(ν0) + ‖w1‖L3/2(ν0)‖w2‖L3/2(ν0))‖w3‖L3(ν0)

� ‖w1‖L3‖w2‖L3‖w3‖L3

and for term (c) we likewise obtain

Eν0 [|Aν0(w1)Aν0(w2)Aν0(w3)|] � ‖w1‖L3‖w2‖L3‖w3‖L3 .

We conclude

Eν0

[
|D3�n(ν0)[w1, w2, w3]|

]
� ‖w1‖L3‖w2‖L3‖w3‖L3 .

Using Lemma 26 and the generalization of Hölder’s inequality ‖
∏k

j=1 fj‖L1(μ) �∏k
j=1 ‖fj‖Lpj (μ) for

∑k
j=1

1
pj

= 1 and some measure μ, it follows in the same

way that

Eν0

[
|D4�n(ν0)[w1, w2, w3, w4]|

]
� ‖w1‖L4‖w2‖L4‖w3‖L4‖w4‖L4 .

For the fifth derivative we let ν̃ be either ν(s) or ν
(u)
t and first apply a measure

change

Eν0

[
|D5�n(ν̃)[w1, w2, w3, w4]|

]
� Eν̃

[
|D5�n(ν̃)[w1, w2, w3, w4]|

]
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� ‖w1‖L5‖w2‖L5‖w3‖L5‖w4‖L5‖w5‖L5 .

We observe that

ωLp

n =
t√
n
‖η‖Lp + δnε

Lp

n

is the rate at which δ̃n(v) converges to zero in Lp. For the centring of the third,
fourth and fifth derivative we use the following conditions

nωL3

n

(
εL

3

n

)2
= o(1), n

(
ωL3

n

)3
= o(1),

n ωL4

n

(
εL

4

n

)3
= o(1), n

(
ωL4

n

)4
= o(1),

n
(
εL

5

n

)5
= o(1), n

(
ωL5

n

)5
= o(1).

For the empirical process part we develop the remainder term Rn only to the
third derivative so that it takes the form

1
6D

3�n(ν
(s′))[v − v0, v − v0, v − v0]︸ ︷︷ ︸

(i)

−1
6D

3�n(ν
(u′)
t )[vt − v0, vt − v0, vt − v0]︸ ︷︷ ︸

(ii)

.

We have ‖v − v0‖Lp � εL
p

n and ‖vt − v0‖Lp � εL
p

n + ωLp

n . Both (i) and (ii)
can be treated jointly by bounding a term of the form D3�n(ν̃n)[w,w,w] with

ν̃n = exp(ṽn), ‖ṽn‖∞ � D, and either w = v − v0 or w = v + δ̃n − v0.
Let ν(r) = ν̃n exp(rw) so that

D3�n(ν̃n)[w,w,w]

=

n∑
j=1

d d3

dr3 Pν(r)

dPν(r)

∣∣∣∣
r=0

(Xj)︸ ︷︷ ︸
(a)

−3

n∑
j=1

d d2

dr2 Pν(r)

dPν(r)

∣∣∣∣
r=0

(Xj)
d d
dr Pν(r)

dPν(r)

∣∣∣∣
r=0

(Xj)︸ ︷︷ ︸
(b)

+2

n∑
j=1

(
d d
dr Pν(r)

dPν(r)

∣∣∣∣
r=0

(Xj)

)3

︸ ︷︷ ︸
(c)

.

For term (a) we define the functions

gv = Aν̃n
w3 + 3Aν̃n

(w,w2) +Aν̃n
(w,w,w).

We denote fv = gv − Eν0 [gv]. After centring the term (a) is given by
√
nGnfv

with fv varying in the class of functions corresponding to (59), where the func-
tions fv are defined as here. We bound using Lemma 26

‖gv − gv′‖∞ � (εL
∞

n + ωL∞

n )2‖v − v′‖∞ so that

‖fv − fv′‖∞ � (εL
∞

n + ωL∞

n )2‖v − v′‖∞.
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With v = v(u) and v′ = v(u′) from the definition of the prior we further bound
‖v− v′‖∞ � ‖u− u′‖∞. We take the envelope F to be a constant function pro-

portional to
(
εL

∞

n +ωL∞

n

)2
and obtain supQ N(F , L2(Q), ε‖F‖L2(Q)) � (A/ε)2

J

for some A � 2 and for all 0 < ε < A.
We bound σ by

σ = sup
f∈F

‖f‖L2(Pν0 )
� sup

‖v−v0‖L2�2MεL2
n

‖gv‖L2(Pν0 )
� sup

‖v−v0‖L2�2MεL2
n

‖gv‖L2(Pν̃n )

� ‖w3‖L2(ν̃n) + ‖w2‖L2(ν̃n)‖w‖L2(ν̃n) + ‖w‖3L2(ν̃n)
� ‖w‖3L6(ν̃n)

�
(
εL

6

n + ωL6

n

)3
�
(
εL

6

n

)3
+
(
ωL6

n

)3
�
(
εL

∞

n + ωL∞

n

)2(
εL

2

n + ωL2

n

)
.

Using Corollary 3.5.8 in [18] this yields some c > 0 such that

E‖Gn‖F �
(
εL

∞

n + ωL∞

n

)2(
εL

2

n + ωL2

n

)
2J/2
(
log

c

εL2

n + ωL2

n

)1/2

+
1√
n

(
εL

∞

n + ωL∞

n

)2
2J log

c

εL2

n + ωL2

n

. (60)

For the term (b) and (c) we obtain the same bounds for the uniform covering
numbers and for σ as for term (a). So the bound (60) applies likewise to terms
(b) and (c).

6.3. Simplification of Assumption 25

In this section we simplify Assumption 25 and reduce it to a condition involving
η and δn only. To this end we recall εn from(51) and the Lp-contraction rates
εL

p

n from (53) both in Section 5. We set 2J ≈ n1/(2s+1).

Assumption 27. Suppose t = O(1), s > 11/6 and Hn ⊆ L∞(I). Furthermore,
assume for δn and uniformly for all η ∈ Hn

δnn
2/(2s+1)(logn)1+2δ = o(1), (61)

‖η‖L2 = O(1), (62)

‖η‖∞n(−s+1)/(2s+1)(logn)1+δ = o(1), (63)

‖η‖∞n(−3s+11/2)/(2s+1)(logn)3+6δ = o(1). (64)

Remark 28. For s > 9/4 (and so in particular for s > 10/4 = 5/2) condition
(63) implies condition (64).

Lemma 29. Let 2J ≈ n1/(2s+1) and grant Assumption 27. Then t, δn, Hn and
εL

p

n from (53) satisfy Assumption 25.

Proof. The bias conditions are satisfied for this choice of 2J . Further we have

√
nδnε

L2

n 2J/2
√
log

c

εL2

n

�
√
nδnn

− s−1/2
2s+1 (logn)1/2+δn

1/2
2s+1

√
logn
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= δnn
3/2
2s+1 (logn)1+δ = o(1)

by (61). Next we verify

2J/2√
n

√
log

c

εL2

n

� n−1/2n
1/2
2s+1

√
logn = n−s/(2s+1)(log n)1/2 � εL

2

n

and

nδn(ε
L2

n )2 = δnn
2/(2s+1)(log n)1+2δ = o(1)

using (61). For term III(i) we bound

t‖η‖∞εL
2

n 2J/2
√

log
c

εL2

n

� ‖η‖∞n(−s+1)/(2s+1)(log n)1+δ = o(1)

by (63). We check that

t2√
n
‖η‖2L4 � n−1/2‖η‖∞ = o(1)

by (63) and that

tδn
√
n‖η‖L2εL

2

n � δnn
1/(2s+1)(logn)1/2+δ = o(1)

by (61). For the centring of the third derivatives we bound

nωL3

n

(
εL

3

n

)2
� n1/2‖η‖1/3∞ ‖η‖2/3L2

(
εL

3

n

)2
+ nδn

(
εL

3

n

)3
� ‖η‖1/3∞ n(−s+11/6)/(2s+1) (logn)

1+2δ
+ δnn

(−s+3)/(2s+1)(logn)3/2+3δ = o(1),

where we used (64) for the first term and (61) for the second term. Further we
have

n
(
ωL3

n

)3
� n

t3

n3/2
‖η‖3L3 + nδ3n

(
εL

3

n

)3
� n−1/2‖η‖∞ + o(1) = o(1)

using (63) for the first term and nδn(ε
L3

n )3 = o(1) from the next to last display
for the second term. The terms for the centering of the fourth derivates are
treated by

nωL4

n (εL
4

n )3 � n
t

n1/2
‖η‖L4(εL

4

n )3 + nδn(ε
L4

n )4

� n(−2s+11/4)/(2s+1)(logn)3/2+3δ‖η‖1/2∞ + n(−2s+4)/(2s+1)(logn)2+4δδn = o(1),

where we used (64) for the first term and (61) for the second term, and by

n(ωL4

n )4 � n
t4

n2
‖η‖4L4 + nδ4n(ε

L4

n )4
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� n−1‖η‖2∞ + o(1) = o(1),

where we used (63) for the first term and the next to last display for the second
term. Turning to the centring of the fifth derivatives we observe

n(εL
5

n )5 = n(−3s+5)/(2s+1)(logn)5/2+5δ = o(1)

and

n(ωL5

n )5 � n
t5

n5/2
‖η‖5L5 + nδ5n(ε

L5

n )5 � n−3/2‖η‖3∞ + o(1) = o(1)

using (63) for the first term and the next to last display for the second term.
For the remainder term Rn we bound

√
n
(
εL

∞

n + ωL∞

n

)2(
εL

2

n + ωL2

n

)
2J/2
(
log

c

εL2

n + ωL2

n

)1/2

�
√
n
(
εL

∞

n +
t√
n
‖η‖∞

)2(
εL

2

n +
t√
n
‖η‖L2

)
2J/2(logn)1/2

�
√
n
((

εL
∞

n

)2
+

‖η‖2∞
n

)(
εL

2

n + n−1/2
)
n(1/2)/(2s+1)(logn)1/2

�
((

εL
∞

n

)2
εL

2

n +
(
εL

∞

n

)2
n−1/2 +

‖η‖2∞
n

εL
2

n +
‖η‖2∞
n3/2

)
n(s+1)/(2s+1)(logn)1/2

� n(−2s+7/2)/(2s+1)(logn)2+3δ + n(−2s+5/2)/(2s+1)(logn)3/2+2δ

+ ‖η‖2∞n(−2s+1/2)/(2s+1)(logn)1+δ + ‖η‖2∞n(−2s−1/2)/(2s+1)(logn)1/2 = o(1)

using that s > 11/6 for the first and the second term and (63) for the third and
the fourth term. Finally for the condition that the first term dominates in Rn

we verify

1√
n
2J/2

1

εL2

n + ωL2

n

√
log

c

εL2

n + ωL2

n

� n(−s−1/2)/(2s+1)n(1/2)/(2s+1) 1

εL2

n

√
log

c

εL2

n

� n(−1/2)/(2s+1)(log n)−δ = O(1).

7. Proof of Proposition 3

The Radon–Nikodym density in (14) is well defined in view of the convolution
series representation of Pν in (4). That Aν maps L2(ν) into L2(Pν) is proved
in Lemma 26, and an application of Fubini’s theorem gives

∫
I
Aν(h)dPν = 0

for all h ∈ L2(ν). The expansion (13) follows by the same arguments used for
the proof in Section 6.2 but is in fact easier and no empirical process tools are
needed here. In the case v ∈ VJ for some J the expansion follows directly from
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setting v0 = v and η = h in (58). For the general case we consider the path
s 	→ exp(v+sh/

√
n) = ν(s) and obtain by a Taylor expansion for some s ∈ [0, 1]

�n(νh,n)− �n(ν)

= D�n(ν0)
[ h√

n

]
+ 1

2D
2�n(ν0)

[ h√
n
,
h√
n

]
+ 1

6D
3�n(ν

(s))
[ h√

n
,
h√
n
,
h√
n

]
=

1√
n

n∑
i=1

Aν(h)(Xi)−
1

2
‖Aν(h)‖2L2(Pν)

+

n∑
j=1

d d2

ds2 Pν(s)

dPν(s)

∣∣∣∣
s=0

[h, h](Xj)

+

(
−

n∑
j=1

(
d d
ds Pν(s)

dPν(s)

[h](Xj)

)2∣∣∣∣
s=0

+
1

2
‖Aν(h)‖2L2(Pν)

)
+

1

6n3/2
D3�n(ν

(s))[h, h, h]

=
1√
n

n∑
i=1

Aν(h)(Xi)−
1

2
‖Aν(h)‖2L2(Pν)

+ I + II + III.

The terms I and II are both centred and are treated exactly as the term
IV (i)(a) and the centred version of IV (i)(b) in Section 6.2. This yields I+II =
OPN

ν
(n−1/2‖h‖2L4). The centring of term III is shown to be OPN

ν
(n−3/2‖h‖3L3),

which is proved along the same lines as the centring of the third derivatives of
the term Rn in Section 6.2 combined with the measure change there applied
to the fifth derivatives. After centring the term III is shown to be of order
OPN

ν
(n−1‖h‖3L6) with the same bounds as used for bounding σ when treating

the empirical process part of Rn except that here h is fixed and so a simple
variance bound suffices instead of the empirical process inequality used for Rn.
We conclude I + II + III = oPN

ν
(1).

8. Proof of Proposition 21

We define, for L′ > 0 to be chosen

Ψn =

{
0 if ‖ν̂ − ν0‖H(δ) < L′εn
1 if ‖ν̂ − ν0‖H(δ) � L′εn.

Applying Lemma 20 with K = n and x =
√
nεn yields, for L′ large enough,

Eν0 [Ψn] → 0 as n → ∞. For the error of second type we obtain, for M large
enough depending on L′, C that, again by Lemma 20,

sup
ν∈V:‖ν−ν0‖H(δ)�Mεn

Eν [1−Ψn]

= sup
ν∈V:‖ν−ν0‖H(δ)�Mεn

PN
ν

(
‖ν̂ − ν0‖H(δ) < L′εn

)
� sup

ν∈V:‖ν−ν0‖H(δ)�Mεn

PN
ν

(
‖ν0 − ν‖H(δ) − ‖ν − ν̂‖H(δ) < L′εn

)
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� sup
ν∈V

PN
ν

(
‖ν − ν̂‖H(δ) > (M/2)εn

)
� e−(C+4)nε2n +

1

R2
e−nR2/ logn � 2e−(C+4)nε2n ,

where we used εn = o(1/
√
logn) and n large enough in the last inequality.

9. Proof of Proposition 23

Since v, v0 are bounded and thus exp is Lipschitz on the range of v, v0 we have

P

(
‖ν − ν0‖L2 � εn√

KD

)
� P (‖v − v0‖∞ � cεn)

� P

(∑
l

2l/2 max
k

|βlk − 2−l(l2 + 1)−1ulk| < c′εn

)
,

where ulk = 0 for l � J and βlk = 〈v0, ψlk〉. We define blk = 2l(l2 + 1)βlk such

that |blk| � B, and M(J) =
∑J−1

l=−1

∑(2l−1)∨0
k=0 1 = 2J . We can bound the last

probability from below by

P

( ∑
l�J−1

2−l/2(l2 + 1)−1 max
k

|blk − ulk| < c′εn − c̄2−Jns/(J2
n + 1)

)
� P
(

max
l�J−1

max
k

|blk − ulk| < c′′εn
)
=
∏

l�J−1

∏
k

P (|blk − ulk| < c′′εn)

�
(c′′εn

2B

)M(J)

� e−Cnε2n

for n large enough and for some constant C > 0.

10. Proof of Lemma 24

a) Write B for the unit ball of the space B = B(δ) which can be shown to
be closed under pointwise multiplication in the sense that ‖fg‖B � c0‖f‖B‖g‖B.
Since ν−1

0 ∈ B, ‖ν−ν0‖B → 0 we also have ‖(ν−ν0)/ν0‖∞ � ‖(ν−ν0)/ν0‖B → 0
and thus ‖[(ν−ν0)/ν0]

k‖B � ck0‖(ν−ν0)/ν0‖kB. Since eventually ‖(ν−ν0)/ν0‖B <
1/(2c0) we deduce that the series

g =
∑
k

(−1)k

k

(ν − ν0
ν0

)k−1

converges absolutely uniformly and in B and has ‖·‖B-norm less than a constant
multiple of ‖ν−ν0‖B. Thus, using again the multiplication property of the norm

‖ log ν − log ν0‖H(δ) = sup
f∈B

∣∣∣∣∫ f log
(
1 +

ν − ν0
ν0

)∣∣∣∣
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= sup
f∈B

∣∣∣∣∣
∫

(ν − ν0)

∞∑
k=1

(−1)k

k

(ν − ν0)
k−1

νk−1
0

f

ν0

∣∣∣∣∣
= sup

f∈B

∣∣∣∣∫ (ν − ν0)g
f

ν0

∣∣∣∣ � sup
h∈c1B

∣∣∣∣∫ h(ν − ν0)

∣∣∣∣ = c1‖ν − ν0‖H(δ).

b) For any j we have, using the Cauchy–Schwarz inequality,

‖ν − ν0‖2B(δ)
�
∑
l�j

2ll2δ
∑
k

|〈ν − ν0, ψlk〉|2 + j2δ−2δ′
∑
l>j

2ll2δ
′∑

k

|〈ν − ν0, ψlk〉|2

≤ 22jj4δ
∑
l�j

2−ll−2δ
∑
k

|〈ν − ν0, ψlk〉|2 + j2δ−2δ′‖ν − ν0‖B1/2,δ′
22

� 22jj4δ‖ν − ν0‖H(δ) + j−2(δ′−δ).

Using ‖ν − ν0‖H(δ) = o(1) and letting j → ∞ slowly enough we deduce ‖ν −
ν0‖B(δ) → 0.
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