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Abstract: It is well known that the isotonic least squares estimator is
characterized as the derivative of the greatest convex minorant of a ran-
dom walk. Provided the walk has exchangeable increments, we prove that
the slopes of the greatest convex minorant are distributed as order statis-
tics of the running averages. This result implies an exact non-asymptotic
formula for the squared error risk of least squares in homoscedastic iso-
tonic regression when the true sequence is constant that holds for every
exchangeable error distribution.
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1. Introduction

Isotonic regression with homoscedastic errors refers to the problem of estimating
a monotone sequence θ∗1 ≤ · · · ≤ θ∗n based on a noisy observation vector Y which
is assumed to be an additive perturbation of θ∗ = (θ∗1 , . . . , θ

∗
n),

Y = θ∗ + σZ,

where the components Z1, . . . , Zn of Z are assumed to have zero mean and
unit variance. It is commonly assumed that Z1, . . . , Zn are independent and
identically distributed (i.i.d.) but we work with the more general assumption of
exchangeability in this paper. A natural estimator for θ∗ in this setting is the
isotonic Least Squares Estimator (LSE), defined as

θ̂ := ΠMn(Y ) := argminθ∈Mn‖Y − θ‖22,

where ‖ · ‖2 denotes the usual Euclidean norm on Rn and Mn := {θ ∈ Rn :
θ1 ≤ · · · ≤ θn} is the monotone cone of length n non-decreasing sequences. As

Mn is a closed convex cone, θ̂ as defined above exists uniquely; it can also be
computed in O(n) time by the pool adjacent violators algorithm [4, 11].

One approach to evaluating the statistical properties of θ̂ is to measure the
risk, or expected deviation of θ̂ from θ∗. Indeed, the risk provides a convenient
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summary of the accuracy of θ̂ and many papers on isotonic regression have
focussed on obtaining bounds for the risk of θ̂ (see e.g., [3, 12, 20]). In this
paper, we primarily consider the normalized mean squared error:

R(θ̂, θ∗) :=
1

n
Eθ∗‖θ̂ − θ∗‖22.

A key quantity in understanding R(θ̂, θ∗) is

δn(μ) := EZ∼μ‖ΠMn(Z)‖22,

where μ denotes the law of the noise vector Z. Indeed, it is clear that

n

σ2
R(θ̂, θ∗) = δn(μ) when θ∗1 = · · · = θ∗n.

When θ∗1 ≤ · · · ≤ θ∗n are not all equal, let (A1, . . . , Ak) be the coarsest partition
of {1, . . . , n} such that θ∗ is constant on each Ai. It has been shown [16, 9, 3]
that

n

σ2
R(θ̂, θ∗)

{
≤ δn1(μA1) + · · ·+ δnk

(μAk
) for every σ > 0

→ δn1(μA1) + · · ·+ δnk
(μAk

) as σ ↓ 0
, (1.1)

where μAi denotes the marginal distribution of (Zj)j∈Ai and ni = |Ai| is the
length of the ith block for all i = 1, . . . , k. We emphasize that (1.1) holds for
arbitrarily dependent Z1, . . . , Zn with zero mean and finite variance. It was
also shown in Bellec [3] that δn(μ) also bounds the risk of the isotonic LSE in
misspecified settings where θ∗ does not lie in Mn.

The quantity δn(μ) therefore crucially controls the risk of the isotonic LSE.
The goal of this paper is to explicitly determine δn(μ) for every n ≥ 1 un-
der the additional assumption that Z is exchangeable. Specifically, under the
assumption of exchangeability, we show in Corollary 3.3 that, for all n,

δn(μ) = ρn+ (1− ρ)Hn, (1.2)

where Hn := 1 + 1
2 + · · ·+ 1

n is the nth harmonic number and ρ = Cor(Z1, Z2)
is the pairwise correlation. Combined with (1.1), our result provides a sharp
non-asymptotic bound on the risk of isotonic regression for any exchangeable
noise vector. In the special case when Z1, . . . , Zn are i.i.d. with zero mean and
unit variance, ρ = 0 and thus (1.2) gives:

δn(⊗n
i=1η) = Hn for every probability measure η. (1.3)

Here η is the common distribution of the independent variables Z1, . . . , Zn.
Previously, the formula (1.3) was known when η is the standard Gaussian

probability measure on Rn. This was observed by Amelunxen et al. [2] who
proved it by observing first that when μ = ⊗n

i=1η and η is the standard Gaussian
measure, the formula

E‖ΠK(Z)‖22 =

n∑
k=0

k νk(K) (1.4)
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holds for every closed convex cone K ⊆ R
n where νk(K) is the kth intrinsic

volume of K. When K = Mn is the monotone cone, the right hand side in
equation (1.4) can be shown to be equal to Hn by using the fact that the
generating function s 
→

∑n
k=0 s

kνk(Mn) can be computed in closed form.
Amelunxen et al. [2] used the theory of finite reflection groups [7] to obtain
the exact expression for this generating function. However, the exact expression
for

∑n
k=0 s

kνk(Mn) can already be found in the classical literature on isotonic
regression (see Theorem 2.4.2 in Roberston et al. [17] and references therein).

The above proof does not work for non-Gaussian η mainly because the ex-
pression (1.4) does not hold for general η. In fact, the best available result on
δn(⊗n

i=1η) for non-Gaussian η is in equation (2.11) of Zhang [20], who proved
the asymptotic result:

δn(⊗n
i=1η) = (1 + o(1))(1 + logn) as n → ∞.

This bound gives the right behavior as the right hand side of equation (1.3)
but only as n → ∞. We improve this result by proving for every n ≥ 1 that
δn(⊗n

i=1η) is always equal to the nth harmonic number Hn for every probability
measure η having mean 0 and variance 1.

We prove (1.2) by developing a precise characterization of the marginal dis-
tribution of each individual component (ΠMn(Z))k of ΠMn(Z). Specifically,
as long as Z is exchangeable, we show in Theorem 2.2 that (ΠMn(Z))k has
the same distribution as Z̄(k), the kth order statistic of the running averages

Z̄j =
Z1+···+Zj

j . We prove Theorem 2.2 in Section 2, using a characterization of
the components of the isotonic LSE as the left-hand slopes of the greatest con-
vex minorant of the random walk with increments Z1, . . . , Zn. This result and
its continuous-time analogue may be of independent interest outside the study
of isotonic regression, so in Section 2 we also address consequences for the great-
est convex minorant of a stochastic process with exchangeable increments. The
order statistics of the running averages {Z̄k}nk=1 can be fairly complicated even
when Z is Gaussian; however, Theorem 2.2 easily implies results such as (1.2). In
Section 3, we detail some risk calculations for isotonic regression and its variants
which all follow from Theorem 2.2.

2. Main result

Let Sk =
∑k

i=1 Zi denote the partial sums for k = 1, . . . , n, started at S0 = 0.
Identify the random walk {Sk}nk=0 with its cumulative sum diagram S : [0, n] →
R, where S(k) = Sk for integers k = 0, . . . , n and linearly interpolated between
integers. Let C : [0, n] → R denote the greatest convex minorant (GCM) of S,
i.e. the greatest convex function that lies below S. See Figure 1 for a depiction
of the GCM of S. With this notation, we now recall the graphical representation
of the isotonic LSE as given in Theorem 1.2.1 of Roberston et al. [17].

Lemma 2.1. For any vector Z, the isotonic LSE ΠMn(Z) is given by the left-
hand slopes of the greatest convex minorant of the cumulative sum diagram. For
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Fig 1. Solid blue curve is the cumulative sum diagram S of increments Z1, . . . , Zn; dashed
black curve is the greatest convex minorant C of S.

all k = 1, . . . , n

(ΠMn(Z))k = C(k)− C(k − 1) = ∂−C(k).

For the remainder of this section let

Δk := ∂−C(k) = min
k≤v≤n

max
0≤u<k

Sv − Su

v − u
(2.1)

denote the left-hand slope of the GCM at k, so Δ = (Δ1, . . . ,Δn) is equal to
ΠMn(Z) by the lemma. In particular, when k = 1 we have Δ1 = min1≤v≤n

Sv

v .

When k = n, we have Δn = max0≤u<n
Sn−Su

n−u , and if (Zn, . . . , Z1)
d
=(Z1, . . . , Zn)

then Δn
d
= max1≤u≤n

Su

u . Our next result generalizes this observation, showing
that the kth slope Δk is equal in distribution to the kth smallest running average
if Z is exchangeable.

Theorem 2.2. Suppose Z = (Z1, . . . , Zn) is exchangeable. Let Z̄k := 1
k

∑k
i=1 Zi

denote the kth running average for k = 1, . . . , n and let Z̄(1) ≤ · · · ≤ Z̄(n) denote
their order statistics. Then

Δk
d
= Z̄(k) (2.2)

marginally for all k = 1, . . . , n.

Proof. As before, let Sk denote the kth partial sum. Let M be the last argmin of
the sequence {Si}ni=0, and let N be the amount of time the walk is non-positive
N :=

∑n
i=1 1(Si ≤ 0). We will use Corollary 11.14 of Kallenberg [13], due to

Sparre-Andersen, which says M
d
= N as long as Z is exchangeable.

Note that the slope of the GCM switches from non-positive to positive at
time M , since the horizontal line with intercept SM minorizes the GCM and
touches it at time M . Hence, no matter the sequence of increments Zi, there is
the identity of events

(Δk ≤ 0) = (M ≥ k). (2.3)



Distribution-free properties of isotonic regression 3247

Also, for the time N that the walk is non-positive, since Si ≤ 0 if and only if
Z̄i ≤ 0, there is the identity of events

(Z̄(k) ≤ 0) = (N ≥ k).

The equality in distribution M
d
= N then implies

P(Δk ≤ 0) = P(Z̄(k) ≤ 0).

If the sequence {Zi} is modified to {Zi − z} for some fixed z, the modified
sequence is exchangeable, and the values of Δk and Z̄(k) for the modified se-
quence are just Δk−z and Z̄(k)−z. Applying the above identity to the modified
sequence gives

P(Δk ≤ z) = P(Δk − z ≤ 0) = P(Z̄(k) − z ≤ 0) = P(Z̄(k) ≤ z).

So Δk and Z̄(k) have the same cumulative distribution function, hence the same
distribution.

The proof of Theorem 2.2 has a straightforward generalization to the set-
ting where S : [0, 1] → R is a continuous-time stochastic process. Knight [14]

showed that the analogous distributional identity M
d
= N holds when S has

exchangeable increments and S(0) = 0. Hence, by a similar proof, we find that
the slope Δ(p) of the greatest convex minorant of S at time p ∈ [0, 1] has the
same distribution as the pth percentile point of the occupation measure for the

process (S(t)
t , 0 ≤ t ≤ 1). We record this result as the following corollary.

Corollary 2.3. Let S denote a real-valued càdlàg stochastic process on [0, 1]
with exchangeable increments, such that S(0) = 0. Define Δ(t) as the slope
of the greatest convex minorant of S at t, and let F : R → [0, 1] denote the

(random) cdf associated with the occupation measure of (S(t)
t , 0 ≤ t ≤ 1),

F (x) = λ({t ∈ [0, 1] : S(t) ≤ tx}), (2.4)

where λ denotes Lebesgue measure. Then

Δ(p) = inf
p≤v≤1

sup
0≤u<p

S(v)− S(u)

v − u

d
= F−1(p) (2.5)

marginally for all p ∈ [0, 1].

See Abramson et al. [1] for a general study of convex minorants of random
walks and processes with exchangeable increments. In the special cases where S
is a standard Brownian motion or Brownian bridge on the unit interval, Carolan
& Dykstra [6] derive the distribution of the slope Δ(p), jointly with the process
S(p) and its convex minorant at p, for a fixed value p ∈ [0, 1]. Given our corollary,
their explicit formula for the slope Δ(p) provides the distribution of F−1(p),

giving new information about the occupation measure of (S(t)
t , 0 ≤ t ≤ 1) for

Brownian motion and Brownian bridge. The distribution of the pth percentile
point of the occupation measure for (S(t), 0 ≤ t ≤ 1) has been obtained under
the same generality as Corollary 2.3: see the introduction of Dassios [8] and
references therein.
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3. Consequences for isotonic regression

Since the identity of Theorem 2.2 holds marginally, it allows us to simplify
expectations of functions that are additive in the components of ΠMn(Z). By
Lemma 2.1, the kth component (ΠMn(Z))k = Δk, which by Theorem 2.2 is
equal in distribution to Z̄(k). Hence, as long as Z is exchangeable,

n∑
k=1

Eh((ΠMn(Z))k) =

n∑
k=1

Eh(Z̄(k)) =

n∑
k=1

Eh(Z̄k). (3.1)

Taking h(x) = |x|p, we obtain our first corollary.

Corollary 3.1. Suppose Z = (Z1, . . . , Zn) is exchangeable. For p > 0,

E‖ΠMn(Z)‖pp =

n∑
k=1

E

∣∣∣∣∣1k
k∑

i=1

Zi

∣∣∣∣∣
p

, (3.2)

provided E|Z1|p < ∞.

Remark 3.2. Viewed through its graphical representation, Δk = C(k)−C(k−1)
is the left-derivative of the GCM C at k, so when the power p = 1, equation
(3.2) yields the discrete arc-length formula

n∑
k=1

E|C(k)− C(k − 1)| = E‖ΠMn(Z)‖1 =

n∑
k=1

1

k
E|Sk| (3.3)

Closely related to this formula is the identity of Spitzer & Widom [18], which
takes Z̃1, . . . , Z̃n to be a sequence of i.i.d. random variables in R

2 (or the complex

plane C) with finite variance. If S̃k =
∑k

i=1 Z̃i is the partial sum and L̃n is the

length of the perimeter of the convex hull conv(0, S̃1, . . . , S̃n), then

EL̃n = 2

n∑
k=1

1

k
E‖S̃k‖. (3.4)

These formulas connect the geometry of the convex hull of a random walk to the
magnitudes of the running means.

Consider the case when p = 2. Since Z is exchangeable, every pair of com-
ponents has the same correlation ρ. If we further assume Z1 has zero mean and
unit variance, the right hand side of equation (3.2) can be computed explicitly

E

(
1

k

k∑
i=1

Zi

)2

= ρ+
1− ρ

k
.

Summing over k yields our next result.
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Corollary 3.3. Suppose Z ∼ μ is an exchangeable random vector with zero
mean, unit variance, and pairwise correlation ρ. Then

δn(μ) = ρn+ (1− ρ)Hn.

This result should be contrasted with other distribution-free identities, name-
ly

E‖Z‖22 = n and E‖Z̄n1n‖22 = 1,

provided Z has i.i.d. components with zero mean and unit variance. In partic-
ular, suppose we observe Y = θ∗ + σZ where Z has i.i.d. components with zero
mean and unit variance, but it turns out that θ∗ = c1n is constant. If we know
θ∗ is constant, we can estimate it by a constant sequence Ȳ 1n and pay a price

of σ2

n in risk (normalized mean squared error). If we know nothing about the

structure of θ∗ and use θ̂ = Y , the risk σ2 is quite large by comparison. The
monotone sequence estimate resides in the middle, with a much smaller risk of
Hnσ

2

n and knowledge only about the relative order.
Theorem 2.2 characterizes the distribution of a component of the isotonic LSE

θ̂ when the underlying sequence θ∗ is constant. When θ∗ ∈ Mn is not constant,
Theorem 2.2 can be applied to characterize the distribution of a component θ̂i
in the low noise limit σ ↓ 0. In this limit, the distribution depends only on flat
regions of θ∗:

Corollary 3.4. Suppose Y = θ∗+σZ, for some θ∗ ∈ Mn, and let θ̂ = ΠMn(Y )
denote the isotonic LSE. Let (A1, . . . , Ak) be the coarsest partition of {1, . . . , n}
such that θ∗ is constant on each Aj, and suppose Z is exchangeable on each
of these blocks. If an index i ∈ {1, . . . , n} belongs to the jth block, then letting
ti = i+ 1−mins∈Aj s and X = (Zs)s∈Aj , we have

θ̂i − θ∗i
σ

d→ X̄(ti) as σ ↓ 0. (3.5)

Proof. As σ ↓ 0, the ratio θ̂−θ∗

σ tends to the directional derivative DZΠMn(θ∗).
Lemma 4.6 in Zarantonello [19] shows that this derivative exists and equals the
projection of Z onto the tangent cone TMn(θ∗). Hence

θ̂ − θ∗

σ
→ ΠTMn (θ∗)(Z) as σ ↓ 0. (3.6)

From the tangent cone computation in Bellec [3], we have(
ΠTMn (θ∗)(Z)

)
i
= (ΠMni (X))ti ,

where ni = |Aji |. Finally, by Theorem 2.2, (ΠMni (X))ti
d
= X̄(ti).

We explained in Section 1 how risk calculations when θ∗ = 0 generalize to
MSE bounds that are sharp in the low noise limit for arbitrary θ∗. For example,
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when θ∗ ∈ Mn has k constant pieces, then (1.1), Corollary 3.3 and the fact that
Hl ≤ log(el) for every l ≥ 1 imply that

R(θ̂, θ∗) ≤ kσ2

n
log

(en
k

)
(3.7)

whenever Z1, . . . , Zn are i.i.d. with mean zero and unit variance. The bound
(3.7) should be compared with the risk of the structure-respecting estimator

that averages over the constant blocks and achieves a risk of exactly kσ2

n when
the blocks are all of size n

k . If θ
∗ ∈ Rn is not necessarily in Mn, then Corollary

3.3, together with the results of [3], implies that

R(θ̂, θ∗) ≤ inf
θ∈Mn

(
1

n
‖θ − θ∗‖2 + σ2 k(θ)

n
log

(
en

k(θ)

))
,

where k(θ) is the number of constant pieces of the vector θ. These formulae (with

the leading constant of 1 in front of the kσ2

n log en
k term on the right hand side)

were previously only known when the distribution of Z1, . . . , Zn was standard
Gaussian.

Define the Lp-risk of the isotonic LSE

R(p)(θ̂, θ∗) =
1

n
E‖θ̂ − θ∗‖pp

so that R(θ̂, θ∗) = R(2)(θ̂, θ∗). We can similarly employ Theorem 2.2 to explicitly

calculate the Lp-risk of the isotonic LSE θ̂ when θ∗ is constant and Z is Gaussian:

Corollary 3.5. Suppose Z ∼ N (0, In). Then for any p > 0,

E‖ΠMn(Z)‖pp = Hn,p/2E|Z1|p = Hn,p/2

√
2p

π
Γ

(
p+ 1

2

)
,

where Hn,m =
∑n

k=1
1

km .

Proof. Note E

∣∣∣ 1k ∑k
i=1 Zi

∣∣∣p =
(
2
k

)p/2 Γ( p+1
2 )√
π

and apply the theorem.

Corollary 3.5 should similarly be contrasted with the following identities when
Z ∼ N (0, In):

E‖Z‖pp = nE|Z1|p and E‖Z̄1n‖pp = n1−p/2
E|Z1|p

respectively. In particular, when p > 2, the bound Hn,p/2 <
∑∞

k=1
1

kp/2 < ∞
holds for all n, which is to say E‖ΠMn(Z)‖pp is bounded when p > 2 whereas
E‖Z‖pp grows without bound as n grows.

When θ∗ is constant and Z ∼ N (0, In), the Lp risk of isotonic regression is

R(p)(θ̂, θ∗) =
Hn,p/2

n
σp

E|Z1|p. (3.8)
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When 1 ≤ p ≤ 2, Theorem 2.3 of Zhang [20] shows an asymptotic result for the
Lp risk on constant θ∗ that agrees with equation (3.8).

The continuous-time distributional identity in Corollary 2.3 applies to the
asymptotic distribution of the isotonic least squares estimator. A standard
model for studying the asymptotic behavior of isotonic regression is

θ∗k = f∗
(
k

n

)

where f∗ : [0, 1] → R is non-decreasing. We observe Y , a noisy version of θ∗,

and calculate θ̂ by projecting Y onto the monotone cone. The function estimate
f̂ is defined by f̂

(
k
n

)
= θ̂k and linearly interpolated between design points.

Here, as before, the dependence on n in θ∗ ∈ Mn is suppressed, but now we
are interested in the behavior of isotonic least squares f̂(t0) at a fixed point
t0 ∈ [0, 1] as n → ∞.

Define the partial sum process S(n) : [0, 1] → R by S(n)(k/n) = Y1+···+Yk√
n

, lin-

early interpolated between design points. When the function f∗ ≡ c is constant,
the quantity √

n(f̂(t0)− f∗(t0))

is given by the left-derivative of the greatest convex minorant of S(n) at t0.
By the invariance principle, this converges in distribution to the left-derivative
of the greatest convex minorant of standard Brownian motion B = (B(t), 0 ≤
t ≤ 1) at t0. This asymptotic result is well known and a similar result was
noted for the Grenander estimator in Carolan & Dykstra [5], where Brownian
motion is replaced with a Brownian bridge. Corollary 2.3 relates this asymptotic

distribution to the percentile points of the occupation measure for (B(t)
t , 0 ≤

t ≤ 1).
Finally, Corollary 3.3 on the projection onto Mn extends over to that of the

set of non-negative monotone sequences Mn
+ = Mn∩Rn

+. Theorem 1 of Németh
& Németh [15] observes that the projection of Z ontoMn

+ is given by ΠMn
+
(Z) =

ΠMn(Z)+, the element-wise positive part of the projection onto Mn. Hence the
distributional identity Theorem 2.2 yields a similar set of identities for non-
negative isotonic regression.

Corollary 3.6. For any exchangeable noise vector Z,

(ΠMn
+
(Z))k

d
= (Z̄(k))+ (3.9)

Provided E|Zi|p < ∞,

E‖ΠMn
+
(Z)‖pp =

n∑
k=1

E

(
1

k

k∑
i=1

Zi

)p

+

. (3.10)

Furthermore, if Z is symmetric with unit variance, the generalized statistical
dimension of the monotone cone is

E‖ΠMn
+
(Z)‖22 =

ρn+ (1− ρ)Hn

2
, (3.11)

where ρ is the pairwise correlation.
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Proof. Equation (3.10) follows from equation (3.1) by taking h(x) = (x)p+. When

Zi
d
= −Zi is symmetric with unit variance,

E

(
1

k

k∑
i=1

Zi

)2

+

=
1

2
E

(
1

k

k∑
i=1

Zi

)2

=
1

2

(
ρ+

1− ρ

k

)
.

Summing over k yields equation (3.11).

Equation (3.11) is also shown in Amelunxen et al. [2] in the special case
Z ∼ N (0, In) using the theory of finite reflection groups. The identity (3.10)
allows us to show equation (3.11) for a much wider variety of noise vectors, and
as before also allows us to obtain relations for the expected Lp norms of the
projection of the noise vector. All of our exact formulae follow from the distri-
butional identity in Theorem 2.2, which exploits the geometric characterization
of the isotonic LSE in Lemma 2.1. An interesting open question is whether
similar characterizations—such as for convex regression [10]—may yield exact
non-asymptotic risk calculations in other shape-constrained estimation prob-
lems.
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