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part, determined by the size of the spectral gap of the corresponding Markov
operator. However, calculating (and even approximating) the spectral gaps
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extremely difficult and often insurmountable task, especially when these
chains move on continuous state spaces. In this paper, a method for accurate
estimation of the spectral gap is developed for general state space Markov
chains whose operators are non-negative and trace-class. The method is
based on the fact that the second largest eigenvalue (and hence the spectral
gap) of such operators can be bounded above and below by simple functions
of the power sums of the eigenvalues. These power sums often have nice
integral representations. A classical Monte Carlo method is proposed to
estimate these integrals, and a simple sufficient condition for finite variance
is provided. This leads to asymptotically valid confidence intervals for the
second largest eigenvalue (and the spectral gap) of the Markov operator.
In contrast with previously existing techniques, our method is not based
on a near-stationary version of the Markov chain, which, paradoxically,
cannot be obtained in a principled manner without bounds on the spectral
gap. On the other hand, it can be quite expensive from a computational
standpoint. The efficiency of the method is studied both theoretically and
empirically.
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1. Introduction

Markov chain Monte Carlo (MCMC) is widely used to estimate intractable
integrals that represent expectations with respect to complicated probability
distributions. Let π : S → [0,∞) be a probability density function (pdf) with
respect to a σ-finite measure μ, where (S,U , μ) is some measure space. Suppose
we want to approximate the integral

J :=

∫
S

f(u)π(u)μ(du)

for some function f : S→R. Then J can be estimated by Ĵm :=
∑m−1

k=0 f(Φk)/m,
where {Φk}m−1

k=0 are the first m elements of a well-behaved Markov chain with

stationary density π(·). Unlike classical Monte Carlo estimators, Ĵm is not based
on iid random elements. Indeed, the elements of the chain are typically neither
identically distributed nor independent. Given varπf , the variance of f(·) under
the stationary distribution, the accuracy of Ĵm is primarily determined by two
factors: (i) the convergence rate of the Markov chain, and (ii) the correlation
between the f(Φk)s when the chain is stationary. These two factors are related,
and can be analyzed jointly under an operator theoretic framework.

The starting point of the operator theoretic approach is the Hilbert space
of functions that are square integrable with respect to the target pdf, π(·).
The Markov transition function that gives rise to Φ = {Φk}∞k=0 defines a lin-
ear (Markov) operator on this Hilbert space. (Formal definitions are given in
Section 2.) If Φ is reversible, then it is geometrically ergodic if and only if the
corresponding Markov operator admits a positive spectral gap (Roberts and
Rosenthal, 1997; Kontoyiannis and Meyn, 2012). The gap, which is a real num-
ber in (0, 1], plays a fundamental role in determining the mixing properties of
the Markov chain, with larger values corresponding to better performance. For
instance, suppose Φ0 has pdf π0(·) such that dπ0/dπ is in the Hilbert space, and
let d(Φk;π) denote the total variation distance between the distribution of Φk

and the chain’s stationary distribution. Then, if δ denotes the spectral gap, we
have

d(Φk;π) ≤ C(1− δ)k

for all positive integers k, where C depends on π0 but not on k (Roberts and
Rosenthal, 1997). Furthermore, (1− δ)k gives the maximal absolute correlation
between Φj and Φj+k as j → ∞. It follows (see e.g. Mira and Geyer, 1999) that

the asymptotic variance of
√
m(Ĵm − J) as m → ∞ is bounded above by

2− δ

δ
varπf .

Unfortunately, it is impossible to calculate the spectral gaps of the Markov
operators associated with practically relevant MCMC algorithms, and even ac-
curately approximating these quantities has proven extremely difficult. In this
paper, we develop a method of estimating the spectral gaps of Markov operators
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corresponding to a certain class of data augmentation (DA) algorithms (Tanner
and Wong, 1987), and then show that the method can be extended to handle a
much larger class of reversible MCMC algorithms.

DA Markov operators are necessarily non-negative. Moreover, any non-nega-
tive Markov operator that is compact has a pure eigenvalue spectrum that is
contained in the set [0, 1], and 1 − δ is precisely the second largest eigenvalue.
We propose a classical Monte Carlo estimator of 1− δ for DA Markov operators
that are trace-class, i.e. compact with summable eigenvalues. While compact
operators were once thought to be rare in MCMC problems with uncountable
state spaces (Chan and Geyer, 1994), a string of recent results suggests that
trace-class DA Markov operators are not at all rare (see e.g. Qin and Hobert,
2018; Chakraborty and Khare, 2017; Choi and Román, 2017; Pal, Khare and
Hobert, 2017). Furthermore, by exploiting a simple trick, we are able to broaden
the applicability of our method well beyond DA algorithms. Indeed, if a re-
versible Monte Carlo Markov chain has a Markov transition density (Mtd), and
the corresponding Markov operator is Hilbert-Schmidt, then our method can be
utilized to estimate its spectral gap. This is because the square of such a Markov
operator can be represented as a trace-class DA Markov operator. A detailed
explanation is provided in Section 4.

Of course, there is a large literature devoted to developing theoretical bounds
on the second largest eigenvalue of a Markov operator (see e.g. Lawler and Sokal,
1988; Sinclair and Jerrum, 1989; Diaconis and Stroock, 1991). However, these
results are typically not useful in situations where the state space, S, is uncount-
able or multi-dimensional, which is our main focus. There also exist a number of
computational methods for approximating the eigenvalues of a Hilbert-Schmidt
operator (see e.g. Garren and Smith, 2000; Koltchinskii and Giné, 2000; Ahues,
Largillier and Limaye, 2001; Chakraborty and Khare, 2019+). Some such meth-
ods require sampling directly from π(·), which is impossible in an MCMC con-
text. The others require the user to simulate the Markov chain of interest until
it is nearly stationary. Unfortunately, we cannot know if a chain has converged
unless we have some information on its convergence rate, which is essentially
what these methods are trying to acquire in the first place. The classical Monte
Carlo estimator that we introduce is calculated by simulating many copies of
the Markov chain, each of a short length. These short chains need not be close
to stationarity in order for the estimator to be valid. Although powerful, this
method is quite expensive from a computational standpoint. Indeed, it works
well only when the underlying dataset of the Bayesian model is small. On the
other hand, it is important as a “proof of concept” that it is actually possi-
ble to get a handle on the spectral gaps of Markov operators corresponding to
MCMC algorithms on continuous state spaces, which, until now, have proven
to be extremely elusive quantities.

The rest of the paper is organized as follows. The notion of Markov operator
is formalized in Section 2. In Section 3, it is shown that the second largest
eigenvalue of a non-negative trace-class operator can be bounded above and
below by functions of the power sums of the operator’s eigenvalues. In Section 4,
DA Markov operators are formally defined, and the sum of the kth (k ∈ N)
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power of the eigenvalues of a trace-class DA Markov operator is related to a
functional of its Mtd. This functional is usually a multi-dimensional integral, and
a classical Monte Carlo estimator of it is developed in Section 5. The efficiency
of the Monte Carlo estimator is studied in Section 6. Finally, in Section 7 we
apply our method to a few well-known MCMC algorithms. Our examples include
Albert and Chib’s (1993) DA algorithm for Bayesian probit regression, and a DA
algorithm for Bayesian linear regression with non-Gaussian errors (Liu, 1996).
Further application of the method can be found in Zhang, Khare and Xing
(2019).

2. Markov operators

Assume that the Markov chain Φ has a Markov transition density, p(u, ·), u ∈ S,
such that, for any measurable A ⊂ S and u ∈ S,

P(Φk ∈ A|Φ0 = u) =

∫
A

p(k)(u, u′)μ(du′) ,

where

p(k)(u, ·) :=
{
p(u, ·) k = 1∫
S
p(k−1)(u, u′)p(u′, ·)μ(du′) k > 1

is the k-step Mtd corresponding to p(u, ·). We will assume throughout that Φ is
Harris ergodic, i.e. irreducible, aperiodic and Harris recurrent. Define a Hilbert
space consisting of complex valued functions on S that are square integrable
with respect to π(·), namely

L2(π) :=
{
f : S → C

⏐⏐⏐ ∫
S

|f(u)|2π(u)μ(du) < ∞
}
.

For f, g ∈ L2(π), their inner product is given by

〈f, g〉π =

∫
S

f(u)g(u)π(u)μ(du) .

We assume that U is countably generated, which implies that L2(π) is sep-
arable and admits a countable orthonormal basis (see e.g. Billingsley, 1995,
Theorem 19.2). The transition density p(u, ·), u ∈ S defines the following linear
operator P . For any f ∈ L2(π),

Pf(u) =

∫
S

p(u, u′)f(u′)μ(du′) .

The spectrum of a linear operator L is defined to be

σ(L) =
{
λ ∈ C

∣∣ (L− λI)−1 doesn’t exist or is unbounded
}
,

where I is the identity operator. It is well-known that σ(P ) is a closed subset
of the unit disk in C. Let f0 ∈ L2(π) be the normalized constant function, i.e.
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f0(u) ≡ 1, then Pf0 = f0. (This is just a fancy way of saying that 1 is an
eigenvalue with constant eigenfunction, which is true of all Markov operators
defined by ergodic chains.) Denote by P0 the operator such that P0f = Pf −
〈f, f0〉πf0 for all f ∈ L2(π). Then the spectral gap of P is defined as

δ = 1− sup
{
|λ|

∣∣∣λ ∈ σ(P0)
}
.

For the remainder of this section, we assume that P is non-negative (and
thus self-adjoint) and compact. This implies that σ(P ) ⊂ [0, 1], and that any
non-vanishing element of σ(P ) is necessarily an eigenvalue of P . Furthermore,
there are at most countably many eigenvalues, and they can accumulate only
at the origin. Let λ0, λ1, . . . , λκ be the decreasingly ordered strictly positive
eigenvalues of P taking into account multiplicity, where 0 ≤ κ ≤ ∞. Then λ0 = 1
and λ1 is what we previously referred to as the “second largest eigenvalue” of
the Markov operator. If κ = 0, we set λ1 = 0 (which corresponds to the trivial
case where {Φk}∞k=0 are iid). Since Φ is Harris ergodic, λ1 must be strictly less
than 1. Also, the compactness of P implies that of P0, and it’s easy to show
that σ(P0) = σ(P )\{1}. Hence, Φ is geometrically ergodic and the spectral gap
is

δ = 1− λ1 > 0 .

For further background on the spectrum of a linear operator, see e.g. Helmberg
(2014) or Ahues, Largillier and Limaye (2001).

3. Power sums of eigenvalues

We now develop some results relating λ1 to the power sum of P ’s eigenvalues. We
assume throughout this section that P is non-negative and trace-class (compact
with summable eigenvalues). For any positive integer k, let

sk =

κ∑
i=0

λk
i ,

and define s0 to be infinity. The first power sum, s1, is the trace norm of P (see
e.g. Conway, 1990, 2000), while

√
s2 is the Hilbert-Schmidt norm of P . That P

is trace-class implies s1 < ∞, and it’s clear that sk is decreasing in k.
The magnitude of sk is directly related to the convergence behavior of the

chain. For instance, suppose that the chain starts at a point mass Φ0 = u,
then the chi-square distance between the distribution of Φk and the stationary
distribution is given by (see e.g. Diaconis, Khare and Saloff-Coste, 2008)

χ2
k(u) :=

∫
SU

(
p(k)(u, u′)− π(u′)

)2
π(u′)

μ(du′) =
κ∑

i=1

λ2k
i |fi(u)|2,

where fi : SU → C is the normalized eigenfunction corresponding to λi. It
follows that

s2k =
κ∑

i=1

λ2k
i =

∫
SU

χ2
k(u)π(u)μ(du),
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which is the average of χ2
k(u) under π. More importantly, one can use functions

of sk to bound λ1, and thus the spectral gap.
Observe that,

λ1 ≤ uk := (sk − 1)1/k, ∀ k ∈ N .

Moreover, if κ ≥ 1, then it’s easy to show that

λ1 ≥ lk :=
sk − 1

sk−1 − 1
, ∀ k ∈ N .

We now show that, in fact, these bounds are monotone in k and converge to λ1.

Proposition 1. As k → ∞,
uk ↓ λ1 , (1)

and if furthermore κ ≥ 1,
lk ↑ λ1 . (2)

Proof. We begin with (1). When κ = 0, sk ≡ 1 and the conclusion follows.
Suppose κ ≥ 1, and that the second largest eigenvalue is of multiplicity m, i.e.

1 = λ0 > λ1 = λ2 = · · · = λm > λm+1 ≥ · · · ≥ λκ > 0.

If κ = m, then sk−1 = mλk
1 for all k ≥ 1 and the proof is trivial. Suppose for the

rest of the proof that κ ≥ m+1. For positive integer k, let rk =
∑κ

i=m+1 λ
k
i < ∞.

Then rk > 0, and
rk+1

rk
≤ λm+1 < λ1 .

Hence,

lim
k→∞

rk
sk − 1− rk

= lim
k→∞

rk
mλk

1

≤ lim
k→∞

r1λ
k−1
m+1

mλk
1

= 0 .

It follows that

log uk = log λ1 +
1

k
logm+

1

k
log(1 + o(1)) → log λ1 .

Finally,

uk+1 < λ
1/(k+1)
1

( κ∑
i=1

λk
i

)1/(k+1)

≤
( κ∑

i=1

λk
i

)1/[k(k+1)]( κ∑
i=1

λk
i

)1/(k+1)

= uk ,

and (1) follows.
Now onto (2). We have already shown that

sk − 1 = mλk
1(1 + o(1)) .

Thus,

lk =
mλk

1(1 + o(1))

mλk−1
1 (1 + o(1))

→ λ1 .
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To show that lk is increasing in k, which would complete the proof, we only
need note that

(sk+1 − 1)(sk−1 − 1) =

κ∑
i=1

λk+1
i

κ∑
j=1

λk−1
j

=
1

2

κ∑
i=1

κ∑
j=1

λk−1
i λk−1

j (λ2
i + λ2

j )

≥
κ∑

i=1

κ∑
j=1

λk
i λ

k
j

= (sk − 1)2 .

Suppose now that we are interested in the convergence behavior of a par-
ticular Markov operator that is known to be non-negative and trace-class. If
it is possible to estimate sk, then Proposition 1 provides a method of getting
approximate bounds on λ1. When a DA Markov operator is trace-class, there is
a nice integral representation of sk that leads to a simple, classical Monte Carlo
estimator of sk. In the following section, we describe some theory for DA Markov
operators, and in Section 5, we develop a classical Monte Carlo estimator of sk.

4. Data augmentation operators and an integral representation of sk

In order to formally define DA, we require a second measure space. Let (SV ,V , ν)
be a σ-finite measure space such that V is countably generated. Also, rename
S and π, SU and πU , respectively. Consider the random element (U, V ) taking
values in SU ×SV with joint pdf πU,V (·, ·). Suppose the marginal pdf of U is the
target, πU (·), and denote the marginal pdf of V by πV (·). We further assume
that the conditional densities πU |V (u|v) := πU,V (u, v)/πV (v) and πV |U (v|u) :=
πU,V (u, v)/πU (u) are well defined almost everywhere in SU ×SV . Recall that Φ
is a Markov chain on the state space SU with Mtd p(u, ·), u ∈ SU . We call Φ a
DA chain, and accordingly, P a DA operator, if p(u, ·) can be expressed as

p(u, ·) =
∫
SV

πU |V (·|v)πV |U (v|u) ν(dv) . (3)

Such a chain is necessarily reversible with respect to πU (·). To simulate it,
in each iteration, one first draws the latent element V using πV |U (·|u), where
u ∈ SU is the current state, and then given V = v, one updates the current
state according to πU |V (·|v). A DA operator is non-negative, and thus possesses
a positive spectrum (Liu, Wong and Kong, 1994).

Assume that (3) holds. Given k ∈ N, the power sum of P ’s eigenvalues, sk, if
well defined, is closely related to the diagonal components of p(k)(·, ·). Just as we
can calculate the sum of the eigenvalues of a matrix by summing its diagonals,
we can obtain sk by evaluating

∫
SU

p(k)(u, u)μ(du). Here is a formal statement.
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Theorem 2. The DA operator P is trace-class if and only if∫
SU

p(u, u)μ(du) < ∞ . (4)

If (4) holds, then for any positive integer k,

sk :=
κ∑

i=0

λk
i =

∫
SU

p(k)(u, u)μ(du) . (5)

Theorem 2 is a combination of a few standard results in classical functional
analysis. It is fairly well-known, but we were unable to find a complete proof in
the literature. An elementary proof is given in the appendix for completeness.
For a more modern version of the theorem, see Brislawn (1988).

It is often possible to exploit Theorem 2 even when Φ is not a DA Markov
chain. Indeed, suppose that Φ is reversible, but is not a DA chain. Then P is
not a DA operator, but P 2, in fact, is. (Just take πU,V (u, v) = πU (u)p(u, v).) If,
in addition, P is Hilbert-Schmidt, which is equivalent to∫

SU

∫
SU

(p(u, u′))2πU (u)

πU (u′)
μ(du)μ(du′) < ∞ ,

then by a simple spectral decomposition (see e.g. Helmberg, 2014, §28 Corollary
2.1) one can show that P 2 is trace-class, and its eigenvalues are precisely the
squares of the eigenvalues of P . In this case, the spectral gap of P can be
expressed as 1 minus the square root of P 2’s second largest eigenvalue. Moreover,
by Theorem 2, for k ∈ N, the sum of the kth power of P 2’s eigenvalues is equal
to

∫
SU

p(2k)(u, u)μ(du) < ∞.
We now briefly describe the so-called sandwich algorithm, which is a variant

of DA that involves an extra step sandwiched between the two conditional draws
of DA (Liu and Wu, 1999; Hobert and Marchev, 2008). Let s(v, ·), v ∈ SV be a
Markov transition function (Mtf) with invariant density πV (·). Then

p̃(u, ·) =
∫
SV

∫
SV

πU |V (·|v′)s(v, dv′)πV |U (v|u)ν(dv) , u ∈ SU , (6)

is an Mtd with invariant density πU (·). This Mtd defines a new Markov chain,
call it Φ̃, which we refer to as a sandwich version of the original DA chain, Φ. To
simulate Φ̃, in each iteration, the latent element is first drawn from πV |U (·|u),
and then updated using s(v, ·) before the current state is updated according to
πU |V (·|v′). Sandwich chains often converge much faster than their parent DA
chains (see e.g. Khare and Hobert, 2011).

Of course, p̃(u, ·) defines a Markov operator on L2(πU ), which we refer to as P̃ .
It is easy to see that, if the Markov chain corresponding to s(v, ·) is reversible
with respect to πV (·), then p̃(u, ·) is reversible with respect to πU (·). Thus, when
s(v, ·) is reversible, P̃ 2 is a DA operator. Interestingly, it turns out that p̃(u, ·)
can often be re-expressed as the Mtd of a DA chain, in which case P̃ itself is
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a DA operator. Indeed, a sandwich Mtd p̃(u, ·) is said to be “representable” if
there exists a random element Ṽ in SV such that

p̃(u, u′) =

∫
SV

πU |Ṽ (u
′|v)πṼ |U (v|u) ν(dv) , (7)

where πU |Ṽ (u
′|v) and πṼ |U (v|u) have the apparent meanings (see, e.g. Hobert,

2011). It is shown in Proposition 3 in Section 5 that when P is trace-class and
p̃(u, ·) is representable, P̃ is also trace-class. In this case, let {λ̃i}κ̃i=0 be the
decreasingly ordered positive eigenvalues of P̃ taking into account multiplicity,
where 0 ≤ κ̃ ≤ ∞. Then λ̃0 = 1, and λ̃1 ≤ λ1 < 1 (Hobert and Marchev, 2008).

For a positive integer k, we will denote
∑κ̃

i=0 λ̃
k
i by s̃k. Henceforth, we assume

that p̃(u, ·) is representable and we treat P̃ as a DA operator.

It follows from Theorem 2 that in order to find sk or s̃k, all we need to
do is evaluate

∫
SU

p(k)(u, u)μ(du) or
∫
SU

p̃(k)(u, u)μ(du), where p̃(k)(u, ·) is the
k-step Mtd of the sandwich chain. Of course, calculating these integrals (in non-
toy problems) is nearly always impossible, even for k = 1. In the next section,
we introduce a method of estimating these two integrals using classical Monte
Carlo.

Throughout the remainder of the paper, we assume that P is a DA operator
with Mtd given by (3), and that (4) holds.

5. Classical Monte Carlo

Consider the Mtd given by

a(u, ·) =
∫
SV

∫
SV

πU |V (·|v′)r(v, dv′)πV |U (v|u) ν(dv) , u ∈ SU , (8)

where r(v, ·), v ∈ SV is an Mtf on SV with invariant pdf πV (·). We will show in
this section that this form has utility beyond constructing sandwich algorithms.
Indeed, the k-step Mtd of a DA algorithm (or a sandwich algorithm) can be re-
expressed in the form (8). This motivates the development of a general method
for estimating the integral

∫
SU

a(u, u)μ(du), which is the main topic of this
section.

We begin by showing how p(k)(u, ·), u ∈ SU can be written in the form (8).
The case k = 1 is trivial. Indeed, if r(v, ·) is taken to be the kernel of the identity
operator, then a(u, ·) = p(u, ·). Define an Mtd q(v, ·), v ∈ SV by

q(v, ·) =
∫
SU

πV |U (·|u)πU |V (u|v)μ(du),

and let q(k)(v, ·), k ≥ 1 denote the corresponding k-step Mtd. If we let

r(v, dv′) = q(k−1)(v, v′) ν(dv′), v ∈ SV
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for k≥ 2, then a(u, ·)= p(k)(u, ·). Next, consider the sandwich Mtd p̃(k)(u, ·), u ∈
SU . Again, the k = 1 case is easy. Taking

r(v, ·) = s(v, ·)

yields a(u, ·) = p̃(u, ·). Now let

q̃(v, ·) =
∫
SU

∫
SV

s(v′, ·)πV |U (v
′|u)πU |V (u|v) ν(dv′)μ(du) ,

and denote the corresponding k-step transition function by q̃(k)(v, ·). Then tak-
ing

r(v, ·) =
∫
SV

q̃(k−1)(v′, ·)s(v, dv′)

when k ≥ 2 yields a(u, ·) = p̃(k)(u, ·).
The following proposition shows that, when P is trace-class,

∫
SU

a(u, u)μ(du)
is finite.

Proposition 3.
∫
SU

a(u, u)μ(du) < ∞.

Proof. That
∫
SU

a(u, u)μ(du) < ∞ is equivalent to

∫
SU

∫
SV

(∫
SV

πU,V (u, v
′)

πU (u)πV (v′)
r(v, dv′)

)(
πU,V (u, v)

πU (u)πV (v)

)
×

πU (u)πV (v) ν(dv)μ(du) < ∞ .

(9)

Note that∫
SU

(
πU,V (u, v)

πU (u)πV (v)

)2

πU (u)πV (v)μ(du)ν(dv) =

∫
SU

p(u, u)μ(du) < ∞ , (10)

and by Jensen’s inequality,

∫
SU

∫
SV

(∫
SV

πU,V (u, v
′)

πU (u)πV (v′)
r(v, dv′)

)2

πU (u)πV (v) ν(dv)μ(du)

≤
∫
SU

∫
SV

∫
SV

(
πU,V (u, v

′)

πU (u)πV (v′)

)2

r(v, dv′)πU (u)πV (v) ν(dv)μ(du)

=

∫
SU

∫
SV

(
πU,V (u, v

′)

πU (u)πV (v′)

)2

πU (u)πV (v
′) ν(dv′)μ(du)

=

∫
SU

p(u, u)μ(du)

< ∞ .

(11)

The inequality (9) follows from (10), (11), and the Cauchy-Schwarz inequality.
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Combining Proposition 3 and Theorem 2 leads to the following result: If
P is trace-class and p̃(u, ·) is representable, then P̃ is also trace-class. This is
a generalization of Khare and Hobert’s (2011) Theorem 1, which states that,
under a condition on s(v, dv′) that implies representability, the trace-class-ness
of P implies that of P̃ .

We now develop a classical Monte Carlo estimator of
∫
SU

a(u, u)μ(du). Let

ω : SV → [0,∞) be a pdf that is almost everywhere positive. We will exploit
the following representation of the integral of interest:∫

SU

a(u, u)μ(du)

=

∫
SV

∫
SU

(
πV |U (v|u)

ω(v)

)(∫
SV

πU |V (u|v′)r(v, dv′)
)
ω(v)μ(du) ν(dv) .

(12)

Clearly,

η(u, v) :=
(∫

SV

πU |V (u|v′)r(v, dv′)
)
ω(v)

defines a pdf on SU × SV , and if (U∗, V ∗) has joint pdf η(·, ·), then
∫
SU

a(u, u)μ(du) = E

(
πV |U (V

∗|U∗)

ω(V ∗)

)
.

Therefore, if {(U∗
i , V

∗
i )}Ni=1 are iid random elements from η(·, ·), then

1

N

N∑
i=1

πV |U (V
∗
i |U∗

i )

ω(V ∗
i )

(13)

is a strongly consistent and unbiased estimator of
∫
SU

a(u, u)μ(du). This is the
Monte Carlo formula that is central to our discussion.

Of course, we are mainly interested in the cases a(u, ·) = p(k)(u, ·) or a(u, ·) =
p̃(k)(u, ·). We now develop algorithms for drawing from η(·, ·) in these two sit-
uations. First, assume a(u, ·) = p(k)(u, ·). If k = 1, then r(u, ·) is the kernel of
the identity operator, and

η(u, v) = πU |V (u|v)ω(v) .

If k ≥ 2, then r(v, dv′) = q(k−1)(v, v′) dv′, and

η(u, v) =
(∫

SV

πU |V (u|v′)q(k−1)(v, v′) ν(dv′)
)
ω(v)

=
(∫

SU

p(k−1)(u′, u)πU |V (u
′|v)μ(du′)

)
ω(v) .

Thus, when k ≥ 2, we can draw from η(u, v) as follows: Draw V ∗ ∼ ω(·), then
draw U ′ ∼ πU |V (·|v∗), then draw U∗ ∼ p(k−1)(u′, ·), and return (u∗, v∗). Of
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course, we can draw from p(k−1)(u′, ·) by simply running k − 1 iterations of
the original DA algorithm from starting value u′. We formalize all of this in
Algorithm 1.

Algorithm 1: Drawing (U∗, V ∗) ∼ η(·, ·) when a(·, ·) = p(k)(·, ·)
1. Draw V ∗ from ω(·).
2. Given V ∗ = v∗, draw U ′ from πU |V (·|v∗).
3. If k = 1, set U∗ = U ′. If k ≥ 2, given U ′ = u′, draw U∗ from p(k−1)(u′, ·)

by running k − 1 iterations of the DA algorithm.

Similar arguments lead to the following algorithm for the sandwich algorithm.

Algorithm 1S: Drawing (U∗, V ∗) ∼ η(·, ·) when a(·, ·) = p̃(k)(·, ·)
1. Draw V ∗ from ω(·).
2. Given V ∗ = v∗, draw V ′ from s(v∗, ·).
3. Given V ′ = v′ draw U ′ from πU |V (·|v′).
4. If k = 1, set U∗ = U ′. If k ≥ 2, given U ′ = u′, draw U∗ from p̃(k−1)(u′, ·)

by running k − 1 iterations of the sandwich algorithm.

It is important to note that we do not need to know the representing conditionals
πU |Ṽ (·|v) and πṼ |U (·|u) from (7) in order to run Algorithm 1S.

As with all classical Monte Carlo techniques, a key element in successful
implementation is a finite variance. Define

D2 = var

(
πV |U (V

∗|U∗)

ω(V ∗)

)
.

Of course, D2 < ∞ if and only if

∫
SV

∫
SU

(
πV |U (v|u)

ω(v)

)2

η(u, v)μ(du) ν(dv) < ∞ . (14)

The following theorem provides a sufficient condition for finite variance.

Theorem 4. The variance, D2, is finite if

∫
SV

∫
SU

π3
V |U (v|u)πU |V (u|v)

ω2(v)
μ(du) ν(dv) < ∞. (15)

Proof. First, note that (14) is equivalent to

∫
SV

∫
SU

(
π2
V |U (v|u)

πV (v)ω(v)

)(∫
SV

πU |V (u|v′)r(v, dv′)
πU (u)

)
πU (u)πV (v)μ(du) ν(dv) < ∞.
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Now, it follows from (15) that

∫
SV

∫
SU

(
π2
V |U (v|u)

πV (v)ω(v)

)2

πU (u)πV (v)μ(du) ν(dv) < ∞. (16)

Moreover, by Jensen’s inequality,

∫
SV

∫
SU

(∫
SV

πU |V (u|v′)r(v, dv′)
πU (u)

)2

πU (u)πV (v)μ(du) ν(dv)

≤
∫
SV

∫
SU

∫
SV

(
πU |V (u|v′)
πU (u)

)2

r(v, dv′)πU (u)πV (v)μ(du) ν(dv)

=

∫
SV

∫
SU

(
πU |V (u|v′)
πU (u)

)2

πU (u)πV (v
′)μ(du) ν(dv′)

=

∫
SU

p(u, u)μ(du)

< ∞.

(17)

The conclusion now follows from (16), (17), and Cauchy-Schwarz.

Theorem 4 implies that an ω(·) with heavy tails is more likely to result in finite
variance (which is not surprising). It might seem natural to take ω(·) = πV (·).
However, in practice, we are never able to draw from πV (·). (If we could do that,
we would not need MCMC.) Moreover, setting ω(·) to be πV (·) does not always
result in a finite variance. On the other hand, it can be beneficial to use ω(·)s
resembling πV (·), as we argue in Section 6.

When an appropriate ω(·) is difficult to find, one can construct an alternative
Monte Carlo estimator as follows. Let ψ : SU → [0,∞) be a pdf that is positive
almost everywhere. The following dual of (12) may also be used to represent∫
SU

a(u, u)μ(du):

∫
SU

a(u, u)μ(du) =

∫
SU

∫
SV

∫
SV

πU |V (u|v)
ψ(u)

r(v′, dv)πV |U (v
′|u)ψ(u) ν(dv′)μ(du) .

Now suppose that {(U∗
i , V

∗
i )}Ni=1 are iid from

ζ(u, v)μ(du) ν(dv) =

(∫
SV

r(v′, dv)πV |U (v
′|u) ν(dv′)

)
ψ(u)μ(du) .

The analogue of (13) is the following Monte Carlo estimator of
∫
SU

a(u, u)μ(du):

1

N

N∑
i=1

πU |V (U
∗
i |V ∗

i )

ψ(U∗
i )

. (18)

We now state the obvious analogues of Algorithms 1 and 1S.
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Algorithm 2: Drawing (U∗, V ∗) ∼ ζ(·, ·) when a(·, ·) = p(k)(·, ·)
1. Draw U∗ from ψ(·).
2. If k = 1, set U ′ = U∗. If k ≥ 2, given U∗ = u∗, draw U ′ from p(k−1)(u∗, ·).
3. Given U ′ = u′, draw V ∗ from πV |U (·|u′).

Algorithm 2S: Drawing (U∗, V ∗) ∼ ζ(·, ·) when a(·, ·) = p̃(k)(·, ·)
1. Draw U∗ from ψ(·).
2. If k = 1, set U ′ = U∗. If k ≥ 2, given U∗ = u∗, draw U ′ from p̃(k−1)(u∗, ·).
3. Given U ′ = u′, draw V ′ from πV |U (·|u′).

4. Given V ′ = v′, draw V ∗ from s(v′, ·).

Let D′ 2 be the variance of πU |V (U
∗|V ∗)/ψ(U∗) under ζ. To ensure that it’s

finite, we only need

∫
SU

∫
SV

∫
SV

(
πU |V (u|v)

ψ(u)

)2

r(v′, dv)πV |U (v
′|u)ψ(u) ν(dv′)μ(du) < ∞ . (19)

The following result is the analogue of Theorem 4.

Corollary 5. The variance, D′ 2, is finite if

∫
SU

∫
SV

π3
U |V (u|v)πV |U (v|u)

ψ2(u)
ν(dv)μ(du) < ∞ . (20)

Proof. Note that the left hand side of (19) is equal to

∫
SU

∫
SV

(∫
SV

π2
U |V (u|v)

ψ(u)πU (u)
r(v′, dv)

)(
πV |U (v

′|u)
πV (v′)

)
πU (u)πV (v

′) ν(dv′)μ(du) .

Apply the Cauchy-Schwarz inequality, then utilize Jensen’s inequality to get rid
of r(v′, dv), and finally make use of (20) and the fact that P is trace-class.

Typically, it’s easy to select a good sampling density ω(·) for Algorithm 1
when SV is low dimensional, or to select a good ψ(·) for Algorithm 2 when SU

is low dimensional. For DA algorithms used in Bayesian models, it’s often the
case that dim(SU ) = p, and dim(SV ) = n, where p and n are, respectively, the
number of unknown parameters in the model and the number of observations.
When this is the case, the estimator (13) is likely to be efficient when n is small,
while (18) is likely to be efficient when p is small.

Suppose that we have obtained estimates of sk and sk−1 based on (13) or (18),
call them s∗k and s∗k−1. Then u∗

k = (s∗k−1)1/k and l∗k = (s∗k−1)/(s∗k−1−1) serve
as point estimates of uk and lk, respectively. When our estimators have finite
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variances, we can acquire, via the delta method, confidence intervals for uk and
lk. Assume that a confidence interval for lk is (ak, bk) and a confidence interval
for uk is (ck, dk), then (ak, dk) is an interval estimate for λ1. Interval estimates
of λ̃1 can be derived in a similar fashion.

It’s worth pointing out that uk is a nontrivial upper bound on λ1 ∈ [0, 1) only
if sk < 2. The parameter k can be determined sequentially. Take Algorithm 1
for example. Suppose that we have drawn N iid copies of (U∗, V ∗) from η(·, ·)
with a(·, ·) = p(k)(·, ·), but find that s∗k is not small enough for our purposes.
Since sk is decreasing in k, we wish to increase k by a positive integer j. To
draw (U∗∗, V ∗∗) from η(·, ·) with a(·, ·) = p(k+j)(·, ·), we only need to set V ∗∗ =
V ∗, and draw U∗∗ from p(j)(U∗, ·). This procedure can be repeated until the
estimated power sum s∗k+j is decreased to a satisfactory value. More guidance
on the choice of k can be found in the next section.

6. Efficiency of the algorithm

To obtain an interval estimate of λ1 based on (13) or (18), one needs to run N
iterations of Algorithm 1 or 2. If the time needed to simulate one step of the
DA chain is τ , then the time needed to run N iterations of Algorithm 1 or 2
is approximately kNτ . Note that significant speedup can be achieved through
parallel computing, since the N iterations are carried out independently. Given
k and N , the accuracy of the estimate depends on two factors: 1. The distance
between lk and uk, and 2. The errors in the estimates, l∗k and u∗

k. We now
briefly analyze these two factors, and give some additional guidelines regarding
the choice of ω(·) and ψ(·).

As before, suppose that

1 = λ0 > λ1 = λ2 = · · · = λm > λm+1 ≥ · · · ≥ λκ > 0

for some m < ∞. Clearly, as k → ∞,

sk − 1 = λk
1

(
m+O

(
λk
m+1/λ

k
1

))
.

Hence, as k → ∞,

lk :=
sk − 1

sk−1 − 1
= λ1

(
1 +O

(
λk−1
m+1/λ

k−1
1

))
,

and
uk := (sk − 1)1/k

= λ1m
1/k

(
1 +O

(
k−1λk

m+1/λ
k
1

))
= λ1

(
1 + (logm)O

(
k−1

)) (
1 +O

(
k−1λk

m+1/λ
k
1

))
.

=

{
λ1

(
1 +O

(
k−1λk

2/λ
k
1

))
m = 1

λ1

(
1 +O

(
k−1

))
m > 1.

Depending on whether m = 1 or not, uk − lk decreases at either a geometric or
polynomial rate as k grows.
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The errors of l∗k and u∗
k arise from those of s∗k and s∗k−1. We now consider the

estimator (18) for estimating sk. Its variance is given by

D′ 2

N

=
1

N

{∫
SU

∫
SV

∫
SV

(
πU |V (u|v)

ψ(u)

)2

r(v′, dv)πV |U (v
′|u)ψ(u) ν(dv′)μ(du)− s2k

}

=
1

N

{∫
SU

∫
SV

∫
SU

π2
U |V (u|v)
ψ(u)

πV |U (v|u′)p(k)(u, u′)μ(du′) ν(dv)μ(du)− s2k

}
.

Note that

pk ((u, v), (u
′, v′)) := πV |U (v

′|u′)p(k)(u, u′)

gives the k-step Mtd of a Gibbs chain whose stationary pdf is πU,V (·, ·). Thus,
under suitable conditions, for almost any u ∈ SU ,

lim
k→∞

sk(u) := lim
k→∞

∫
SV

∫
SU

π2
U |V (u|v)
ψ(u)

πV |U (v|u′)p(k)(u, u′)μ(du′) ν(dv)

=

∫
SV

∫
SU

π2
U |V (u|v)
ψ(u)

πU,V (u
′, v)μ(du′) ν(dv)

=
p(u, u)πU (u)

ψ(u)
.

As k → ∞, we expect

D′ 2 =

∫
SU

sk(u)μ(du)− s2k →
∫
SU

p(u, u)πU (u)

ψ(u)
μ(du)− 1.

Suppose that ψ(u) ≈ πU (u), then heuristically,∫
SU

p(u, u)πU (u)

ψ(u)
μ(du)− 1 ≈

∫
SU

p(u, u)μ(du)− 1 = s1 − 1.

Thus, if the sum of P ’s eigenvalues, s1, is relatively small, we recommend picking
ψ(·)s that resemble πU (·), with possibly heavier tails (to ensure that the moment
condition (20) holds). By a similar argument, when using the estimator (13),
picking ω(·)s that resemble πV (·) is likely to controlD2 around s1−1 for large ks.

While (under suitable conditions) the variance of s∗k converges to a constant
as k → ∞, this is not the case for u∗

k and l∗k (because uk and lk are non-
linear in sk and sk−1). In fact, using the delta method, one can show that
these variances are unbounded. Thus, there’s a trade-off between decreasing
uk − lk (by increasing k) and controlling the errors of u∗

k and l∗k. We do not
recommend increasing k indefinitely. As long as k is large enough so that sk − 1
is significantly smaller than 1, uk serves as a non-trivial (and often decent) upper
bound for λ1.
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7. Examples

In this section, we apply our Monte Carlo technique to several common Markov
operators. In particular, we examine one toy Markov chain, and two practically
relevant Monte Carlo Markov chains. In the two real examples, we are able to
take advantage of existing trace-class proofs to establish that (15) (or (20)) hold
for suitable ω(·) (or ψ(·)).

7.1. Gaussian chain

We begin with a toy example. Let SU = SV = R, πU (u) ∝ exp(−u2), and

πV |U (v|u) ∝ exp
{
− 4

(
v − u

2

)2}
.

Then
πU |V (u|v) ∝ exp{−2(u− v)2} .

This leads to one of the simplest DA chains known. Indeed, the Mtd,

p(u, ·) =
∫
R

πU |V (·|v)πV |U (v|u) dv , u ∈ SU ,

can be evaluated in closed form, and turns out to be a normal pdf. The spectrum
of the corresponding Markov operator, P , has been studied thoroughly (see e.g.
Diaconis, Khare and Saloff-Coste, 2008). It is easy to verify that (4) holds, so P
is trace-class. In fact, κ = ∞, and for any non-negative integer i, λi = 1/2i.
Thus, the second largest eigenvalue, λ1, and the spectral gap, δ, are both equal
to 1/2. Moreover, for any positive integer k,

sk =

∞∑
i=0

1

2ik
=

1

1− 2−k
.

We now pretend to be unaware of this spectral information, and use (13) to
estimate {sk, lk, uk}4k=1. Recall that lk and uk are lower and upper bounds for
λ1, respectively. Note that∫

R

π3
V |U (v|u)πU |V (u|v) du ∝ exp

(
− 6

5
v2
)
.

It follows that, if we take ω(v) ∝ exp(−v2/2), then (15) holds, and our estimator
of sk has finite variance. We use a Monte Carlo sample size of N = 1 × 105 to
form our estimates, and the results are shown in Table 1.

Note that the estimates of the sks are quite good. We then construct 95%
confidence intervals (CIs) for l4 and u4 via the delta method, and the results
are (0.442, 0.522) and (0.498, 0.524), respectively.

We now add an additional parameter to our toy example in order to study
the effect of a closing spectral gap on our method. In particular, let πV |U (·|u),
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Table 1

Estimated power sums of eigenvalues for the Gaussian chain

k Est. sk Est. D/
√
N Est. lk Est. uk

1 1.996 0.004 0.000 0.996
2 1.331 0.004 0.333 0.575
3 1.142 0.004 0.429 0.522
4 1.068 0.004 0.482 0.511

Fig 1. Spectral gap estimation for the Gaussian chain for different λs

u ∈ R, be the pdf of N(λu, λ(1− λ)/2), where λ ∈ (0, 1). Note that our original
example corresponds to λ = 1/2. The eigenvalues of the resultant DA operator
are {λi}∞i=0 = {λi}∞i=0. We investigate the effectiveness of our method as λ1 = λ
goes to 1, that is, as the spectral gap δ = 1 − λ closes. To this end, consider a
sequence of Gaussian chains with λ increasing from 0.5 to 0.99. In accordance
with the discussion in Section 6, for a given λ, we set ω to be the density
function of a t-distribution with similar variance as πV (·), which is the pdf of
N(0, λ/2). One can verify that (15) holds for every λ ∈ (0, 1). Note that in order
for uk = (sk−1)1/k to be a non-trivial upper bound on λ1, we need sk < 2. As λ
increases, so does sk for any given k, and thus one must increase k in order to
find a useful upper bound. Figure 1a shows the ks used for different λs. When
λ = 0.5, we only need k = 4 to get a decent result; but when λ = 0.99, k ≈ 70
is needed. Recall that the time needed to run N iterations of Algorithm 1 is
approximately kNτ , where τ is the time needed to simulate one step of the DA
chain, which is roughly the same for any λ ∈ (0, 1). To compare the performance
of our method for different λs, we fix kN = 1× 106, and compare the length of
the interval estimates of λ1. The results are shown in Figure 1b. As λ grows, so
does k, and we are forced to use a smaller sample size N . Thus, as λ grows, it
becomes more difficult to estimate the variances of u∗

k and l∗k accurately. As a
result, the length of the interval estimate of λ1 becomes less stable when λ is
near 1. This is reflected in Figure 1b by an unusually wide interval estimate at
λ = 0.98. On the other hand, most of the interval estimates at other values of λ
near 1 are reasonably well-behaved.
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7.2. Bayesian probit regression

Let Y1, Y2, . . . , Yn be independent Bernoulli random variables with P(Y1 =
1|β) = Φ(xT

i β), where xi, β ∈ R
p, and Φ(·) is the cumulative distribution func-

tion of the standard normal distribution. Let the prior on β be Np(Q
−1w,Q−1),

where w ∈ R
p and Q is positive definite. The resulting posterior distribution

is intractable, but Albert and Chib (1993) devised a DA algorithm to sample
from it. Let z = (z1, z2, . . . , zn)

T be a vector of latent variables, and let X be
the design matrix whose ith row is xT

i . The Mtd of the Albert and Chib (AC)
chain, p(β, ·), β ∈ R

p, is characterized by

πU |V (β|z) ∝ exp

[
− 1

2

∥∥(XTX +Q
)1/2{

β −
(
XTX +Q

)−1(
w +XT z

)}∥∥2] ,
where ‖ · ‖ is the Euclidean norm, and

πV |U (z|β) ∝
n∏

i=1

exp

{
− 1

2

(
zi − xT

i β
)2}

IR+

(
(yi − 0.5)zi

)
.

The first conditional density, πU |V (·|z), is a multivariate normal density, and
the second conditional density, πV |U (·|β), is a product of univariate truncated
normal pdfs.

A sandwich step can be added to facilitate the convergence of the AC chain.
Chakraborty and Khare (2017) constructed a Haar PX-DA variant of the chain,
which is a sandwich chain with transition density of the form (6) (see also Roy
and Hobert (2007)). The sandwich step s(z, dz′) is equivalent to the following
update: z �→ z′ = gz, where the scalar g is drawn from the following density:

πG(g|z) ∝ gn−1 exp

[
− 1

2
zT

{
In −X(XTX +Q)−1XT

}
zg2

+ zTX(XTX +Q)−1wg

]
.

Note that this pdf is particularly easy to sample from when w = 0.

Chakraborty and Khare (2017) showed that, for the AC chain, P is trace-class
when one uses a concentrated prior (corresponding to Q having large eigenval-
ues). In fact, the following is shown to hold in their proof.

Proposition 6. Suppose that X is full rank, and that all the eigenvalues of
Q−1/2XTXQ−1/2 are less than 7/2. Then for any polynomial function t : Rp →
R, ∫

Rp

|t(β)|p(β, β) dβ < ∞ .

We will use the estimator (18). The following proposition provides a class of
ψ(·)s that lead to estimators with finite variance.
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Proposition 7. Suppose the hypothesis in Proposition 6 holds. If ψ(·) is the
pdf of a p-variate t-distribution, i.e.

ψ(β) ∝
{
1 +

1

a
(β − b)TΣ−1(β − b)

}−(a+p)/2

for some b ∈ R
p, positive definite matrix Σ ∈ R

p×p, and positive integer a, then
the estimator (18) has finite variance.

Proof. Note that for every β and z

π3
U |V (β|z) ≤ CπU |V (β|z) ,

where C is a constant. Hence, by Proposition 6, for any polynomial function
t : Rp → R,∫

Rp

∫
Rn

|t(β)|π3
U |V (β|z)πV |U (z|β) dz dβ ≤ C

∫
Rp

|t(β)|p(β, β) dβ < ∞.

Since ψ−2(·) is a polynomial function on R
p, the moment condition (20) holds.

The result follows from Corollary 5.

As a numerical illustration, we apply our method to the Markov operator
associated with the AC chain corresponding to the famous “lupus data” of van
Dyk and Meng (2001). In this dataset, n = 55 and p = 3. We will construct an
asymptotically valid 95% CI for the second largest eigenvalue, and this appears
to be the most rigorous and detailed analysis to date of the spectrum of a
practically relevant MCMC algorithm on an uncountable state space. As in
Chakraborty and Khare (2017), we will let w = 0 and Q = XTX/c, where
c = 3.499999. It can be easily shown that the assumptions in Proposition 6 are
met. Chakraborty and Khare (2017) compared the AC chain, Φ, and its Haar
PX-DA variant, Φ̃, defined a few paragraphs ago. This comparison was done
using estimated autocorrelations. Their results suggest that Φ̃ outperforms Φ
when estimating a certain test function. We go further and estimate the second
largest eigenvalue of each operator.

It can be shown that the posterior pdf, πU (·), is log-concave, and thus possess

a unique mode. Let β̂ be the posterior mode, and Σ̂ the estimated variance of
the MLE. We pick ψ(·) to be the pdf of t30(β̂, (Σ̂

−1 +Q)−1). This is to say, for
any β ∈ R

p,

ψ(β) ∝
{
1 +

1

30
(β − β̂)T (Σ̂−1 +Q)(β − β̂)

}−(p+30)/2

.

By Proposition 7, this choice of ψ(·) guarantees finite variance. When n is large,
ψ(·) is expected to resemble πU (·). The performance of our method seems in-
sensitive to the degrees of freedom of the t-distribution (which is set at 30 for
illustration).

We use a Monte Carlo sample size of N = 4× 105 to form our estimates for
the DA operator, and the results are shown in Table 2. Asymptotic 95% CIs for
l5 and u5 are (0.397, 0.545) and (0.573, 0.595), respectively. Using a Bonferroni
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Table 2

Estimated power sums of eigenvalues for the AC chain

k Est. sk Est. D′/
√
N Est. lk Est. uk

1 6.744 0.072 0.000 5.744
2 2.041 0.007 0.181 1.020
3 1.363 0.004 0.349 0.713
4 1.156 0.004 0.430 0.628
5 1.068 0.003 0.436 0.584

Table 3

Estimated power sums of eigenvalues for the Haar PX-DA version of the AC chain

k Est. s̃k Est. D′/
√
N Est. l̃k Est. ũk

1 3.796 0.012 0.000 1.796
2 1.538 0.004 0.193 0.734
3 1.172 0.004 0.319 0.556
4 1.060 0.003 0.352 0.496
5 1.025 0.003 0.419 0.479

argument, we can state that asymptotically, with at least 95% confidence, λ1 ∈
(0.397, 0.595).

We now consider the sandwich chain, Φ̃. It is known that the Mtd of any
Haar PX-DA chain is representable (Hobert and Marchev, 2008). Hence, P̃ is
indeed a DA operator. Recall that {λ̃i}κ̃i=0, 0 ≤ κ̃ ≤ ∞, denote the decreasingly
ordered positive eigenvalues of P̃ . It was shown in Khare and Hobert (2011) that
λ̃i ≤ λi for i ∈ N with at least one strict inequality. For a positive integer k,∑κ̃

i=0 λ̃
k
i is denoted by s̃k. Let ũk and l̃k, be the respective counterparts of uk

and lk. Estimates of s̃k, k = 1, 2, . . . , 5 using 4 × 105 Monte Carlo samples are
given in Table 3. Our estimate of s̃1−1 is less than half of s1−1, implying that,
in an average sense, the sandwich version of the AC chain reduces the nontriv-
ial eigenvalues of P by more than half. Asymptotic 95% CIs for l̃5 and ũ5 are
(0.321, 0.518) and (0.456, 0.503). Thus, asymptotically, with at least 95% confi-
dence, λ̃1 ∈ (0.321, 0.503). The method does not detect a significant difference
between λ1 and λ̃1.

We now study the performance of our method when n or p increases for the
original AC chain. First, consider a sequence of datasets where n grows. Let
Xlupus ∈ R

55×3 be the design matrix for the lupus data, and let r be a positive
integer. Set X ∈ R

n×3 to be r copies of Xlupus stacked on top of each other,
so that n = 55r. The response vector (Y1, Y2, . . . , Yn)

T is randomly generated
in accordance with the probit regression model with the true value of β being
(−3, 0, 3)T . Let r range from 1 to 15. This gives rise to a sequence of datasets
with n growing from 55 to 825. An interval estimate for λ1 is then constructed
for each of these datasets. Throughout the simulation, k is fixed at 5, and N
is fixed at 4 × 105. The result is given in Figure 2a. Increasing n, which is the
dimension of SV , apparently does not undermine the method.

Now we consider a sequence of datasets where n is fixed and p grows. Let
n = 200, and let X be a 200 × p matrix whose ijth element is pj(i), with
{pj(·)}pj=1 being a set of orthogonal polynomials generated using the R function
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Fig 2. Spectral gap estimation for the AC chain

poly(). The response vector is randomly generated according to the probit
model with the true value of β being (−p,−p+2p/(1−p),−p+4p/(1−p), . . . , p)T .
We apply our method to such a dataset when p is increased from 3 to 15. N is
set to be 4× 105, and k is either 4 or 5, whichever yields a better estimate. The
interval estimates for λ1 are given in Figure 2b. As p increases, the length of the
interval estimate grows quite rapidly, indicating that the method does not scale
well with p, that is, the dimension of SU . This is consistent with the analysis
near the end of Section 5, which suggests that Algorithm 2 works well when n
is large and p is small, but not the other way around.

7.3. Bayesian linear regression model with non-Gaussian errors

Let Y1, Y2, . . . , Yn be independent d-dimensional random vectors from the linear
regression model

Yi = βTxi +Σ1/2εi ,

where xi ∈ R
p is known, while β ∈ R

p×d and the d× d positive definite matrix
Σ are to be estimated. The iid errors, ε1, ε2, . . . , εn, are assumed to have a pdf
that is a scale mixture of Gaussian densities:

fh(ε) =

∫
R+

ud/2

(2π)d/2
exp

(
− u

2
εT ε

)
h(u) du,

where h(·) is a pdf with positive support, and R+ := (0,∞). For instance, if
d = 1 and h(u) ∝ u−2e−1/(8u), then ε1 has pdf proportional to e−|ε|/2.

To perform a Bayesian analysis, we require a prior on the unknown parameter,
(β,Σ). We adopt the (improper) Jeffreys prior, given by 1/|Σ|(d+1)/2. Let y
represent the n×dmatrix whose ith row is the observed value of Yi. The following
four conditions, which are sufficient for the resulting posterior to be proper (Qin
and Hobert, 2018; Fernandez and Steel, 1999), will be assumed to hold:

1. n ≥ p+ d,
2. (X : y) is full rank, where X is the n× p matrix whose ith row is xT

i ,



1812 Q. Qin et al.

3.
∫
R+

ud/2h(u) du < ∞, and

4.
∫
R+

u−(n−p−d)/2h(u) du < ∞.

The posterior density is highly intractable, but there is a well-known DA algo-
rithm to sample from it (Liu, 1996). Under our framework, the DA chain Φ is
characterized by the Mtd

p
(
(β,Σ), (·, ·)

)
=

∫
R

n
+

πU |V (·, ·|z)πV |U (z|β,Σ) dz,

where z = (z1, z2, . . . , zn)
T ,

πU |V (β,Σ|z) ∝ |Σ|−(n+d+1)/2
n∏

i=1

exp
{
− zi

2

(
yi −βTxi

)T
Σ−1

(
yi −βTxi

)}
, and

πV |U (z|β,Σ) ∝
n∏

i=1

z
d/2
i exp

{
− zi

2

(
yi −βTxi

)T
Σ−1

(
yi −βTxi

)}
h(zi) .

The first conditional density, πU |V (·, ·|z), characterizes a multivariate normal
distribution on top of an inverse Wishart distribution, i.e. β|Σ, z is multivariate
normal, and Σ|z is inverse Wishart. The second conditional density, πV |U (·|β,Σ),
is a product of n univariate densities. Moreover, when h(·) is a standard pdf on
R+, these univariate densities are often members of a standard parametric fam-
ily. The following proposition about the resulting DA operator is proved in Qin
and Hobert (2018).

Proposition 8. Suppose h(·) is strictly positive in a neighborhood of the origin.
If there exists ξ ∈ (1, 2) and δ > 0 such that∫ δ

0

ud/2h(u)∫ ξu

0
vd/2h(v) dv

du < ∞,

then P is trace-class.

When P is trace-class, we can pick an ω(·) and try to make use of (13).
A sufficient condition for the estimator’s variance, D2, to be finite is stated in
the following proposition, whose proof is given in the appendix.

Proposition 9. Suppose that h(·) is strictly positive in a neighborhood of the
origin. If ω(z) can be written as

∏n
i=1 ωi(zi), and there exists ξ ∈ (1, 4/3) such

that for all i ∈ {1, 2, . . . , n},∫
R+

u3d/2h3(u)

(
∫ ξu

0
vd/2h(v) dv)3ω2

i (u)
du < ∞, (21)

then (15) holds, and thus by Theorem 4, the estimator (13) has finite variance.

For illustration, take d = 1 and h(u) ∝ u−2e−1/(8u). Then ε1 follows a scaled
Laplace distribution, and the model can be viewed as a median regression model
with variance Σ unknown. It’s easy to show that h(·) satisfies the assumptions
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in Proposition 8, so the resultant DA operator is trace-class. Now let

ω(z) =
n∏

i=1

ωi(zi) ∝
n∏

i=1

z
−3/2
i e−1/(32zi) .

The following result shows that this will lead to an estimator with finite variance.

Corollary 10. Suppose d = 1, h(u) ∝ u−2e−1/(8u), and

ω(z) =

n∏
i=1

ωi(zi) ∝
n∏

i=1

z−α−1
i e−γ/zi ,

where 0 < α < 3/4 and 0 < γ < 3/64. Then the variance, D2, is finite.

Proof. In light of Proposition 9, we only need to show that (21) holds for some
ξ ∈ (1, 4/3). For any ξ > 0, making use of the fact that (by monotone conver-
gence theorem)

lim
u→∞

∫ ξu

0

v1/2h(v) dv =

∫
R+

u1/2h(u) du > 0 ,

one can easily show for any δ > 0,∫ ∞

δ

u3/2h3(u)

(
∫ ξu

0
v1/2h(v) dv)3ω2

i (u)
du =

∫ ∞

δ

u2α−5/2 exp{2γ/u− 3/(8u)}
(
∫ ξu

0
v1/2h(v) dv)3

du < ∞.

(22)
On the other hand, using L’Hôpital’s rule, we can see for (1− 16γ/3)−1 < ξ <
4/3,

lim
u→0

(
u3/2h3(u)

(
∫ ξu

0
v1/2h(v) dv)3ω2

i (u)

)1/3

= lim
u→0

u2α/3−5/6 exp{2γ/(3u)− 1/(8u)}∫ ξu

0
v−3/2e−1/(8v) dv

= lim
u→0

R(u) exp
{
−
(
− 2γ

3
− 1

8ξ
+

1

8

) 1

u

}
= 0,

where R(u) is a function that is either bounded near the origin or goes to ∞
at the rate of some power function as u → 0. It follows that for ξ ∈ ((1 −
16γ/3)−1, 4/3) and small enough δ,∫ δ

0

u3/2h3(u)

(
∫ ξu

0
v1/2h(v) dv)3ω2

i (u)
du < ∞. (23)

Combining (22) and (23) yields (21). The result then follows.

We now test the effectiveness of the Monte Carlo estimator (13) on a sequence
of growing datasets with d = 1. Let p = 3, and let X be an n× p design matrix
with 3 distinct rows, (1, 0, 0)T , (0, 1, 0)T , and (0, 0, 1)T , each replicated r times,
so that n = 3r. The responses, Y1, Y2, . . . , Yn, are then generated according
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Fig 3. Spectral gap estimation for the DA chain for Bayesian linear model

to the previously defined linear regression model with the true value of β being
(−3, 0, 3)T , and the true value of Σ being 1. In other words, Yi−xT

i (−3, 0, 3)T ∼
fh(·) independently for each i, where fh(u) ∝ e−|u|/2. The resultant DA chain Φ
lives in SU = R

3 × R+, and SV = R
n = R

3r. Let r grow from 2 to 6. We use
a Monte Carlo sample size of N = 2 × 106 to form interval estimates of λ1 for
different values of r. For simplicity, we fix k to be 4. The results are given in
Figure 3a. As n grows, the length of the interval estimate increases quite rapidly.
This is understandable, since our method is essentially an importance sampling
technique, which does not work well in high dimensional settings unless tuned
with great care. In the previous subsection where we study Bayesian probit
regression, we are able to easily deal with a dataset with n > 800. Part of the
reason is that, in that case, Algorithm 2 is used, and since SU is low dimensional,
it’s easy to choose ψ(·) that resembles πU (·).

Consider another sequence of datasets where d = 1, n = 10, and p is in-
creased from 1 to 8. The ijth element of the design matrix X is set to be pj(i),
where {pj(·)}pj=1 are orthogonal polynomials generated in R. The responses are
generated according to the aforementioned linear regression model with the true
value of β being (−p, p+2p/(1−p),−p+4p/(1−p), . . . , p)T , and the true value
of Σ being 1. In this case, SU = R

p × R+, and SV = R
10. Using a Monte Carlo

sample size of N = 2 × 106 and setting k = 4, we obtain interval estimates
of λ1 for different ps. The results are given in Figure 3b. Compare this to the
case where p is fixed an n grows. We see that the effectiveness of Algorithm 1,
characterized by the length of the interval estimate it produces, is much less
susceptible to the growing dimension of SU than to that of SV .
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Appendix

Appendix A: Proof of Theorem 2

Theorem 2. The DA operator P is trace-class if and only if∫
SU

p(u, u)μ(du) < ∞. (4)

If (4) holds, then for any positive integer k,

sk :=

κ∑
i=0

λk
i =

∫
SU

p(k)(u, u)μ(du) < ∞. (5)

Proof. Note that P is self-adjoint and non-negative. Let {gi}∞i=0 be an orthonor-
mal basis of L2(πU ). The operator P is defined to be trace-class if (see e.g.
Conway, 2000)

∞∑
i=0

〈Pgi, gi〉πU
< ∞. (24)

This condition is equivalent to P being compact with summable eigenvalues.
To show that P being trace-class is equivalent to (4), we will prove a stronger
result, namely

∞∑
i=0

〈Pgi, gi〉πU
=

∫
SU

p(u, u)μ(du). (25)

We begin by defining two new Hilbert spaces. Let L2(πV ) be the Hilbert space
consisting of functions that are square integrable with respect to the weight
function πV (·). For f, g ∈ L2(πV ), their inner product is defined, as usual, by

〈f, g〉πV
=

∫
SV

f(v)g(v)πV (v) ν(dv).

Let L2(πU × πV ) be the Hilbert space of functions on SU × SV that are square
integrable with respect to the weight function πU (·)πV (·). For f, g ∈ L2(πU ×
πV ), their inner product is

〈f, g〉πU×πV
=

∫
SU×SV

f(u, v)g(u, v)πU (u)πV (v)μ(du) ν(dv).

Note that L2(πV ) is separable. Let {hj}∞j=0 be an orthonormal basis of L2(πV ).

It can be shown that {gihj}(i,j)∈Z
2
+
is an orthonormal basis of L2(πU × πV ). Of

course, gihj denotes the function given by (gihj)(u, v) = gi(u)hj(v).
The inequality (4) is equivalent to

∫
SU×SV

(
πU,V (u, v)

πU (u)πV (v)

)2

πU (u)πV (v)μ(du) ν(dv) < ∞,
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which holds if and only if the function ϕ : SU × SV → R given by

ϕ(u, v) =
πU,V (u, v)

πU (u)πV (v)

is in L2(πU × πV ). Suppose (4) holds. Then by Parseval’s identity,

∫
SU

p(u, u)μ(du)= 〈ϕ,ϕ〉πU×πV

=
∑

(i,j)∈Z
2
+

|〈ϕ, gihj〉πU×πV
|2

=
∑

(i,j)∈Z
2
+

∣∣∣ ∫
SU×SV

gi(u)hj(v)πU,V (u, v)μ(du) ν(dv)
∣∣∣2

=

∞∑
i=0

∞∑
j=0

∣∣∣∫
SV

(∫
SU

gi(u)πU |V (u|v)μ(du)
)
hj(v)πV (v) ν(dv)

∣∣∣2.
Again by Parseval’s identity, this time applied to the function on SV (and in
fact, in L2(πV ) by Jensen’s inequality) given by

ϕi(v) =

∫
SU

gi(u)πU |V (u|v)μ(du),

we have

∫
SU

p(u, u)μ(du) =

∞∑
i=0

∞∑
j=0

|〈ϕi, hj〉πV
|2

=

∞∑
i=0

〈ϕi, ϕi〉πV

=
∞∑
i=0

∫
SV

∣∣∣ ∫
SU

gi(u)πU |V (u|v)μ(du)
∣∣∣2πV (v) ν(dv)

=

∞∑
i=0

∫
SV

∫
SU

(∫
SU

gi(u
′)πU |V (u

′|v)πV |U (v|u)μ(du′)
)
×

gi(u)πU (u)μ(du) ν(dv)

=
∞∑
i=0

∫
SU

(∫
SU

p(u, u′)gi(u
′)μ(du′)

)
gi(u)πU (u)μ(du).

(26)
Note that the use of Fubini’s theorem in the last equality can be easily justified
by noting that gi ∈ L2(πU ), and making use of Jensen’s inequality. But the
right hand side of (26) is precisely

∑∞
i=0〈Pgi, gi〉πU

. Hence, (25) holds when∫
SU

p(u, u)μ(du) is finite.
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To finish our proof of (25), we’ll show (24) implies (4). Assume that (24)
holds. Tracing backwards along (26) yields∑

(i,j)∈Z
2
+

|〈ϕi, hj〉πV
|2 < ∞.

This implies that the function

ϕ̃ :=
∑

(i,j)∈Z
2
+

〈ϕi, hj〉πV
gihj

is in L2(πU × πV ). Recall that (4) is equivalent to ϕ being in L2(πU × πV ).
Hence, it suffices to show that ϕ̃(u, v) = ϕ(u, v) almost everywhere. Define a
linear transformation T : L2(πU ) → L2(πV ) by

Tf(v) =

∫
SU

f(u)πU |V (u|v)μ(du), ∀f ∈ L2(πU ).

By Jensen’s inequality, T is bounded, and thus, continuous. For g =
∑∞

i=0 αigi ∈
L2(πU ) and h =

∑∞
j=0 βjhj ∈ L2(πV ),∫

SV

∫
SU

ϕ(u, v)g(u)h(v)πU (u)πV (v)μ(du) ν(dv)

= 〈Tg, h〉πV

=

∞∑
i=0

∞∑
j=0

αiβj〈Tgi, hj〉πV

=
∞∑
i=0

∞∑
j=0

αiβj〈ϕi, hj〉πV

= 〈ϕ̃, gh〉πU×πV

=

∫
SV

∫
SU

ϕ̃(u, v)g(u)h(v)πU (u)πV (v)μ(du) ν(dv),

where g ∈ L2(πV ) is given by g(u) := g(u), and gi is defined similarly for i ∈ Z+.
This implies that for any C1 ∈ U and C2 ∈ V ,∫

C1×C2

ϕ(u, v)πU (u)πV (v)μ(du) ν(dv)

=

∫
C1×C2

ϕ̃(u, v)πU (u)πV (v)μ(du) ν(dv).

Note that∫
SU×SV

|ϕ̃(u, v)|πU (u)πV (v)μ(du) ν(dv) ≤ 〈ϕ̃, ϕ̃〉1/2πU×πV
< ∞. (27)
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By (27) and the dominated convergence theorem, one can show that

A :=
{
C ∈ U × V

∣∣∣ ∫
C

ϕ(u, v)πU (u)πV (v)μ(du) ν(dv)

=

∫
C

ϕ̃(u, v)πU (u)πV (v)μ(du) ν(dv)
}

is a λ system. An application of Dynkin’s π-λ theorem reveals that U × V ⊂ A.
Therefore, ϕ̃(u, v) = ϕ(u, v) almost everywhere, and (4) follows.

For the rest of the proof, assume that P is trace-class. This implies that P is
compact, and thus admits the spectral decomposition (see e.g. Helmberg, 2014,
§28 Corollary 2.1) given by

Pf =

κ∑
i=0

λi〈f, fi〉πU
fi, f ∈ L2(πU ) (28)

where fi, i = 0, 1, . . . , κ, is the normalized eigenfunction corresponding to λi.
By Parseval’s identity,

∞∑
i=0

〈Pgi, gi〉πU
=

∞∑
i=0

κ∑
j=0

λj |〈gi, fj〉πU
|2

=

κ∑
j=0

λj〈fj , fj〉πU

=

κ∑
j=0

λj .

This equality is in fact a trivial case of Lidskii’s theorem (see e.g. Erdös, 1974;
Gohberg, Goldberg and Krupnik, 2012). It follows that (5) holds for k = 1.

We now consider the case where k ≥ 2. By (28) and a simple induction, we
have the following decomposition for P k.

P kf =

κ∑
i=0

λk
i 〈f, fi〉πU

fi, f ∈ L2(πU ) .

Hence P k is trace-class with ordered positive eigenvalues {λk
i }κi=0. Note that P

k

is a Markov operator whose Mtd is p(k)(u, ·), u ∈ SU . Thus, in order to show
that (5) holds for k ≥ 2, it suffices to verify P k is a DA operator, for then we
can treat P k as P and repeat our argument for the k = 1 case. To be specific,
we’ll show that there exists a random variable Ṽ taking values on SṼ , where

(SṼ , Ṽ , ν̃) is a σ-finite measure space and Ṽ is countably generated, such that
for u ∈ SU ,

p(k)(u, ·) =
∫
SṼ

πU |Ṽ (·|v)πṼ |U (v|u) ν̃(dv), (29)

where πṼ (·), πU |Ṽ (·|·), and πṼ |U (·|·) have the apparent meanings.
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Let (Uk, Vk)
∞
k=0 be a Markov chain. Suppose that U0 has pdf πU (·), and for

any non-negative integer k, let Vk|Uk = u have pdf πV |U (·|u), and let Uk+1|Vk =
v have pdf πU |V (·|v). It’s easy to see {Uk}∞k=0 is a stationary DA chain with
Mtd p(u, ·). Suppose k is even. The pdf of Uk|U0 = u is

p(k)(u, ·) =
∫
SU

p(k/2)(u, u′)p(k/2)(u′, ·)μ(du).

Meanwhile, since the chain is reversible and starts from the stationary distri-
bution, U0|Uk/2 = u has the same distribution as Uk/2|U0 = u, which is just

p(k/2)(u, ·). Thus, (29) holds with Ṽ = Uk/2. A similar argument shows that

when k is odd, (29) holds with Ṽ = V(k−1)/2.

Appendix B: Proof of Proposition 9

Proposition 9. Suppose that h(·) is strictly positive in a neighborhood of the
origin. If ω(z) can be written as

∏n
i=1 ωi(zi), and there exists ξ ∈ (1, 4/3) such

that for all i ∈ {1, 2, . . . , n},∫
R+

u3d/2h3(u)

(
∫ ξu

0
vd/2h(v) dv)3ω2

i (u)
du < ∞,

then (15) holds, and thus by Theorem 4, second moment exists for the estimator
(13).

Proof. Let Sd be the set of d × d positive definite matrices. For any β ∈ R
p,

Σ ∈ Sd, z ∈ R
n, and ξ ∈ (1, 4/3),

πU |V (β,Σ|z)π3
V |U (z|β,Σ)

=
|Σ|−(n+d+1)/2

∏n
i=1 exp{−zi(yi − βTxi)

TΣ−1(yi − βTxi)/2}∫
Rp

∫
Sd

|Σ̃|−(n+d+1)/2
∏n

i=1 exp{−zi(yi − β̃Txi)T Σ̃−1(yi − β̃Txi)/2} dΣ̃ dβ̃
×

n∏
i=1

z
3d/2
i exp{−3zi(yi − βTxi)

TΣ−1(yi − βTxi)/2}h3(zi)

{
∫∞
0

vd/2 exp[−v(yi − βTxi)TΣ−1(yi − βTxi)/2]h(v) dv}3

≤ |Σ|−(n+d+1)/2
∏n

i=1 exp{−zi(yi − βTxi)
T [Σ/(4− 3ξ)]−1(yi − βTxi)/2}∫

Rp

∫
Sd

|Σ̃|−(n+d+1)/2
∏n

i=1 exp{−zi(yi − β̃Txi)T Σ̃−1(yi − β̃Txi)/2} dΣ̃ dβ̃
×

n∏
i=1

z
3d/2
i h3(zi)

(
∫ ξzi
0

vd/2h(v) dv)3
.

Note that∫
Sd

|Σ|−(n+d+1)/2
n∏

i=1

exp

{
− zi

2

(
yi − βTxi

)T( Σ

4− 3ξ

)−1(
yi − βTxi

)}
dΣ

= (4− 3ξ)−nd/2×∫
Sd

|Σ|−(n+d+1)/2
n∏

i=1

exp
{
− zi

2

(
yi − βTxi

)T
Σ−1

(
yi − βTxi

)}
dΣ.
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Thus,

∫
Rp

∫
Sd

πU |V (β,Σ|z)π3
V |U (z|β,Σ) dΣ dβ ≤ (4− 3ξ)−nd/2

n∏
i=1

z
3d/2
i h3(zi)

(
∫ ξzi
0

vd/2h(v) dv)3
.

The result follows immediately.
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