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Abstract: Vine copulas, or pair-copula constructions, have become an im-
portant tool in high-dimensional dependence modeling. Commonly, it is
assumed that the data generating copula can be represented by a simpli-
fied vine copula (SVC). In this paper, we study the simplifying assumption
and investigate the approximation of multivariate copulas by SVCs. We
introduce the partial vine copula (PVC) which is a particular SVC where
to any edge a j-th order partial copula is assigned. The PVC generalizes
the partial correlation matrix and plays a major role in the approximation
of copulas by SVCs. We investigate to what extent the PVC describes the
dependence structure of the underlying copula. We show that, in general,
the PVC does not minimize the Kullback-Leibler divergence from the true
copula if the simplifying assumption does not hold. However, under regu-
larity conditions, stepwise estimators of pair-copula constructions converge
to the PVC irrespective of whether the simplifying assumption holds or
not. Moreover, we elucidate why the PVC is often the best feasible SVC
approximation in practice.

Keywords and phrases: Vine copula, pair-copula construction, simpli-
fying assumption, partial vine copula, conditional copula.

Received March 2017.

*A previous version of this paper was circulated on arXiv under the title “The partial vine
copula: A dependence measure and approximation based on the simplifying assumption”.

fScalable Capital is a group of investment management and financial technology firms,
which may or may not apply similar investment techniques or methods of analysis as described
herein. The views expressed here are those of the authors and not necessarily those of Scalable
Capital or its affiliates.

1254


http://projecteuclid.org/ejs
https://doi.org/10.1214/19-EJS1547
mailto:spanhel@stat.uni-muenchen.de
mailto:malte.kurz@stat.uni-muenchen.de

Simplified vine copula models 1255

Contents
1 Introduction. . . . . . . . . . . . . . . e 1255
2 Simplified vine copulas, conditional and partial copulas . . .. .. .. 1257
2.1 Notation and assumptions . . . . . . . . . ... ... L. 1257
2.2 Vine copulas and the simplifying assumption . . . .. ... ... 1257
2.3 Conditional and partial copulas . . . . . .. ... ... ... ... 1260
3 Higher-order partial copulas and the partial vine copula . . . . . . .. 1261
4 Properties of the partial vine copula and examples . . . . .. ... .. 1264
5 Approximations based on the partial vine copula . . . . . .. ... .. 1268
5.1 Tree-by-tree KLD minimization . . . . . . ... ... ... . ... 1268
5.2 Global KLD minimization . . . . . ... ... ... .. ...... 1269
6 Convergence to the partial vine copula . . . . . . ... ... ... ... 1271
6.1 Step-by-step and joint ML estimates: Theory . . . .. ... ... 1271
6.2 Step-by-step and joint ML estimates: Simulation study . . . . . . 1272
7 Conclusion . . . . . . . . .. e 1274
Appendix . . . ... 1275
A.1 Proofof Lemma 3.1 . ... ... .. ... ... ... ....... 1275
A.2 Proof of Lemma 4.1 . ... ... .. ... ... .. ... .. ... 1276
A.3 Proof of Theorem 4.1 . . . . . . . .. ... .. ... ... ..... 1276
A4 Proof of Lemma 4.2 . . . .. . ... 1276
A5 Proof of Theorem 5.1 . . . . . . . .. ... ... ... ... ..., 1281
A.6 Proof of Theorem 5.2. . . . . . . .. ... .. .. ... ..., 1282
A7 Proof of Lemma A.1 . . . .. . ... 1284
A.8 Proof of Corollary 6.1 . . . . . ... ... ... ... ... ..., 1287
A.9 An example where the difference between 65 and 67 is more pro-
nounced . . . ...l 1287
Acknowledgements . . . . . . ... 1288
References . . . . . . . . . . . . 1289

1. Introduction

Copulas constitute an important tool to model dependence [28, 17, 25]. While it
is easy to construct bivariate copulas, the construction of flexible high-
dimensional copulas is a sophisticated problem. The introduction of simplified
vine copulas (Joe [16]), or pair-copula constructions (Aas et al. [2]), has been
an enormous advance for high-dimensional dependence modeling. Simplified
vine copulas (SVCs) are hierarchical structures, constructed upon a sequence
of bivariate unconditional copulas, which capture the conditional dependence
between pairs of random variables if the data generating process satisfies the
simplifying assumption. In this case, all conditional copulas of the data gener-
ating vine collapse to unconditional copulas and the true copula can be repre-
sented in terms of a SVC. Vine copula methodology and applications have been
extensively developed under the simplifying assumption [6, 11, 18, 20, 29], with
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studies showing the superiority of SVC models over elliptical copulas and nested
Archimedean copulas (Aas and Berg [1], Fischer et al. [8]).

Although some copulas can be expressed as a SVC, the simplifying assump-
tion is not true in general. Hobeek Haff, Aas and Frigessi [14] point out that the
simplifying assumption is in general not valid and provide examples of multi-
variate distributions which do not satisfy the simplifying assumption. Stober,
Joe and Czado [37] show that the Clayton copula is the only Archimedean
copula for which the simplifying assumption holds, while the Student-t cop-
ula is the only SVC arising from a scale mixture of normal distributions. In
fact, it is very unlikely that the unknown data generating process satisfies the
simplifying assumption in a strict mathematical sense. As a result, researchers
have recently started to investigate new dependence concepts that are related
to the simplifying assumption. In particular, studies on the bivariate partial
copula, a generalization of the partial correlation coefficient, have (re-)emerged
lately [5, 9, 10, 35, 31]. Estimators for non-simplified vine copula models are
proposed by Schellhase and Spanhel [33] and Vatter and Nagler [38] using a
non-parameteric approach and generalized additive models, respectively.

We introduce the partial vine copula (PVC) which generalizes the partial
correlation matrix. The PVC is a particular SVC where to any edge a j-th order
partial copula is assigned. We investigate several properties of the PVC and
show to what extent the dependence structure of the underlying distribution is
captured. The PVC plays a crucial role in terms of approximating a multivariate
copula by a SVC. We show that stepwise estimators of SVCs converge to the
PVC regardless of whether the simplifying assumption holds. However, we also
prove that the PVC may not minimize the Kullback-Leibler divergence from the
true copula and thus may not be the best approximation in the space of SVCs.
This result is rather surprising, because it implies that it may not be optimal
to specify the true copulas in the first tree of a SVC approximation. Moreover,
joint and stepwise estimators of SVCs may not converge to the same probability
limit any more if the simplifying assumption does not hold. Nevertheless, the
PVC is often the best SVC approximation in practice because only a stepwise
estimation is feasible. The PVC is used by Nagler and Czado [27] to construct a
new non-parametric estimator of a multivariate distribution that can outperform
classical non-parametric approaches. Moreover, Kurz and Spanhel [24] apply the
PVC to test the simplifying assumption in high-dimensional vine copulas. All in
all, these facts highlight the practical importance of the PVC for multivariate
dependence modeling.

The rest of this paper is organized as follows. (Simplified) vine copulas, the
simplifying assumption, conditional and partial copulas, are discussed in Sec-
tion 2. The PVC and j-th order partial copulas are introduced in Section 3.
Properties of the PVC and examples are presented in Section 4. In Section 5
we analyze the role of the PVC for SVC approximations and explain why the
PVC is the best feasible approximation in practical applications. A parametric
estimator for the PVC is presented in Section 6 and implications for the step-
wise and joint maximum likelihood estimator of SVCs are illustrated. Section 7
contains some concluding remarks.
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2. Simplified vine copulas, conditional and partial copulas

This section introduces vine copulas, the simplifying assumption and related
concepts. First, notation and assumptions are stated. Then, we discuss (simpli-
fied) vine copulas and the simplifying assumption. Thereafter, we introduce the
partial copula which can be considered as a generalization of the partial corre-
lation coefficient and as an approximation of a bivariate conditional copula.

2.1. Notation and assumptions

The following notation and assumptions are used throughout the paper. We
write X1.q := (X1,...,X4q), so that Fx, ,(x1.4) :=PVi = 1,...,d: X; < ;).
Let dz1.q := day ... dzg denote the variables of integration in [ fx, ,(21:q)d21:q.
C+ refers to the independence copula. X L Y means that X and Y are stochas-
tically independent. For 1 < k < d, the partial derivative of g w.r.t. the k-th
argument is denoted by Org(x1.q). We write L4y = 1if A is true, and ;43 =0
otherwise. For simplicity, we assume that all random variables are real-valued
and continuous. Let d > 3, if not otherwise specified, and C; be the space of
absolutely continuous d-dimensional copulas with positive density (a.e.). The
distribution function of a random vector U;.q with uniform margins is denoted
by Fi.q = C1.q € Cq. We set I := {(i,j): j=1,...,d—1,i=1,...,d — j} and
Si;i=i+1:i4+5j—1:=i+1,...,i4+j— 1. We focus on D-vine copulas, but
all results carry over to regular vine copulas (Bedford and Cooke [4], Kurowicka
and Joe [23]). An overview of the used notation can be found in Table 1. All
proofs are deferred to the Appendix.

2.2. Vine copulas and the simplifying assumption

Definition 2.1. (Simplified D-vine copula or pair-copula construction
— Joe [16], Aas et al. [2])

. . d . . . .

For (i,7) € Z¢, let ovigs, € C2 with density ¢i{; g . For j =1 and i =
N svC . sSvC sSvVC — — 4 4 >

L...,d—j, weset C77¢; o = C7J¢) and upjg = uy for k = i,i+ j. For

(i,7) € I¢, define
svc ., __ sSvVC ) _ sSvC SvVC SvVC
Uj1s,,; = ils,; (uilus,;) = 02 i,i+j71;S7_,],1(ui|Si,j,17ui+j71|Si’j,1)7
sSvVC R SVC ) . _ $VC . . SVC SVC

UitjlS:; = Fi+j|5ij (u“r] |usij) =0 i+1,i475; Sit1,5-1 (ul+1|5i+1,j71 ’ u1+]|si+1,j—1).

Then
SVC _ SVC SvVC sSvC
C1:d (u1:a) = H Ci i+j; 84 (uiIS”’ui—&-j\S”)

(i,4)€Zf

is the density of a d-dimensional simplified D-vine copula C7Y°. We denote the
space of d-dimensional simplified D-vine copulas by C3¥¢.
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TABLE 1
Notation for simplified D-vine copulas. Uy.q has standard uniform margins, d > 3,

(i,5) €T¢, k=1,i+ j.

Notation Explanation

Fy.q or Cp.q | cdf and copula of Uj.4

Cq space of d-dimensional copulas with positive density
csve space of d-dimensional simplified D-vine copulas with positive density
I{l If ={(,j):j=1,...,d—1,9=1,...,d — j}, the conditioned set of a
D-vine copula density
Sij Siji=i1+1:i4+j5—1:=4+1,...,94 7 — 1, the conditioning set of an
edge in a D-vine
Ukls,; Fs,; Uk |Us,; ), conditional probability integral transform (CPIT) of Uy
w.r.t. US”.
Ci,itj; Si; bivariate conditional copula of Fi:i+j|sij , le.,

Ci’i+j;sii - FUiISij Uitjls;1Us;

ZSij i arbitrary bivariate (unconditional) copula that is used to model
Ciiti; Sy
CzP,i+j;Sij partial copula of Cy ;1 j;s,;, i-e., CzP,i+j;Sij = FUi\S,ij Uigjis,,
E;/fj?sij (j — 1)-th order partial copula of C; ;4 j:s,;
U}:l‘g.?j Fa‘éicj (Uk|Us;;), (5 —2)-th order partial probability integral transform
(PPIT) of Uy w.rt. Us,,
cryve Partial vine copula (PVC) of C1.q4, if d = 3, then

%% (ur:3) = cr2(u1, uz) cas(uz, u3) 139 (uy )2, uz|2)

Simplified (regular) vine copulas can be considered as an ordered sequence
of trees, where j refers to the number of the tree and a bivariate unconditional
copula iﬁj;sﬁ is assigned to each of the d — j edges of tree j (Bedford and
Cooke [4]). The left hand side of Figure 1 shows the graphical representation of

a simplified D-vine copula for d = 4, i.e.,

it (una) =137 (ur, ug) ey (ug, ug)czy” (us, ua)
first tree
X ciaa(uly gy )Coua(ua)s » uas ) X Cliaa(Ul)ais, Uijas) -
second tree third tree

. . svo .
The bivariate unconditional copulas C7} $iis,, are also called pair-copulas, so

that the resulting model is often termed a pair-copula construction. By means
of SVC models one can construct a wide variety of flexible multivariate copulas
because each of the d(d —1)/2 bivariate unconditional copulas C7}¢; g, = can be
chosen arbitrarily. The resulting model is always a valid d-dimensional copula.
Moreover, a pair-copula construction does not suffer from the curse of dimen-
sions because it is build upon a sequence of bivariate unconditional copulas. As
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oy o5y c5y¢ C12 Cas Caq

Tree 1 Tree 1

I I
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C?S’% C;}’(a‘ C13;2 Caq;3
Tree 2 Tree 2
I
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I
CT4;33 014‘;23
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(a) Simplified D-vine copula. (b) D-vine copula.

Fia 1. (Simplified) D-vine copula representation if d = 4. The influence of conditioning
variables on the conditional copulas is indicated by dashed lines.

a result, SVCs are very attractive for high-dimensional applications. Obviously,
not every multivariate copula can be represented by a SVC. However, every
copula can be represented by the following (non-simplified) D-vine copula.

Definition 2.2. (D-vine copula — Kurowicka and Cooke [22])
Let Ui.q be a random vector with cdf Fi.q = C1.q € Cq. For j = 1 and 7 =

L...,d—j,weset Cjiyj.s,; = Ciit1 and uys,, = uy for k =1d,i+j. For (i, j) €
74, let C; i1 j;s,, denote the conditional copula of Fjiyj|s,; (Definition 2.5) and
let ugs,, = Fus,, (ur|us,;) for k = i,i + j. The density of a D-vine copula

decomposes the copula density of U4 into d(d — 1)/2 bivariate conditional
copula densities ¢; ;1. s,; according to the following factorization:

Cl:d(u1:d): H Ci,i+j;Si,-(Ui|Sij,Ui+j\s,ij\usij)-
(4,4)€Ld

Contrary to a simplified D-vine copula in Definition 2.1, a bivariate condi-
tional copula Cj ;4 j.s,;, which is a function of j + 1 variables, is assigned to
each edge of a D-vine copula in Definition 2.2. The influence of the conditioning
variables on the conditional copulas is illustrated by dashed lines in the right
hand side of Figure 1. In applications, the simplifying assumption is typically
imposed. That is, it is assumed that all bivariate conditional copulas of the data
generating vine copula degenerate to bivariate unconditional copulas.

Definition 2.3. (The simplifying assumption — Hobak Haff, Aas and
Frigessi [14])

The D-vine copula in Definition 2.2 satisfies the simplifying assumption if
Cisitj:Si,; (> -Jus,,) does not depend on ug,; for all (i,j)€Z3.

If the data generating copula satisfies the simplifying assumption it can be
represented by a SVC, resulting in fast and simple statistical inference. Several
methods for the consistent specification and estimation of pair-copula construc-
tions have been developed under this assumption (Hoback Haff [13], Dimann
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et al. [6]). However, in view of Definition 2.2 and Definition 2.1 it is evident that
it is extremely unlikely that the data generating vine copula strictly satisfies the
simplifying assumption in practical applications.

Several questions arise if the data generating process does not satisfy the
simplifying assumption and a simplified D-vine copula model (Definition 2.1) is
used to approximate a general D-vine copula (Definition 2.2). First of all, what
bivariate unconditional copulas CFV{. S should be chosen in Definition 2.1 to
model the bivariate conditional copulas Cj ;4 j;s,, in Definition 2.2 so that the
best approximation w.r.t. a certain criterion is obtained? If the simplifying as-
sumption does not hold for the data generating vine copula, what is the SVC
model that established stepwise procedures (asymptotically) specify and esti-
mate? What are the properties of an optimal approximation? Before we address
these questions in Section 5, it is useful to recall the definition of the condi-
tional and partial copula in Section 2.3 and introduce the partial vine copula in
Section 3 and Section 4.

2.3. Conditional and partial copulas

Definition 2.4. (Conditional probability integral transform (CPIT))
Let Up.g ~ F1.q € Cg, (1,7) € Z¢ and k = 4,i+j. We call Ukls,, = Fr|s,; (UklUs,;)
the conditional probability integral transform of Uy w.r.t. Us,;.

It can be readily verified that, under the assumptions in Definition 2.4,
Ugls,;, ~ U(0,1) and Uys,, L Us,;- Thus, applying the random transforma-
tion Fys,;(1|Us,;) to Uy removes possible dependencies between Uy and Usg,; .
The CPIT Uys,; can be interpreted as the remaining variation in Uy that can
not be explained by Ug,,. This interpretation is crucial for understanding the
conditional and partial copula which are related to the (conditional) joint dis-
tribution of CPITs. The conditional copula has been introduced by Patton [30]
and we restate its definition here.!

Definition 2.5. (Bivariate conditional copula — Patton [30])
Let Up.g ~ Fi.q € Cq and (i,§) € Z¢. The (a.e.) unique conditional copula
Ci,i+j;s,;; of the conditional distribution F; ;, ;s is defined by

Ci,iJrj;Sij (CL, b|uSij) = IP>([]1|S” < a, Ui+j|S71j < b|USij = uSij)
-1 —1
= L4,i+41S;, (Fi|S¢j (alusij )’ Fi.g_j\sij (b|usij)‘usij )
Equivalently, we have that

Fiivjis,, (Wi uirjlus,;) = Ciitjs,; (Fis,; (wilus,; ), Figs,,; (Wit jlus,; ) |us,;)-

1Patton’s notation for the conditional copula is given by C’iyiJrj‘Si]. . Originally, this notation
has also been used in the vine copula literature [2, 23, 3]. However, the current notation for
a(n) (un)conditional copula that is assigned to an edge of a vine is given by Ciitj;s;; and
C’iyiJrj‘Si]. is used to denote Fy;, [18, 37, 21]. In order to avoid possible confusions,

i+5lUs,;
o it sve i
we use C'L,Z+J§Sij to denote a conditional copula and Ci,H—j;S,-j to denote an unconditional

copula.



Simplified vine copula models 1261

Thus, the effect of a change in ug,;, on the conditional distribution function
Fiivjis,; (Wi, uitjlus,;) can be separated into two effects. First, the values of the
CPITs, (Fys,, (uilus,;), Fiyjis,, (it j|us,;)), at which the conditional copula is
evaluated, may change. Second, the functional form of the conditional copula
Ciivj:s,, (- -lus,,) may vary. In comparison to the conditional copula, which is
the conditional distribution of two CPITs, the partial copula is the unconditional
distribution and copula of two CPITs.

Definition 2.6. (Bivariate partial copula - Bergsma [5])
Let Up.q ~ Fi.q € Cq and (i,7) € I¢. The partial copula Cﬁiﬂ;sﬁ of the
distribution F; ;, j|g,, is defined by '

CiF:iJrj;Sij (a,0) :=P(Uys,; < a,Uiyjis,; <b).

Since Uys,; L Us,; and U;,js,, L Us,;, the partial copula represents the
distribution of random variables which are individually independent of the con-
ditioning vector Ug,,. This is similar to the partial correlation coefficient, which
is the correlation of two random variables from which the linear influence of the
conditioning vector has been removed. The partial copula can also be interpreted
as the expected conditional copula,

CiF:i-&-j;Sij (a’7 b) = /[0 1 Ci,i-i—j;sij (a7 b|u5ij)dFSij (usij )7

and be considered as an approximation of the conditional copula. Indeed, it is
easy to show that the partial copula C7; +5; 8, minimizes the Kullback-Leibler
divergence from the conditional copula C; ;4. s,; in the space of absolutely con-
tinuous bivariate distribution functions. The partial copula is first mentioned
by Bergsma [5] who applies the partial copula to test for conditional indepen-
dence. Recently, there has been a renewed interest in the partial copula. Spanhel
and Kurz [35] investigate properties of the partial copula and mention some ex-
plicit examples whereas Gijbels, Omelka and Veraverbeke [9, 10] and Portier
and Segers [31] focus on the non-parametric estimation of the partial copula.

3. Higher-order partial copulas and the partial vine copula

A generalization of the partial correlation coefficient that is different from the
partial copula is given by a higher-order partial copula. To illustrate this rela-
tion, let us recall the common definition of the partial correlation coefficient.
Assume that all univariate margins of Y7.q have zero mean and finite variance.
For k =i,i 4 j, let P(Y3|Ys,;) denote the best linear predictor of Y3 w.r.t Yg,,
which minimizes the mean squared error so that €~k| s, = Yi — P(Yi|Ys,,) is
the corresponding prediction error. The partial correlation coefficient of Y; and
Yiy; given Yg,, is then defined by p; iy j5,, = (Corr[ff“ Sij0 5i+j| s,,;]- An equivalent
definition is given as follows. For i =1,...,d — 2, let

Eilix1 =Y = P(YilYiy1), and o1 = Yiga — P(Yipa|Yip1). (3.1
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Moreover, for j =3,...,d—1,and i =1,...,d — j, define

gi\su = gilsi,j—l - P(gilsi,j—l |€i+j_1‘5'i,j71)7

(3.2)
6i+j‘5ij = gi+j|5'i+1.j—1 - P(€i+jlsi+1,j—1 |€i+1lsi+1,j71)'

It is easy to show that &g, = gklsij for all k = 4,4 + j and (i,j) € Z¢.

That is, &s,; is the error of the best linear prediction of Yy in terms of Y, .

Thus, p;itj.s,;, = Corr[&‘gij,&ﬂ‘sij]. However, the interpretation of the par-

tial correlation coefficient as a measure of conditional dependence is different

depending on whether one considers it as the correlation of (&; Si;0 Citj| Sij) or
(&is,;» €itjls,; ) For instance, p1a03 = Corr[51|23,54|23] can be interpreted as
the correlation between Y; and Y, after each variable has been corrected for the
linear influence of Y33, i.e., Corr[g(ékpg), h(Y5.3)] = 0 for all linear functions g
and h. The idea of the partial copula is to replace the prediction errors &|o3
and &yjp3 by the CPITS Uj|p3 and Uyjp3 which are independent of Y.3. On the
other side, p14;23 = Corr [81|23,54|23] is the correlation of (£1)2,&y)3) after £y)o
has been corrected for the linear influence of &35, and €43 has been corrected
for the linear influence of &;3. Consequently, a different generalization of the
partial correlation coefficient emerges if we do not only decorrelate the involved
random variables in (3.1) and (3.2) but render them independent by replacing
each expression of the form X —P(X|Z) in (3.1) and (3.2) by the corresponding
CPIT Fx|z(X|Z). The joint distribution of a resulting pair of random variables
is given by the j-th order partial copula. The set of these copulas together with
a vine structure constitute the partial vine copula.

Definition 3.1. (Partial vine copula (PVC) and j-th order partial cop-

ulas)
Consider the D-vine copula Cp.q € C4 stated in Definition 2.2. In the first
tree, we set for i = 1,...,d — 1: C7}'Y; = Cj;41, while in the second tree,
we denote for i = 1,...,d — 2, k = 4,0 +2: C7V ;1 = Cfia,4q and
Uiish = Usjig1 = Fyi41(Uk|Uiz1). In the remaining trees j = 3,...,d — 1,
fori=1,...,d— j, we define
Uis;, = Fijs;, (UilUs,,)

—— a CPVC UPVC PVC (3'3)

— 02 i,i+j71;Si,J,1( Z—‘Si,]‘717 i+j71‘$’i,j71)’

.— §,CFTVE ( PVC Urve ) (3'4)

T ULV i S, -1 Y1 S 10 Y45 Sig1,5-1 70

and
PVC P PVC PVC
i,i+j;sij (CL, b) Ca P(U|S” S a, 7,'+j‘$’ij é b)

K2

We call the resulting SVC CTY° the partial vine copula (PVC) of Ci.q. Its density
is given by

PVC R PVC PVC PVC
crg (Ua) i= H ci,i-l—j;Sij(ui\Sij7ui+j\Sij)7

(i,§)€Tf
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where uil"sij, k =1,i+ jis given by F,f“gf] (defined in (3.3), (3.4)) evaluated at
(ur,us,;). For k =i,i+ j, we call U,jl‘:qu the (j — 2)-th order partial probability
integral transform (PPIT) of Uy w.r.t. Us,; and C77¥¥, g = the (j — 1)-th order
partial copula of Fj ;js,. that is induced by CTy°.

Note that the first-order partial copula coincides with the partial copula
of a conditional distribution with one conditioning variable. If j > 3, we call

cy ;’fj s, & higher-order partial copula. It is easy to show that, for all (i,7) € T4,

L) .
UzP\:/%CJ is the CPIT of Uil:l’gij—l w.r.t. U;:jc—usi,j,l and Ui‘i’flsij is the CPIT of
Ufl]ﬁsi+l,j—1 w.r.t. Ui‘i’f‘SHl’jil. Thus, PPITs are uniformly distributed and
higher-order partial copulas are indeed copulas. Since Z"‘gi is the CPIT of
f‘gfj_l w.r.t. fl;—l\sl,,_l’ it is independent of Uf_:f_llsi)j_l. However, in gen-

eral it is not true that UZ‘TEC7 1 Us,, as the following lemma clarifies.
Lemma 3.1. (Relation between PPITs and CPITs)
For (i,7) € I¢ and k = i,i + j, it holds:

PVC pvc  @.S.
Ukis,; L Usyy < Ugjs,, = Uklsy;-

Note that (Uj¢, UiYfs,) 4 (Uiisi;» Uitjis,;) if and only if CFYE; o =
it Sy Consequently, if a higher-order partial copula does not coincide with
the partial copula, it describes the distribution of a pair of uniformly distributed
random variables which are neither jointly nor both individually independent
of the conditioning variables of the corresponding conditional copula. If the
simplifying assumption holds, then Ci.q = CTY°, i.e., higher-order partial cop-
ulas, partial copulas and conditional copulas coincide. This insight is used by
Kurz and Spanhel [24] to develop tests for the simplifying assumption in high-
dimensional vine copulas.
Let k = 4,7 + j, and GEI"EU (telts,,) = (Flf|vsfj)_l(tk|t5u) denote the inverse
of Fyig (‘|ts,;) w.r.t. the first argument. The (j — 1)-th order partial copula is
then given by

Ciity s, () = P(Ujs) < a,Ujg, <b)

=E[PUSY < a,URYSs,, <blUs,)]

= /[0 i Oi7i+j§sij (Filsij( f\\g’z (a|t51j)|t51j)v
Jo

Fi—i—lei,J (GfJ\r/]C|S” (b|tsz‘j ) |tsij)

tSij>dFSij (tsij )

If j > 3, Cﬁ;’fj;sij depends on Fys, , Fiyjs,; s Ciitj;si;, and Fg,, ie., it de-
pends on Cj.;4;. Moreover, C{ ;’fj; Ss; also depends on Gf“gcj and Gf}r’]@l iy which
are determined by the regular vine structure. Thus, the corresponding PVCs of
different regular vines may be different. In particular, if the simplifying assump-

tion does not hold, higher-order partial copulas of different PVCs which refer

ij?
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to the same conditional distribution may not be identical. This is different from
the partial correlation coefficient or the partial copula which do not depend on
the structure of the regular vine.

In general, higher-order partial copulas do not share the simple interpretation
of the partial copula because they can not be considered as expected conditional
copulas. However, higher-order partial copulas can be more attractive from a
practical point of view. The estimation of the partial copula of Cj ;4 j, 5, requires
the estimation of the two j-dimensional conditional cdfs Fyg,, and Fj s, to
construct pseudo-observations from the CPITs (Ujs,,,Uitjis,,;). As a result,
a non-parametric estimation of the partial copula is only sensible if j is very
small. In contrast, a higher-order partial copula is the distribution of two PPITs
( ;"gi, M Su) which are made up of only two-dimensional functions (Defini-
tion 3.1). Thus, the non-parametric estimation of a higher-order partial copula
does not suffer from the curse of dimensionality and is also sensible for large j
[27]. But also in a parametric framework the specification of the model is much
easier for PPITs than for CPITs. This renders higher-order partial copulas very
attractive from a modeling point of view. As we show in Section 6, the PVC is
also the probability limit of many estimators of pair-copula constructions and
thus of great practical importance.

4. Properties of the partial vine copula and examples

In this section, we analyze to what extent the PVC describes the dependence
structure of the data generating copula if the simplifying assumption does not
hold. We first investigate whether the bivariate margins of C}Y° match the
bivariate margins of C.4 and then take a closer look at conditional independence
relations. By construction, the bivariate margins C;}¢; of the PVC given in
Definition 3.1 are identical to the corresponding margins C; ;41, fori =1,...,d—
1. That is because the PVC explicitly specifies these d—1 margins in the first tree
of the vine. The other bivariate margins C}’ ;’fj, where (i,5) € Z¢, are implicitly
specified and given by

Cf:yfg (ui7 UiJrj) = /[0 -t iP:;/JSj;Si]- (FzTA\S’/E (ui |uSij )7 Fi?/jc (uiJrj |uSij ))dcgl\gc (uSz‘j )
j—

The relation between the implicitly given bivariate margins of the PVC and the
underlying copula are summarized in the following lemma.

Lemma 4.1. (Implicitly specified margins of the PVC)
Let C1.q € C4\C3*°, (4,7) € Ig, and g and pg denote Kendall’s T and Spear-

PVC

man’s p of the copula E € Cq. In general, it does not hold that C7[{; =
Ciits POLYE, = PCusrsr 07 TORYE, = TC0iss-
The next example provides a three-dimensional PVC and illustrates the re-

sults of Lemma 4.1. Other examples of PVCs in three dimensions are given in
Spanhel and Kurz [35].
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Example 4.1.
Let CFEMz2(0) denote the bivariate FGM copula

CFGA/[Z(ul,’LLQ;e) = U1U2[1 + 9(1 - ul)(l — Ug)], ‘9| é ].,

C*4(v) denote the following asymmetric version of the FGM copula ([28], Ex-
ample 3.16)

CA(ur,ug;y) = urug[l +yur (1 —up)(1 —ug)], |y <1, (4.1)

and C* denote the independence copula C+ (u1, ug) = ugug. Assume that Cio =
CA(7), Cag = C*, Ci3.9(+, 5 ug) = CFEM2(. -1 — 2uy) for all ug, so that

Ci3(urg) = / CFOM2(9,C4 (uy, ta), uz; 1 — 2to)dts.
0

Elementary computations show that the implicit margin is given by
Cha(u, ug) = uyugly(us — 3uf + 2uf)(1 — us) + 3]/3,

which is a copula with quartic sections in u; and square sections in ug if v # 0.
The corresponding PVC is

Uz
Cr(ua) = [ CRS(Fua(unlta). Fya(ualta))de
0

CPVC_t

13;2: U3/ 8QCA(U1, tg)dtg
0

and the implicit margin of CT%° is

C’fg’c(ul,ug) = Ci\éc(’u,h 17U3) = Uuirus.

Moreover, pc,, = —7v/1080, 7¢,, = —7/135, but perye = 7orve = 0.

Higher-order partial copulas can also be used to construct new measures of
conditional dependence. For instance, if Xi.4 is a random vector with copula
Ci.q € Cq, higher-order partial Spearman’s p and Kendall’s 7 of X; and X;;
given Xg, are defined by

TaPve =4 Ve o (a,0)dCHYE. o (a,b) — 1
Ci,i+j;sij /[0,1]2 z,z-‘r],Sij( ) ) z,H—],S’”( ’ ) ’

PCPVC =12 /[0 o Z'F:;/fj;sij (a,b)daddb — 3.

i,i4355 S5

Note that all dependence measures that are derived from a higher-order par-
tial copula are defined w.r.t. a regular vine structure. They coincide with their
conditional analogues if the simplifying assumption holds. A partial correla-
tion coefficient of zero is commonly interpreted as an indication of conditional
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independence, although this can be quite misleading if the underlying distribu-
tion is not close to a Normal distribution (Spanhel and Kurz [35]). Therefore,
one might wonder to what extent higher-order partial copulas can be used to
check for conditional independencies. If C77V. Si; equals the independence cop-
ula, we say that X; and X, ; are (j-th order) partially independent given Xg,,

PVC

and write X; 1 X, ;X s;;- The following theorem establishes that there is in
general no relation between conditional independence and higher-order partial
independence.

Theorem 4.1. (Conditional independence and j-th order partial inde-
pendence)
Letd >4, (i,5) € I¢, and Cy.q4 € Cq\C3"¢ be the copula of X1.q4. It holds that

PVC

Xi L Xipo| Xi1 = X L Xipo| Xiga,
PVC
Vj Z 3: Xl 1 XiJrj‘XSi]. 7£> X,L 1L Xi+j‘XSij7
and

PVC
VJ Z 2: Xz 1 Xi+j‘XSi_7' # Xz 1 Xi+j‘XSij‘

The next five-dimensional example illustrates higher-order partial copulas,
PPITs, and the relation between partial independence and conditional indepen-
dence.

Example 4.2.
Consider the following exchangeable D-vine copula C1.5 which does not satisfy
the simplifying assumption:

Tree 1: Cia = Cog = O3y = Cys = C*, (4.2)
Tree 2:  Chs.2(a,blc) = Cag3(a, blc) = Css.4(a, blc)

= CFOM2(q b; 1 —2¢), V(a,b,c) € [0,1]3, (4.3)
Tree 3: Cia;2:3 = Cos,34 = c+,
Tree 4: Cis;2:4 = c,

where Cj 45, = C* means that C; ;1j.s,, (a,blus,,) = ab for all (a,b,us,,) €
[0, 1+

The left panel of Figure 2 illustrates the D-vine copula of the data gener-
ating process. All conditional copulas of the vine copula in Example 4.2 corre-
spond to the independence copula except for the second tree. For all i = 1,2, 3,
(Ui, Uiy1,Uir2) ~ CFEMs(1) where CFEM3() is the three-dimensional FGM
copula with 6 = 1.2 We now investigate the PVC of C}.5 which is illustrated in
the right panel of Figure 2. Since Cy.5 and C7(° are exchangeable copulas, we

only report the PPITs Uﬂ‘éc, flg% and U1P|\2/31 in the following lemma.

2 The three-dimensional FGM copula is defined as CFGMs(yq.3;60) = H?Zl u; +
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4; 23 25; 34,
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(a) Vine copula in Example 4.2. (b) PVC of Example 4.2.

Fic 2. The non-simplified D-vine copula given in Example 4.2 and its PVC. The influence
of conditioning variables on the conditional copulas is indicated by dashed lines.

Lemma 4.2. (The PVC of Example 4.2)
Let C1.5 be defined as in Example 4.2. Then

Tree 1: C1y¢ = 035 = 05/ = O3 = C+,

Tree 2: C’fg‘,“z = 5{% = g’gi =C*t,

Tree 3:  C1)5.3(a,b) = C355.4(a,b) = CFEM2(g,b:1/9), V(a,b) € [0,1]%,
Tree 4: Cls94 # ct,

and

Uﬁ‘éc =U1 = Uy,
Uflsis = Ur # Unja.g = Uh[L+ (1 = Un)(1 = 2U2) (1 — 2U3)),
12ea = U1[1 +0(1 = Ur)(1 = 2U4)] # Uyja.a = Uy

Lemma 4.2 demonstrates that j-th order partial copulas may not be inde-
pendence copulas, although the corresponding conditional copulas are indepen-
dence copulas. In particular, under the data generating process the edges of the
third tree of (.5 are independence copulas. Neglecting the conditional copulas
in the second tree and replacing them with first-order partial copulas induces
spurious dependencies in the third tree of CT.X°. The introduced spurious depen-
dence also carries over to the fourth tree where we have (conditional) indepen-
dence in fact. Nevertheless, the PVC reproduces the bivariate margins of Cy.5
pretty well. It can be readily verified that (C}y°,C1y¢, C5YC, C5YC,CLY°) =
(C13,C14, Cay, Co5,Cs55), i.e., except for CTY°, all bivariate margins of C{Y¥°
match the bivariate margins of C.5 in Example 4.2. Moreover, the mutual in-
formation in the third and fourth tree are larger if higher-order partial copulas
are used instead of the true conditional copulas. Thus, the spurious dependence
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in the third and fourth tree decreases the Kullback-Leibler divergence from C.5
and therefore acts as a countermeasure for the spurious (conditional) indepen-
dence in the second tree. Lemma 4.2 also reveals that Uyjs.4 is a function of
U, and Us, i.e. the true conditional distribution function Fyjs.4 depends on us
and wug. In contrast, F lpl‘z’i, the resulting model for F' 5.4 which is implied by the
PVC, depends only on uy. That is, the implied conditional distribution function
of the PVC depends on the conditioning variable which actually has no effect.

5. Approximations based on the partial vine copula

The specification and estimation of SVCs is commonly based on procedures that
asymptotically minimize the Kullback-Leibler divergence (KLD) in a stepwise
fashion. For instance, if a parametric vine copula model is used, the step-by-
step ML estimator (Hobaek Haff [12, 13]) is often employed in order to select
and estimate the parametric pair-copula families of the vine. In this case, one
estimates tree after tree and sequentially minimizes the estimated KLD condi-
tional on the estimates from the previous trees. But also the non-parametric
methods of Kauermann and Schellhase [20] and Nagler and Czado [27] proceed
in a stepwise manner and asymptotically minimize the KLD of each pair-copula
separately under appropriate conditions. In this section, we investigate the role
of the PVC when it comes to approximating non-simplified vine copulas.

5.1. Tree-by-tree KLD minimization

Let Cyi.q4 € Cq and CTYP € C5VC. The KLD of C7YF° from the true copula Ci.4 is
given by

Dx1(Cral|C5Y6) = E [1Og M}

svc(U1 d)

where the expectation is taken w.r.t. the true distribution C.4. We now decom-
pose the KLD into the Kullback-Leibler divergences related to each of the d — 1
trees. For this purpose, let j =1,...,d — 1 and define

Ty i= { (O35 5, izt O s, € Cafor 1< i <d—j},
so that Ty.; = xilek represents all possible SVCs up to and including the

j-th tree. Let 7; € T, 71.j—1 € T1.;5_1. The KLD of the SVC associated with
Ti.q—1 is given by

d—1
Drcr(Craal| Tia—1 :ZD Ti(Ti:j-1)), (5.1)
Jj=1
where

Cz ,i41 Uza Uz+1)

Dg)[,(lTl(,TlO))) D.(I;L 7—1 ZE svcl(U Uit )
zH-




Simplified vine copula models 1269

denotes the KLD related to the first tree, and for the remaining trees j =
2,...,d—1, the related KLD is

SVC ( sveC USVC )

d—j
DY) (T (T 1) =S E o Cv:,i+j;sij(Ui\smUi+j|s”|Us7¢j)
KL g

i=1 sz—i—], U1|SU’ i+j|Sij

For instance, if d = 3, the KLD can be decomposed into the KLD related to the
first tree DE)L and to the second tree D?L as follows

Dgr(Crs||Ti2) = Drr(Crsl|(T1, T2)) = (7'1) + D (7—2(73))

c12(U1:2)ca3(Ua:3) C13; 2(32012([]1 2), 01Ca3(Ua:3)|Us)

=E |log
C%C(Ulzz)cggc(%::s) 535 (02C55° (Un:2), 1 C55° (Ua:3)) |

log

|+

Note that the KLD related to tree j depends on the specified copulas in the
lower trees because they determine at which values the copulas in tree j are
evaluated. The following theorem shows that, if one sequentially minimizes the
KLD related to each tree, then the optimal SVC is the PVC.

Theorem 5.1. (Tree-by-tree KLD minimization using the PVC)

Let C1.q € C4 be the data generating copula and T”VC = ( Z’;/_‘ij S”)Z—fl d—js

so that T} := ><J 1T.5Y¢ collects all copulas of the PVC up to and including
the j-th tree. It holds that

Vj=1,...,d—1: argmin DY) (T;(T{:k¢,)) = T, (5.2)
T;€T;

According to Theorem 5.1, if the true copulas are specified in the first tree,
one should choose the first-order partial copulas in the second tree. Moreover,
the second-order partial copulas should then be specified in the third tree and
so on to minimize the KLD tree-by-tree. Theorem 5.1 also remains true if we
replace Cy in the definition of T; by the space of absolutely continuous bivariate
cdfs. The PVC ensures that random variables in higher trees are uniformly
distributed since the resulting random variables in higher trees are PPITs. If
one uses a different approximation, such as the one used by Hobak Haff, Aas
and Frigessi [14] and Stober, Joe and Czado [37], then the random variables
in higher trees are not necessarily uniformly distributed and pseudo-copulas
(Fermanian and Wegkamp [7]) can be used to further minimize the KLD.

5.2. Global KLD minimization

The previous sequential minimization neglects that the KLD related to a tree
depends on the copulas that are specified in the former trees. For instance,

if d = 3, the KLD of the first tree DE)L(’E) is minimized over the copulas

(C15°,C55°) in the first tree T7. However, the effect of the chosen copulas in the

first tree 71 on the KLD related to the second tree Dg)L (72(771)) is not taken into
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account. Therefore, we now analyze whether the PVC also globally minimizes
the KLD. Note that specifying the wrong margins in the first tree 71, e.g.,
(C33°,C55°) # (Cia,Ca3), increases Dgi(ﬂ) in any case. Thus, without any
further investigation, it is absolutely indeterminate whether the definite increase
in D?L(’Tl) can be overcompensated by a possible decrease in D&?L (T2(Th)) if
another approximation is chosen. The next theorem shows that the PVC is in
general not the global minimizer of the KLD.

Theorem 5.2. (Global KLD minimization if Cy.q € C5V° or Ci.q €
Ca\C3"7)
If Cr.qa € C3¥°, i.e., the simplifying assumption holds for Ci.q, then

argmin Dgr(Ch.4||CF) = CTY. (5.3)

SVC 2 oSVO
Criq €Cq

If the simplifying assumption does not hold for Ci.q4, then CT might not be a
global minimum. That is, 3C1.q € C4\C5"° such that

argmin Dy (Crd||CTl7) # CL.f s (5.4)

csveecsve
and ¥(Tz, ..., Ta—1) € x{3 Ty,

argmin DKL(Cldei-l:dfl) 7é (7-1PVCa7-27"'77—d*1)' (55)

Ti:a—1€T1.0-1

Theorem 5.2 states that, if the simplifying assumption does not hold, the
KLD may not be minimized by choosing the true copulas in the first tree, first-
order partial copulas in the second tree and higher-order partial copulas in the
remaining trees (see (5.4)). It follows that, if the objective is the minimization
of the KLD, it may not be optimal to specify the true copulas in the first tree,
no matter what bivariate copulas are specified in the other trees (see (5.5)).
This rather puzzling result can be explained by the fact that, if the simplifying
assumption does not hold, then the approximation error of the implicitly mod-
eled bivariate margins is not minimized (see Lemma 4.1). For instance, if d = 3,
a departure from the true copulas (C12, C23) in the first tree increases the KLD
related to the first tree, but it can decrease the KLD of the implicitly modeled

. . . 1
margin C73° from C}3. As a result, the increase in D%)L can be overcompensated

by a larger decrease in D%:, so that the KLD can be decreased.

Theorem 5.2 does not imply that the PVC never minimizes the KLD from
the true copula. For instance, if d = 3 and if C}3'§ = C*, then Dy 1, (Ch.3||CTY)
is an extremum, which directly follows from equation (5.2) since

argmin Dgr,(Ch.3||(T1, (CL))) = argmian)L(Tl).
TL€T, TLET,

It is an open problem whether and when the PVC can be the global minimizer
of the KLD. Unfortunately, the SVC approximation that globally minimizes the
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KLD is not tractable. However, if the SVC approximation that minimizes the
KLD does not specify the true copulas in the first tree, the random variables
in higher trees are not CPITs. Thus, it is not guaranteed that these random
variables are uniformly distributed and we could further decrease the KLD by
assigning pseudo-copulas (Fermanian and Wegkamp [7]) to the edges in the
higher trees. It can be easily shown that the resulting best approximation is
then a pseudo-copula. Consequently, the best approximation satisfying the sim-
plifying assumption is in general not a SVC but a simplified vine pseudo-copula
if one considers the space of regular vines where each edge corresponds to a
bivariate cdf.

While the PVC may not be the best approximation in the space of SVCs, it
is often the best feasible SVC approximation in practical applications. That is
because the stepwise specification and estimation of a SVC is feasible for (very)
large dimensions which is not true for a joint specification and estimation. For
instance, assume all pair-copula families of a parametric vine copula are chosen
simultaneously and the selection is done by means of information criteria. In this
case, we have to estimate K *4=1)/2 different models, where d is the dimension
and K the number of possible pair-copula families that can be assigned to
each edge. On the contrary, a stepwise procedure only requires the estimation
of Kd(d—1)/2 models. To illustrate the computational burden, consider the R-
package VineCopula [34] where K = 40. For this number of pair-copula families,
a joint specification requires the estimation of 64,000 (d = 3) or more than four
billion (d = 4) models whereas only 120 (d = 3) or 240 (d = 4) models are needed
for a stepwise specification. For many non-parametric estimation approaches
(kernels [27], empirical distributions [15]), only the sequential estimation of a
SVC is possible. The only exception is the spline-based approach of Kauermann
and Schellhase [20]. However, due to the large number of parameters and the
resulting computational burden, a joint estimation is only feasible for d < 5 [19].

6. Convergence to the partial vine copula

If the data generating process satisfies the simplifying assumption, consistent
stepwise procedures for the specification and estimation of parametric and non-
parametric SVC models asymptotically minimize the KLLD from the true copula.
Theorem 5.1 implies that this is not true in general if the data generating process
does not satisfy the simplifying assumption. An implication of this result for the
application of SVCs is pointed out in the next corollary.

6.1. Step-by-step and joint ML estimates: Theory

Corollary 6.1.

Denote the sample size by N. Let Cy.q € Cq be the data generating copula and
Tve9) € C5¥°, 0 € ©, be a parametric SVC so that 310pvc € © 1 C7Y (0pve) =

CTYe. The pseudo-true parameters which minimize the KLD from the true dis-

tribution are assumed to exist (see White [39] for sufficient conditions) and
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denoted by

0* = argmin Dy (C1.4||CLY7(6)).
9co

Let és denote the (semi-parametric) step-by-step ML estimator and éJ denote
the (semi-parametric) joint ML estimator defined in Hobak Haff [12, 13]. Un-
der reqularity conditions (e.g., Condition 1 and Condition 2 in [36]) and for
N — 00, it holds that:

(i) 65 5 grve,
(i) 67 % o*.
(iii) 3C1.q € C4\C5YC such that 65 2 6*.

Corollary 6.1 shows that the step-by-step and joint ML estimator may not
converge to the same limit (in probability) if the simplifying assumption does
not hold for the data generating vine copula. For this reason, we investigate in
the following the difference between the step-by-step and joint ML estimator
in finite samples. Note that the convergence of kernel-density estimators to the
PVC has recently been established by Nagler and Czado [27]. However, in this
case, only a sequential estimation of a SVC is possible and thus the best feasible
approximation in the space of SVCs is given by the PVC.

6.2. Step-by-step and joint ML estimates: Stmulation study

We compare the step-by-step and the joint ML estimator under the assumption
that the pair-copula families of the PVC are specified for the parametric vine
copula model. For this purpose, we simulate data from two three-dimensional
copulas (.3 with sample sizes N = 500, 2500, 25000, perform a step-by-step
and joint ML estimation, and repeat this 1000 times. For ease of exposition
and because the qualitative results are not different, we consider copulas where
C12 = Cy3 and only present the estimates for (612, 013.2).

Example 6.1. (PVC of the Frank copula)

Let CT7(6) denote the bivariate Frank copula with dependence parameter 6 and
CP-F*(9) be the partial Frank copula [35] with dependence parameter 6. Let C.3
be the true copula with (Ci2, Ca3, C13.2) = (C¥(5.74), C¥*(5.74), CF-Fr(5.74)),
i.e., 01:3 = Ci\éc, and Cls\gc(g) = (CFr(012)7 C’Fr(023), CP_Fr(elg;Q)) be the para-
metric SVC that is fitted to data generated from Ch.3.

Example 6.1 presents a data generating process which satisfies the simpli-
fying assumption, implying 8°V° = 6*. It is the PVC of the three-dimensional
Frank copula with Kendall’s 7 approximately equal to 0.5. Figure 3 shows the
corresponding box plots of joint and step-by-step ML estimates and their differ-
ence. The left panel confirms the results of Hobaek Haff [12, 13]. Although the
joint ML estimator is more efficient, the loss in efficiency for the step-by-step
ML estimator is negligible and both estimators converge to the true parameter
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F1G 3. Boz plots of joint (J) and sequential (S) ML estimates and their difference for sample
sizes N = 500, 2500, 25000, if the data is generated from C1.3 in Example 6.1 and the pair-
copula families of the SVC are given by the corresponding PVC. The dotted line indicates
the pseudo-true parameter and zero, respectively. The end of the whiskers is 0.953 times the
inter-quartile range, corresponding to approzimately 95% coverage if the data is generated by
a normal distribution.

value. Moreover, the right panel of Figure 3 shows that the difference between
joint and step-by-step ML estimates is never statistically significant at a 5%
level. Since the computational time for a step-by-step ML estimation is much
lower than for a joint ML estimation [12], the step-by-step ML estimator is very
attractive for estimating high-dimensional vine copulas that satisfy the simpli-
fying assumption. Moreover, the step-by-step ML estimator is then inherently
suited for selecting the pair-copula families in a stepwise manner. However, if
the simplifying assumption does not hold for the data generating vine copula,
the step-by-step and joint ML estimator can converge to different limits (Corol-
lary 6.1), as the next example demonstrates.

Example 6.2. (Frank copula)

Let C1.3 be the Frank copula with dependence parameter § = 5.74, i.e., Cy.3 #
Pve, and CSYE(0) = (O™ (012), CF(623), CTF¥(013.2)) be the parametric SVC

that is fitted to data generated from C'.3.

Example 6.2 is identical to Example 6.1, with the only difference that the
conditional copula is varying in such a way that the resulting three-dimensional
copula is a Frank copula. Although the Frank copula does not satisfy the simpli-
fying assumption, it is pretty close to a copula for which the simplifying assump-
tion holds, because the variation in the conditional copula is strongly limited
for many Archimedean copulas (Mesfioui and Quessy [26]). Nevertheless, the



1274 F. Spanhel and M. S. Kurz

; f CAU ‘ - 7 i o, - 0%,
| t:' %r ? - ! ﬁ{ o

6.5

55

N f -0.2
5

J:500 S:

00 J: 2500 S: 2500 J: 25000 S:25000 2500 25000

(0y2.0%32) Oy — 0

: - : : 06F ,
18 1 i
04t
16 + + 4
1 M 1 o2f
N I i
= —1
o i % 1 T *
ok I ! % 1 02f
61 == % 4 04f
A T -+ -+ 1
L L 0.6
+ +
ok 1 ! . . . L i . .
J: 500 S:500  J:2500  $:2500  J:25000  S:25000 500 2500 25000

F1G 4. Boz plots of joint (J) and sequential (S) ML estimates and their difference for sample
sizes N = 500, 2500, 25000, if the data is generated from C1.3 in Example 6.2 and the pair-
copula families of the SVC are given by the corresponding PVC. The dotted line indicates
the pseudo-true parameter and zero, respectively. The end of the whiskers is 0.953 times the
inter-quartile range, corresponding to approzimately 95% coverage if the data is generated by
a normal distribution.

right panel of Figure 4 shows that the step-by-step and joint ML estimates for
012 are significantly different at the 5% level if the sample size is 2500 observa-
tions. The difference between step-by-step and joint ML estimates for 63,2 is
less pronounced, but also highly significant for sample sizes with 2500 observa-
tions or more. In Example 6.2 the step-by-step ML estimator is not a consistent
estimator of the SVC model that minimizes the KLD from the underlying cop-
ula. In contrast, the joint ML estimator is still a consistent minimizer. A third
example where the distance between the data generating copula and the PVC
and thus the difference between the step-by-step and joint ML estimates is more
pronounced is given in Appendix A.9.

7. Conclusion

We introduced the partial vine copula (PVC) which is a particular simplified
vine copula (SVC) that coincides with the data generating copula if the sim-
plifying assumption holds. The PVC can be regarded as a generalization of the
partial correlation matrix where partial correlations are replaced by j-th order
partial copulas. While a higher-order partial copula of the PVC is related to
the partial copula, it does not suffer from the curse of dimensionality and can
be estimated for high-dimensional data [27]. We analyzed to what extent the
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dependence structure of the underlying distribution is reproduced by the PVC.
In particular, we showed that a pair of random variables may be considered as
conditionally (in)dependent according to the PVC although this is not the case
for the data generating process.

We also revealed the importance of the PVC for the modeling of high-
dimensional distributions by means of SVCs. Up to now, the estimation of vine
copulas has almost always been based on the assumption that the data generat-
ing process satisfies the simplifying assumption. Moreover, the implications that
follow if the simplifying assumption is not true have not been investigated. We
showed that the PVC is the SVC approximation that minimizes the Kullback-
Leibler divergence in a stepwise fashion. Since almost all estimators of SVCs
proceed sequentially, it follows that many estimators of SVCs converge to the
PVC regardless of whether the simplifying assumption holds. However, we also
proved that the PVC may not minimize the Kullback-Leibler divergence from
the true copula and thus may not be the best SVC approximation in theory.
Nevertheless, due to the prohibitive computational burden or simply because
only a stepwise model specification and estimation is possible, the PVC is often
the best feasible SVC approximation in practice.

The analysis in this paper showed the relative optimality of the PVC when
it comes to approximating multivariate copulas by SVCs. Obviously, it is easy
to construct (theoretical) examples where the PVC does not provide a good
approximation in absolute terms. But such examples do not provide any in-
formation about the appropriateness of the simplifying assumption in practice.
To investigate whether the PVC is a good approximation in applications, one
can use Lemma 3.1 to develop tests for the simplifying assumption, see Kurz
and Spanhel [24]. Moreover, even in cases where the simplifying assumption is
strongly violated, an estimator of the PVC can yield an approximation that is
superior to competing approaches. Recently, it has been demonstrated in Nagler
and Czado [27] that the PVC can be used to obtain a constrained kernel-density
estimator that outperforms unconstrained kernel-density estimators.

Appendix
A.1. Proof of Lemma 3.1

pvc @S PVC ; ;
Uns,, = Ukls,, = Uijs,, L Us,; is true because Uyg,; is a CPIT. For the
converse, let A := x;;z;ll [0, ug] and consider

]P( ,frgfj < a, USij < US’ij) :/ FMS”.((F]fl\éfj)_l(a‘tsij)|t5ij)d05ij (tsij).
A
(A1)
Since ]S“gfj ~ U(0,1) it follows that if IS\Y?(; 1 Us,; then P( ]S“gfj <a,Us,; <
ugs,;) = aCs,, (ug,,) for all (a,ugs,,;) € [0,1)7. This implies that

P(Ug\\é?] < a, USij < usij) = Aadcsij (tSij)
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equals the right hand side of (A.1) for all (a,ug,,) € [0,1]7. It follows that the
integrands must be identical (a.e.) as well and Fjs,; ((F,fl‘éc ) Halts,,)Its,,) = a
for all a € [0,1] and almost every tg,, € [0,1]77!. Thus Fg,, = Fkl‘éc (a.e.).
Since the CPIT Uys,; = Fis,,; (Uk|Us,,) and the PPIT E“gc = k‘s ° (Uk|Us,;)
are defined as (a.e.) identical transformations of the random variables (Uy, Us, )

it follows that U,z’l‘gc 1 Ukls,,-

A.2. Proof of Lemma 4.1

Let Ct.5 € C5V° be the SVC given in Example 4.1. We define C.4 as follows.
Let Cljd_l;g;d_g = CTQ,CQ,d;?,;d_l = (%3, CLd;Q:d_l = D’f73;2, where Di3;2 is
the corresponding conditional copula in Example 4.1 and C; i1j.s,, = Ex1 €
Ca, (k1) € I{ means that C;iyj;s,,(a,blus,,) = Ej(a,b) for all (a,b,us,;) €
[0, 1)7+1. Moreover, let C; 4,5, = C* for (4, ) € TH\{(1,d—2), (2,d—2), (1,d—
1)}. The conclusion now follows from Example 4.1.

A.3. Proof of Theorem 4.1

W.lo.g. assume that the margins of Xi.q are uniform. Let CF¢Ms (u1.3;0) =
H3 LU+ GH _1ui(l —u;),|0] < 1, be the three-dimensional FGM copula,
d >4, and (i,j) € Z{. It is obvious that Ciivoit1=Ct= 2l = =Ctis
true. Let J € {2,...,d — 2} be fixed. Assume that C1.4 has the following D-vine
copula representation of the non-simplified form

Cravgiog = 03CT M (uy uyy g u9;1)
Cootaisiap1 = 05CTM3 (ug ugy 5 ug 4 ;1)
and Cjiyj;5,, = C* for all other (i,j) € Z{. Using the same arguments as in
the proof of Lemma 4.2 we obtain
1 .
f;/sz—o—lJ 1 =C, =12
FGM.
C1,2+J;2;J+1 =C 2(1/9)-
This proves that C; ;19,141 = C* < CFY5,.,;,; = C* is not true in general and

; H —_ (L PVC —_ (L
that, for j > 3, neither the statement Cj 4 j;5, = C~ = (775 g = C— nor
the statement Cj 4,5, = C+ < i Sy = C+ is true in general.

A.4. Proof of Lemma 4.2

We show a more general result and set

CFGM2 (

Ci,i+2;i+1(ui»ui+2|ui+1) = Uz‘,Ui+2;g(Ui+1))
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in (4.3) where g: [0,1] — [—1,1] is a non-constant measurable function such
that

Yu € [0.5,1]: g(0.5 +u) = —g(0.5 — u). (A.2)
For i = 1,2, 3, the copula in the second tree of the PVC is given by

Ciitaiv1(a,0) = P(Usip1 < a, Uiggpiyr < b)

= / Ciit2;it+1(a, bluiyr)duig
[0,1]

A.2)

Lt =)= [ guadin) < (A3)

[0,1]

which is the independence copula. For ¢ = 1,2,k = 7,7+ 3, the true CPIT of Uy,
w.r.t. U;jp1.442 is a function of U;41.;42 because

Uilitr:iv2 = Uill + g(Uiy1)(1 — Us)(1 = 2U;42)], (A.4)
Uitsligriite = Uigs[l + g(Uiz2)(1 = Uig3) (1 — 2Ui41)]. (A.5)

However, for i = 1,2,k = 7,i+3, the PPIT of U, w.r.t. U;t1.;42 is not a function
of U;41.i42 because

pvec — Pve . . . = L. . .
k142 Fi\i+1:i+2(Ul|Ul+1il+2) = FU¢|,:+1\U1:+2|,:+1(Uz|z+1|Uz+2|z+1)
_ PVC (A.3) (4.2)
= 00 Vo iv1Uiiv1, Uig2jiv1) = Ujipr = Ui (A.6)
and, by symmetry,
PVC _
i+3li4+1:442 Ui+3‘ (A-7)

For i = 1,2, the joint distribution of these first-order PPITs is a copula in the
third tree of the PVC which is given by

PVC _ PVC PVC
b3yt it (a: 0) = P( dlitriiv2 < 0 Uilsjipripe < b)

GOLND P(U; < a,Uiss <) = Ciiys(a,b) (A-8)

= /[ - Flivtiiv2(altirrive) Fiysjitriire (0ltir1ire)duip 1o
1
(AAéA'S) ab |:1 + (1 — a)(l — b)/ g(uz_,_l)(l - 2ui+1)dui+1
(0,1]

X/ g(uiy2)(1 — 2Ui+2)dui+2]
[0,1]

= ab[l +0(1 — a)(1 — b)] = CTMz2(g),
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where 0 := 4(f[071] ug(u)du)? > 0, by the properties of g. Thus, a copula in the
third tree of the PVC is a bivariate FGM copula whereas the true conditional
copula is the independence copula.

The CPITs of Uy or Us w.r.t. Us.4 are given by

Uijga = F112.4(Ut|Uzs) = 02C14;2:3(Unj2:3, Usj2:3|Uz:3) = Uij2:3

= Uil +9(U2)(1 = U1)(1 - 2U3)], (A.9)
Usiza = Us[1+ g(Us)(1 — Us)(1 — 2U3)], (A.10)

whereas the corresponding second-order PPITs are given by

Uiy = Fipa(UilUsa) = Fupyerye (UT5GIUT55) """ Fuyjo, (U1U)
= Uy = 02C1u(U1,Us) =" Ui[1+0(1 - Uy)(1 - 2U4)], (A.11)
ENC = Us[1+6(1 — Us)(1 — 205)). (A.12)

For the copula in the fourth tree of the PVC it holds

(A.11),(A.12)

Cls2:a(a,b) = P(Uypi < a, Ugppy < b) P(U1js £ a,Us;2 <b)

:P(Ul 1‘4 (a|U4 Us < 5|2 (blUQ))

= [ ]3F15‘2:4(Ffli(a|u4),Fizl(b|u2)|u2;4)cz:4(u2;4)du2:4
0,1

= [ ]3015;2:4<F1|2:4(F17|41(a‘U4)‘U2;4),F5‘2:4(F57|21(b|u2)|u2:4)|U2:4)
0,1

X €2:4(U2:4)dU2:4

<4§>/ . F1|2:4(F1_‘41(a|u4)|u214)F5|2:4(F5_‘21(b|u2)|u2:4)c2:4(u224)du2:4
0,1
<A.9>=<A.1o>/[0 , Fypps(F " L (alug)us; 3) Fjg.a(F, o2 L (blug) |us.a) C2:4 (124 ) Aty

(A.44A,5)/ . Ff‘i (a|u4)[1 + g(uz)(l F1|4 (a|u4))(1 — QU3)]F5|2 (b‘UQ)
[0,1)

x [1+ g(ua) (1 = Fypg (buz)) (1 — 2ug)][1 + g(uz) (1 — 2us) (1 — 2us)]dusz.

/01]2 1ja (alua) Fyj; (bluz)

L [ (1= 200)du (1~ Fjahen) (1~ Fygd(lu)g(ua)g(u2)
[0.,1]
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+ [ (= 2us)gun)dua(1  Fd(bua))(1 - 202)(1 - 2us)g(u)
[0,1]

+ /[0 1](1 — 2us3)g(us)dus(l — 1‘4 (a|U4))(1 — 2uy) (1 — 2up)g(ug) | dugduy,

where we used that f[o 1}(1 — 2uz)dug = 0, f[o I g(ug)dug(A:'Q)O and f[o 1](1

2u3)2g(us)dus ="0. By setting v := —2 f[o 1 ug(u)du we can write the copula
function as

Y5 ala,h) = /[ it F Ol

1
x[l—i——l

51— Fyjj (alua)) (1 — Fgy (bluz))g(ua)g(us)

+ (1 = Fyy (blua)) (1 — 2u2) (1 — 2u4)g(ua)

#9101~ Fybalun) (0 = 20a)(1 - 2ua)g(u) o
([ i) ([ o)

v ([ 0= 20 0) (O

< ([ - 2ugtu i )

([ (1 ) (Fy alus) — () alus)) )

< ([ - 2umlgtu gl e

1

3 </ g(us) (Fyj 4 (alus) - <Ffi<a|u4>>2>dm)

<( g () — (P Olu) )i

If (U,V) ~ CFEMz2(9), the quantile function is given by (cf. Remillard [32])

1 1+ h(W) — /(1 +hw))2—4h(v)u
Fib = 110 VT FGP e,
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with h(v) := 6(1 — 2v), which implies

0 - = ! =: U, v
g Lo (lv) = VAT h)E— dh(v)u G, v) (A.13)

and

0 (A.14)

!
For the density of the copula in the fourth tree of the PVC it follows

Fyy (ulv)? = ﬁ (14 h(v)Glu, v) —1].

. 2 .
C1gc2 4(a,b) = Da 6bC15},§4(a b)

(A.lgéA.M)(/o G(a,u4)dU4) (/0 G(b,ug)dug>

- /0 la(b,w)m) ( /0 0 2u4)g(u4)G(a,u4)dU4)
- /0 1G(a,u4)du4> ( /0 0 —2u2)g(u2)G(b,u2)du2>

[ — G(a, ua)] du4> ( /0 1

+

+
Wik Q= 22

@

(UQ) - u u
(Uz) [1 G(bv 2)]d 2)

+
>

T~

N

>
> <@
|
<R
NS
|

oL log(a(b))) ( /O o 2u4)g(u4)a(a,u4)du4>

3
2 (1= ostetan) ( [ (1~ 2ua)gu)C, )iz
1
3
(

[, - cto o) ([ 555 0- 60 wan).

where

V( —46i+1—-2i 46
i it for i € {a,b}.
V(1 24+40i+1—2i—

If we set g(u) := 1 — 2u, then9:1/9 and v =1/3, and we get

Y a(a,b) = = H log(s(i)) +27 [ (1 - 84—110g(8(i))>

i=a,b i=a,b

> (1_§1og<s<i>>) l<6j2—6j+1>log<8<ﬂ'>>

(iﬁj)ela,b
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1

1 (CRE VR RICEE SN T

where

V25 —9i+5—9i

V16 +9i+4—9i
PVC

Evaluating the density shows that C75S., is not the independence copula.

s(i) = for i € {a,b} and I, := {(a,b), (b,a)}.

A.5. Proof of Theorem 5.1
The KLD related to tree j, D (T (T1:j—1)), is minimized when the negative

cross entropy related to tree j is maxnmzed The negative cross entropy related
to tree j is given by

U
<.

HO(Tj(Tij-1)) = E[IOgCi\z{ij;Si( Fis;, UilUsy;), Fijis,, (Uit |Us;)

@
Il
-

(.]) SVC SVC SVC
§ :Hz ( ’Ll-‘rj,SlJ’ Z\SU7Fi+j|SU)7
=1

Q..
kv

where for j = 1 we set F,fl‘gc (ur|us,;) = ug, k =1i,i4j. Obviously, to maximize

HO)(T;(T1.j-1)) w.r.t. T; we can maximize each Hfj)(cf,‘{frj;sij,Ff“éi,Fflf‘Su)
individually for all i = 1,...,d — j. If j = 1, then

Ciiv1(Uis Uigr)

HIO (&Y o FC FYS E |lo
( s i) =B |8 e (0, i)

i 4,5+5; S5 +371Si5

which is maximized for C7Y¢; = C; ;41 by Gibbs’ inequality. Thus, if j = 1,
then

argmin DY) (T;(TEy%) = T7Y°. (A.15)
T,€T,

To show that (A.15) holds for j > 2 we use induction. Assume that
argmin D (T5(T5%1)) = T

T;€T;

holds for 1 < j < d—2. To minimize the KLD related to tree j+1 =: n w.r.t. Ty,
conditional on 71.,—1 = T{5YS;, we have to maximize the negative cross entropy
which is maximized if

(n)/ svc PVC PVC
i (CGEns s Fils o Fivnls,.)

= E[log ¢3S s, (FIEC, (UilUs, ), FESSs, (Uil Us, )]
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is maximized for all : = 1,...,d — n. Using the substitutions

w = (K0 )" Htilus, ) = G, (tilus, )
and

Ujtn = ( iTTaSi,n)il(ti+7l|usqz,n) = Gi+nlsi,7; (ti+n|usi,n)’

we obtain
(n)/ svc PVC PVC _ svc
H; (Ci,i+n;si,n,Fi|si_naFi+n|sm) = o log ¢;i4n; s, ., (tistitn)
: 0,1]»

X Cijitn;Sip (Fz'|s,-,n (Gys,., (tilus, ) |us,..);

uSi,n)

CSin (uSi,n )dusi,n di; dtiJr’ﬂ

Fiinisin (Gignis,, (tignlus, ) |us, )

ieiivn a1, (Grjs,, (trlus, ,)us, )
imiisn £, (Gris.n (telus, ) us, )

= /[0 1]2 lOg Ci‘;—inyszn (t17 tl+n)
X (/[ o Ciitn;S; n (F’L‘Sbn (Gils’i,n (ti|usi,n,)|u5i)n),
0,1]n—

Fitnis, . (Gignys,, (tignlus, ,)|us, )

usi,n)

cs, , (us, , )dus, , ) dt;dtin

y Il isn frisin (Gris, (telus, ) |us, )
Hk:i,i+n fl:ﬁ;‘c”L (Gk\sln (tk|usi,n) usi,n)

= /[O W log Czs,\z{jjrn;si,n (t’i7 ti+n)ci\i/§rjn;si,n (ti? ti+n)dtidti+n7

3 3 3 3 SVC — PVC — PVC 3 )
which is maximized for ¢3¢, 5 =~ = ¢i¥ns, . = Cif(j11);8,,,, PY Gibbs

inequality.

A.6. Proof of Theorem 5.2

Equation (5.3) is obvious, since CT¥° is the data generating process. Equation
(5.5) immediately follows from the equations (5.1) and (5.4). Using the same
arguments as in Appendix A.2, the validity of (5.4) for d = 3 implies the validity
of (5.4) for d > 3. However, even for d = 3, the KLD is a triple integral and
does not exhibit an analytical expression if the data generating process is a
non-simplified vine copula. Thus, the hard part is to show that there exists a
data generating copula which does not satisfy the simplifying assumption and
for which the PVC does not minimize the KLD. We prove equation (5.4) for
d = 3 by means of the following example.
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Example A.1.
Let g: [0,1] — [—1,1] be a measurable function. Consider the data generating
process

01:3(U1:3)=/ CFEM2 (yy, uz; 9(2))dz,
0

i.e., the two unconditional bivariate margins (C12, Ca3) are independence copulas
and the conditional copula is a FGM copula with varying parameter g(ug). The
first-order partial copula is also a FGM copula given by

1
C133(ur, us; 0732) = wius[l + 0735(1 —ui) (L —ug)], O35 == / g(uz)dus.
0

We set C53° = Ca3,C135 = O35, and specify a parametric copula C75°(012),
012 € ©15 C R, with conditional cdf Flsl\éC(U1|U2;912) and such that C73°(0)

corresponds to the independence copula. Thus, (C73°(0),C23,C1335) =

(C12,C23,C135). We also assume that c§3°(u1, ug; 012) and Jp,, i3 (u1, ug; 012
are both continuous on (uy, ug,612) € (0,1)? x O1s.

We now derive necessary and sufficient conditions such that
Drr(C13]|CT3(012), Ca3, C133) := D r(Cr||((C3(012), C23), (Ci3.3)))

attains an extremum at 615 = 0.

Lemma A.l. (Extremum of the KLD in Example A.1)
Let Cy.5 be given as in Example A.1. For uy € (0,1), we define

1
h(u1; g) 5:/ 5912F1S|\§C(U1|U2;912) g(uz)dus,
0 12=
1 Lt e (s
Kluns0359) = o [ [ 0 Jomeiyta (P s 1) wss0535) |,
Y 12=

X Clzg(ulzg)d’LLQ dU3.

Then, Yu; € (0,0.5): K(0.5 + u;0759) > 0 < 035 > 0, and
D1 (C13]|C{3°(012), Ca3, Ci3%) has an extremum at 012 = 0 if and only if

9y, D (Cr:3]|C1%(012), Cas, Cr35)

0.5
= K (0.5 + u1;0735)[M(0.5 4+ u1; 9) — h(0.5 — u; 9)]duy = 0. (A.16)
0

Proof. See Appendix A.7. O

012=0

It depends on the data generating process whether the condition in Lem-
ma A.1 is satisfied and Dgr(C1:3]|CF5°(0), C23, C135) is an extremum or not

as we illustrate in the following. If 6735 = 0, then K(u;;6735) = 0 for all
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uy € (0,1), or if g does not depend on ug, then h(u;;g) = 0 for all u; € (0,1).
Thus, the integrand in (A.16) is zero and we have an extremum if one of these
conditions is true. Assuming 0735 # 0 and that g depends on us, we see from
(A.16) that g and C7y° determine whether we have an extremum at 612 = 0.
Depending on the copula family that is chosen for C75¢, it may be possible that
the copula family alone determines whether D1 (C1.3|[C73°(0), Ca3, CT33) is

an extremum. For instance, if C7y° is a FGM copula we obtain

1
unig) = ur(L =) [ (1~ 2u)g(uz)dus
0
so that
h(0.5 +u1;9) = h(0.5 —uy;g9), Yup € (0,0.5).

This symmetry of h across 0.5 implies that (A.16) is satisfied for all functions
g.

If we do not impose any constraints on the bivariate copulas in the first tree
of the SVC approximation, then D, (C1.3/|C73(0), Ca3, Ci3'5) may not even
be a local minimizer of the KLD. For instance, if C{3 is the asymmetric FGM

copula given in (4.1), we find that
1
h(uisg) = ui(1 - U1)/ (1 = 2uz)g(uz)dus.
0

If A= fol(l — 2ug)g(uz)dus # 0, e.g., g is a non-negative function which is
increasing, say g(us) = ug, then, depending on the sign of A, either

h(0.5 +uy;9) > h(0.5 —uy;g), Yup € (0,0.5),
or

h(0.5 +u1;9) < h(0.5 —wu1;9), Yup € (0,0.5),

so that the integrand in (A.16) is either strictly positive or negative and thus
Dk (C1:3]|C12, C23, C13)5) can not be an extremum. Since 05 € [—1,1], it fol-
lows that D1, (C1.3|[C73°(0), C23, C13)5) is not a local minimum. As a result, we
can, relating to the PVC, further decrease the KLLD from the true copula if we
adequately specify “wrong” copulas in the first tree and choose the first-order
partial copula in the second tree of the SVC approximation.

A.7. Proof of Lemma A.1

The KLD attains an extremum if and only if the negative cross entropy attains
an extremum. The negative cross entropy is given by

Hy5(Chsl| 5N (012; 0555)) = Ellog 535 (Ut a3 012, 0535)]
= E[log[c73° (Ur:2; 012) i35 (Fis” (U1|Us; 012), Us; 6735 ]
= E[log ¢{5°(Ur.2; 012)] + Eflog 135 (Fy5° (U1|Uz; 612), Us; 0735 |-
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If the negative cross entropy attains an extremum then the derivative of
E[log CSVC(Ul .35 912)] w.r.t. 012 is zero. Since C?Q/C (’U,l, U, 012) and 39126?2/(: (Ul, U,
612) are both continuous on (u1,uz, 012) € (0,1)% x O, we can apply Leibniz’s
rule for differentiation under the integral sign to conclude that

99, Ellog c53°(Uy.2; 012)] |912:0 = E[dy,, log c75° (Un.2; 912)’912:0] =0

because C73°(0) is the true copula of Uj.o. Thus, the derivative evaluated at
012 = 0 becomes

86‘12 [IOg CSVC(Ul :33 012, {’3 2)]

612=0

= 0p,,E[log i3 (Uy.2; 012)] ,

12=0

+ 99, Ellog e13% (FT5° (U1|Uz; 612), Us; 6135)]

612=0

= 0p,,Ellog ¢35 (Fy)s” (U1|U2; 012), Us; 0135)

612=0

:5612/ Slogcf},’;%( T (wn |uz; 012), us; 0755 ) c1:3 (us.3)dua.3
[

R 6012=0

810?3/'02 (Flsl\éc (ul |7_l,2; 012)? uz; 01";3) svc
= sv PVC 8912F1|2 (u1]ug; 012)
[0,1]3 iy Q(Fm (u1luz; b12), us; 13;2) o

12=0
x c1:3(u1.3)dus:3,
where 01ci¥%(u,v;0735) is the partial derivative w.r.t. u and we have used
Leibniz’s integral rule to perform the differentiation under the integral sign
for the second last equality which is valid since the integrand and its partial
derivative w.r.t. 612 are both continuous in u;.3 and 615 on (0,1)% x (—1,1).
To compute the integral we observe that

O1c5¥% (u, v 0135) = 20735 (1 — 2v),
01c33% (F5Y° (ualuz; 0), us; 0735 ) = —20735 (1 — 2us),
A3y (FRS° (un|uas 612), us; 0735 B —20735 (1 — 2us)

AYS (Fy° (urus; 01), uz; 0135) loo=0 1+ 07355(1 — 2u1)(1 — 2us)’

—20155 (1—2us)
14078 (1—2u1) (1—-2u3)
over, with ¢1.3(u1.3) = 1+ g(u2)(1 — 2uq)(1 — 2us),

Note that m(u1, u3; 073%) =

does not depend on us. More-

1
SVC . PVC
/ a612F1|2 (U1|U2a912a913;2)
0

61:3(U1:3)du2

1
= / 8912F18|\§C(’U,1|UQ; 912) 0 dUQ + (1 — 2u1)(1 — 2’U3)
0

12—

g(ug)dug

12=

1
X/ Doy P15 (un]ua; f12)|
0
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= (1 = 2u1)(1 — 2us)h(u1; g),

where the second equality follows because

1
/ 09,5 115" (urfuz; O12)duy = 3912/ 1o (ulug; 012)dus = Opy,ur = 0.
0
Thus, integrating out us, we obtain

0p,,Ellog c1Y5" (U1:3; 612)]

6012=0

- / s 0735) (1 — 2ur) (1 — 2us) (o g)dusdus
[0,1]2

_ / Fuay, s 0535 (s g)du dus, (A17)
[0,1]2

where f(u1,uz;0735) = m(u1,u3;0735)(1 — 2u; ) (1 — 2uz). We note that Yu, €
(0,0.5), ug € (0,1):

f(O 5+U1,U3,9i¥§) >0& elf"_)\):g > 0,
f(05—u1,u;3,91p§/§) 77f(05+u15 u3191P§/%)

So, if u; € (0,0.5) then
1 1
/ J(0.5 — uy,uz; 0735 )duz = / f(0.5 —uy, 1 — uz; 0735 )dus
0 0
1
_/ FO0.5 4 g, ug; 055 dus.
0

Thus, if we define K(ui;07135) = fol f(ui,u3;0735)dug we have that Vu, €
(0,0.5):

K (0.5 +wu1;0735) > 0 < 0735 >0,
K (0.5 —u1;0735) = —K(0.5 + u1; 0735). (A.18)

Plugging this into our integral (A.17) yields

a912 [IOg CSVC(Ul :33 0127 013 2)]

12=0

//ful,usaaﬂfg) (u1; g)duidus

:/ h(05—u1 g </ f05—U1,U3, 1;’/3)(11@) du1
0

0.5

+ (0.5 +u1;9) (/ £(0.5 4+ uy,us; lfgg)dug) duy
0 0
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0.5
= / h(0.5 — uy; 9) K (0.5 — uy; 0735)duy
0

0.5
+ / h(0.5 + u1;9) K (0.5 + uy; Glfg;g)dul
0

0.5
200 K05 + ug; 132)[1(0.5 + u1;9) — (0.5 — uy; g)]du.
0
Note that if 6735 = 0, then K (u1;60735) = 0 for all u; € (0,1), or if g does not
depend on wug, then h(uy;g) = 0 for all u; € (0,1), so in both cases the integrand
is zero and we have an extremum.

A.8. Proof of Corollary 6.1

Corollary 6.1 (i) and (ii) follow directly from Theorem 1 in Spanhel and Kurz
[36], which states the asymptotic distribution of approximate rank Z-estimators
if the data generating process is not nested in the parametric model family.
Corollary 6.1 (iii) follows then from Theorem 5.2 and Theorem 5.1.

A.9. An example where the difference between 05 and 67 is more
pronounced

Example A.2.
Let CBBL(9,5) denote the BB1 copula with dependence parameter (6,4) and
C5¥ () be the Sarmanov copula with cdf

C(u,v;a) = uw (1 + (3a + 5a° H (1—29)) H (1—1)),

i=u,v i=u,v

for |a| < +/7/5. The partial Sarmanov copula is given by CT-52%(y, v;a,b) =
uv(1+ (3a+ 5b [Tz, (T =2) [[,=, (1 - i)), where |a| < v/7/5 and a? < b <
(V1 —3a% +1)/5. Define S(uz) = (1 + exp(uz))~! and f(uz) =1-—25(10uy —
0.5))+2(1—2u3)S(—5) so that g(us) = 0.1 f+ 1) (1 — f(u2))—0.2. Let C1.3 be
the true copula with (0127 023, 013 2) ( ( ,2) CBB1(2 2) OSar( ( )) and
C5Y°(0,6,a,b) = (CBBL(012, 812), CBBl (023, 023), CT-5%%(a, b)) be the parametric
SVC that is fitted to data generated from C1.3.

Note that g is a sigmoid function, with (g(0),g(1)) = (—0.2,+/7/5), so that
Spearman’s tho of the conditional copula CS(g(us)) varies in the interval
(g(0),g(1)) = (—0.2,/7/5) because pcsa = a. Figure 5 shows that the dif-
ference between step-by-step and joint ML estimates for the two parameters
of the first copula in the first tree is already (individually) significant at the
5% level if the sample size is 500 observations. Thus, the difference between
step-by-step and joint ML estimates can be relevant for moderate sample sizes
if the variation in the conditional copula is strong enough. Once again, the dif-
ference between step-by-step and joint ML estimates is less pronounced for the
parameters of CT3$ but it also becomes highly significant with sufficient sample
size.
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F1c 5. Boz plots of joint (J) and sequential (S) ML estimates and their difference for sample
sizes N = 500, 2500, 25000, if the data is generated from C1.3 in Ezample A.2 and the pair-
copula families of the SVC are given by the corresponding PVC. The dotted line indicates
the pseudo-true parameter and zero, respectively. The end of the whiskers is 0.953 times the
inter-quartile range, corresponding to approzimately 95% coverage if the data is generated by
a normal distribution.
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