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Abstract: This paper studies a two step procedure for monotone increas-
ing additive single index models with Gaussian designs. The proposed pro-
cedure is simple, easy to implement with existing software, and consists of
consecutively applying LASSO and isotonic regression. Aside from formal-
izing this procedure, we provide theoretical guarantees regarding its perfor-
mance: 1) we show that our procedure controls the in-sample squared error;
2) we demonstrate that one can use the procedure for predicting new ob-
servations, by showing that the absolute prediction error can be controlled
with high-probability. Our bounds show a tradeoff of two rates: the mini-
max rate for estimating high dimensional quadratic loss, and the minimax
nonparametric rate for estimating a monotone increasing function.
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1. Introduction

Linear regression modeling and least squares estimation are two closely related
topics with pervasive applications in the field of statistics and beyond. Often
times however, linear models are simply approximations to the true data gener-
ating mechanism. Nonparametric and semiparametric regressions present more
flexible alternatives to the linear model, and have been studied extensively in
the statistics literature in low dimensional regimes [36, 40, 21].

This paper focuses on the high dimensional, sparse, monotone increasing,
additive, semiparametric generalization of the linear regression model:

Y = f(X�β∗) + ε, (1.1)

where the noise ε is independent of the design X. Here, the terms high di-
mensional and sparse, refer to the fact that the vector β∗ ∈ R

p for a large
ambient dimension p, but it is assumed to be sparse, i.e., its effective support
(the set of its non-zero elements) is small; the terms semiparametric and mono-
tone increasing refer to the “link” function f , which is assumed to be unspecified
(unknown) and monotone increasing, while the term additive refers to the fact
that the noise term ε is additive. In addition to assuming that f is increasing, in
this paper we further suppose that f is a Lipschitz function, which is in general
not necessary when studying models of the type (1.1), but it eases the theoreti-
cal analysis in the high dimensional regime. On an important note, model (1.1)
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is not fully identifiable, as multiplying β∗ by a constant and dividing f by the
same constant generates the same outcome; similarly adding and subtracting a
constant from f and ε yields the same outcome. However (1.1) can be easily
identified by assuming that f is increasing∗, fixing any function of β∗ which at-
tains different values when scaling β∗ proportionally, such as any vector norm,
and further assuming that the noise ε has a zero mean†. Notice that the linear
regression model is a special case of the model (1.1) where f is a linear function
with positive slope. Model (1.1) is also known as monotone single index model
(SIM), and is a special case of the general SIM which imposes less restrictions
on the outcome generation. Specifically, the general SIM framework assumes

Y = f(X�β∗, ε). (1.2)

Note that unlike (1.1), (1.2) makes no monotonicity assumptions on f , and the
error term need not be additive.

Assuming a general SIM (1.2) with Gaussian design X, and that the error
term ε is independent of the design X, [32, 38] showed that a constrained
variant of the LASSO [39] can successfully estimate β∗ (up to a scalar), while
[30] showed that LASSO can recover the support of β∗, given that

Cov(Y,X�β∗) �= 0. (1.3)

A nice feature of model (1.1) is that condition (1.3) holds true by default. Indeed,
it is not hard to check that in (1.1) with a non-constant increasing link function
f‡, Gaussian design X ∼ N (0,Σ), and noise ε independent of the design, one
has

Cov(Y,X�β∗) = Cov(f(X�β∗),X�β∗) > 0.§

Therefore, under the above assumptions, given existing results, model (1.1) is
amenable to a LASSO application for obtaining proportional estimates of the
vector β∗.

Isotonic regression is a line of work which is highly relevant to model (1.1)
yet very distinct from the aforementioned LASSO developments. Specifically,
isotonic regression aims to estimate the increasing function f after observing n
samples from the model

Y = f(X) + ε,

where the design X ∈ R is considered fixed, and ε ∼ N (0, σ2) is a Gaussian
noise. The model fitting is done via the following optimization procedure

argmin
f is increasing

1

2n

n∑
i=1

(Yi − f(Xi))
2

∗To fix multiplication by ±1.
†Note that since ε and X are independent this is equivalent to assuming that E[ε|X] = 0.
‡f needs to assume at least two distinct values on sets of non-zero Lebesgue measure.
§The last inequality follows from the Chebyshev’s association inequality [cf. Theorem 2.14

6].
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There has been a multitude of advances on isotonic regression [12, 45, 13, 8, 7, 4],
where the authors showed estimation rates for general increasing, as well as for
piecewise constant f .

This manuscript puts the two ideas above into one procedure to tackle prob-
lems of the type (1.1). Specifically, we study a two step estimator, which starts
with applying LASSO to obtain an initial estimate β of β∗, then “plugs-in”
β in place of β∗ effectively reducing the dimension from p to 1. In the second
step the procedure uses isotonic regression to obtain an estimate of f . Finally,
predicting a new observation is done on the basis of how close this observation
is to a data point along the direction β. A detailed description of the procedure
along with more in-depth motivation can be found in Section 2.

1.1. Contributions

This manuscript contains two main contributions, which are proved under the
assumption that X�

i β∗ ∼ N (0, 1) and that the link function f is increasing
and Lipschitz with Lipschitz constant L. In order to informally summarize our
findings, recall that β denotes the LASSO estimate of the direction β∗, and let
f̂ denote the isotonic regression estimate of f , given a sample of n observations
{(Yi,Xi)}ni=1 of model (1.1). An informal version of our first main finding is
that applying sequentially LASSO and isotonic regression gives the following
bound on the in-sample squared �2 prediction error

1

n

n∑
i=1

(f(X�
i β∗)− f̂(X�

i β))2 ≤ r1 ∨ r2, (1.4)

with high probability. In the above inequality we observe the tradeoff of two
rates r1 and r2 which omitting constants for simplification are

r1 � σ2

[
σ + |f(maxX�

i β)− f(minX�
i β)|

nσ

] 2
3

, r2 � L2s log p

n
.

These two rates have natural interpretations: r1 is the general nonparametric
rate of isotonic regression for increasing functions as shown in [8, 4]; r2 is the
standard estimation rate for LASSO of the �22 norm [5].

Our second main contribution is to derive guarantees for the conditional mean
integrated absolute error (CMIAE), which is a measurement of the prediction
capability of our estimate. The CMIAE is defined as

CMIAE := E
[
|f(X�β∗)− f̂(X�β)|

∣∣X�β ∈ [minX�
i β, maxX�

i β]
]
,

and measures the absolute integrated error of prediction for a new observation
X, conditional on the new observation lying within the data estimated range.
Informally, we can show that up to constant factors with high probability the
CMIAE satisfies:

CMIAE ≤ [r1 ∨ r2]
1
2 .
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In other words, conditional on a new observation falling within the range [minX�
i

β, maxX�
i β], the squared mean absolute integrated error obeys a similar in-

equality to the one in (1.4). The difference between (1.4) and the inequality in
the preceding display is that in (1.4) we evaluate the performance of the estima-
tor only on the dataset, while the CMIAE inequality shows that the estimator
performs well on new observations. This is a non-trivial distinction, both in
practice and in theory.

The major difficulty in showing the above two results stems from the fact
that one uses the data once when estimating β and therefore in the second step
when one applies isotonic regression complicated data dependencies may occur.

1.2. Related work

Estimation for SIMs in the case when p is fixed, has been studied extensively
in the literature [see e.g., 42, 20, 31, 28, among others]. Recently there have
been active developments for high dimensional SIMs. The first work on high
dimensional SIM was [2] where the authors proposed a PAC-Bayesian approach.
[32] and later [38] demonstrated that under condition (1.3) running the least
squares with �1 regularization can obtain a consistent estimate of the direction
of β∗, while [30] showed that this procedure also recovers the signed support
of the direction. Even more recently [16, 43] extended some of those ideas to
cases where the design has a known elliptical and not necessarily Gaussian
distribution, yet non of these works offer estimation of the unknown function
f . It is noteworthy to mention that condition (1.3) which is instrumental in the
aforementioned papers traces roots to the following seminal works [26, 25, 10]
in the area of sufficient dimension reduction.

Some of the recent literature focuses not only on recovering the direction β∗

but also aims at estimating f , which is also what the main goal of the present
paper is. [33], e.g., proposed a nonparametric least squares with an equality
�1 constraint to handle simultaneous estimation of β∗ and f . This procedure
is computationally challenging and in order to establish estimation guarantees,
[33] assumes that f is smooth; the rates obtained by [33] are suboptimal for
monotone links f . Furthermore, these rates do not hold in the “ultra-high”
dimensional setting p � n, while our procedure provably works even in such
extreme situations. [17] considered a smoothed-out U -process type of loss func-
tion with �1 regularization, and proved their approach works for a model class
which encompasses the monotone SIM (1.1). In contrast to [17] however, our
nonparametric procedure requires only one tuning parameter, less computation,
and has better estimation guarantees (albeit within a smaller model class). The
algorithm proposed by [17] was in part inspired by one of the seminal works
studying models with monotone link functions in the low dimensional setting
– [27]. [27] proposed the maximum score estimator of the multinomial choice
model, which is the minimizer to a non-smooth loss function. [27] also estab-
lished the consistency for the maximum score estimator. Later [18, 19] suggested
a smoothed version of [27]’s loss function and showed that the smoothed out
version can have computational and estimation benefits [see 37, for an overview].
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Regularized procedures have also been proposed for specific choices of f and
Y . For example, [44] considered the model Y = f(X�β∗) + ε with a known
continuously differentiable and monotonic f , and developed estimation and in-
ferential procedures based on the �1 regularized quadratic loss. Non of the afore-
mentioned works use isotonic regression to directly address prediction and simul-
taneous estimation of f and β∗ for monotone SIMs. That being said, this is not
the first paper to consider an application of isotonic regression to SIMs. The use
of isotonic regression in SIMs dates back to [29], where the authors proposed
a heuristic approach of applying isotonic regression to SIM estimation. More
recently, [22, 23] formalized the Isotron algorithm, which is a combination of
the perceptron and isotonic regression. The authors gave estimation guarantees
which are suboptimal compared to the ones we provide. [3, 9] give predictions
of monotone SIMs albeit not in the high dimensional sparse setting. A heuris-
tic procedure for variable selection using LASSO, isotonic regression and kernel
regression was given by [14].

In conclusion, even though there has been a flurry of works studying SIMs,
monotone SIMs, and solving SIMs with isotonic regression, to the best of our
knowledge our work is the first to derive estimation and prediction guarantees
for monotone SIMs with Gaussian designs in a high dimensional setting, and
more specifically to study the behavior of isotonic regression after LASSO has
been applied.

1.3. Notation

Throughout the paper we adopt the convenient notation [n] = {1, 2, . . . , n}. For
a vector u=(u1, u2, . . . , un)

�∈R
n, let u↑ denote the vector (u(1), u(2), . . . , u(n))

�

of order statistics: u(1) ≤ u(2) ≤ . . . ≤ u(n).
Given model (1.1), we define the shorthand notation

α2 = E(Y 2), η = Var(Y 2), Υ = E(YX�β∗), θ2 = Var{(Y −ΥX�β∗)2},
γ2 = Var(YX�β∗), ξ2 = E{(Y −ΥX�β∗)2}, (1.5)

under the assumptions that X�β∗ ∼ N (0, 1) and EY 4 < ∞, so that all of the
above quantities are finite and well defined. In addition we assume EY 4 does
not scale with s, n, p asymptotically, which in turn ensures that all of the above
quantities are bounded and do not scale above a constant.

For a sample of n observations {Xi}i∈[n], of Xi ∈ R
p vectors, we define the

n×p matrix X which stacks the vectors X�
i into its rows. We will often use the

sample covariance notation

Σ̂ =
1

n

n∑
i=1

XiX
�
i .

For a symmetric and positive semi-definite matrix Σ, we use Σ
1
2 to denote its

symmetric square root, i.e., if we have the eigendecomposition Σ = UDU�



Isotonic regression meets LASSO 715

then Σ
1
2 = UD

1
2U�. The notations n and p are reserved for sample size and

dimensionality of the signal vector β∗. Throughout the paper we assume that
the vector β∗ is s-sparse, i.e. it has only s non-zero entries. We reserve S to
denote the support of β∗, i.e., the set of all non-zero coefficients of β∗; hence
|S| = |supp(β∗)| = s. Similarly Sc will be used to denote [p] \ S the set of
zero coefficients of β∗. For a vector v ∈ R

p and a set C ⊂ [p] the vector vC

is the C restriction of v, i.e., it contains only the entries of v which belong
to C. Similarly for a matrix M ∈ R

p1×p2 double indexing MC1C2 takes the
entries of M belonging to C1 and C2. For a vector v ∈ R

k and a q ≥ 1 we

use standard notation for the �q norm ‖v‖q =
[∑

i∈[k] v
q
i

]1/q
with the usual

extension ‖v‖∞ = maxi∈[k] vi when q = ∞. For a matrix M we define the
induced norm

‖M‖p→q := sup
‖v‖p=1

‖Mv‖q.

For brevity we let ‖M‖2 = ‖M‖2→2, and let ‖M‖max = maxij |Mij |. We use Id
to denote a d-dimensional identity matrix, where sometimes the index d will be
omitted when the dimension is clear.

We use standard asymptotic notation for sequences. Given two sequences
{an}, {bn} we write an = O(bn) if there exists a constant C such that |an| ≤
C|bn|; an = o(bn) if an/bn → 0, and an � bn if there exists positive constants
c and C such that c < an/bn < C. We also use an � bn and an � bn as a
shorthand for an = O(bn), an, bn > 0 and an = o(bn), an, bn > 0 respectively.

1.4. Organization

The paper is organized as follows. Section 2 formally states our procedure for
monotone SIM prediction and gives initial motivation. Section 3 is dedicated to
studying the in-sample prediction error of our procedure. Section 4 studies the
prediction of our algorithm on a new observation. Finally Section 5 provides
thorough numerical studies confirming the predictions of the main results of
Sections 3 and 4. The majority of the proofs are relegated to the appendices.

2. Background and methodology

Suppose we observe n samples D = {(Yi,Xi)}ni=1 from a monotone SIM (1.1):

Y = f(X�β∗) + ε,

where f is a monotone increasing and L-Lipschitz¶ function, X ∼ N (0,Σ), ε ∼
N (0, σ2) is noise independent of X. For identifiability we assume ‖Σ 1

2β∗‖2 =
1, which implies that X�

i β∗ ∼ N (0, 1). We propose the following two step
estimation procedure:

¶Recall that a function f : R �→ R is L-Lipschitz when for any two values x, y ∈ R we have
|f(x)− f(y)| ≤ L|x− y|.
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• Step I. Let β̂ be the solution to

β̂ := argmin
β∈Rp

1

2n

n∑
i=1

(Yi −X�
i β)2 + λ‖β‖1, (2.1)

for an appropriately chosen λ. Let

β =
β̂

‖Σ̂ 1
2 β̂‖2

denote the final estimator of β∗.
• Step II. Construct π, the permutation π : [n] �→ [n] sorting {X�

i β}ni=1 in
an increasing order, where ties are broken arbitrarily. In other words let
π be such that X�

πi
β ≤ X�

πj
β for all i ≤ j. Fit an isotonic regression

f̂ := argmin
f∈S↑

n

‖Yπi − fi‖2, (2.2)

where S↑
n = {u↑ ∈ R

n|u ∈ R
n}. For a given observation X set x = X�β.

The proposed final estimate of f(X�β∗) is

f̂(x) =

⎧⎨
⎩
f̂ argmin
i:x≥X�

πi
β

(x−X�
πi

β), x ≥ X�
π1
β

f̂1, x < X�
π1
β

or in other words let f̂(x) be the coefficient in the vector f̂ corresponding

to the index argmin
i:x≥X�

πi
β

(x−X�
πi
β) when x ≥ X�

π1
β and f̂1 otherwise.

There are (at least) two ways one can go about implementing the above
procedure. The first way (and the one used to state the algorithm) is to run
both Step I and Step II on the entire dataset D. The second way is to split
the data D in two halves D1 and D2, and run Step I on D1, and Step II on
D2. The compelling reason for running the full data procedure is clear; by using
the full data one takes advantage of the entire dataset when estimating both
β∗ and f . A compelling reason for the second procedure is the fact that the
estimate β would be derived independently from the second half of the data,
thus eliminating any potential “cherry-picking” when estimating f̂ .

Multiple technical challenges arise when deriving guarantees for the full data
procedure. The main issue lies in the fact that the data is used once for esti-
mating β, implying that the permutation π depends on the data. Consequently
the distribution of the error terms {επi}ni=1 becomes complicated. The situation
does not become easier even when one conditions on the random design Xi,
since the estimates {X�

i β}ni=1 depend on the error terms εi. Data splitting is a
simple way to remedy this effect. However, while splitting the data effectively
breaks the dependency of the permutation π on the error terms, it may require
as much as 1.5 the number of samples to achieve the performance of the full
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data procedure. We will illustrate this effect on simulated data in Section 5.
In theory we will argue that both procedures produce estimates satisfying the
same rates, although under slightly different conditions; furthermore the data
splitting procedure is significantly easier to justify compared to the full data
version.

In practice, Step I may benefit from performing a careful data dependent
transformation. Such transformations include for example, scaling and center-

ing the outcome values, i.e., Yi �→ Yi−Y
sd(Y ) (here Y = 1

n

∑
i∈[n] Yi, and sd(Y ) =√

1
n

∑
i∈[n](Yi − Y )2).

Before we formally justify the procedure and show some guarantees, we first
provide general motivation. To see why optimizing (2.1) is useful for estimating
β∗, recall that we assume that ε is independent of X and that X ∼ N (0,Σ)
(the latter is not crucial, as long as X has an elliptical distribution). Using the
closed form solution for the least squares we have

argmin
β∈Rp

E(Y −X�β)2 = Σ− 1
2EΣ− 1

2XY

= Σ− 1
2EX̃f(X̃�β̃∗),

where X̃� = X�Σ− 1
2 and β̃∗ = Σ

1
2β∗. In terms of this notation X̃ ∼ N (0, I).

Hence by the properties of the Gaussian distribution multiplying EX̃f(X̃�β̃∗)

by any vector perpendicular to β̃∗ equals 0. Therefore it follows that EX̃f(X̃�β̃∗)

∝ β̃∗ and hence
argmin
β∈Rp

E(Y −X�β)2 ∝ β∗.

Now, argminβ∈Rp E(Y −X�β)2 �= 0, since supposing the contrary leads to

EX̃�β̃∗f(X̃�β̃∗) = 0,

which cannot hold for monotone non-constant f . Hence the population mini-
mizer of the least squares is proportional to the true direction β∗ which serves
as a motivation to (2.1), where the �1 norm penalty is added to help with the
high dimensionality of β∗. Applying isotonic regression after (2.1) is natural
since we are assuming that f is monotone increasing and (2.1) gives us a plugin
estimate which we can use to reduce the dimensionality from p to 1 as required
in isotonic regression.

In the next section we explore the in-sample prediction error of our procedure.

3. In-sample prediction

The main result outlined in this section shows the usefulness of the procedure
motivated in Section 2, for the class of monotone increasing and Lipschitz link
functions. All results presented in the main text hold when using the entire
dataset for both steps I and II. In the supplement (see Appendix D) we argue
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Fig 1. Three examples of monotone increasing Lipschitz functions with two linear non-smooth
functions.

that if one is willing to split the data some of the assumptions can be relaxed. We
begin by showcasing (see Figure 1) three simple examples of monotone increasing
Lipschitz functions, which we will later on use for simulation purposes.

In order for us to guarantee that the full data procedure is successful we first
ensure that for an appropriately chosen λ the estimate β is sufficiently close to
β∗, and that moreover its support is a subset of the support of β∗. The latter
property of β might appear unnecessary, but it allows us to carefully isolate the
dependency of the error terms επi on β. To ensure that the estimate β, obeys
these properties we will require that the entries of X are not overly correlated.
Below we will use standard assumptions, which are often adopted in the high
dimensional statistics literature.

To this end recall thatΣ is the covariance matrix ofX and let S := supp(β∗).
Partition Σ (with a slight abuse of notation) as
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Σ =

[
ΣSS ΣSSc

ΣScS ΣScSc

]
,

where ΣSS corresponds to the covariance of XS . Define the conditional covari-
ance matrix of XSc |XS

ΣSc|S := ΣScSc −ΣScSΣ
−1
SSΣSSc .

We assume the following conditions

Assumption 3.1 (Weak Covariance). Suppose that for some fixed constants
λmax, λmin, κ,Ω > 0 we have

‖ΣScSΣ
−1
SS‖∞→∞ ≤ (1−κ), λminIs ≤ ΣSS ≤ λmaxIs, ‖ΣSc|S‖max ≤ Ω < ∞.

Furthermore, suppose that λmin, λmax, κ,Ω do not scale with (n, p, s).

Assumption 3.2 (Bounded 4th Moment). Suppose that E(Y 4) < ∞, and
E(Y 4) does not scale with (n, p, s).

The first condition in Assumption 3.1 is a somewhat stringent requirement
on the covariance matrix which controls how much correlation of X is allowed
outside of the true support S. It is used to ensure that the support of the
first step estimate is embedded within the true support of β∗ for large enough
values of λ. Furthermore, it allows us to control the dependency of the error
terms εi on β. This is likely not a necessary condition, but it facilitates our
analysis greatly. The remaining two conditions in Assumption 3.1 are milder
and they require boundedness of the eigenvalues of ΣSS and boundedness of
the diagonal elements of ΣSc|S . While Assumption 3.1 depends on the true
support of β∗, there are matrices which satisfy it universally for any support set
S. For example the identity matrix clearly satisfies Assumption 3.1 for any S.
More generally, so does any Toeplitz matrix whose i, jth element is of the form
ρ|i−j| for 0 < |ρ| < 1. Assumption 3.2 is mild and requires that the outcome has
a bounded 4th moment. The main result of this section, outlined below, shows
that our estimator controls the in-sample prediction error over the observed
sample.

Theorem 3.3. Suppose Assumptions 3.1 and 3.2 hold and that the mono-
tone increasing function f is L-Lipschitz. In addition let s

n ≤ 1
64 , and as-

sume that the effective sample size n
s log p is large enough and the tuning pa-

rameter λ = C
√

log p
n for a sufficiently large constant C > 0. Then for some

constants Ω1,Ω2,Ω3 > 0 the following event happens with probability at least
1−G(n, s, p, f):∑n

i=1[f(X
�
i β∗)− f̂(X�

i β)]2

n
≤ Ω1σ

2

(
σ + |f(X�

πn
β)− f(X�

π1
β)|

nσ

)2/3

+Ω2L
2 s log p

n
+Ω3

s+ σ2 log p

n
, (3.1)

where G(n, s, p, f) → 0 as n → ∞.
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Denote the rate on the right hand side of (3.1) with RF , where F stands for
“full data” procedure.

Remark 3.4. Condition (3.1) can be interpreted as a tradeoff of two distinct

error rates. The first rate σ2(
σ+|f(X�

πn
β)−f(X�

π1
β)|

nσ )2/3 is the minimax rate of

approximating a monotone function [8, 4]. The rate Ω2L
2 s log p

n +Ω3
s+σ2 log p

2n �
s log p

n is the minimax rate (up to log factors)‖ of estimating the parameter of a
high dimensional linear model in �22 norm [5].

Notably the rate in (3.1) depends on the expression f(X�
πn

β)−f(X�
π1
β). In a

case when f is bounded one can upper bound this difference independently of the
values X�

πn
β and X�

π1
β. However, in many cases such as in the linear regression

model, e.g., the boundedness assumption is violated. Under the assumption that
f is L-Lipschitz, we know that

|f(X�
πn

β)− f(X�
π1
β)| ≤ L|X�

πn
β −X�

π1
β|. (3.2)

Since β is close to β∗, one would anticipate that the two quantities X�
π1
β,X�

πn
β

behave like minX�
i β∗ and maxX�

i β∗. However this is not immediately obvi-
ous, due to the complicated dependency of β on the data. Our next result argues
that under Assumptions 3.1 and 3.2 this is indeed the case assuming addition-
ally that s log p

n = O(1). Before we state the result recall that the n × p matrix
X stacks the n vectors X�

i into its rows.

Lemma 3.5. Suppose the assumptions from Theorem 3.3 hold. Then for some
constant C1 we have

‖Xβ − Xβ∗‖∞ ≤ C1

√
s log p

n
(3.3)

with probability at least 1−H(s, n, p, f), where H(s, n, p, f) → 0 as n → ∞.

We now discuss (3.2) in view of Lemma 3.5. Let Z1, . . . , Zn be i.i.d. draws
from a standard normal distribution. Since β∗ is a fixed vector such thatX�

i β∗ ∼
N (0, 1) for all i, we have that [Xβ∗](n) lies in the interval [EZ(n) − t,EZ(n) + t],
while [Xβ∗](1) lies in the interval [EZ(1)− t,EZ(1) + t] (with probability at least

1− 4e−t2/2). For a proof of this fact we refer to [Theorem 5.8 of 6]. In addition,
using extreme value theory it is known that asymptotically EZ(n) ≈

√
2 logn

and EZ(1) ≈ −
√
2 logn [15]. By (3.3), it follows that with high probability (at

least 1− 4e−t2/2 −H(s, n, p, f)) we have

|[Xβ](n) − EZ(n)| ≤ t+ C1

√
s log p

n
,

for some constant C1. Naturally, on the same event a similar high confidence
interval holds for [Xβ](1). Therefore, continuing (3.2) with probability at least

‖The minimax rate is
s log p/s

n
[34], which for most values of s is of the order of s log p

n
.

Here to be precise we say that s log p
n

is the minimax rate up to logarithmic factors.
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1− 4e−t2/2 −H(s, n, p, f) we have

|f(X�
πn

β)− f(X�
π1
β)| ≤ L|X�

πn
β −X�

π1
β| = L|[Xβ](n) − [Xβ](1)|

≤ L

[
EZ(n) − EZ(1) + 2t+ 2C1

√
s log p

n

]

≈ 2L

[
t+

√
2 logn+ C1

√
s log p

n

]
.

The above in conjunction with (3.2) implies that even in the unbounded f case

|f(X�
πn

β) − f(X�
π1
β)| �

√
s log p

n +
√
2 logn �

√
2 logn, where the last holds

since we assume s log p
n = O(1). This discussion leads us to the following corollary

of Theorem 3.3

Corollary 3.6. Suppose the conditions of Theorem 3.3 hold. Then with high
probability for some constants Ωi > 0 for i ∈ [4] we have∑n

i=1[f(X
�
i β∗)− f̂(X�

i β)]2

n
≤ Ω1σ

2

(
σ +Ω4L

√
logn

nσ

)2/3

+Ω2L
2 s log p

n
+Ω3

s+ σ2 log p

n
.

4. Prediction

Inequality (3.1) ensures that the Isotonic LASSO estimate does not behave er-
ratically on the observed data points, by guaranteeing that the average in-sample
squared error is small. On the other hand, (3.1) says nothing about predicting
future observations and in that sense is not completely satisfactory. What can
one say about average case error when predicting a fresh new sample? In clas-
sical nonparametric theory, one would typically analyze the Mean Integrated
Squared Error (MISE) [40]. In this section, we will confine to a slightly weaker,
data dependent criteria which we refer to as the Conditional Mean Integrated
Absolute Error (CMIAE). For a new observation X ∼ N (0,Σ), the CMIAE is
defined conditionally on the observed data D = {(Yi,Xi)}ni=1 as

CMIAE := EX|D
[
|f̂(X�β)− f(X�β∗)|

∣∣X�β ∈ [X�
π1
β,X�

πn
β]
]
.

In the above, the conditional expectation EX|D is taken with respect to the new

observationX conditionally on the dataD, which fixes the quantities f̂ ,β,X�
π1
β

and X�
πn

β. Since X is independent of the dataset this notation is equivalent to
simply taking the expectation with respect to X: EX . However, we will use the
notation EX|D to underscore that this expectation is a function of the dataset D
(hence a random variable with respect to the randomness of the data). Several
remarks regarding the definition of CMIAE are in order.

First, CMIAE measures the integrated absolute error in prediction, condi-
tionally on the new observation’s projection along the estimate β falling within
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the “data range” — [X�
π1
β,X�

πn
β]. Importantly, the data range we use in the

CMIAE is procedure dependent, as it is conditional on the first step estimate
β. Furthermore, the condition X�β ∈ [X�

π1
β,X�

πn
β] excludes “extreme” new

observations X from consideration in order to avoid extrapolation. Given that
β is a good proxy of β∗, intuitively one should be skeptical of the estimate f̂
beyond the observed range [X�

π1
β,X�

πn
β]. If one assumes that f is bounded,

this condition can be traded off for an additional error rate which depends
on ‖f‖∞ and the probability of observing an “extreme” point X such that
X�β �∈ [X�

π1
β,X�

πn
β]. We do not present this result here.

Second, if in analogy to CMIAE, we define the Conditional MISE (CMISE)
as the squared error, by Jensen’s inequality we obtain

CMIAE ≤
[
EX|D

[
(f̂(X�β)− f(X�β∗))2

∣∣X�β ∈ [X�
π1
β,X�

πn
β]
]] 1

2︸ ︷︷ ︸
CMISE

1
2

. (4.1)

The inequality above shows that any bound on CMISE implies a bound on
CMIAE, and therefore CMIAE is a weaker measure of prediction. It turns
out (unsurprisingly) that CMIAE is more amenable to analysis for the isotonic
LASSO algorithm, and we defer to future work the analysis of CMISE.

Below we state and prove the main result on prediction. To this end recall
that RF denotes the right hand side of (3.1).

Theorem 4.1. Let X ∼ N (0,Σ) be a new observation generated independently
from the data. If the assumptions of Theorem 3.3 hold and s log n � √

n, then
with high probability∗∗ we have:

EX|D
[
|f̂(X�β)− f(X�β∗)|

∣∣X�β ∈ [X�
π1
β,X�

πn
β]
]

≤ C

(
f(X�

πn
β)− f(X�

π1
β)√

n
+R

1
2

F

)
, (4.2)

for some absolute constant C.

Before we turn to the proof of this theorem we comment on a related result,
Theorem 6.1 of [3]. Cast into our framework, informally speaking, Theorem 6.1 of

[3] implies that the CMISE
1
2 is of order n− 1

3 log(n)5/3 (see also the remark after
the Theorem) given that p is fixed, the function f is bounded, and an estimate

of β∗, β is available such that ‖β − β∗‖2 = Op(n
− 1

3 ). Even if one assumes
that s and p are both fixed, one cannot derive Theorem 4.1 as a Corollary of
Theorem 6.1 of [3] using (4.1). The reason being that the rate [3] provide has an

extraneous logarithmic factor (Theorem 4.1 gives the sharp rate of order n− 1
3 ),

and the estimate β in Theorem 6.1 of [3] is provided from a sample splitting
procedure. Our proof strategy is fundamentally different to that of Theorem 6.1
of [3], and utilizes the properties of the Gaussian distribution.

Proof of Theorem 4.1. Without loss of generality we will assume that the vector
β is the same as the one generated in Step II’ of the proof of Theorem 3.3. By

∗∗The “high probability” here is measured in terms of the randomness of the dataset D.
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Proposition B.2 this is a high probability event, and hence we can assume it
holds without loss of generality. For brevity let xi := X�

πi
β. Using our shorthand

notation the triangle inequality yields

EX|D
[
|f̂(X�β)− f(X�β∗)|

∣∣X�β ∈ [x1, xn]
]

≤ EX|D
[
|f(X�β∗)− f(X�β)|

∣∣X�β ∈ [x1, xn]
]

(4.3)

+ EX|D
[
|f(X�β)− f̂(X�β)|

∣∣X�β ∈ [x1, xn]
]
. (4.4)

To control the first term (4.3) by the law of total expectation we have:

EX|D
[
|f(X�β∗)− f(X�β)|

∣∣X�β ∈ [x1, xn]
]
≤

EX|D
[
|f(X�β∗)− f(X�β)|

]
PX|D(X�β ∈ [x1, xn])

=: I1,

where PX|D denotes the probability of the new observation X given the dataset
D. For the second term (4.4) we first note that by the law of total expectation

EX|D
[
|f(X�β)− f̂(X�β)|

∣∣X�β ∈ [x1, xn]
]

=

n∑
i=1

PX|D
[
X�β ∈ [xi, xi+1)|X�β ∈ [x1, xn]

]
×

EX|D
[
|f(X�β)− f̂(X�β)|

∣∣X�β ∈ [xi, xi+1)
]

=: I2. (4.5)

We will now handle the terms I1 and I2 individually. We start with I1 which is
simpler. Using the Lipschitz property of f and (B.3) we have with high proba-
bility (the probability is measured with respect to the randomness in D) that

PX|D(X
�β ∈ [x1, xn])I1 ≤ L

[
EX|D

[
(X�β∗ −X�β)2

]] 1
2 ≤ C2L

√
s log p

n
.

Put c = [β
�
Σβ]

1
2 = ‖Σ 1

2β‖2 for brevity. Note that conditionally on the data D,
X�β|D ∼ N (0, c2), since X is independent of the data and β is fixed given D.
Therefore PX|D(X

�β ∈ [x1, xn)) = Φ(xn

c ) − Φ(x1

c ). By (B.3) and the triangle

inequality we know that |c − 1| ≤ C2

√
s log p

n . Thus using Lemma 3.5 and the

arguments after its statement, we have the following lower bound

PX|D(X
�β ∈ [x1, xn]) = Φ

(xn

c

)
− Φ

(x1

c

)

≥ Φ

(Z(n) − C1

√
s log p

n

c

)
− Φ

(Z(1) + C1

√
s log p

n

c

)
≥ 1

2
,

for sufficiently large n and n
s log p , where Z(1) and Z(n) are order statistics of n

standard normal samples, Φ is the cdf of a standard normal distribution. We
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conclude that with high probability (measured in terms of the randomness of
the dataset D)

I1 ≤ 2C2L

√
s log p

n
.

Next we tackle the term I2. By the definition of f̂ , when x ∈ [xi, xi+1) we

have f̂(x) = f̂(xi). Thus

EX|D
[
|f(X�β)− f̂(X�β)|

∣∣X�β ∈ [xi, xi+1)
]

≤ |f(xi)− f̂(xi)| ∨ |f(xi+1)− f̂(xi)|
≤ |f(xi)− f̂(xi)|+ |f(xi+1)− f(xi)|
= |f(xi)− f̂(xi)|+ f(xi+1)− f(xi),

where the first and last identities hold since f is monotone increasing. Therefore
by (4.5)

PX|D
[
X�β ∈ [x1, xn]

]
I2

≤
n−1∑
i=1

|f(xi)− f̂(xi)|PX|D
[
X�β ∈ [xi, xi+1)

]

+

n−1∑
i=1

(f(xi+1)− f(xi))PX|D
[
X�β ∈ [xi, xi+1)

]
=: I21 + I22.

We handle those two terms in part below, starting with I21. Recall that

c = [β
�
Σβ]

1
2 = ‖Σ 1

2β‖2. We have conditionally on D that X�β|D ∼ N (0, c2),
since X is independent of the data and β is fixed given D. Define xi =

xi

c , so

that PX|D
[
X�β ∈ [xi, xi+1)

]
= Φ(xi+1)−Φ(xi). By Cauchy-Schwartz and the

triangle inequality we have:

I21[
n
∑n

i=1(Φ(xi+1)− Φ(xi))2
] 1

2

≤
[
n−1

n∑
i=1

(f(xi)− f̂(xi))
2
] 1

2

≤
[
n−1

n∑
i=1

(f(X�
πi
β∗)− f̂(xi))

2
] 1

2+
[
n−1

n∑
i=1

(f(xi)− f(X�
πi
β∗))2

] 1
2

≤ R
1
2

F + L[n−1
n∑

i=1

(X�
i (β − β∗))2]

1
2 .

For I22 we have

I22 ≤ (f(xn)− f(x1))max
i

[Φ(xi+1)− Φ(xi)]

≤ f(xn)− f(x1)√
n

[
n

n∑
i=1

(Φ(xi+1)− Φ(xi))
2
] 1

2 .

Next we need the following result
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Proposition 4.2. With probability at least 1− 2e−n/2 − (1 + cn)se−
√
n:

[
n

n∑
i=1

(Φ(xi+1)− Φ(xi))
2
] 1

2 ≤
√
12 +

√
1/π, (4.6)

where c is some absolute constant.

Since we assume s log(n) � √
n, the above probability converges to 1 asymp-

totically. Using (B.2) of Proposition B.1 on an event of high probability we
have

PX|D
[
X�β ∈ [x1, xn]

]
I2 ≤ C

(
f(xn)− f(x1)√

n
+R

1
2

F + LC1

√
s log p

n

)

≤ C̃

(
f(xn)− f(x1)√

n
+R

1
2

F

)
.

Combining this with our result on I1, the fact that PX|D
[
X�β ∈ [x1, xn]

]
≥ 1

2

with high probability, and adjusting the constant C̃ completes the proof.

Remark 4.3. Aside from the conditions required by Theorem 3.3, Theorem 4.1
requires additionally that s log n � √

n. This means that the sparsity of β∗ has to
be significantly smaller than the square root of the sample size. This condition is
likely an artifact of our proof technique. The bottleneck is Proposition 4.2 which
requires s log n � √

n in order for the term on the left hand side of (4.6) to be
bounded. Similar result holds for the data splitting procedure, without the need
to require s log n � √

n. For details we refer the reader to Appendix D.

5. Numerical experiments

In this section we show numerical studies with the three increasing Lipschitz
link functions which we showcased in Figure 1. First, in order for the reader to
appreciate the results visually we attach examples using n = 1000 samples, p =
2000 dimensions, s = 20 non-zero equal coefficients in the signal β∗, noise ε ∼
N (0,1)

5 and X ∼ N (0, I). To enforce stability and robustness in the estimation
Step I, i.e., the LASSO step, we scale and center the outcome values before
running LASSO. The LASSO is ran via the glmnet package, and we use 10-
fold cross validation to select the tuning parameter by minimizing the Mean
Squared Error (MSE). Isotonic regression is ran using the isoreg function of

the stats package. In Figure 2 we show the estimator f̂ in red. The x-axis
consists of estimated values X�

i β, while the y-axis are the true values Yi. The
dashed purple line connects the points {(X�

i β, f(X�
i β∗))}i∈[n]. The collection

of blue points is the set {(X�
i β, Yi)}i∈[n]. We see that in all three instances the

red curve follows closely the purple dashed curve, giving visual evidence that
the isotonic regression after LASSO works well to estimate the link function f
on the dataset.
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Fig 2. Three typical examples of the full data LASSO isotonic procedure on the mono-
tone increasing Lipschitz functions from Figure 1. The points shown on this figure are
{(X�

i β, Yi)}i∈[n], i.e., their y-axis is the true Yi value and their x-axis is the estimated

value X�
i β (not the actual value X�

i β∗). The red curve is the isotonic regression fit; it

contains the points {(X�
i β, f̂(X�

i β))}i∈[n]; the purple dashed curve connects the points

{(X�
i β, f(X�

i β∗))}i∈[n].

Next we provide numerical evidence which directly corroborates with the
theoretical findings of Sections 3 and 4. Our setup is the following. For each of
the three link functions of Figure 1, we set the sample size n = 500, and vary
freely the dimension p and the sparsity s in the sets {100, 200, 500, 1000} and
{5, 10, 15, 20, 25, 30, 40} respectively. This results in a range of possible values
for the adjusted sample size n

s log p . The error term, as in the previous example,

is set to ε ∼ N (0,1)
5 . We consider three possibilities for the design X ∼ N (0,Σρ)
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where ρ = 0, 0.2 and 0.5. The covariance matrix is given by Σρ,ij = ρ|i−j| (where
we understand 00 = 1). In all occasions the signal vector β∗ is initially selected

with equal positive entries, and is properly normalized so that ‖Σ
1
2
ρ β∗‖2 = 1.

As before the LASSO step is ran using scaled and centered outcome values; the
tuning parameter λ is selected via 10-fold cross validation of the MSE.

To evaluate the accuracy of the algorithm, we calculated both the square
root in-sample prediction error (the square root of the LHS of (3.1)) over 500
repetitions and the CMIAE over 500 repetitions and 1000 fresh samples in each
repetition. Since Theorems 3.3 and 4.1 both bound the square root in-sample

prediction and the CMIAE with
√

s log p
n , we compared the observed values to

the value of
√

s log p
n , see Figure 3. All trends appear relatively linear hence con-

firming the predictions of Theorems 3.3 and 4.1. We also notice that there is
a significant difference between the in-sample errors and CMIAE. For example,
it turns out that the smooth function (tanh) has smaller in-sample error com-
pared to the linear non-smooth function 1, but has consistently larger CMIAE
compared to this function. Furthermore, the slopes of all lines are steeper in the
CMIAE simulation compared to the in-sample errors simulation; in addition,
the slope of the linear non-smooth function 2 is much steeper for the CMIAE,
implying that this function is easier to predict on the dataset at hand, and one
can predict well even with relatively small adjusted sample size, but this is not
the case for CMIAE.

In addition to presenting simulations for the full data procedure, we also
present results on the sample splitting version. Figure 4 demonstrates how sam-
ple splitting performs with n = 500 observations in comparison to Figure 3. We
can see a difference in the “in-sample” errors in comparison to the results in
Figure 3. The in-sample error error is larger in comparison to the full procedure
by about 1.2 to 1.3 times. The CMIAE is higher compared to the CMIAE using
the full data procedure by roughly 1.3 to 1.5 times. This is to be expected as
the full data uses double the observations for the two steps. However, in defense
of sample splitting, as we argued in Appendix D some assumptions can be lifted
when running the two steps independently.

Additional simulation results can be found in Section E.

6. Discussion

This paper focused on a two step procedure applying LASSO and isotonic re-
gression for monotone increasing SIMs. We showed guarantees for both the
in-sample and out-of-sample prediction errors.

One interesting technical question is whether we can relax the condition
s log n � √

n required in Theorem 4.1. The fact that sample splitting does
not require this condition suggests that perhaps it is not necessary for the full
data procedure either.

Another interesting direction is to explore whether the condition of Gaussian
covariates can be relaxed. It is known, see e.g., [26, 25] that if the predictors have
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Fig 3. The left panel of this figure shows
√

s log p
n

versus the square root of in-sample pre-

diction error (the square root of the LHS of (3.1)), over 500 repetitions under different link
functions and covariance settings. We see that in the three cases there appears to be a rela-
tively linear trend relating the two quantities which corroborates the RHS of (3.1). Similarly,

in the right panel we plot the
√

s log p
n

versus CMIAE. We observe relatively linear trends

relatating CMIAE to
√

s log p
n

which confirms the prediction of (4.2).

Fig 4. This figure shows the same simulation results as in Figure 3, with the main difference
being that we use sample splitting. This means that for n = 500 observations we use 250
observations for the LASSO and the remaining 250 for the isotonic regression. We can see
that the errors here are about 1.2 to 1.5 times larger in comparison to the results in Figure 3.
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elliptically symmetric distributions, linear regression can recover the predictor
up to a proportionality constant. Such an extension lies beyond the scope of the
present manuscript. In our current proof of the full data version of the procedure
we are relying on some results which require the Gaussianity of the covariates.
We do believe however, that the procedure should work for elliptical distributed
covariates, and defer this important question for future investigations.

A technical question regarding CMIAE was raised by one of the referees. It
was asked whether one can remove the conditionX�β ∈ [minX�

i β, maxX�
i β]

from the expectation. Currently we do not know how to remove this condition,
unless we impose boundedness on the function f . This represents a challenge
that could be addressed in our future work.

It is also of interest to see whether one can extend our results on CMIAE to
the stronger criterion – CMISE – defined in Section 4. Our preliminary simu-
lations (not reported) show that CMISE behaves comparably to CMIAE sug-
gesting that similar result to Theorem 4.1 might hold for CMISE. Another
interesting question is whether consistency can be established without imposing
Assumption 3.1 on the covariance.

We also conjecture that the rates we derived are minimax optimal. This
conjecture is based off on the fact that when f is the linear, the rate s log p

n is
known to be minimax for the �22 error, while even if we know β∗ the other rate
is minimax when estimating an increasing f . We defer investigating the validity
of this conjecture to future work.

Appendix A: Auxiliary results

First we state a very useful inequality from random matrix theory regarding the
singular values of a Gaussian matrix.

Lemma A.1 (Corollary 5.35 [41]). Let An×s matrix whose entries are i.i.d.
standard normal random variables. Then for every t ≥ 0, with probability at
least 1− 2 exp(−t2/2) one has:

√
n−

√
s− t ≤ smin(A) ≤ smax(A) ≤

√
n+

√
s+ t,

where smin(A) and smax(A) are the smallest and largest singular values of A
correspondingly.

Next, we remind the reader of a powerful result of sub-Gaussian concentration
of non-Lipschitz functions proved by [1]. Before that we give definitions of ‖·‖ψ1

and ‖ · ‖ψ2 norms which will be later used in our analysis. For a real random
variable X, define

‖X‖ψ2 = sup
p≥1

p−1/2(E|X|p)1/p, ‖X‖ψ1 = sup
p≥1

p−1(E|X|p)1/p.

Recall that a random variable is called sub-Gaussian if ‖X‖ψ2 < ∞ and sub-
exponential if ‖X‖ψ1 < ∞.
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First we introduce the notation of [1]. For an integer �, let P� denote the
set of partitions of [�] into non-empty and non-intersecting disjoint sets. For a
partition J = {J1, . . . , Jk}, and an �-indexed matrix A = (ai)i∈[n]� , define the
norm:

‖A‖J = sup
{ ∑

i∈[n]�

ai

k∏
l=1

x
(l)
iJl

: ‖x(l)
iJl

‖2 ≤ 1, 1 ≤ l ≤ k
}
,

where the indexing should be understood as iI := (ik)k∈I . Given the convention
that |J | is the cardinality of the set J we restate a version of Theorem 1.4 of
[1].

Theorem A.2 (Theorem 1.4 [1]). Let X = (X1, . . . , Xn) be a random vector
with independent components, such that for all i ≤ n, ‖Xi‖ψ2 ≤ Γ. Then for
every polynomial f : Rn �→ R of degree L we have:

P(|f(X)− Ef(X)| ≥ t) ≤ 2 exp
(
− 1

CL
ηf (t)

)
,

where

ηf (t) = min
1≤�≤L

min
J∈P�

( t

Γ�‖ED�f(X)‖J
)2/|J |

.

In the above, D� is the �th derivative of f .

Appendix B: In-sample prediction proofs (full data)

Proof of Theorem 3.3. Our first step is to show that β̂ can be identified with
the solution to the following program with high probability:

β̃S = argmin
βS∈Rs

1

2n

n∑
i=1

(Yi −X�
iSβS)

2 + λ‖βS‖1, (B.1)

where S is the support of β∗ and XiS is Xi restricted to the set S. In addition

will we argue that the vector β̂S = β̃S

‖Σ̂
1
2
SSβ̃S‖2

is consistent for β∗
S . We have the

following result, which describes the relationship between β and β̂S .

Proposition B.1. Suppose all conditions of Theorem 3.3 hold. Then with prob-
ability at least 1− F (n, s, p, f) for some constants C1, C2 > 0 we have

supp(β) ⊆ S, βS = β̂S , ‖Σ̂ 1
2 (β − β∗)

∥∥
2
≤ C1

√
s log p

n
(B.2)

‖Σ 1
2 (β − β∗)

∥∥
2
≤ C2

√
s log p

n
(B.3)

where F (n, s, p, f) → 0 as n → ∞.
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The first two claims involving the support of β have already been established
in [30], while similar claims to the third and fourth one (although for the square-
root LASSO) were given by [32, 38]. Since we were not able to find a proof of
(B.2) and (B.3) in the LASSO literature (in particular under Assumptions 3.2
and 3.1), we provide a standalone proof of Proposition B.1 in Appendix B. This
proof will also be useful later when we discuss the predictive properties of our
procedure. Let E denote the event on which (B.2) and (B.3) hold.

To make our analysis simpler we will now isolate the dependency of β on ε
and will argue (in a roundabout manner) that it will not cause issues in the
final estimator that we proposed.

Step II’. Construct the permutation π : [n] �→ [n] which sorts {X�
iSβ̂S}ni=1

in increasing order††. In other words let π be such that X�
πiS

β̂S ≤ X�
πjS

β̂S for

all πi ≤ πj . Fit isotonic regression as in (2.2). For a given X set x = X�
S β̂S .

The proposed final estimate of f(X�β∗) is

f̂(x) =

⎧⎪⎨
⎪⎩
f̂

argmin
i:x≥X�

πiS
β̂S

(x−X�
πiS

β̂S)
, x ≥ X�

π1S
β̂S

f̂1, x < Xπ1Sβ̂S

Since Proposition B.1 argues that E is a high probability event, analyzing
Step II’ ensures that similar guarantees hold for Step II with slightly smaller
probability. From now on we focus on analyzing Step II’. We note that:

β̃S = argmin
βS∈Rs

1

2n

n∑
i=1

(Yi −X�
iSβS)

2 + λ‖βS‖1

= argmin
βS∈Rs

{
1

2n

n∑
i=1

(f(X�
iSβ

∗
S)−X�

iSβS)
2 − 1

n

n∑
i=1

εiX
�
iSβS + λ‖βS‖1

}
.

(B.4)

The above representation makes it apparent that in fact:

β̃S := β̃S

(
1

n

n∑
i=1

εiXiS , {XiS}ni=1

)
, and thus β̂S := β̂S

(
1

n

n∑
i=1

εiXiS , {XiS}ni=1

)
.

For the following argument let us first condition on the matrix X.
Denote with XS the n× s matrix whose rows are the row vectors {X�

1S , . . . ,
X�

nS}. Define the projections

PXS
= XS(X

�
SXS)

−1
X

�
S , P

X
⊥
S
= I−PXS

.

Since the error vector ε has a N (0, σ2I) distribution by assumption, we have

that conditionally on X the random vector P
X

⊥
S
ε is independent of β̂S (note

††Here we use π with a slight abuse of notation to denote both permutations in Step II
and Step II’; the two coincide on the high probability event E by Proposition B.1.
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that the covariance EP
X

⊥
S
εε�XS = 0). Let ε′ be an independent copy of ε such

that ε′ ∼ N (0, σ2I). We can rewrite our model as

Yπi = f(X�
πiSβ

∗
S) + επi = f(X�

πiSβ
∗
S) + [PXS

(ε− ε′)]πi + ξi,

where ξi = [P
X

⊥
S
ε + PXS

ε′]πi . Importantly, notice the random variables ξi ∼
N (0, σ2) are i.i.d, since by definition P

X
⊥
S
ε+PXS

ε′ ∼ N (0, σ2In) is independent

of β̂S and therefore of πi. The motivation for defining ξi is that the aforemen-
tioned property is not true for the original noise variables εi, i.e., the distribution
of επi is complicated. One disadvantage of ξi however is that they depend on
the term [PXS

(ε− ε′)]πi .

We now introduce some shorthand notation. Let ui := f(X�
πiS

β̂S) and let

γi := νi + ζi where νi = f(X�
πiS

β∗
S) and ζi = [PXS

(ε − ε′)]πi . The function

f(x) is increasing, and moreover by definition {X�
πiS

β̂S}ni=1 is an increasing

sequence; we therefore have u ∈ S↑
n.

Even conditionally on the design XS , the terms γi for i ∈ [n] remain random,
and depend on ξi. Therefore known results such as Corollary 2.2 of [4] are not
directly applicable in this situation. Following (1.21) of [4], using the cosine

theorem and the fact that f̂ is the projection of Y = γ + ξ on the cone S↑
n, for

any v ∈ S↑
n:

‖f̂ − γ − ξ‖22 ≤ ‖v − γ − ξ‖22 − ‖v − f̂‖22.
In particular the above inequality holds for v = u, and after expanding the
norms we obtain

‖f̂ − γ‖22 − ‖u− γ‖22 ≤ 2ξ�(f̂ − u)− ‖f̂ − u‖22.

By Cauchy-Schwartz we can lower bound the left hand side of the preceding
display as

‖f̂ − ν‖22 − ‖u− ν‖22 − 2‖ζ‖2(‖u− ν‖2 + ‖f̂ − ν‖2) ≤ ‖f̂ − γ‖22 − ‖u− γ‖22.
(B.5)

To this end we remind the reader of Theorem 2.3 of [4] which shows that if
there exists t∗(u) is such that

2E sup
v∈S↑

n:‖v−u‖2≤t∗(u)

ξ�(v − u) ≤ t∗(u)
2,

then with probability at least 1− e−t

2ξ�(f̂ − u)− ‖f̂ − u‖22 ≤ (2t2∗(u) + 4σ2t).

For such a t∗(u) inequality (B.5) shows that with probability at least 1− p−1

‖f̂ − ν‖22 ≤ ‖u− ν‖22 + 2‖ζ‖2(‖u− ν‖2 + ‖f̂ − ν‖2) + 2t2∗(u) + 4σ2 log p

≤ 2‖u− ν‖22 + 3‖ζ‖22 +
1

2
‖f̂ − ν‖22 + 2t2∗(u) + 4σ2 log p,
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where we used that 2‖ζ‖2‖u − ν‖2 ≤ ‖ζ‖22 + ‖u − ν‖22 and 2‖ζ‖2‖f̂ − ν‖2 ≤
2‖ζ‖22 + 1

2‖f̂ − ν‖22. It follows that

‖f̂ − ν‖22 ≤ 4‖u− ν‖22 + 6‖ζ‖22 + 4t2∗(u) + 8σ2 log p.

[8] showed that such t∗(u) can be taken as t∗(u) =
√
cσ(1 + (un−u1)

σ )1/3n1/6

for some absolute constant c. Now we will control the terms ‖u− ν‖22 and ‖ζ‖22
which appear in (B.5). Since f is L-Lipschitz we have that

‖u− ν‖22 =

n∑
i=1

[f(X�
iSβ

∗
S)− f(X�

iSβ̂S)]
2 ≤ nL2‖Σ̂

1
2

SS(β
∗
S − β̂S)‖22.

Furthermore since PXS
is a projection matrix, we have

‖ζ‖22 = (ε− ε′)�PXS
(ε− ε′) ∼ 2χ2(s).

Thus E 1
n (ε−ε′)�PXS

(ε−ε′) = 2s
n . Furthermore ‖PXS

‖F =
√
s, and ‖PXS

‖2 =
1. Using the Hanson-Wright inequality [35] for some absolute constant c we have
for any X that

P
(∣∣n−1‖ζ‖22 −

2s

n

∣∣ > t
)
≤ 2 exp

(
− c

(nt)2

s
∧ nt

)
.

Setting t = s
n gives that with probability at least 1 − 2 exp(−cs) we have

n−1‖ζ‖22 ≤ 3s
n . To summarize conditionally on X we have established that with

an overwhelming probability

n−1‖f̂ − ν‖22 ≤ 4σ2
[
c(1 +

(un − u1)

σ
)2/3n−2/3

]
+ 4L2‖Σ̂

1
2

SS(β
∗
S − β̂S)‖22 +

18s+ 8σ2 log p

n
.

Note that the above bound has been established conditionally on the design
matrix X and holds with high probability (independent of the design X) for any
design. Therefore it holds also unconditionally with high probability. Denote the
event on which the above bound holds with E ′. It follows that on the intersection
event E ∩E ′ (recall that E is the event where (B.2) holds) we can further bound:

n−1‖f̂ − ν‖22 ≤ 4σ2
[
c(
σ + (un − u1)

nσ
)2/3

]
+ 8L2C1

s log p

n
+

18s+ 8σ2 log p

n
.

This completes the proof.

Proof of Proposition B.1. Recall that X denotes the matrix stacking the vectors
{X�

i }i∈[n] into its rows, and that Y is the vector stacking the values {Yi}i∈[n].
Denote by XS the restriction of X on the set S, i.e., XS is the matrix with rows
{X�

iS}i∈[n].
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Set λ = C
√

log p
n . Theorem 2.3.4 i. of [30] states that under the conditions of

Proposition B.1 if

n

s log p
≥

4‖ΣSc|S‖max

(
4

λmin
+ 2ξ2

λ2s

)
κ2

=

4‖ΣSc|S‖max

(
4

λmin
+

2ξ2 n
s log p

C

)
κ2

,

then with high probability supp(β) ⊆ S and βS = β̂S (the latter is not stated
in the theorem but is implied by the proof). Note that under the assumptions
of the Proposition this condition is satisfied when n

s log p is sufficiently large and

λ = C
√

log p
n for a sufficiently large constant C. This completes the proof of our

first claim. We will now show that the vector β̃S is close to β∗
S in Euclidean

distance. We start by using the inequality:

1

2n
‖Y − XSβ̃S‖22 + λ‖β̃S‖1 ≤ 1

2n
‖Y −ΥXSβ

∗
S‖22 + λ‖Υβ∗

S‖1,

where recall the definition of Υ from (1.5). Expanding the norms leads to

1

2n
‖XS(Υβ∗

S − β̃S)‖22 + λ‖β̃S‖1 ≤ 1

n
w�

XS(β̃S −Υβ∗
S) + λ‖Υβ∗

S‖1

≤ 1

n
‖w�

XSΣ
− 1

2

SS ‖∞‖Σ
1
2

SS(Υβ∗
S − β̃S)‖1 + λ‖Υβ∗

S‖1, (B.6)

where w = Y −ΥXSβ
∗
S . The vector w

�
XSΣ

− 1
2

SS is mean 0. We will now control

n−1‖w�
XSΣ

− 1
2

SS ‖∞. First suppose that ΣSS = I (hence by the assumption

‖Σ
1
2

SSβ
∗
S‖2 = 1 it follows ‖β∗

S‖2 = 1). We have

n−1‖w�
XS‖∞ ≤ n−1‖Pβ∗⊥

S
X

�
Sw‖∞ + n−1‖β∗

Sβ
∗�
S X

�
Sw‖∞, (B.7)

where Pβ∗⊥
S

= Is −β∗
Sβ

∗�
S . Note that Pβ∗⊥

S
X

�
S and w are independent. Thus it

is simple to check that conditionally on w the vector

n−1Pβ∗⊥
S

X
�
Sw ∼ N (0,Pβ∗⊥

S
n−2‖w‖22).

We now argue that the term n−1‖w‖22 ≤ 2ξ2 with probability at least 1 − θ2

nξ2

(recall the definitions of θ2, ξ2 in (1.5)). Note that w = Y − ΥXSβ
∗
S is not

necessarily a zero mean vector. However, by Chebyshev’s inequality we have:

P

(∣∣∣∣‖w‖22
n

− ξ2
∣∣∣∣ ≥ t

)
≤ θ2

nt2
.

Then setting t = ξ2 brings the above probability to 0 at a rate θ2

nξ2 . Let W =

{w :
‖w‖2

2

n ≤ 2ξ2}. We just showed that P(W) ≥ 1− θ2

nξ2 .
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The diagonal entries of the covariance matrix n−2‖w‖22Pβ∗⊥
S

are less than

n−2‖w‖22. Hence by a standard Gaussian tail bound and a union bound, we
have that

P(n−1‖Pβ∗⊥
S

X
�
Sw‖∞ ≥ t|w) ≤ 2se−2ct2n2/‖w‖2

2 ,

for some universal constant c. By the law of total probability

P(n−1‖Pβ∗⊥
S

X
�
Sw‖∞ ≥ t) =

∫
W

P(n−1‖Pβ∗⊥
S

X
�
Sw‖∞ ≥ t|w)p(w)dw

+

∫
Wc

P(n−1‖Pβ∗⊥
S

X
�
Sw‖∞ ≥ t|w)p(w)dw

≤ max
w∈W

P(n−1‖Pβ∗⊥
S

X
�
Sw‖∞ ≥ t|w) + P(Wc)

≤ 2se−cnt2/ξ2 +
θ2

nξ2
,

where p(w) denotes the density of w.

Therefore setting t ≥
√

2ξ2 log p
cn bounds the first term in the above probability

by 2s
p2 + θ2

nξ2 ≤ 2p−1 + θ2

nξ2 . We now move to the second term of (B.7). Since

‖β∗
S‖∞ ≤ ‖β∗

S‖2 ≤ 1

n−1‖β∗
Sβ

∗�
S X

�
Sw‖∞ ≤ n−1|β∗�

S X
�
Sw|.

Next we have the elementary inequality

P(n−1|β∗�
S X

�
SY −Υ‖XSβ

∗
S‖22| ≥ t) ≤ P(|n−1β∗�

S X
�
SY −Υ| ≥ t/2)

+ P(|n−1‖XSβ
∗
S‖22 − 1| ≥ t/(2Υ))‡‡,

By Chebyshev’s inequality

P(|n−1β∗�
S X

�
SY −Υ| ≥ t/2) ≤ 4γ2

nt2
, (B.8)

Setting t = 2γ
√

log p
n bounds the above probability by (log p)−1. By Lemma 1

of [24]

P(|n−1‖XSβ
∗
S‖22 − 1| ≥ t/(2Υ)) ≤ 2 exp

(
− n

t

8Υ
∧ t2

64Υ2

)
,

Setting t = 8Υ
√

log p
n bounds the above probability by 2p−1. We conclude that

with probability at least 1− 4p−1 − (log p)−1 − θ2

nξ2

n−1‖w�
XS‖∞ ≤ C

√
log p

n
, (B.9)

‡‡Recall that Υ > 0.
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where C(Υ, γ, ξ) = 8|Υ|+ 2γ + c0ξ and c0 =
√

2/c is a universal constant.

For the general ΣSS case, we can rewrite the term n−1‖w�
XSΣ

− 1
2

SS ‖∞ as

n−1‖w�
XSΣ

− 1
2

SS ‖∞ = n−1‖(Y −ΥX̃Sβ̃
∗
S)

�
X̃S‖∞

where X̃S = XSΣ
− 1

2

SS ∼ N (0, I) and β̃∗
S = Σ

1
2

SSβ
∗
S so that ‖β̃∗

S‖2 = 1. Using the

previous argument it follows that n−1‖(Y − ΥX̃Sβ̃
∗
S)

�
X̃S‖∞ ≤ C

√
log p
n with

high probability. Hence we conclude

n−1‖w�
XSΣ

− 1
2

SS ‖∞ ≤ C

√
log p

n
,

with high probability. Going back to (B.6) we have established that with high
probability

1

2n
‖XS(Υβ∗

S − β̃S)‖22 ≤ C

√
log p

n
‖Σ

1
2

SS(Υβ∗
S − β̃S)‖1 + λ(‖Υβ∗

S‖1 − ‖β̃S‖1)

≤
(
C

√
s log p

n
+
√
sλ‖Σ− 1

2

SS ‖2
)
‖Σ

1
2

SS(Υβ∗
S − β̃S)‖2,

(B.10)

where we used the inequality ‖v‖1 ≤ √
s‖v‖2 for v ∈ R

s. Lemma A.1 guarantees
that

λmin(Σ
− 1

2

SS X
�
SXSΣ

− 1
2

SS )

n
≥ (

√
n− 2

√
s)2

n
, (B.11)

with probability at least 1− 2e−s/2. Hence, when the above two events happen,
i.e., events (B.10) and (B.11) (which happens with probability at least 1−4p−1−
(log p)−1 − θ2

nξ2 − 2e−s/2) we have

‖Σ
1
2

SS(Υβ∗
S − β̃S)‖2 ≤ r, (B.12)

where r :=
2
(
C
√

s log p
n +

√
sλλ

− 1
2

min

)(
1−2

√
s
n

)2 = C
√

s log p
n . This completes the proof of (B.3).

By the triangle inequality and (B.12)

Υ− r ≤ ‖Σ
1
2

SSβ̃S‖2 ≤ Υ+ r. (B.13)

Now we will control the following term:

|‖Σ̂
1
2

SSβ̃S‖2 − ‖Σ
1
2

SSβ̃S‖2|

By the Courant-Fischer minmax theorem for singular values we have

|‖Σ̂
1
2

SSβ̃S‖2 − ‖Σ
1
2

SSβ̃S‖2| = |n− 1
2 ‖X�

SΣ
− 1

2

SS Σ
1
2

SSβ̃S‖2 − ‖Σ
1
2

SSβ̃S‖2|



Isotonic regression meets LASSO 737

≤
{
|smax(n

− 1
2XSΣ

− 1
2

SS )− 1| ∨ |smin(n
− 1

2XSΣ
− 1

2

SS )− 1|
}
‖Σ

1
2

SSβ̃S‖2

≤ 2

√
s

n
(Υ + r),

where the last inequality holds with probability at least 1 − 2e−s/2 by Lemma

A.1. Recall that β̂S = β̃S

‖Σ̂
1
2
SSβ̃S‖2

. Next when Υ − r − 2
√

s
n (Υ + r) > 0 (which

holds for sufficiently large n
s log p ), we have

‖Σ
1
2

SS(β̂S − β∗
S)‖2

≤ ‖Σ
1
2

SS(β̃S −Υβ∗
S)‖2 + |Υ− ‖Σ

1
2

SSβ̃S‖2|+ |‖Σ̂
1
2

SSβ̃S‖2 − ‖Σ
1
2

SSβ̃S‖2|
‖Σ̂

1
2

SSβ̃S‖2

≤
2r + 2

√
s
n (Υ + r)

Υ− r − 2
√

s
n (Υ + r)

=
r

1− r
, (B.14)

where r = 2( r/Υ
1+r/Υ +

√
s
n ). It follows that (B.14) is smaller than 2r when

1− r ≤ 1/2. Furthermore, by Lemma A.1

λmax(Σ
− 1

2

SS X
�
SXSΣ

− 1
2

SS )

n
≤
(
1 + 2

√
s

n

)2
,

with probability at least 1− 2e−s/2. It follows that

‖Σ̂
1
2

SS(β̂S − β∗
S)‖22 = n−1‖XS(β̂S − β∗

S)‖22 ≤
(
1 + 2

√
s

n

)2‖Σ 1
2

SS(β̂S − β∗
S)‖22,

which completes the proof of (B.2) in view of (B.14) and the assumptions of
the Proposition.

Proof of Lemma 3.5. We have the following chain of inequalities

‖X(β − β∗)‖∞ ≤ ‖X(β − β)‖2 ≤ C1

√
s log p

n

where the last inequality holds by (B.2).

Appendix C: Prediction proofs (full data)

Proof of Proposition 4.2. Since we are assuming that supp(β) ⊆ S holds, we
can restrict our analysis only to the vector βS , and XiS . In order not to burden
the notation in this proof we will still refer to β as βS and Xi as XiS .

Before we begin the proof we note that xi = X�
πi
β/c = X�

πi
β, where β = β/c

satisfies ‖Σ 1
2β‖2 = 1.
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Let Nε be an ε-net on the s-dimensional unit sphere Ss−1 = {v : ‖v‖2 = 1},
where ε will be determined. By a standard volume argument [see, e.g., Lemma
5.2 in 41] we know that

|Nε| ≤
(
1 +

2

ε

)s

.

Convert the sphere covering to a covering on the ellipsoid Es−1 = Σ− 1
2Ss−1 =

{Σ− 1
2v : v ∈ Ss−1}, by taking the set N e

ε = Σ− 1
2Nε = {Σ− 1

2v : v ∈ Nε}. Since
Σ

1
2 Es−1 = Ss−1, clearly for any vector v ∈ Es−1 there exists w ∈ N e

ε satisfying

‖Σ 1
2 (v−w)‖2 ≤ ε. Note that by our argument above it follows that the vector

β ∈ Es−1.
For any two vectors γ ∈ Es−1,β ∈ N e

ε let uγ = [Xγ]↑ and vβ = [Xβ]↑. Below
we will suppress the dependency of uγ and vβ on γ,β respectively. Using Lemma
C.1 we know that:

sup
γ∈Es−1

[
n

n∑
i=1

[
Φ(ui)− Φ(ui−1)]

2

] 1
2

≤ sup
β∈N e

ε

[
n

n∑
i=1

[
Φ(vi)− Φ(vi−1)]

2

] 1
2

+
√
2nπ−1‖XΣ− 1

2 ‖2ε. (C.1)

For any fixed vector γ ∈ Es−1 we have that X�
i γ ∼ N (0, 1) and therefore

Φ((X�γ)i) ∼ U(0, 1) are i.i.d. for i ∈ [n]. Hence we are in a position to apply
Lemma C.2. Using Lemma C.2 together with the union bound we can ensure

P
(
sup
β∈Nε

[
n
∑
i

(Φ(vi)− Φ(v(i−1))
2
] 1

2 ≥
√
12
)
≤
(
1 +

2

ε

)s

e−c0
√
n.

Additionally, by Lemma A.1 we have:

‖XΣ− 1
2 ‖2 ≤ (2

√
n+

√
s),

with probability at least 1−2e−n/2. Select ε = c
n for some constant c. We obtain

that with probability at least 1− 2e−n/2 −
(
1 + 2n

c

)s

e−c0
√
n we have that the

RHS of (C.1) is bounded by
√
12+ c

√
2(2+

√
s
n )/

√
π. Selecting c appropriately

we can bound this quantity by
√
12 + 1√

π
. Furthermore since we are assuming

that s log n � √
n the above probability will converge to 1. This completes the

proof.

Lemma C.1. Suppose that Xi ∼ N (0,Σ) are i.i.d. for i ∈ [n]. Suppose that

we have two vectors w, z, so that 1) ‖Σ 1
2w‖2 = 1, ‖Σ 1

2 z‖2 = 1 and 2) ‖Σ 1
2 (z−

w)‖2 ≤ ε. Denote u = [Xz]↑ and v = [Xw]↑. Then

[ n∑
i=1

[
Φ(ui)− Φ(ui−1)]

2

] 1
2

≤
[ n∑

i=1

[
Φ(vi)− Φ(vi−1)]

2

] 1
2

+
√
2π−1‖XΣ− 1

2 ‖2ε.
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Proof of Lemma C.1. By the triangle inequality

[ n∑
i=1

[
Φ(ui)− Φ(ui−1)]

2

] 1
2

≤
[ n∑

i=1

[
Φ(vi)− Φ(vi−1)]

2

] 1
2

+

[ n∑
i=1

[
Φ(ui)− Φ(ui−1)− Φ(vi) + Φ(vi−1)

]2] 1
2

.

Using the elementary inequality (a− b)2 ≤ 2(a2 + b2) and the fact that Φ(x) is
a 1√

2π
-Lipschitz function, we have

n∑
i=1

[
Φ(ui)− Φ(ui−1)− Φ(vi) + Φ(vi−1)

]2 ≤ π−1‖u− v‖22 + π−1‖u− v‖22

≤ 2π−1‖X(z−w)‖22
= 2π−1‖XΣ− 1

2 ‖22‖Σ
1
2 (z−w)‖22.

The next to last inequality follows since for any two vectors a ∈ R
n and b ∈ R

n

we have
‖a↑ − b↑‖22 ≤ ‖a− b‖22.

The latter be easily seen upon observing that if we have the ordering ai ≤ aj
but bj ≤ bi then (aj − ai)(bj − bi) ≤ 0 or equivalently (ai − bj)

2 + (aj − bi)
2 ≤

(ai − bi)
2 + (aj − bj)

2. This is what we wanted to show.

Lemma C.2. Let {Ui}i∈[n] be i.i.d. samples from a uniform U [0, 1] distribution,
and {U(i)}i∈[n] be their order statistics. Then

P(n

n∑
i=0

(U(i+1) − U(i))
2 ≥ 12) ≤ exp(−c0

√
n),

where U(0) = 0 and U(n+1) = 1, and c0 is an absolute constant.

Proof of Lemma C.2. Let Wi = U(i+1)−U(i). Recall that we have the represen-
tation [see Theorem 6.6. in 11, e.g.]

(W0,W1, . . . ,Wn−1) =

(
X0∑n
i=0 Xi

,
X1∑n
i=0 Xi

, . . . ,
Xn−1∑n
i=0 Xi

)
,

where Xi ∼ Exp(1) are i.i.d. This is equivalent to (W0,W1, . . . ,Wn−1) ∼
D((1, 1, . . . , 1)), i.e., (W0,W1, . . . ,Wn−1,Wn) are uniform on the n-dimensional
simplex. It follows that

n
n∑

i=0

W 2
i =

n

n+ 1

∑n
i=0 X

2
i

n+ 1

(n+ 1)2

(
∑n

i=0 Xi)2
≤
∑n

i=0 X
2
i

n+ 1

(n+ 1)2

(
∑n

i=0 Xi)2
.

Since Xi are exponential, by definition they are sub-exponential, i.e., we have
‖Xi‖ψ1 ≤ c for some absolute constant c.
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Next we construct the random variables Zi = X
1
2
i . By definition EZ2

i = 1.
We will now argue that Zi are sub-Gaussian random variables. By Jensen’s
inequality

E|Zi|p ≤
√
E|Xi|p ≤ (p‖Xi‖ψ1)

p/2 ≤ (
√
p(‖Xi‖ψ1)

1
2 )p,

Hence ‖Zi‖ψ2 ≤ ‖Xi‖1/2ψ1
, and therefore Z is sub-Gaussian as claimed.

For the remaining part recall the notation preceding Theorem A.2. For f(x) =
x4 and F (x) =

∑n
i=1 f(xi) we have D�F (x) = diag�(f

(�)(x1), . . . , f
(�)(xn))

for � ∈ [4]. Using the definition of ψ2 norm we can easily estimate E[|Z|�] ≤
(
√
�)�‖Z‖�ψ2

. To this end we observe the following:

‖diag�{x1, . . . , xn}‖J = 1(|J | = 1)‖x‖2 + 1(|J | ≥ 2)‖x‖max.

Hence:

‖ED�F (Z)‖J ≤ [1(|J | = 1)
√
n+ 1(|J | ≥ 2)]

4!

(4− �)!
(
√
4− �)4−�‖Z‖4−�

ψ2
,

for � ∈ [4], where with a slight abuse of notation we understand (
√
4− �)(4−�) =

1 when � = 4. Using Theorem A.2 we obtain:

P(|F (Z)−EF (Z)| ≥ t) ≤ 2 exp

(
− 1

C4
min

1≤�≤L
min
J∈P�

(
t

‖Z‖�ψ2
‖ED�f(X)‖J

)2/|J |)

≤ 2 exp
(
− C̃4

( t2
n

∧
√
t
))

where P� is the set of partitions of [�], the absolute constant C4 depends solely

on the dimension 4, and C̃4 depends on C4 and the ψ2-norm: ‖Z‖ψ2 ≤ ‖Xi‖1/2ψ1
.

Recalling that EX2
i = 2, it follows that

P

(∑n
i=0 X

2
i

n+ 1
− 2 ≥ t

)
≤ 2 exp(−C̃4(nt

2 ∧
√
nt)).

Setting t = 1 gives a lower bound on the probability of at least exp(−C̃4
√
n).

Moreover since Xi are i.i.d. sub-exponential

P

(
− t ≥

∑n
i=0 Xi

n+ 1
− 1

)
≤ 2 exp(−C̃2(nt

2 ∧ nt)),

for some absolute constant C̃2. Selecting t = 1
2 completes the proof.

Appendix D: Sample split proofs

Proposition D.1. Under the conditions of Theorem 3.3 for the sample splitting
version we have for some constant Ω1∑n

i=1[f(X
�
i β∗)− f̂(X�

i β)]2

2n
≤ σ2

[
c(
σ + |f(X�

πn
β)− f(X�

π1
β)|

nσ
)2/3

]
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+Ω1
s log p

n
+

2σ2 log p

n
. (D.1)

Denote with RS the RHS of (D.1).

Proof of Proposition D.1. We now introduce some shorthand notation. Let ui :=
f(X�

πi
β) and let νi := f(X�

πi
β∗). Since by definition {X�

πi
β}ni=1 is an increasing

sequence we have u ∈ S↑
n.

Conditionally on the design X, the terms νi satisfy the conditions of Corollary
2.2 of [4] and hence we can directly apply this result. For convenience of the
reader we spell out the full details of the application. Following (1.21) of [4],

using the cosine theorem and the fact that f̂ is the projection of Y = ν + ε on
the cone S↑

n, for any v ∈ S↑
n:

‖f̂ − ν − ε‖22 ≤ ‖v − ν − ε‖22 − ‖v − f̂‖22.

In particular the above inequality holds for v = u, and after expanding the
norms we obtain

‖f̂ − ν‖22 − ‖u− ν‖22 ≤ 2ε�(f̂ − u)− ‖f̂ − u‖22

Now we will show the first bound, but before that we remind the reader of
Theorem 2.3 of [4] which shows that if t∗(u) is such that

2E sup
v∈S↑

n:‖v−u‖2≤t∗(u)

ε�(v − u) ≤ t∗(u)
2,

then with probability at least 1− e−t

2ε�(f̂ − u)− ‖f̂ − u‖22 ≤ 2t2∗(u) + 4σ2t.

For such a t∗(u) with probability at least 1− p−1

‖f̂ − ν‖22 ≤ ‖u− ν‖22 + 2t2∗(u) + 4σ2 log p.

[8] showed that such t∗(u) can be taken as t∗(u) =
√
cσ(1+ (un−u1)

σ )1/3n1/6 for
some absolute constant c.

Now we will control the term ‖u− ν‖22. Since f is L-Lipschitz we have that

‖u− ν‖22 =

n∑
i=1

[f(X�
i β∗)− f(X�

i β)]2 ≤ L2‖Σ̂ 1
2 (β∗ − β)‖22.

Note that the above bound has been established conditionally on the design
matrix X and holds with high probability (independent of the design X) for any
design. Therefore it holds also unconditionally with high probability. Denote the
event on which the above bound holds with E ′. It follows that on the intersection
event E ∩E ′ (recall that E ′ is the event where (B.2) holds) we can further bound:

n−1‖f̂ − ν‖22 ≤ 2σ2t
[
c(
σ + (un − u1)

nσ
)2/3

]
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+ C1L
2 s log p

n
+

4σ2 log p

n
.

This completes the proof.

Remark D.2. [Xβ](1) and [Xβ](n) are automatically of the order ±
√

2 log(n/2)

since X and β are independent.

Proposition D.3. Let X ∼ N (0,Σ) be a new observation generated indepen-
dently from the data. Under the assumptions of Proposition D.1 hold, condi-
tionally on the data and with high probability for some absolute constant C we
have:

EX|D
[
|f̂(X�β)− f(X�β∗)|

∣∣X�β ∈ [X�
π1
β,X�

πn
β]
]

≤ C

(
f(X�

πn
β)− f(X�

π1
β)√

n
+R

1
2

S

)
.

Proof of Proposition D.3. The proof follows along the lines of the proof of The-
orem 4.1. Due to the data split we can avoid using Proposition 4.2, and we can
directly apply Lemma C.2 to control

[
n

n∑
i=1

(Φ(xi+1)− Φ(xi))
2
] 1

2 .

This is true since Φ(xi) are the order statistics U(i) conditionally on β.

Appendix E: Additional simulation results

Here we provide additional numerical evidence. In particular we replicate the
results from Section 5 but this time we use n = 1000 instead of n = 500 as
before. The results are very similar so we do not comment further and refer the
reader to commentary in Section 5.
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