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Abstract: In this paper, we consider the problem of multiple testing where
the hypotheses are dependent. In most of the existing literature, either
Bayesian or non-Bayesian, the decision rules mainly focus on the validity
of the test procedure rather than actually utilizing the dependency to in-
crease efficiency. Moreover, the decisions regarding different hypotheses are
marginal in the sense that they do not depend upon each other directly.
However, in realistic situations, the hypotheses are usually dependent, and
hence it is desirable that the decisions regarding the dependent hypotheses
are taken jointly.

In this article, we develop a novel Bayesian multiple testing procedure
that coherently takes this requirement into consideration. Our method,
which is based on new notions of error and non-error terms, substantially
enhances efficiency by judicious exploitation of the dependence structure
among the hypotheses. We show that our method minimizes the posterior
expected loss associated with an additive “0-1” loss function; we also prove
theoretical results on the relevant error probabilities, establishing the co-
herence and usefulness of our method. The optimal decision configuration
is not available in closed form and we propose an efficient simulated an-
nealing algorithm for the purpose of optimization, which is also generically
applicable to binary optimization problems.

Extensive simulation studies indicate that in dependent situations, our
method performs significantly better than some existing popular conven-
tional multiple testing methods, in terms of accuracy and power control.
Moreover, application of our ideas to a real, spatial data set associated with
radionuclide concentration in Rongelap islands yielded insightful results.
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1. Introduction

In modern day practical statistical problems with many parameters we are sel-
dom interested in testing only one hypothesis. Simultaneous inference on hun-
dreds of parameters are often necessary, for instance, in spatial, microarray
datasets or in analysis of fMRI data. Thus, multiple testing has emerged as a
very important problem in statistical inference. As in the case of single hypoth-
esis testing with well-known notions of Type-I and Type-II errors, the multiple
testing literature also consists of several measures of errors, for example, the
family wise error rate (FWER), which is the probability of rejecting any null,
the false discovery rate (FDR), which is the expected proportion of false dis-
coveries, and false non-discovery rate (FNR), the expected proportion of false
non-discoveries. Dudoit et al. (2003) discussed in details various issues related
to controlling different types of errors.

Several methods have been established to control different types of errors.
The FWER controlling procedure uses the Bonferroni correction that rejects
individual null hypotheses at α/m level of significance. This procedure is too
conservative and results in low power for substantially large number of tests.
Benjamini and Hochberg (1995) proposed the powerful approach of control-
ling FDR. There have been much advancements both in the frequentist and
Bayesian literatures for multiplicity correction later on. Berry and Hochberg
(1999) have given a Bayesian perspective on multiple testing where the tests
depend upon each other through a dependent prior. Scott and Berger (2006)
discussed different aspects via a decision theoretic approach. Afterwards, Sarkar
et al. (2008) introduced a general decision theoretic approach which controls the
Bayes FDR (BFDR) and Bayes FNR (BFNR) criteria. In their paper, ran-
domized decision rules have been introduced where the decisions of different
hypotheses depend upon each other through a dependent structure. Depen-
dence among test statistics naturally arises in many multiple testing scenarios.
For example, in spatial data where the geographical locations are nearby, the
test statistics for different hypotheses are quite likely to be influenced by each
other. In microarray experiments, different genes may cluster into groups along
biological pathways and exhibit high correlation. In public health studies, the
observed data from different time periods and locations are often serially or
spatially correlated. Benjamini and Yekutieli (2001) have shown that control
over FDR is achieved for certain kinds of positive dependency among the tests.
Finner and Roters (2002); Finner et al. (2007); Efron (2007) discussed the effect
of dependence among test statistics, among others. Qiu et al. (2005) showed
that dependence among test statistics significantly affects the power of many
FDR controlling procedures. Schwartzman and Lin (2011) and Fan et al. (2012)
discussed estimation of FDR under correlation.
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However, in both classical and Bayesian literature, even in the dependent
set-ups, most of the methods are concerned with marginal decision rules, in the
sense that the decisions mainly depend upon the marginal distributions of the
test statistics, marginal p-values or marginal posterior probabilities. In cases
where we have additional information about dependency among tests, utilizing
it will yield more reliable and closer-to-truth inference. Most of the methods
focus on controlling the errors rather than actually utilizing the information
supplied by the dependence structure. When two or more dependent hypothe-
ses are being tested, decisions on different hypotheses are expected to influence
each other. Sun and Cai (2009) have discussed an approach for data arising
from hidden Markov model, arguing that accounting for such dependence in-
creases efficiency. Xie et al. (2011) have proposed an optimal decision rule for
short range dependent data with dependent test statistics. However, both the
works are about marginal decision rules, and their dependency is automatically
accounted for in a Bayesian set-up. Indeed, in Bayesian multiple testing proce-
dures, some implicit adjustment over multiplicity and dependence is naturally
taken care of by considering dependent prior over the parameters, as the pos-
terior distribution is influenced by the complete data. Scott and Berger (2010)
discussed how empirical Bayes and fully Bayes methods adjust multiplicity.

When the decisions are not directly (deterministically) dependent, informa-
tion provided by the joint structure inherent in the hypotheses are somewhat
neglected by the marginal multiple testing approaches, even though the data
(and the prior in the Bayesian case) are dependently modelled. To illustrate,
suppose that we want to test H0i : θi ≥ 0 vs. H1i : θi < 0, i = 1, 2. Let T1

and T2 be the test statistics and suppose that they are highly positively cor-
related. Let us consider the decision rule that we reject H0i in favour of H1i

if Ti < c, for some threshold c. Due to the high positive correlation between
the test statistics, it is a natural guess that the tests should be accepted or
rejected together. Suppose both the null hypotheses are true. However, for sam-
pling perturbations, it is of course possible that T1 < c but T2 > c, which would
yield the counter-intuitive result that H01 is rejected but H02 is accepted. Using
dependent decision rules should be helpful to rectify these kinds of errors if the
information provided by the dependence is utilized judiciously. In this regard, in
this paper we develop a novel multiple testing procedure that coherently takes
the dependence structure into consideration.

Our procedure is based on new notions of error and non-error terms associ-
ated with breaking up the total number of hypotheses. We penalize the decision
of each hypothesis by incorrect decisions regarding other dependent parame-
ters. Thus we design a compound criterion where decisions regarding depen-
dent parameters deterministically depend upon each other. We show that, by
virtue of this dependent decision rule, our method asymptotically minimizes the
Kullback-Leibler (KL) divergence from the true model. Also in extensive simula-
tion studies with dependent data, we see that our method is quite advantageous
in terms of the Type-II error.

We also propose a modified FDR criterion where the dependence between
parameters is incorporated in the error measure. We show that the modified



Non-marginal multiple testing procedure 493

version possess very desirable theoretical properties. Extensive simulation stud-
ies indicate that controlling the modified version provides extra safeguard by
exploiting the dependence structure and results in lower Type-II error.

Moreover, we obtained insightful and interpretable results on application of
our non-marginal method to a real, spatial example.

The rest of our paper is structured as follows. We introduce our non-marginal
multiple testing procedure in Section 2 and develop new Bayesian error rates
for our method in Section 3. In Section 4 we show optimality of the method
with respect to appropriate loss functions based on the “0-1” loss. In Section
5 we show that the non-marginal method minimizes the Kullback-Leibler di-
vergence from the true model in an asymptotic sense. In Section 6 we discuss
issues related to practical implementation of our multiple testing procedure. In
this context, we propose and develop a novel simulated annealing algorithm for
optimization of the criterion for our non-marginal method; this algorithm, how-
ever, is applicable to any optimization problem consisting of binary variates. We
conduct simulation studies, demonstrating the superiority of our methods over
some popular existing multiple testing methods in Section 7, and in Section 8,
we apply our ideas to a real spatial data set concerning radionuclide concentra-
tions on Rongelap island. Finally, we summarize our contributions and provide
concluding remarks in Section 9. Proofs of all our results are provided in the
Appendix.

2. New proposal to obtain non-marginal decisions

2.1. The basic multiple testing set-up

Let Xn = (X1, X2, . . . , Xn) be the observed data. Let the joint distribution of
Xn given θ = (θ1, θ2, . . . , θm) be PXn|θ(·) where θ are the parameters of inter-
est and θi ∈ Θi for all i = 1, . . . ,m. We put a prior Π(·) on the parameter space.
Let Pθ|Xn

(·) and Eθ|Xn
(·) be the posterior probability and posterior expecta-

tion of θ, respectively, given Xn. PXn(·) and EXn(·) represents the marginal
distribution of Xn and expectation with respect to this marginal distribution
respectively.

Consider the following hypotheses:

H0i : θi ∈ Θ0i vs. H1i : θi ∈ Θ1i,

where Θ0i

⋂
Θ1i = ∅ and Θ0i

⋃
Θ1i = Θi, for i = 1, . . . ,m.

Here we discuss the multiple comparison problem in a Bayesian decision
theoretic framework, given data Xn. For i = 1, . . . ,m, let us first define the
following quantities:

di =

{
1 if the i-th hypothesis is rejected;

0 otherwise;

ri =

{
1 if H1i is true;

0 if H0i is true.



494 N. K. Chandra and S. Bhattacharya

Müller et al. (2004) considered the following additive loss function

L(d,θ) = c

m∑
i=1

di(1− ri) +

m∑
i=1

(1− di)ri, (1)

where c is a positive constant. The decision rule that minimizes the posterior
risk of the above loss is given by:

di = I

(
vi >

c

1 + c

)
for all i = 1, · · · ,m, (2)

where I(·) is the indication function and vi = Pθ|Xn
(ri). This loss function has

been widely used in the Bayesian multiple testing literature and also in frequen-
tist decision theoretic approaches. We consider these methods to be marginal
because di depends only on the marginal posterior probability of the ith hy-
pothesis.

In many real life situations auxiliary information regarding the dependence
structure of the parameters are available. On the basis of such information suit-
able dependent prior distribution on the parameters is envisaged. For example
in spatial statistics, Gaussian process prior is often considered. In fMRI data,
Gaussian Markov random field prior is a common prior. In such cases, the ad-
ditional information on the parameters are incorporated in the model through
the prior distribution. Various applications in recent times in fields as diverse as
spatio-temporal statistics, neurosciences, biological sciences, engineering, envi-
ronmental and ecological sciences, astrostatistics, epidemiology, social sciences,
psychometrics, demography, geostatistics, reliability engineering, statistical sig-
nal processing, statistical physics, finance, actuarial science, to name only a few,
consider Bayesian analyses with dependent prior structures. Our proposal is to
incorporate such information, when available, in the testing procedure to ob-
tain improved decision rule. This principle is in accordance with the traditonal
Bayesian philosophy that when prior information is available, inference can be
enhanced. In this regard, we develop a multiple testing method where decisions
regarding dependent hypotheses are not marginal as of (2). We elaborate our
methodology in the next section.

2.2. New error based criterion

Let Gi be the set of hypotheses (including hypothesis i) where the parameters
are dependent on θi. Define the following quantity:

zi =

{
1 if Hdj ,j is true for all j ∈ Gi \ {i};
0 otherwise.

If Gi is a singleton, then we set zi = 1.
Now consider the term

TP =
m∑
i=1

dirizi. (3)
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This is the number of cases i for which di = 1, ri = 1 and zi = 1; in words,
TP is the number of cases for which the i-th decision correctly accepts H1i, and
all other decisions in Gi, which may accept either H0j or H1j , for j �= i, are
correct. We refer to this quantity as the number of true positives, and maximize
its posterior expectation with respect to d. But there are also errors to be
controlled, for example,

E1 =

m∑
i=1

di(1− ri)zi;

E2 =

m∑
i=1

di(1− ri)(1− zi);

E3 =

m∑
i=1

diri(1− zi).

Here E1 is the number of cases i for which di = 1, ri = 0 and zi = 1, that is,
E1 is the number of cases for which H1i is wrongly accepted, but the remaining
decisions in Gi are correct; E2 is the number of cases for which H1i is wrongly
accepted and at least one decision regarding the other hypotheses in Gi is also
wrong; E3 is the number of cases for which the i-th hypothesis is correctly
rejected but at least one of the other decisions associated with Gi, is wrong.
The complete set of terms, corresponding to errors and correct decisions are
provided in Section A. Adding up E1, E2, E3 yields

E =

m∑
i=1

di(1− rizi), (4)

which we will control, subject to maximizing TP . In this context, it is important
to make the following remark, which is proved in Appendix A.1:

Remark 2.1. Adding an extra error term to E while maximizing TP in the
non-marginal decision theoretic framework leads to lesser number of rejections
of the null hypotheses.

It follows from the above remark that controlling too many error terms would
lead to over-penalization, which will finally result in low power. Hence, we do
not attempt to control the other error terms detailed in Appendix A.

Note that E is the total number of cases i for which di = 1, rizi = 0, that
is, either the i-th hypothesis is wrongly rejected or some other decision(s) in
Gi is wrong, or both. This is regarded as the number of false positives in our
notion. Note that in the definitions of both TP and E, di is penalized by incor-
rect decisions in the same group. This forces the decisions to be jointly taken
adjudging other dependent parameters. Taking decisions jointly have particular
advantages over marginal decision rules. In Section 5, we show that by virtue of
the joint decision rule, the non-marginal procedure minimizes the KL-divergence
from the true data-generating process.
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We will minimize the posterior expectation of −TP given by (3) subject to
controlling the posterior expectation of E. Hence, with E to be controlled, the
function to be minimized is given by

gλ(d) =−
m∑
i=1

diEθ|Xn
[rizi] + λ

m∑
i=1

diEθ|Xn
[1− rizi]

=−
m∑
i=1

diwi(d) + λ

m∑
i=1

di(1− wi(d))

=− (1 + λ)

m∑
i=1

di

(
wi(d)−

λ

1 + λ

)
,

where

wi(d) = Eθ|Xn
[rizi] = Pθ|Xn

(
H1i ∩ { ∩

j �=i,j∈Gi

Hdj ,j}
)
.

If Gi is a singleton, then since zi = 1, we replace wi(d) with the marginal
posterior probability Pθ|Xn

(H1i).
We will minimize gλ(d) with respect to d, or equivalently, we can maximize

m∑
i=1

di

(
wi(d)−

λ

1 + λ

)
=

m∑
i=1

di (wi(d)− β) = fβ(d), where β =
λ

1 + λ
.

Definition 2.1. Let D be the set of all m-dimensional binary vectors denoting
all possible decision configurations. Define

d̂ = argmax
d∈D

fβ(d)

where 0 < β < 1. Then d̂ is the optimal decision configuration obtained as the
solution of the non-marginal multiple testing method.

Remark 2.2. This β is the penalizing constant balancing between Eθ|Xn
(TP )

and Eθ|Xn
(E), and indeed plays the crucial role of balancing between Type-I

and Type-II errors. This is formalized in Theorems 3.1 and 3.4. An algorithm
for choosing the optimal β in practice is discussed in Section 6.2.

There are several cluster-based approaches in the multiple testing literature.
Heller et al. (2006); Benjamini and Heller (2007) discussed a cluster-based anal-
ysis of fMRI data in the context of multiple testing; they formed clusters on
the basis of correlations between different voxels. Similarly in analysing spatial
signals, Sun et al. (2015) formed clusters consisting of spatial locations, and
considered a single decision for each cluster. In these works, a whole cluster is
regarded as a signal, that is, all the decisions regarding the parameters in a
particular cluster are same.

On the other hand, in our methodology, the idea behind group formation is
completely different from the idea of clustering in the aforementioned works.
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In our case, all the decisions within a group may not be same. Decisions re-
garding hypotheses in a group highly influence each other through the zi term
that we have introduced in Section 2.2. Moreover, our groups are overlapping
in general, because of inter-dependence among hypotheses in different groups,
and thanks to this, decisions in two different groups are also dependent. In all
the aforementioned cluster based methods, decisions regarding different clusters
are marginal. Such cluster based approaches are important in situations where
signals appear in clusters. Our procedure is also applicable in such situations by
forming groups of dependent clusters. In Section 6.1 we discuss how to form the
groups in different contexts where the hypotheses are particularly dependent.

In Section 4 we show that our proposed method is the optimal solution
minimizing an additive “0-1” loss function. When proper dependence struc-
ture between the hypotheses is present, the “0-1” loss function is advocated
by Abramovich and Angelini (2006). We further show that for sufficiently large
sample size n, and under reasonable assumptions, the non-marginal method
minimizes the Kullback-Leibler (KL) divergence from the true decisions; see
Section 5. In both the aforementioned contexts, joint decision making plays a
crucial role and particularly enables minimization of KL divergence.

It is important to observe that any multiple testing method concerning the
loss function in (1), for instance, can be viewed as a special case of our method
where, for i = 1, . . . ,m, Gi = {i}, that is, when we have no information about
any dependence between the hypotheses. In situations, where no information
regarding the dependence structure between parameters is available, our method
boils down to the additive loss function based method.

In practical situations, where this method would be implemented to actually
get the decision configuration, one needs to maximize fβ(d) with respect to d.
A simulated annealing algorithm is proposed in Algorithm 2 of Section 6.3 to
carry out the maximization problem in practice.

3. New Bayesian error rates for our non-marginal procedure

Before we introduce our notion of Bayesian error rates, we first provide a brief
account of some existing classical and Bayesian error rates.

3.1. A brief overview of error rates in multiple testing

Storey (2003) advocated the positive FDR as a measure of Type-I error in mul-
tiple testing literature. The measure is defined as:

pFDR = EXn

[∑
d∈D

∑m
i=1 di(1− ri)∑m

i=1 di
δ(d|Xn)

∣∣∣∣δ(0|Xn) = 0

]
, (5)

where δ(d|Xn) is the probability of choosing the decision configuration d ac-
cording to the associated multiple testing procedure and 0 is the decision config-
uration that no null hypothesis is rejected. In case of non-randomized decision
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rules, δ(d|Xn) = 1 for the decision configuration which is chosen to be the final
decision rule.

Under the prior distribution of θ, Sarkar et al. (2008) defined the posterior
FDR as

posterior FDR =Eθ|Xn

[∑
d∈D

∑m
i=1 di(1− ri)∑m

i=1 di ∨ 1
δ(d|Xn)

]

=
∑
d∈D

∑m
i=1 di(1− vi)∑m

i=1 di ∨ 1
δ(d|Xn). (6)

Given data Xn, we denote the posterior FDR by FDRXn . Now, the positive
Bayesian FDR (pBFDR) is the expectation of (5) with respect to θ or expecta-
tion of (6) with respect to the conditional distribution [Xn|δ(d = 0|Xn) = 0],
and is given by:

pBFDR = EXn

[∑
d∈D

∑m
i=1 di(1− vi)∑m

i=1 di
δ(d|Xn)

∣∣∣∣δ(0|Xn) = 0

]
.

The numerator term in pFDR or pBFDR is the number of false positives. FDR
is the expected proportion of false positives among all discoveries.

3.2. A new Bayesian false discovery rate and its properties

In accordance with our new notion of false positives we modify the false discovery
rate criteria. The posterior modified FDR is defined by

posterior modified FDR = Eθ|Xn

[∑
d∈D

∑m
i=1 di(1− rizi)∑m

i=1 di ∨ 1
δ(d|Xn)

]

=
∑
d∈D

∑m
i=1 di(1− wi(d))∑m

i=1 di ∨ 1
δ(d|Xn).

We call it as posterior mFDR, in short mFDRXn
. Notably in this error

rate, there are extra penalizations for incorrect decisions regarding dependent
parameters in group. Though, this makes the error rate more conservative than
the FDR, but it gives extra safeguard against Type-II error. Chandra and Bhat-
tacharya (2018) explicitly showed that the mFDRXn is directly associated to
the deviation from the true distribution through its convergence rate. Taking
expectation with respect to the marginal distribution of the data, we get the
modified positive Bayesian FDR (mpBFDR).

mpBFDR = E

[∑
d∈D

∑m
i=1 di(1− rizi)∑m

i=1 di
δ(d|Xn)

∣∣∣∣δ(0|Xn) = 0

]

= EXn

[∑
d∈D

∑m
i=1 di(1− wi(d))∑m

i=1 di
δ(d|Xn)

∣∣∣∣δ(0|Xn) = 0

]
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One may speculate that the modified error criterion, as well as the decisions
of the non-marginal procedure may change with different choices of groups. In
this regard, we argue that group formation should be based on domain knowl-
edge regarding the association between parameters. Notably, based on domain
knowledge prior correlation structures are generally imposed on the parameters,
so that given the prior, the groups remain fixed. In Section 6.1 we discuss several
schemes of forming groups in different contexts, based on the prior knowledge.
For different priors, the group structures will of course be different, but then in
that case the existing posterior FDR or pBFDR will be different as well.

In Section 7.4, extensive simulation studies show that by controlling the mod-
ified FDR some existing popular multiple testing methods gain accuracy. This
is not unexpected, given that the modified version is associated with a stricter
penalty for incorrect decisions.

We have discussed in Section 2.1, the additive loss function based marginal
methods becomes a special case of our non-marginal procedure when Gi = {i}
for all i = 1, · · · ,m. In that case both the modified versions boil down to their
existing counterparts.

3.3. Controlling FDR

For our method we can control mpBFDR exactly at any pre-specified level by
properly choosing β. Under very minor assumptions we rigorously prove this in
the following theorem.

Theorem 3.1. Assume that for all β ∈ (0, 1), the events {Xn :
∑m

i=1 d
∗
iwi(d

∗)
=β
∑m

i=1 d
∗
i } and {Xn :

∑m
i=1 diwi(d)−

∑m
i=1 d

∗
iwi(d

∗)=β (
∑m

i=1 di−
∑m

i=1 d
∗
i )}

for two different decision configurations d and d∗ in D, have zero probabilities
under Xn. Then mpBFDR for the non-marginal procedure is continuous in β.

Remark 3.2. By the above theorem, continuity of mpBFDR with respect to
β clearly holds when wi(d) have continuous distributions (existence of density
not necessary). Even for discrete distributions assigning zero probabilities to the
sets {

Xn :

m∑
i=1

d∗iwi(d
∗) = β

m∑
i=1

d∗i

}
and {

Xn :
m∑
i=1

diwi(d)−
m∑
i=1

d∗iwi(d
∗) = β

(
m∑
i=1

di −
m∑
i=1

d∗i

)}
for d ∈ D, such continuity holds.

The importance of Theorem 3.1 is that it shows we can set the error measure
exactly at any desired level through adjusting β; this would yield greater power
than controlling the error with an upper bound. Observe that β is the weight of
the error defined in (4). This interpretation of β as the penalizing factor between
error and TP becomes rigorous from the following lemma and theorem.
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Lemma 3.3. Let d̂ = argmaxd∈D
fβ(d). Then

∑m
i=1 d̂i is decreasing in β.

This lemma shows that β penalizes the number of rejections, that is, with
increasing β, the number of rejections decrease.

Theorem 3.4. mpBFDR for the non-marginal procedure is non-increasing in
β.

The continuity and non-increasing properties of mpBFDR asserted by The-
orems 3.1 and 3.4 together help us easily set the Type-I error at any desired
level.

Remark 3.5. Note that Theorem 3.1, Lemma 3.3 and Theorem 3.4 hold without
any restriction on the group structure. Since, as already discussed, the additive
loss function based methods are special cases of our non-marginal procedure when
dependence between the hypotheses is ignored, the above results are applicable to
such marginal methods as well. In this regard, note that the constant c in the
additive loss function acts as the penalizing constant between Type-I and Type-II
errors in the marginal methods.

3.4. Type-II errors in multiple testing

The positive False Non-Discovery Rate is defined as

pFNR = EXn

[∑
d∈D

∑m
i=1(1− di)ri∑m
i=1(1− di)

δ(d|Xn)

∣∣∣∣δ(1|Xn) = 0

]
,

and the positive Bayesian False Non-Discovery Rate is given by

pBFNR = E

[∑
d∈D

∑m
i=1(1− di)ri∑m
i=1(1− di)

δ(d|Xn)

∣∣∣∣δ(1|Xn) = 0

]

= EXn

⎡⎣∑
d �=1

∑m
i=1(1− di)vi∑m
i=1(1− di)

δ(d|Xn)

∣∣∣∣δ(1|Xn) = 0

⎤⎦ .
where 1 is the decision configuration that all the null hypotheses are rejected.
Note that pFNR and pBFNR are the expected proportions of false non-
discoveries among all non-discoveries. Therefore, these are regarded as measures
of Type-II errors in the context of multiple testing. The simulation studies in
Section 7 show that that the non-marginal method is quite advantageous in
terms of incurring lower pBFNR when compared to some existing methods.
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4. Optimality of the non-marginal method with respect to the “0-1”
loss function

The“0-1”loss function in the multiple testing context is given by (see Abramovich
and Angelini (2006), for example):

L
(
dt,d

)
=

{
0 if d = dt,

1 otherwise,
(7)

where dt is the true decision configuration. Note that minimization of the pos-
terior expected loss with respect to the above loss function is the same as mini-
mization of the posterior w(d) = Pθ|Xn

(∩m
i=1Hdi,i) with respect to all possible

decision configurations d.
In the next sections, we prove optimality of the non-marginal procedure keep-

ing the number of discoveries fixed at some k. This k can be looked upon as
a parameter of the loss function in (7). Recall that the additive loss function
defined in (1) also has the parameter c. Guindani et al. (2009) showed that for
the decision rule in (2), pBFDR < 1/(1 + c). It is a general practice to choose
c such that the Type-I/Type-II error is controlled at some desired level. From
Remark 3.5 we see that the number of discoveries and pBFDR both decrease
with increase in c. Hence, for a particular value of c, the number of discoveries
also gets fixed, and choosing an appropriate c is equivalent to fixing the num-
ber of discoveries in the additive loss function based approaches. The “0-1” loss
puts equal weight on the number of discoveries. To overcome this, Abramovich
and Angelini (2006) put a prior on the number of discoveries and directly mini-
mized the posterior risk of the “0-1” loss function. We do not invoke this extra
prior structure in our method and choose our penalizing constant β subject
to controlling Type-I error at some desired level or equivalently the number of
discoveries.

4.1. Optimality when all the parameters are dependent

Let G = {G1, . . . , Gm} denote any set of groups associated with the m hypothe-
ses. We first consider the case where all the parameters are dependent upon each
other, that is, Gi = {1, . . . ,m}, for i = 1, . . . ,m. We show that for any arbitrary
sample size, the non-marginal procedure is optimal with respect to the “0-1”
loss function. In other words, when Gi = {1, . . . ,m}, for i = 1, . . . ,m, our non-
marginal method is optimal among all multiple testing methods in the sense of
minimizing the posterior risk of the “0-1” loss subject to the same number of
discoveries of the competing decision configurations. We formalize this in the
form of the following theorem.

Theorem 4.1. Assume that for our non-marginal method, Gi = {1, . . . ,m},
for i = 1, . . . ,m. Then for any integer k such that 0 < k < m, there exists
β̂ such that the corresponding decision output d̂ minimizes the posterior risk
associated with the “0-1” loss among all decisions d∗ satisfying

∑m
i=1 d

∗
i = k.
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4.2. Optimality in the case of block dependent parameters

In Section 4.1, we have shown optimality of the non-marginal procedure where
all the parameters are dependent. However, dependence among all the parame-
ters may not be present always. In this section, we show that the non-marginal
method is also optimal for block dependent parameters.

We assume that we have s blocks, r-th block consisting of or(= mr −mr−1)
dependent parameters, where 1 ≤ r ≤ s and where

∑s
r=1 or = m. We assume

that the blocks do not possess any inter-dependence a priori. Therefore, for any
parameter θj in r-th block, Gj consists of all the parameters in that block.
Clearly, there will be s distinct groups which we denote by {G∗

1, . . . , G
∗
s}.

1, · · · ,m1︸ ︷︷ ︸
G∗

1

,m1 + 1, · · · ,m2︸ ︷︷ ︸
G∗

2

, · · · ,ms−1 + 1, · · · ,ms︸ ︷︷ ︸
G∗

s

Clearly, Gi �= {1, . . . ,m} for any i = 1, . . . ,m unlike the case in Section 4.1.
Now, for disjoint groups the “0-1” loss function defined in (7) would be too
restrictive. Therefore, for proper multiplicity control across all groups we define
an additive “0-1” loss function by levying appropriate weight over the blocks.
For that purpose we first define the following quantities:

dG∗
r
=
(
dmr−1+1, . . . , dmr

)T
,

kr(d) =
∑
i∈G∗

r

di, (8)

k̃(d) = (k1(d), . . . , ks(d))
T ,

S(k) =

{
k̃ = (k̃1, . . . , k̃s)

T :

s∑
r=1

k̃r = k

}
.

In the definition of S(k), k̃1, . . . , k̃s and k are non-negative integers. Now, for any
decision configuration d such that

∑
di = k we have k̃(d) ∈ S(k). Therefore,

any k̃ ∈ S(k) corresponds to some decision configuration d where k̃r is the
number of discoveries in G∗

r . Now we define the partial loss function for G∗
r :

Lr

(
dt,d

)
=

{
0 if dG∗

r
= dt

G∗
r
,

1 otherwise,

and hence the following additive loss function subject to the restriction that
d ∈ S(k):

L
(
dt,d

∣∣ k) = min
k̃∈S(k)

s∑
r=1

k̃rLr

(
dt,d

)
. (9)

In the above additive loss function, each partial loss-function Lr is weighted
proportional to the number of discoveries in G∗

r and then adjusting the weights
such that the total loss is minimum. Optimality of the non-marginal based
method is formalized in the following theorem:
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Theorem 4.2. Assume that the parameters are block dependent a priori. Then
the decision output d̂ of the non-marginal based method minimizes the posterior
risk associated with L(dt,d|k) subject to

∑m
i=1 d̂i = k, for any integer k where

1 ≤ k ≤ m.

4.3. Interpretation of posterior mFDR as appropriate probabilities

Note that givenXn, and assuming thatG = {G1, . . . , Gm} withGi = {1, . . . ,m}
for i = 1, . . . ,m, the mFDRXn

boils down to 1−w(d̂) by virtue of Lemma C.2,

where d̂ is the decision configuration output of the non-marginal method. In this
case mFDRXn is the posterior probability of the joint decision being wrong.

Now, consider the set-up in Section 4.2. In this case,

mFDRXn =
∑
d∈D

∑m
i=1 din(1− wi(d))∑m

i=1 di
δ(d|Xn) =

s∑
r=1

kr(d̂)∑m
i=1 d̂i

wr(d̂
c

G∗
r
).

Note that wr(d̂
c

G∗
r
) = 1−wr(dG∗

r
) is the probability that at least one decision

in r-th block is incorrect. Recall that in the additive “0-1” loss function defined
in (9), kr(d) is the weight of the partial loss incurred in the r-th block, that

is in G∗
r , for all r = 1, . . . , s. Similarly in mFDRXn , the ratio kr(d̂)/

∑m
i=1 d̂i

can be interpreted as weight of the error incurred in group G∗
r . Genovese et al.

(2006) discussed weighted false discovery control and also proposed a way to
estimate the weights corresponding to each hypothesis. In their method, the
estimated weights were also proportional to how strong the signal was for each
hypothesis. Similar ideology works behind interpreting kr(d̂)/

∑m
i=1 d̂i as the

weight for G∗
r . This probability, being proportional to the number of discoveries

associated with group G∗
r , can be interpreted as the strength of group G∗

r with
respect to the number of discoveries associated with it.

Moreover, the weights add up to 1 and therefore, it is natural to think of
them as probabilities. We interpret the weight as the probability of occurring
error in the corresponding block given the data. Thus, we see that∑s

r=1 kr(d̂)(1− wr(dG∗
r
))∑m

i=1 d̂i
=

s∑
r=1

P (G∗
r |Xn)wr(d̂

c

G∗
r
)

=

s∑
r=1

P (G∗
r |Xn)P (d̂

c

G∗
r
|Xn, G

∗
r)

=

s∑
r=1

P (d̂
c

G∗
r
, G∗

r |Xn) = P
(
∪s
r=1

{
d̂
c

G∗
r
∩G∗

r

}
|Xn

)
,

which is the posterior probability that at least one decision in one of the blocks
is incorrect. Hence, in this case also mFDRXn

can be interpreted as an appro-
priate probability.

We remark that for Bayesian multiple testing methods, in keeping with the
Bayesian philosophy, it makes sense to define the error measures conditional
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on the data, avoiding expectation with respect to the (marginal) distribution
of the data. Not only does this support the Bayesian philosophy, it also dras-
tically simplifies the computation of such error measures in complex practical
problems. Moreover, it can be easily verified that all the desirable properties
of mpBFDR remain intact even without the expectation with respect to the
marginal distribution of data. It follows that the bona fide Bayesian version of
mpBFDR admits the interpretation as a valid posterior probability with all
desirable properties under suitable assumptions.

5. Minimization of the Kullback-Leibler divergence of the
non-marginal multiple testing procedure

In this section, we show that the non-marginal method minimizes the KL-
divergence from the true model. Shalizi (2009) provided sufficient conditions for
posterior convergence under general dependence set-up and showed. We briefly
state the relevant results in the following section.

5.1. Preliminaries for ensuring posterior convergence under general
set-up

We consider a probability space (Ω,F , P ), and a sequence of random vari-
ables X1, X2, . . ., taking values in some measurable space (Ξ,X ), whose infinite-
dimensional distribution is P . We denote the distributions of the class of pro-
posed models by PXn|θ, where θ is associated with a measurable space (Θ, T ).
For the sake of convenience, we assume, as in Shalizi, that P and all the PXn|θ
are dominated by a common reference measure, with respective densities p and
fθ. The usual assumptions that P ∈ Θ or even P lies in the support of the
prior on Θ, are not required for Shalizi’s result, rendering it very general in-
deed. We levy the prior distribution π(·) on the parameter space Θ. Consider
the following likelihood ratio:

Rn(θ) =
fθ(Xn)

p(Xn)
.

For every θ ∈ Θ, the KL-divergence rate h(θ) is defined as

h(θ) = lim
n→∞

1

n
E

(
log

p(Xn)

fθ(Xn)

)
,

given that the above limit exists. For A ⊆ Θ, let

h (A) = ess inf
θ∈A

h(θ); J(θ) = h(θ)− h(Θ); J(A) = ess inf
θ∈A

J(θ). (10)

We state assumptions (S1)–(S7) considered by Shalizi in Section B of the
Appendix. Under those assumptions the following theorem can be seen to hold:
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Theorem 5.1 ((Shalizi, 2009)). Consider assumptions (S1)–(S7) and any set
A ∈ T with π(A) > 0. If ς > 2h(A), where ς is given in (22) under assumption
(S5), then

lim
n→∞

1

n
logPθ|Xn

(A|Xn) = −J(A).

5.2. KL-divergence when all the parameters are dependent

Let G = {G1, . . . , Gm} denote any set of groups associated with the m hypothe-
ses. We consider the case where all the parameters are dependent upon each
other as in Section 4.1, that is, Gi = {1, . . . ,m}, for i = 1, . . . ,m. Note that, the
possible decision configurations corresponding to the m hypotheses partitions
the parameter space Θ into 2m partitions. Let Θd = {θ1 ∈ Θd1 , . . . , θm ∈ Θdm}.
From (10), we see that J(Θd) is the ess inf KL-divergence rate from the true
model. Now, we state the following theorem:

Theorem 5.2. Assume that for our non-marginal method, Gi = {1, . . . ,m},
for i = 1, . . . ,m. Then for any integer k such that 0 < k < m, there exists β̂
such that the corresponding decision output d̂ asymptotically minimizes the KL
divergence rate J(Θd) among all decision configurations d satisfying

∑m
i=1 di =

k.

5.3. KL-divergence minimization in case of block-dependent
parameters

Similar to Section 4.2, we now consider the case where the parameters are block
dependent. G = {G1, . . . , Gm} be the set of all groups and {G∗

1, . . . , G
∗
s} denote

the set of distinct and disjoint groups, where 1 < s ≤ m.
As in Section 4.3 we also assume that the hypotheses within the groups

G∗
i ; i = 1, . . . , s, correspond to parameter sets Θ∗

r ; r = 1, . . . , s, and that these
parameter sets are associated with independent data sets. In other words, we as-
sume thatXn={X1n, . . . ,Xsn} and the likelihood is of the form

∏s
r=1[Xrn|Θ∗

r ].
Let us now consider the problem of maximization of

m∑
i=1

di (win(d)−βn)=

s∑
r=1

⎛⎝∑
i∈G∗

r

di

⎞⎠(wrn(dG∗
r
)−β

)
=

s∑
r=1

kr(d)
(
wrn(dG∗

r
)−β

)
,

subject to
∑m

i=1 di = k, as in Section 4.2. With the way of maximization of the

individual summands kr(dG∗
r
)
(
wrn(dG∗

r
)− β

)
for fixed kr(dG∗

r
) = k̃r as detailed

in Section 4.2, it is clear that the maximization problem is equivalent to max-
imization of 1

mn

∑s
r=1 kr(dG∗

r
)
(
logwrn(dG∗

r
)− β∗) for fixed k̃r; r = 1, . . . , s,

where we have replaced wrn(dG∗
r
) by logwrn(dG∗

r
) and β∗ = log β.

Now let the groups {G∗
1, . . . , G

∗
s} be homogeneous in the sense that

lim
m→∞

kr(d
t)

m
= p ∈ (0, s−1), (11)
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where dt is the true decision configuration. In words, for large number of hy-
potheses m, the proportion of true discoveries are approximately the same for
all the groups G∗

r . Let k̃r = kr(d
t). Then subject to

lim
m→∞

kr(d)

m
= lim

m→∞
k̃r
m

= p; r = 1, . . . , s, (12)

let us consider maximization of

lim
m→∞

1

mn

s∑
r=1

kr(d)
(
logwrn(dG∗

r
)− β∗) (13)

with respect to d. Let Θd∞ be the parameter space associated with the infinite
dimensional decision configuration d∞. Then the following result holds.

Theorem 5.3. Assume the above set-up of disjoint and distinct groups
{G∗

1, . . . , G
∗
s} satisfying the homogeneity condition (11). Then there exists β̂

such that the corresponding non-marginal decision output d̂
∞

maximizing (13)
asymptotically minimizes the KL divergence rate J(Θd∞) among all decision
configurations d∞ satisfying (12).

6. Practical issues on implementation of the non-marginal procedure

Performance of the non-marginal procedure heavily depends upon the choice of
groups as the decisions significantly depend upon each other through the group
structure. Judicious choice of the groups is thus crucial for our methodology.
Also, proper choice of the penalization constant β plays a major role in the
procedure as does the constant c in the additive loss function defined in (1).
And finally, the problem of obtaining the optimal decision configuration by
maximizing fβ(d) must receive its due attention. Indeed, since the decisions
deterministically depend upon each other, the decision rule is not available in
closed form, and sophisticated numerical methods must be employed to optimize
fβ(d). In this section we discuss the solutions in details.

6.1. Choice of {G1, . . . , Gm}

From the Bayesian perspective, we recommend the choice of {G1, . . . , Gm} using
the prior correlation structure between the parameters of interest. In cluster-
based multiple testing approaches, Benjamini and Heller (2007) prescribed for-
mation of the clusters using information outside the data to be analysed. There-
fore, from the Bayesian viewpoint, their recommendation seems to coincide with
our idea of forming groups on the basis of prior correlation.

Recall that Gi is defined as the set of parameters with inherent dependence
structure with θi. However, in implementation of the method forming groups
concerning all dependent parameters might be disadvantageous in high dimen-
sional cases.
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Firstly, keeping very weakly dependent parameters in Gi will only increase
the complexity of the method without rendering any extra information from the
dependent structure. This can be explained heuristically as follows. Recall from
Definition 2.1 that the quantity

∑m
i=1 di(wi(d)− β) is maximized with respect

to d. Now, the joint posterior probability wi(d) will tend to be small (often,
less than β) if Gi is consisted of numerous parameters. Keeping very weakly
dependent parameters in the group will incur over-penalization levying high
posterior probability of zi = 0. In such cases, the decision configuration d, with
di = 0 for all i, will tend to be the solution of the maximization problem if even
a single decision in the same group is incorrect. This might turn the method to
be overly conservative.

A second disadvantage of large groups is related to the curse of dimensionality
in computing the high dimensional joint posterior probabilities wi(d). For large
m, the numerical values of this probability will often be quite small, again
prompting unreasonable selection of many null hypotheses.

Both the problems are avoided if the group sizes chosen are not significantly
large. We provide the following scheme of group formation on the basis of prior
dependence structure. Chandra and Bhattacharya (2018) showed that the non-
marginal method is robust on group formation in the sense that it asymptotically
converges to the true decisions.

Assume that the prior correlation structure between the m parameters of
interest is given by Rm with (i, j)-th element ρij . We first consider the correla-
tions between the i-th and j-th parameters, with i < j, and obtain the desired
percentile (say, 95%) ρ of these quantities. Then, in Gi we include only those
indices j ( �= i) such that ρij ≥ ρ. Thus, the i-th group contains indices of the
parameters that are highly correlated with the i-th parameter. If there exists no
index j such that ρij ≥ ρ, then Gi = {i}. This scheme of group formation has
yielded excellent results in the simulation studies in Section 7.

In some special cases this group formation strategy can be further simplified
and is often complimentary to the situation. While testing for spatial signals,
groups can be formed with neighbouring locations in each group. This strategy
is implemented in Section 8 and elaborately explained in Section 8.1.2.

In functional Magnetic Resonance Imaging (fMRI) studies, multiple testing
is commonly used to detect actual signals and separating out noise. Zhang et al.
(2011) proposed a methodology of local aggregation of voxels, subsequently ap-
plying to a multiple testing method. Also in the Bayesian approach to fMRI
studies, the Markov-random field (MRF) prior has been widely used in the
literature. Since MRF considers dependence structure among the neighbouring
voxels, our method of group formation using dependent neighbouring sites (vox-
els) is in keeping with the local dependence structure induced by the MRF prior.
Thus, the idea of forming groups in this manner is parallel to the general strat-
egy of group formation on the basis of prior correlation that we have already
discussed.

In microarray or microRNA datasets, multiple testing is widely used to de-
tect differentially expressed genes. Information are available on positional and
functional clustering of genes. Incorporating these information in the model as
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prior and subsequently forming groups might help account for the dependence
between the genes and yield better results.

In situations, where no prior information on dependence structure is available,
groups can be formed on the basis of the dependence structure showcased by
the data. This is similar to the empirical Bayes procedures of prior selection.
We recommend the posterior correlation structure in this regard.

6.2. Choice of the penalizing constant β

In Section 4.3, we advocate the mFDRXn
as a measure of Type-I error in

multiple testing. Let d̂ = argmaxd∈D
fβ(d). We define γ(β) =

∑m
i=1 d̂i(1−wi(d̂))∑m

i=1 d̂i
.

Clearly, γ(β) is the mFDRXn
incurred given the data. Then

γ(β) < 1− β.

However, considering this property only might lead to very conservative con-
trol. To illustrate, suppose that one is interested in controlling the error at level
0.1. Figure 1 shows that considering β = 0.9 would wield a conservative decision
configuration where the actual error is much lower than 0.1.

Fig 1.

From Theorem 3.4 we see that the error is non-increasing in β. In light of
this theorem, we propose the following algorithm to choose β, assuming that
the interest lies in controlling γ(β) at level α.

Algorithm 1 Algorithm to choose appropriate β
1: Start with β = 1− α, compute E = γ(β) and take a small ε > 0.
2: while E ≤ α do
3: Set β̃ = β − ε and compute E = γ(β̃).
4: Set β = β̃.

5: end while.
6: β̂ = β + ε is the appropriate value of β.
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6.3. A novel simulated annealing methodology for optimization with
binary variables and application to our decision problem

In this section, we propose a novel and efficient simulated annealing methodology
to solve the penalized optimization problem of maximizing fβ(d). Importantly,
this method is applicable to all optimization problems involving any number of
binary variables.

Simulated annealing is an MCMC based stochastic optimizing algorithm that
is capable of escaping the attraction of the local modes. Because of the ease of
implementation and particularly thanks to the ability to escape local modes,
this algorithm is particularly very useful for optimizing arbitrary complicated
functions with many local modes. The fundamental idea, discussed in Robert
and Casella (2013), is a change of scale, called temperature, allowing faster moves
on the surface of the function to be maximized. This rescaling partially avoids
the possibility to get stuck in a local maximum. Given a temperature parameter
Ti > 0, sample is generated from

πi(d) ∝ exp{fβ(d)× Ti}.

As Ti increases towards infinity, the values simulated from this distribution be-
come concentrated in narrower and narrower neighbourhoods around the global
maxima of fβ .

Samples are generated from πi(·) by the Metropolis-Hastings (MH) strategy.
At each step, the simulation method perturbs the values of the variables by a
small amount, while Ti is slowly increased simultaneously. The resultant config-
uration will be accepted if it procures a higher value of fβ(·). If not, then also
the new configuration can be accepted with a positive acceptance probability.
This enables the system to hill-climb from a locally optimal state. Simulated
annealing is the repeated application of the above basic step until no more in-
crement of the desired function is virtually possible. This method always assigns
positive probability to the event of escaping a local maximum.

However, in multiple testing contexts, hundreds and thousands and some-
times even millions of hypotheses are tested simultaneously making d quite
high-dimensional. In the case using an ordinary MH-based algorithms to gener-
ate sample from πi(·) often becomes inefficient affecting the acceptance rate and
convergence of simulated annealing. Dutta and Bhattacharya (2014) devised a
Transformation based MCMC (TMCMC) method and showed that even though
a very large number of parameters are to be updated, these can be updated very
efficiently by simple deterministic transformations of a single, one-dimensional
random variable with high acceptance rate. Therefore to generate samples from
πi(·) in the simulated annealing algorithm, we implement the TMCMC strategy.

Note that, in the problem of maximizing fβ(·), each component of d is either
0 or 1, that is, the support of fβ is a finite set with discrete binary vectors. In
Algorithm 2, we describe the TMCMC based simulated annealing algorithm for
the optimization problem. We random update the component(s) of the vector
with the univariate quantity ξ. This algorithm can be applied in complex discrete
optimization problems.
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Algorithm 2 Maximization of fβ by Simulated Annealing using TMCMC

1: Start with d(0) = (d
(0)
1 , · · · , d(0)m ), and set ξ = 1. Fix some probability r ∈ (0, 1).

2: for i = 0 · · ·N do
3: d∗ = d(i) and simulate v ∼ U(0, 1).
4: if v < r then change exactly one of d∗j ’s, j = 1, · · · ,m. Decide randomly which one

to update. If, say, d∗1 is the selection, then set d∗1 = (d∗1 + ξ) mod 2 and d∗j is unchanged
∀ j = 2, · · · ,m.

5: else update all d∗j ’s. Set d∗j = (d
(i)
j + ξ) mod 2 ∀ j = 1, · · · ,m.

6: Simulate u ∼ U(0, 1).

i if u < α = min
{
1,

πi(d
∗)

πi(d)

}
= min

{
1, e(fβ(d∗)−fβ(d))×Ti

}
then update

d(i+1) = d∗.

ii else d(i+1) = d(i).

The decision configuration d, obtained by running the above algorithm for
a sufficiently large number of iterations, is the optimal decision configuration
maximizing fβ(d). Note that, in steps 4 and 5 of the algorithm, a new proposal
value is generated. Effectively by simulating only one sample from the uniform
distribution on (0, 1), we are able to generate this proposal value in arbitrary
dimensions. This saves huge computational cost when the dimension is reason-
ably high. Note that updating only one co-ordinate randomly with probability
r and updating all the co-ordinates with the remaining probability is required
for irreducibility which we prove subsequently.

In our simulated annealing algorithm, the time inhomogeneous Markov chain
that has been used, has the following transition kernel:

Pi(d
∗|d) = P(at step i + 1 the decision config is d∗|at step i the decision config was d)

= P(S(i+1) = d∗|S(i) = d). (14)

Simple verification of the detailed balance condition leads to the following
lemma.

Lemma 6.1. The Markov chain with transition kernel (14) has stationary dis-
tribution πi and it is also irreducible and aperiodic.

As is well-known, in practice, judicious choice of the temperature is crucial for
satisfactory convergence of simulated annealing algorithms. In our simulation
studies and the real data example, the choice Ti = log log(i+ 2); i ≥ 1, turned
out to be very appropriate in this regard. In all our applications, we considered
106 iterations and chose that decision configuration for which the optimizing
criterion is the maximum among 106 iterations.

7. Simulation study

In this section we compare the performance of the non-marginal procedure
(NMD) with the following widely used methods of Müller et al. (2004) (MPR),
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Sarkar et al. (2008) (SZG), Benjamini and Hochberg (1995) (BH) and Storey
(2002) (ST ) respectively. We elaborate the simulation design in the following
section.

7.1. The true data generating mechanism

Let

X1,X2, . . . ,Xn
iid∼ MN (μm,Σm),

where MN (μm,Σm) stands for multivariate normal with mean μm and disper-
sion matrix Σm. In this simulation experiments Σm is a non-diagonal positive-
definite matrix constructed in the following manner. We setΣm = DmRmDmT ;
here Dm is an m-dimensional diagonal matrix where the diagonal elements are
distributed independently and identically as the square root of the chi-square
distribution with five degrees of freedom. We assume that the (i, j)-the element

of Rm is of the form exp
{
−(zi − zj)

2
}
, where z1, . . . , zm

iid∼ Beta
(
1
2 ,

1
2

)
. The

hypotheses of our interest are

H0i : μi ≥ 0 vs. H1i : μi < 0, i = 1, . . . ,m. (15)

Consider a scalar value a ∈ [−1, 1]. Now for each replication of our simulation
experiment, we first simulate μm fromMN (a1m,Σm) and treat these simulated
values of μm as true values. Then we draw the sample X1,X2, . . . ,Xn from
MN (μm,Σm), for the particular value of a. Once the data is thus generated
with a dependence structure, we compare the performance of the non-marginal
method with the competing methods across the replications.

We perform the experiments for 21 equispaced values of a in [−1, 1]. This a
can be regarded as a shift parameter from true null to true alternative. Note
that when a is close to 1, most of the nulls will happen to be true. Similarly
most of the nulls will be false when a is close to −1. Though the latter case
is not very practical in real life situations, for the sake of completeness we
nevertheless perform the simulation studies for comparing the performance of
different methods.

We have done 1500 replications of the simulation experiment for all our subse-
quent studies. Once generated Σm is kept fixed throughout all our replications.

7.2. The postulated Bayesian model and p-value computation

Note that our proposed NMD method, and the competing MPR and SZG
methods are Bayesian methods of multiple testing. All these methods require
the posterior distribution of the parameters to carry out the hypothesis testing
problem in (15). We state the likelihood and prior distribution considered for
all these methods as following. We assume

X1,X2, . . . ,Xn
iid∼ MN (μm,Λm). (16)
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Notably, (μm,Λm) are unknown parameters. We assume Normal-Inverse
Wishart (NIW ) prior on these parameters.

(μm,Λm) ∼ NIW (a1m, λ,Σm, ν), (17)

where a is the shift parameter mentioned in Section 7.1, λ = 1 and ν = m. Then
the posterior distribution of (μm,Λm) given data (X1,X2, . . . ,Xn) is

[μm,Λm|X1,X2, . . . ,Xn] ∼ NIW (μ̃, λ̃, Λ̃, ν̃), (18)

where

ν̃ = ν+n, λ̃ = n+λ, μ̃ =
nX̄ + λa1

n+ λ
, Λ̃ = nS+Σm+

nλ

n+ λ
(X̄−a1)(X̄−a1)T .

In the above, X̄ and S are the sample mean and dispersion matrix, respectively.
In (17), integrating out Λm we get

[μm|X1,X2, · · · ,Xn] ∼ tν̃−m+1

(
μ̃,

1

λ̃(ν̃ −m+ 1)
Λ̃

)
, (19)

where tν(μ,Λ) denotes multivariate central t-distribution with location vec-
tor μ, scale matrix Λ and ν degrees of freedom. All the three Bayesian methods,
namely NMD, MPR and SZG are performed with respect to the posterior dis-
tribution of μm in (19). Also the NMD method requires to define the groups.
We have implemented the group formation strategy discussed in Section 6.1 in
our simulation studies on the basis of the prior correlation matrix Rm.

As regards BH and ST , these are frequentist methods. Due to normality
of the data (see (16)), the hypothesis testing problem in (15) is equivalent to
testing H0i : μi = 0 vs. H1i : μi < 0, by virtue of the monotone likelihood
ratio property. The Student’s t-test statistic which is also the most powerful

test statistic in this case, is given by Ti =
√
nX̄i

si
where X̄i and si are the sample

mean and standard deviation respectively. Clearly under H0i, Ti follows a t-
distribution with n− 1 degrees of freedom for all i. The p-value corresponding
to i-th test is given by pi = P (tn−1 < Ti|H0i). The BH method is executed on
the basis of these p-values subject to controlling the FDR at the required level.

However, it is not straightforward to compare with the method ST . As in
that method, FDR is estimated for a fixed rejection region, whereas we set
the rejection region subject to controlling Type-I error at a fixed level. In this
method, i-th null hypothesis is rejected if pi < Γ and FDR is computed for that
particular Γ. We circumvent this problem by setting Γ such that the FDR is
controlled at the requisite level.

7.3. Comparison scheme for performance comparison to competing
methods

To compare the performance of our NMD method with the competing Bayesian
methods, we control versions of FDR at the same level for all the methods and
study the respective pBFNR incurred.
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However, for any frequentist method, the Bayesian error rates mpBFDR or
pBFDR are undesirable since these measures are prior-dependent although the
methods are not. Therefore, we consider mpFDR and pFDR for our purpose

which are Monte Carlo averages of the quantities
∑m

i=1 di(1−rizi)∑m
i=1 di

and
∑m

i=1 di(1−ri)∑m
i=1 di

over the simulation replicates. Note that, in simulation studies, ri; i = 1, . . . ,m,
are known, so that it is straightforward to compute the above quantities.

7.4. Validation of mpBFDR

Since versions of FDR play significant roles in multiplicity control, it is im-
portant to select the appropriate version, particularly when comparing different
multiple testing methods. Hence, before conducting the simulation study for
such comparison, we first consider selection of suitable versions of false discov-
ery rates.

We recommend to control the modified version of FDR proposed by us. As
already discussed this measure has extra penalization for incorrect decisions re-
garding other dependent parameters also. This provides extra safeguard against
incurring Type-II error apart from controlling the Type-I error. In this section,
we provide evidence towards our claim through simulation studies. We demon-
strate that controlling the modified versions of FDR leads to closer to truth
inference for existing marginal multiple-testing methods also.

For each of the methods MPR and SZG, we compute the proportion of mak-
ing correct decisions regarding all the hypotheses. We name it proportion of true
decision (PTD). For the aforementioned Bayesian methods, we compute PTD
against controlling mpBFDR and pBFDR separately. The pBFDR is con-
trolled at level 0.05 and mpBFDR is controlled at the minimum level achieved
by the respective methods.

However, for large number of hypotheses, it is practically impossible to obtain
correct decisions for every hypothesis. So, in a pathological example with 3
hypotheses we demonstrate that controlling mpBFDR yields larger PTD. As
such, we conduct a simulation study with the true data generated from the
mechanism described in Section 7.1 and the model proposed in Section 7.2,
with a = 0, m = 3 and n = 10. Here we consider Gi = {1, 2, 3}, i = 1, 2, 3, that
is, we consider the complete dependent structure of all the parameters. The
simulation results are summarized in Table 1. These results indicate that even
for the marginal Bayesian methods MPR and SZG, controlling mpBFDR is
advantageous and yields better inference.

Table 1

Versions of FDR control in Bayesian methods

MPR
Type-I error rate PTD

mpBFDR = 0.2675 0.7653
pBFDR = 0.05 0.7220

SZG
Type-I error rate PTD

mpBFDR = 0.2558 0.6793
pBFDR = 0.05 0.6673

As already discussed, mpBFDR or pBFDR are prior based error measures,
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Table 2

Versions of FDR control in frequentist methods

BH
Type-I error rate PTD
mpFDR = 0.2151 0.7747
pBFDR = 0.05 0.7420

ST
Type-I error rate PTD
mpFDR = 0.2625 0.7673
pBFDR = 0.05 0.7393

which are not appropriate for frequentist methods. Hence, in this case we con-
sider mpFDR and pFDR. Here also we compute PTD while controlling pFDR
and mpFDR separately. pFDR is controlled at level 0.05 and mpFDR is con-
trolled at the minimum level achieved by the methods. The results are sum-
marized in Table 2. the results re-iterate that even for the frequentist marginal
multiple testing methods, controlling the modified versions of FDR is advanta-
geous.

Thus from Tables 1-2 we see that, incorporating the information regarding
dependence structure in the error measure is important even for marginal meth-
ods. Even for very small sample size, controlling the modified FDR leads to more
accurate inference. In the following section, we compare the performance of our
NMD method with the competing methods with large number of hypotheses.

7.5. Comparison of performances of multiple testing methods in
terms of pBFNR and pFNR

In Section 7.4, we see that by controlling the modified version of the FDR,
more accurate results are obtained from the existing marginal methods. In this
section we study the Type-II error incurred by the NMD method compared
to the competing methods while controlling the modified FDR at the same
level. The set-up is as described in Section 7.1 and 7.2. For the NMD method,
the groups are formed following the strategy discussed in Section 6.1, with the
covariance structure given by Σm. We have taken m = 160 and n = 20 in this
simulation study.

For the Bayesian methods, we compare pBFNR while setting mpBFDR
at a fixed level. For each of the two competing Bayesian methods, we control
mpBFDR approximately at the minimum level they could achieve and then
compare the pBFNR incurred with that of the NMD method for different
values of the shift parameter. The results depicted in Figure 2 show that com-
pared to both the competing Bayesian methods, our NMD method has incurred
significantly and almost uniformly lesser Type-II error.

For comparison of our method with the frequentist multiple testing meth-
ods BH and ST , we control mpBFDR for our method and mpFDR for the
competing methods, setting the two error rates to be approximately equal, and
compare the respective pFNR incurred by the methods. Figure 3 shows that
the NMD method incurred lesser FNR compared to the competing frequentist
methods also.
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Fig 2. FNR comparison with Bayesian methods for modified FDR control: (a) MPR (b)
SZG

Fig 3. FNR comparison with frequentist methods for modified FDR control: (a) ST (b) BH.

However, the competing methods are not designed to control the modified
versions of pBFDR or pFDR. Therefore, we have conducted another exper-
iment controlling pBFDR and pFDR at level 0.05 for the Bayesian and fre-
quentist methods, respectively. For the Bayesian MPR and SZG methods, the
incurred mpBFDR is estimated when pBFDR controlled at 0.05. Then the
NMD method is performed and compared to the two methods controlling the
mpBFDR at the respective estimated levels. For the frequentist methods, sim-
ilar comparisons are done by controlling the mpFDR. The comparisons are
shown in Figures 4 and 5.

In Figures 2-5, it is interesting to note that for values of the shift a close to
−1, FNR incurred by the NMD method is slightly higher in comparison. This
admits the following explanation. Recall the data generating scheme in Section
7.1 and observe that for values of a close to −1, most of the null hypotheses are
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Fig 4. FNR comparison with Bayesian methods when pBFDR = .05: (a) MPR (b) SZG

Fig 5. FNR comparison with frequentist methods when pFDR = .05: (a) ST (b) BH

false. In Section 6.1 we pointed out that in order to avoid over-penalization, the
group sizes in the NMD method should be chosen to be moderate. Even though
restricting the group sizes significantly mitigates the problem of too much bias
towards accepting the null hypotheses, the problem is not entirely eliminated,
and plays some role when most of the nulls are false. In this case, the advantage
of borrowing strength from dependence among the hypotheses is overridden by
the extra penalization. As such, when the shift is close to −1, that is, when
most of the null hypotheses are false, the NMD method is expected to have
slightly lesser power. This is also reflected in the figures. However, in practice,
based on expertise and domain knowledge null hypotheses are generally chosen
such that most of them are expected to be true. Therefore, the situation where
most nulls are false is practically unrealistic. Nevertheless, we conduct simula-
tion experiments with a close to −1 to compare the performance of the NMD
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method with the others and see that the performances are quite comparable.
On the other hand, for larger values of a, which is the case in most practical
applications, the dependence among the hypotheses is adequately exploited by
the non-marginal method to obtain much better performance. Among the com-
peting methods, the BH procedure deserves special mention. Indeed, Figure 5b
shows that the BH method performs better than the non-marginal procedure
for the values of a less than or equal to about 0.6 when pFDR is controlled
at level 0.05; the non-marginal method begins to gain superiority only for a
larger than 0.6, when most of the nulls begin to be true, which is a somewhat
favourable situation for the non-marginal procedure. Figure 3b shows that the
BH method is not very easily outperformed by the non-marginal method even
when mpFDR is controlled. Since the actual data are positively correlated and
since the BH procedure works well under positive dependence (Benjamini and
Yekutieli, 2001), the above observations may possibly admit some explanation
in this light.

As an aside, observe that in Figures 2, 3, 4 and 5, mpBFDR and mFDR are
increasing with a. We explain this phenomenon as follows. Note that as a ap-
proaches +1, the proportion of true nulls also increases, giving room for falsely
rejecting more true null hypotheses. Since no version of FDR takes this infor-
mation into account, the available versions of Type-I error in multiple testing
also increases with a.

7.6. Comparison between different methods of group choice

From the simulation studies in Section 7.5, we see that the NMD method
performs substantially better than some popular existing methods in dependent
cases. Utilizing the dependence structure among the parameters through the
groups seems to be a major reason for the good performance. However, in the
simulation studies, we have utilized the true correlation structure among the
parameters, which would be unknown in most practical situations. As the NMD
method depends on the prior correlation structure through the groups, it is thus
important to investigate its performance when an incorrect prior distribution is
envisaged.

In this regard, we compare the performance of the NMD method for different
group formation methods. Firstly, we keep Σm as the hyper-matrix in (17) and
form groups on the basis of the strategy in Section 6.1. Secondly, we consider a
randomly chosen positive definite matrix as the hyper-matrix and form groups
on the basis of that matrix following the same strategy. Thirdly, for the randomly
chosen matrix as hyper-matrix, we form groups on the basis of the posterior
covariance matrix Λ̃ (see (18)).

For comparison of the performances of the three different methods of group
formation, we compute the Jaccard similarity coefficient (Jaccard, 1901, 1908,
1912) between the true decision configuration and the decision configuration
obtained by the NMD method for different group formation strategies. Dor
1500 replications we compare their box-plots with pBFDR control at different
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levels. The simulation study is repeated for four randomly chosen prior covari-
ance matrices. The results are shown in Figure 6. The figure demonstrates that

Fig 6. Comparison between Group Formation strategies

considering the true prior covariance matrix yields best result and the randomly
chosen matrices do not always yield good performance. However, formation of
the groups with respect to posterior covariance substantially improves the per-
formance in most cases. Though our general prescription is to form groups on
the basis of that domain knowledge, in case the prior information is weak or un-
available, our suggestion is to form groups on the basis of posterior correlation.

8. Real data analysis: Radionuclide concentrations at Rongelap
Atoll

Rongelap Atoll is a coral atoll of 61 islands in the Pacific Ocean, and forms
a legislative district of the Ralik Chain of the Marshall Islands. On March 1,
1954, the United States conducted a nuclear test on Bikini Atoll in the northern
Marshall Islands code named Bravo that led to widespread fallout contamination
over inhabited islands of Rongelap, Ailinginae, and Utrok Atolls. Prior to Bravo,
little consideration was given to the potential health and ecological impacts of
fallout contamination beyond the immediate vicinity of the test sites. People
living on Rongelap Atoll received significant exposure to “fresh” radioactive
fallout and had to be evacuated to Kwajalein Atoll for medical treatment. The
Rongelap community spent the next 3 years living on Ejit Island (Majuro Atoll)
before returning home to Rongelap in June 1957. However, growing concerns
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about possible long-term health effects associated with exposure to residual
fallout contamination on the island prompted residents to relocate again to a
new temporary home on Mejatto Island on Kwajalein Atoll in 1985.

As part of a wider investigation to establish whether Rongelap can safely be
resettled, the Marshall Islands National Radiological Survey has examined the
current levels of 137Cs contamination by in situ γ-ray counting at a set of 157
locations over the island. Figure 7 shows the map of the Rongelap Island and
the γ-ray counts at the 157 locations.

Fig 7. Map of the Rongelap Island with 157 sampling locations; the different colours represent
the γ-ray counts.

The data consists of the following:

• A 157×2 matrix which indicates the coordinates of 157 sampled locations;
• A vector of γ-ray counts for the 157 sampled locations;
• A vector of the time (in seconds) over which the 157 counts were accumu-

lated.

Here the objective is to determine whether the island is inhabitable or not
and identifying locations which still exhibit high radioactivity. In spatial models,
regions are identified where a studied process exceeds a certain threshold with
high probability. In most of the cases the probability of exceeding the threshold is
marginally computed for each spatial location. We have re-framed this problem
from a hypothesis testing point of view and for each of the 157 locations we test
whether the intensity of radioactivity exceeds a certain threshold.

Diggle et al. (1998) proposed the following model for the count data:

Y (xi)
ind∼ Poisson(t(xi)λ(xi)),

where Y (x) is the γ-ray count, t(x) is the time over which the counts were
accumulated and λ(x) is the intensity of radioactivity at location x, modelled
as the following:

λ(x) = exp(S(x)),
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where S(x) is the following Gaussian process:

E(S(x)) = β,

Cov(S(xi), S(xj)) = σ2 exp
[
−α‖xi − xj‖δ

]
(20)

where −∞ < β < ∞, σ > 0, α > 0 and δ > 0. Following Dey and Bhattacharya
(2017), we set δ = 1, and propose uniform priors on (β, log(σ2), log(α)).

The hypotheses of our interest are

H0i : λ(xi) ≥ c vs. H1i : λ(xi) < c, i = 1, · · · , 157, (21)

for some appropriate threshold c > 0.

8.1. Multiple testing details

8.1.1. Choices of the threshold c

Note that based on an informal approach, Diggle et al. (1998) also attempted to
provide some assessment if the island is inhabitable. Although they did not adopt
any multiple testing framework, specification of a threshold for the intensity was
still required in their case. Their specification, c = 15, was not based on any
scientific consideration but on subjective judgment (personal communication
with Peter Diggle). However, with respect to our prior, such a threshold turned
out to be too large in the sense that all the sites turned out to be inhabitable.
Rather, the 95-th percentile of the prior of λ(x) turned out to be close to 5 for
most locations, so that the choice c = 5 seemed to be quite appropriate in our
case. We also investigated with c = 10, exceeding which would indicate serious
evidence of radioactivity in such locations. Indeed, the 99-th percentile of the
prior of λ(x) is close to 10 for most locations. These choices of the threshold,
ranging from c = 5 to c = 15 enabled us to provide some information on the
increasing degree of severity of radionuclide concentrations in various regions of
the Rongelap map.

8.1.2. Formation of groups G1, . . . , Gm

In spatial analysis, locations which are physically close should exhibit similar
response and high correlation. Hence, it is ideal to form groups on the basis
of nearby locations. Also note that the correlation function in (20) which is in-
versely proportional to the distances between the spatial locations. Thus forming
groups on the basis of prior correlation is equivalent to forming groups of nearby
locations.

For each i, j = 1, . . . ,m, with i < j, we compute ζij = (‖xi − xj‖)−1
, and

obtain the 95-th percentile ζ. We then let Gi to be the set consisting of those
indices j such that ζij ≥ ζ. This strategy not only is equivalent to the prior
based group formation strategy in 6.1 but also is physically interpretation. It is
to be seen that the group formation does not depend upon the choice of prior
on the hyper-parameters.



Non-marginal multiple testing procedure 521

8.1.3. Implementation of the Bayesian non-marginal procedure

To execute the multiple testing problem in (21), the joint posterior distribu-
tion of the λ(xi)s are required. The posterior distribution is approximated by
drawing 8.5 × 105 thinned samples (by storing the last one in every 100 itera-
tions) from the posterior distribution by the optimally scaled additive TMCMC
method in the same way as Dey and Bhattacharya (2017).

We first test with c = 5 to detect the locations with moderate traces of
radioactivity and then identify the locations that show high intensity (corre-
sponding to c = 10). In each case, the estimated mFDRXn is less than 0.10.

8.2. Results of multiple testing

The locations marked in Figure 8 show moderate traces of radioactivity and
those of Figure 9 have high intensity of radioactivity and are not inhabitable.
On the basis of the data, many locations are exhibiting traces of radioactivity,
especially Figure 9 showing several locations with high radioactivity.

Fig 8. The marked locations exhibit moderate traces of radioactivity (exceeding threshold
c = 5).

Fig 9. The marked locations show strong signs of radioactivity (exceeding threshold c = 10).
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9. Summary and conclusion

In this work we have proposed and developed a novel and general Bayesian
multiple testing procedure that yields joint decisions regarding the dependent
hypotheses, via the relevant joint posterior probabilities. In keeping with the
concept, we have proposed a new Bayesian version of pFDR, namely,mpBFDR,
which appropriately takes the dependent situation into account, and possesses
desirable theoretical properties. Interestingly, our simulation study showed that
in dependent situations, even for established marginal multiple testing meth-
ods, it makes more sense to control mpBFDR rather than pBFDR, in order
to have a higher chance of capturing the true decision configuration. Chandra
and Bhattacharya (2018) showed strong consistency of the non-marginal proce-
dure under general dependence. In another simulation study in the dependent
scenario, our non-marginal procedure significantly outperformed the popular
existing marginal methods in terms of lesser pBFNR. Application of our ideas
to a real spatial data set also yielded encouraging results.

Indeed, in most practical applications of multiple testing problem, testing
thousands of hypotheses in isolation is seldom meaningful. In popular applica-
tions like detecting bio-markers from microRNA expression data or in neuro-
science, where millions of parameters are of interest, the parameters bound to
have strong dependence structure among themselves. If the underlying multi-
ple testing procedure pays less attention to the dependence structure, giving
importance mostly to multiplicity adjustment with marginal p-values, Bayes
factors, or marginal posterior probabilities, then it may miss insightful infor-
mation, leading to less interesting results. As we demonstrated, compared to
the existing multiple testing methods, our proposed procedure seems to more
appropriately balance both the issues.

However, our method depends on suitable selection of dependent groups for
each hypothesis. In the simulation study reported in Section 7, the exact depen-
dence structure between the parameters is known. In the real data analysis dis-
cussed in Section 8, the group formation is straightforward since the covariance
is a decreasing function of the geographical distances. Similar group selection
method also yielded very encouraging and interpretable results in the case of sig-
nificant miRNA discovery in oral cancer tissues Chandra et al. (2018). In other
practical problems, group selection may not be as simple. In such cases, some
data driven procedure needs to be adopted. As demonstrated in Section 7.6,
forming the groups based on posterior correlations may be a promising strategy
in this direction. Forming suitable groups not only improves the inference in
multiple testing, but also helps understand the joint behaviour of the concerned
parameters which often may be the subject of interest. This paper gives rise to
these interesting but challenging problems to venture for our future work.
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Appendix A: Break-up of the number of hypotheses being tested
into error and non-error terms

We denote the error terms by E and the non-error terms by NE.

(1) NE1 =
∑m

i=1 dirizi, equalling #{i : di = 1, ri = 1, zi = 1}. In words, the
term corresponds to the number of cases where H1i are correctly accepted,
and all other decisions are also correct.

(2) NE2 =
∑m

i=1(1 − di)(1 − ri)zi, equalling #{i : di = 0, ri = 0, zi = 1}.
In words, the term corresponds to the number of cases where H1i are
correctly rejected, and all the remaining decisions are correct.

(3) E1 =
∑m

i=1 di(1 − ri)zi, equalling #{i : di = 1, ri = 0, zi = 1}. In words,
the term corresponds to the number of cases where H1i are wrongly ac-
cepted, but all the remaining decisions are correct.

(4) E2 =
∑m

i=1 di(1 − ri)(1 − zi), equalling #{i : di = 1, ri = 0, zi = 0}. In
words, the term corresponds to the number of cases where H1i are wrongly
accepted, but at least one of the remaining decisions is incorrect.

(5) E3 =
∑m

i=1 diri(1 − zi), equalling #{i : di = 1, ri = 1, zi = 0}. In words,
the term corresponds to the number of cases where H1i are correctly ac-
cepted, and at least one of the remaining decisions is incorrect.

(6) E4 =
∑m

i=1(1− di)(1− ri)(1− zi), equalling #{i : di = 0, ri = 0, zi = 0}.
In words, the term corresponds to the number of cases where H1i are
correctly rejected, but at least one the remaining decisions is incorrect.

(7) E5 =
∑m

i=1(1−di)rizi, equalling #{i : di = 0, ri = 1, zi = 1}. In words, the
term corresponds to the number of cases where H1i are wrongly rejected,
but all the remaining decisions are correct.

(8) E6 =
∑m

i=1(1 − di)ri(1 − zi), equalling #{i : di = 0, ri = 1, zi = 0}. In
words, the term corresponds to the number of cases where H1i are wrongly
rejected, and at least one of the remaining decisions is incorrect.

Clearly,

NE1 +NE2 + E1 + E2 + E3 + E4 + E5 + E6 = m.

A.1. Proof of Remark 2.1

We first recall that (see Section 2.2 of the main manuscript) our idea is to
maximize g1(d) = TP (d) − λE(d), where E(d) = E1(d) + E2(d) + E3(d),
with respect to the decision configuration d, where λ > 0. Let us consider
another function g2(d) = TP (d) − λ (E(d) + E∗(d)), where E∗(d) is another

error term. Let d̂1 and d̂2 denote the maximizers of g1 and g2, respectively.
Let β = λ

1+λ . Now, there exists c (> 0) such that E∗(d̂2) = cE(d̂2). Then

λ
(
E(d̂2) + E∗(d̂2)

)
= (λ+ c)E(d̂2). Let β∗ = λ+c

1+λ+c . The remaining part of
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the proof follows similarly as the proof of Lemma 3.3 of our main manuscript,
but here we present the details for clarity. Letting f1(d) =

∑
di (wi(d)− β) it

follows from the definition of maximization that

g2(d̂2) ≥ g2(d̂1)

⇒
∑

d̂2i

(
wi(d̂2)− β∗

)
≥
∑

d̂1i

(
wi(d̂1)− β∗

)
⇒f1(d̂2)− (β∗ − β)

∑
d̂2i ≥ f1(d̂1)− (β∗ − β)

∑
d̂1i

⇒f1(d̂2)− f1(d̂1) ≥ (β∗ − β)
(∑

d̂2i −
∑

d̂1i

)
.

Now β∗−β = c
(1+λ)(1+λ+c) > 0. Hence, we must have

∑
d̂2i ≤

∑
d̂1i, otherwise

f1(d̂2) − f1(d̂1) > 0, which would contradict the fact that d̂1 is the maximizer
associated with f1. In other words, the number of rejections in the decision
configuration d̂2, the maximizer associated with the extra error term E∗, is less
than or equal to that in d̂1, the maximizer corresponding to the procedure with
less error terms to be controlled. Thus, controlling many error terms would lead
to false acceptance of more null hypotheses.

Appendix B: Assumptions of Shalizi (2009)

(S1) Consider the following likelihood ratio:

Rn(θ) =
fθ(Xn)

p(Xn)
.

Assume that Rn(θ) is σ(Xn)× T -measurable for all n > 0.
(S2) For each θ ∈ Θ, the generalized or relative asymptotic equipartition prop-

erty holds, and so, almost surely,

lim
n→∞

1

n
logRn(θ) = −h(θ),

where h(θ) is given in (S3) below.
(S3) For every θ ∈ Θ, the KL-divergence rate

h(θ) = lim
n→∞

1

n
E

(
log

p(Xn)

fθ(Xn)

)
.

exists (possibly being infinite) and is T -measurable.
(S4) Let I = {θ : h(θ) = ∞}. The prior π satisfies π(I) < 1.
(S5) There exists a sequence of sets Gn → Θ as n → ∞ such that:

(1)
π (Gn) ≥ 1− α exp (−ςn) , for some α > 0, ς > 2h(Θ); (22)

(2) The convergence in (S3) is uniform in θ over Gn \ I.
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(3) h (Gn) → h (Θ), as n → ∞.

For each measurable A ⊆ Θ, for every δ > 0, there exists a random natural
number τ(A, δ) such that

n−1 log

∫
A

Rn(θ)π(θ)dθ ≤ δ + lim sup
n→∞

n−1 log

∫
A

Rn(θ)π(θ)dθ,

for all n > τ(A, δ), provided lim sup
n→∞

n−1 log π (IARn) < ∞. Regarding

this, the following assumption has been made by Shalizi:
(S6) The sets Gn of (S5) can be chosen such that for every δ > 0, the inequality

n > τ(Gn, δ) holds almost surely for all sufficiently large n.
(S7) The sets Gn of (S5) and (S6) can be chosen such that for any set A with

π(A) > 0,
h (Gn ∩A) → h (A) as n → ∞.

Appendix C: Proofs of Theorems and Lemmas

C.1. Proof of Theorem 3.1

For our purpose, we first state and prove a lemma.

Lemma C.1. For � = 1, . . . , k, let, for q ≥ 1, g� : IRq → IR be a continuous
function, with |g�| < M < ∞. Consider a sequence {βb}∞b=1 converging to β ∈
IR. Define

Ab =

k⋂
�=1

g−1
� (a�βb,M) and A =

k⋂
�=1

g−1
� (a�β,M),

where, for � = 1, . . . , k, a� ∈ IR. Consider any measure μ satisfying

μ

[
k⋂

�=1

{x : g�(x) = a�β}
]
= 0. (23)

Then, for any bounded function h : IRq → IR integrable with respect to μ, it
holds that

lim
b→∞

∫
h(x)IAb

(x)dμ(x) =

∫
h(x)IA(x)dμ(x).

Proof. First note that,

lim inf
b→∞

IAb
(x) = Ilim inf Ab

(x);

lim sup
b→∞

IAb
(x) = Ilim supAb

(x).

Consider x ∈ A. Then g�(x) > a�β, ∀ � = 1, 2, . . . , k. Take ε < min
�=1,...,k

(g�(x) −
a�β).
Then

∃ b0 ∈ N � for b > b0, a�βb < a�β + ε < g�(x), ∀ � = 1, 2, · · · , k;
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⇒ x ∈ Ab ∀ b > b0 ⇒ x ∈ lim inf Ab

⇒ A ⊆ lim inf Ab.

Now take

x ∈ lim inf Ab ⇒ ∃ b1 ∈ N � x ∈ Ab ∀ b > b1;

⇒ g�(x) > a�βb ∀ b > b1 ⇒ g�(x) ≥ a�β ∀ � = 1, 2, · · · , k;

⇒ x ∈
k⋂

�=1

g−1
� [a�β,M).

Next consider x ∈ lim supAb \ A. Then x ∈ lim supAb ⇒ ∃ a subsequence
{bj}∞j=1 � x ∈ Abj , for j = 1, 2, . . .. That is, for � = 1, 2, . . . , k, and for
j = 1, 2, . . ., g�(x) > a�βbj ⇒ g�(x) ≥ a�β ∀ � = 1, 2, . . . , k. Again, x ∈ Ac ⇒
g�(x) ≤ a�β, for � = 1, 2, . . . , k. Hence, g�(x) = a�β ∀ � = 1, 2, · · · , k ⇒ x ∈⋂k

�=1{x : g�(x) = a�β}.
It follows that

A ⊆ lim inf Ab ⊆ lim supAb ⊆
k⋂

�=1

g−1
� [a�β,M).

Now, let

lim inf IAb
(x) = Ilim inf Ab

(x) = IA + IL;

lim sup IAb
(x) = Ilim supAb

(x) = IA + IU ,

where

L ⊆ U ⊆
k⋂

�=1

{x : g�(x) = a�β}.

Using (23) it is easily seen that

lim inf IAb
(x) = lim sup IAb

(x) = IA, μ-almost everywhere.

It follows from the above that h(x)IAb
(x) is a bounded function converging

point wise to h(x)IA(x), μ-almost everywhere. Hence, using the dominated con-
vergence theorem we conclude that

lim
b→∞

∫
h(x)IAb

(x)dμ(x) =

∫
h(x)IA(x)dμ(x).

In our case,

mpBFDR =EXn

[∑
d∈D

∑m
i=1 di(1− wi(d))∑m

i=1 di
δβ(d|Xn)

∣∣∣∣δβ(d = 0|Xn) = 0

]

=
∑
d∈D

EXn

[∑m
i=1 di(1− wi(d))∑m

i=1 di
δβ(d|Xn)

∣∣∣∣δβ(d = 0|Xn) = 0

]
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=

∑
d∈D

EXn

[∑m
i=1 di(1−wi(d))∑m

i=1 di
I (
∑m

i=1 di > 0) δβ(d|Xn)
]

PXn
[δβ(d = 0|Xn) = 0]

=

∑
d∈D\{0} EXn

[∑m
i=1 di(1−wi(d))∑m

i=1 di
δβ(d|Xn)

]
PXn [δβ(d = 0|Xn) = 0]

,

where β ∈ (0, 1), rather than β ∈ R used in Lemma C.1 for greater generality.
To prove continuity of mpBDFR with respect to β it is enough to show that

EXn

[∑m
i=1 di(1−wi(d))∑m

i=1 di
δβ(d|Xn)

]
and 1

PXn [δβ(d=0|Xn)=0] are continuous with re-

spect to β for all d �= 0.

To prove continuity of EXn

[∑m
i=1 di(1−wi(d))∑m

i=1 di
δβ(d|Xn)

]
observe that δβ(d|Xn)

is the indicator of the set⋂
d∗ �=d

{
Xn :

m∑
i=1

diwi(d)−
m∑
i=1

d∗iwi(d
∗) > β

(
m∑
i=1

di −
m∑
i=1

d∗i

)}
,

so that referring to Lemma C.1 we identify g� ≡
∑m

i=1 diwi(d)−
∑m

i=1 d
∗
iwi(d

∗);
� = 1, . . . , k, where k = 2m − 1 (the number of decision configurations except
d), where � indexes d∗. Also note that a� =

∑m
i=1 di −

∑m
i=1 d

∗
i and that h ≡∑m

i=1 di(1−wi(d))∑m
i=1 di

, which is a bounded function. The assumption that the event

{Xn : g�(Xn) = a�β} has zero probability, in conjunction with Lemma C.1,

then lets us conclude that EXn

[∑m
i=1 di(1−wi(d))∑m

i=1 di
δβ(d|Xn)

]
is continuous with

respect to β.
To see continuity of PXn

[δβ(d = 0|Xn) = 0] with respect to β, note that this
probability is the same as 1−PXn (−

∑m
i=1 d

∗
iwi(d

∗) > −β
∑m

i=1 d
∗
i ; ∀ d∗ �= 0) ,

from which we can easily identify, referring to Lemma C.1, that g� ≡
−
∑m

i=1 d
∗
iwi(d

∗), a� = −
∑m

i=1 d
∗
i , and h ≡ 1, so that Lemma C.1 also guaran-

tees continuity of PXn [δβ(d = 0|Xn) = 0] with respect to β.
Hence, Theorem 3.1 is proved.

C.2. Proof of Lemma 3.3

Let d′ = argmax
d∈D

fβ′(d) and d′′ = argmax
d∈D

fβ′′(d) where β′′ > β′. Note that,

fβ′′(d′′) ≥ fβ′′(d′)

⇒
∑

d′′i wi(d
′′)− β′

∑
d′′i − (β′′ − β′)

∑
d′′i ≥

∑
d′iwi(d

′)

− β′
∑

d′i − (β′′ − β′)
∑

d′i;

⇒ fβ′(d′′)− fβ′(d′) ≥ (β′′ − β′)
∑

(d′′i − d′i). (24)

If
∑

d′i <
∑

d′′i , then the right hand side of (24) will be greater than 0, contra-
dicting the fact that d′ = argmax

d∈D

fβ′(d). Hence,
∑

d′i ≥
∑

d′′i .
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C.3. Proof of Theorem 3.4

As in the proof of Lemma 3.3, let d′ = argmax
d∈D

fβ′(d) and d′′ = argmax
d∈D

fβ′′(d)

where β′′ > β′. If possible, let∑
d′′i (1− wi(d

′′))∑
d′′i

>

∑
d′i(1− wi(d

′))∑
d′i

; (25)

⇒
∑

d′′i
∑

d′iwi(d
′) >

∑
d′i
∑

d′′i wi(d
′′). (26)

Again,

fβ′′(d′′) =
1∑
d′i

{∑
d′i
∑

d′′i wi(d
′′)−

∑
d′i
∑

d′′i β
′′
}

<
1∑
d′i

{∑
d′′i
∑

d′iwi(d
′)−

∑
d′i
∑

d′′i β
′′
}
[from (26)]

=

∑
d′′i∑
d′i

fβ′′(d′)

≤ fβ′′(d′). (27)

Thus, (27) contradicts the fact that d′′ = argmax
d∈D

fβ′′(d). Hence, (25) is not

possible and we have that∑
d′′i (1− wi(d

′′))∑
d′′i

<

∑
d′i(1− wi(d

′))∑
d′i

. (28)

Note that, for any 0 < β < 1, PXn
[δβ(d

′|Xn) = 0] = PXn
[fβ(d

′) <
fβ(d) for at least one d �= d′].

∴ PXn [δβ(d = 0|Xn) = 0] = PXn [fβ(d) > 0 for at least one d �=0]

= PXn

[∑
diwi(d) > β

∑
di for at least one d �=0

]
Define, Aβ = {

∑
diwi(d) > β

∑
di for at least one d �= 0}. Clearly, Aβ′′ ⊂ Aβ′

for β′′ > β′. Hence,

EXn

[∑
d′i(1− wi(d

′))∑
d′i

∣∣∣∣Aβ′

]
=

∫
Aβ′

∑
d′i(1− wi(d

′))∑
d′i

dPXn

≥
∫
Aβ′′

∑
d′i(1− wi(d

′))∑
d′i

dPXn

≥
∫
Aβ′′

∑
d′′i (1− wi(d

′′))∑
d′′i

dPXn [by (28)]

= EXn

[∑
d′′i (1− wi(d

′′))∑
d′′i

∣∣∣∣Aβ′′

]
. (29)
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Since, d′′ and d′ are the maximizers of fβ′′(d) and fβ′(d), the left hand and
right hand sides of (29) boil down tompBFDRs with respect to the penalization
constants β′′ and β′ respectively, associated with the non-marginal method. This
proves the theorem.

C.4. Proof of Theorem 4.1

For a decision configuration d, we define the following sets:

I(d) = {i : di = 1}
I(d)c = {1, · · · ,m}\I(d).

Note that I(d) is the set of hypotheses where the null hypotheses are rejected.
Now, for i ∈ I(d)

wi(d) = Pθ|Xn

(
H1i ∩

{
∩j �=iHdjj

})
= Pθ|Xn

({
∩j∈I(d)H1j

}
∩
{
∩j∈I(d)cH0j

})
,

that is, wi(d) = wk(d), for all k ∈ I(d). Therefore, we omit the suffix and write
wi(d) as w(d). We state this below in the form of a lemma.

Lemma C.2. Note that for any decision configuration d �= 0, I(d) is a non-
empty set. Then wi(d) = w(d) for all i ∈ I(d).

From Lemma C.2 it follows that
∑m

i=1 d̂i

(
wi(d̂)−β

)
=
(∑m

i=1 d̂i

)(
w(d̂)−β

)
.

Now, Lemma 3.3 shows that
∑m

i=1 d̂i is decreasing in β for our non-marginal
multiple testing procedure. Hence, for any other decision configuration d∗ cor-
responding to any other multiple testing method, there exists β̂ such that∑m

i=1 d̂i =
∑m

i=1 d
∗
i for small sample size n ≥ 1, and hence for β = β̂, d̂ is better

than d∗ in the sense of maximizing the posterior w(d) = Pθ|Xn
(∩m

i=1Hdi,i) with
respect to all possible decision configurations subject to

∑m
i=1 di =

∑m
i=1 d

∗
i ,

which is equivalent to minimization of the posterior expected “0-1” loss subject
to
∑m

i=1 di =
∑m

i=1 d
∗
i . Hence, the proof.

C.5. Proof of Theorem 4.2

Note that, or > 1 implies that more than one d would yield same k̃(d) vector.
Therefore, we define the following sets:

Dk̃ =
{
d : kr(dG∗

r
) = k̃r ∀ r = 1, . . . , s

}
;

DS(k) =
⋃

k̃∈S(k)

Dk̃.

Note that DS(k) is the set of all decision configurations with k discoveries. Let

d̃ = argmin
d∈DS(k)

Eθ|Xn
L(dt,d|k)
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be the optimal decision configuration corresponding to the loss function L(dt,d|k).
We define wr(dG∗

r
) = Pθ|Xn

(
∩j∈G∗

r
Hdjj

)
. Then for all i ∈ G∗

r such that
di = 1, we have from Lemma C.2 wi(d) = wr(dG∗

r
). Hence it follows that

Eθ|Xn

(
L(dt,d|k)

)
= min

d∈DS(k)

s∑
r=1

kr(d)(1− wr(dG∗
r
))

= k − max
d∈DS(k)

s∑
r=1

kr(d)wr(dG∗
r
)

⇒ d̃ = argmax
d∈DS(k)

s∑
r=1

kr(d)wr(dG∗
r
). (30)

Also for the non-marginal method we see that

fβ(d) =

m∑
i=1

di (wi(d)− β)

=

s∑
r=1

⎛⎝∑
i∈G∗

r

di

⎞⎠(wr(dG∗
r
)− β

)
=

s∑
r=1

kr(d)
(
wr(dG∗

r
)− β

)
.

Now subject to the restriction
∑m

i=1 d̂i = k, from Definition 2.1 we have

d̂ = argmax
d∈DS(k)

fβ(d)

= argmax
d∈DS(k)

s∑
r=1

kr(d)
(
wr(dG∗

r
)− β

)
= argmax

d∈DS(k)

s∑
r=1

kr(d)wr(dG∗
r
). (31)

Hence, from (30) and (31) we see that the non-marginal procedure has the
desirable decision theoretic property.

C.6. Proof of Theorem 5.2

Following the proof of the Theorem 4.1 we see that the non-marginal procedure
maximizes the posterior probability w(d) = Pθ|Xn

(∩m
i=1Hdi,i) with respect to

all possible decision configurations subject to
∑m

i=1 di = k. Now from The-
orem 5.1, we have 1

n logw(d) ≈ −J(Θd) for sufficiently large n. Hence the
KL-divergence rate J(Θd) is minimized.
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C.7. Proof of Theorem 5.3

Note that the maximization problem is equivalent to maximization of

p

s∑
r=1

1

n
lim

m→∞
logwrn(dG∗

r
)− sp

β∗

n

with respect to d, subject to lim
m→∞

kr(d)
m = p; r = 1, . . . , s. Now note that as

p ∈ (0, s−1), the number of parameters associated with G∗
r increases to infinity

as m → ∞. Consequently, wrn(dG∗
r
) is the posterior probability of the intersec-

tion of increasing number of events as m increases. Hence, lim
m→∞

wrn(dG∗
r
) =

wrn(d
∞
G∗

r
), say, where d∞

G∗
r
denotes the decision associated with infinite num-

ber of hypotheses in G∗
r . Thus, lim

m→∞
logwrn(dG∗

r
) = logwrn(d

∞
G∗

r
), and we are

concerned with the maximization of p
∑s

r=1
1
n logwrn(d

∞
G∗

r
)− spβ∗

n with respect

to d∞ subject to lim
m→∞

kr(d
∞)

m = p; r = 1, . . . , s. Here d∞ denotes the entire

infinite-dimensional decision configuration.
Now for any given m ≥ 1, let d̂ be the maximizer of

1

mn

s∑
r=1

kr(d)
(
logwrn(dG∗

r
)− β∗) .

By Lemma 3.3,
∑m

i=1 d̂i is decreasing in β∗. Hence, any attainable proportion∑m
i=1 d̂i

m can be achieved by decreasing β∗, for any m ≥ 1. In other words,

by decreasing β∗ adequately one can achieve lim
m→∞

∑m
i=1 d̂i

m = lim
m→∞

∑m
i=1 dt

i

m =

lim
m→∞

∑s
r=1

kr(d
t)

m = sp (< 1). Simultaneously one can achieve lim
m→∞

∑
i∈G∗

r
d̂i

m =

p by selecting that maximizer d̂ such that
∑

i∈G∗
r
d̂i ≈ mp, for each m ≥ 1. Let

us denote the corresponding β∗ by β̂∗.

Now, by Shalizi’s result, 1
n logwrn(d

∞
G∗

r
) ≈ −J

(
Θd∞

G∗
r

)
, for sufficiently large

n, where Θd∞
G∗

r

is the parameter space associated with d∞
G∗

r
in the same way as

Θd is associated with d. Letting fθt
r
and fθr denote the marginal densities of

the data xr associated with decisions dt
G∗

r
and d∞

G∗
r
, respectively, for r = 1, . . . , s,

we obtain:

J
(
Θd∞

G∗
r

)
= inf

θr∈Θd∞
G∗

r

∫
log

fθt
r
(xr)

fθr
(xr)

f t
θt
r
(xr)dxr

= inf
θr∈Θd∞

G∗
r

∫
log

fθt
r
(xr)

fθr (xr)

s∏
�=1

{
f t
θt
�
(x�)dx�

}
,

so that, using disjointness of Θ∗
r ; r = 1, . . . , s, we obtain
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s∑
r=1

J
(
Θd∞

G∗
r

)
=

s∑
r=1

inf
θr∈Θd∞

G∗
r

∫
log

fθt
r
(xr)

fθr (xr)

s∏
�=1

{
f t
θt
�
(x�)dx�

}
= inf

θ∈Θd∞

s∑
r=1

∫
log

fθt
r
(xr)

fθr
(xr)

s∏
�=1

{
f t
θt
�
(x�)dx�

}
= inf

θ∈Θd∞

∫
log

∏s
r=1 fθt

r
(xr)∏s

r=1 fθr
(xr)

s∏
�=1

{
f t
θt
�
(x�)dx�

}
= J (Θd∞) . (32)

It follows from (32) that 1
n

∑s
r=1 logwrn(dG∗

r
) ≈ −J (Θd∞) for large enough n.

This, along with the argument of the existence of an appropriate β̂∗ in the pre-
vious paragraph shows that there exists β̂∗ for which our non-marginal method
minimizes the essential infimum of the KL-divergence J (Θd∞) from the true de-
cision configuration among all decisions d∞ associated with any other multiple
testing method satisfying (12).

C.8. Proof of Lemma 6.1

Let q(d∗,d) and αi(d
∗,d) be the probabilities that the decision configuration

d is proposed from d∗ and it is selected as the current configuration at step i
respectively.

Note that,

πi(d)Pi(d
∗|d) = πi(d)q(d

∗,d)αi(d
∗,d)

= q(d∗,d)min{πi(d), πi(d
∗)}.

Now, q(d∗,d) is the probability that d is proposed while the current decision
configuration is d∗. Clearly, if an operation leads from d to d∗ using our pre-
scription, then we can revert back to d using the same operation on d∗. So, for
our proposal, q(d∗,d) = q(d,d∗). Hence,

πi(d)Pi(d
∗|d) = q(d∗,d)min{πi(d), πi(d

∗)}
= q(d,d∗)min{πi(d), πi(d

∗)}
= πi(d

∗)Pi(d|d∗).

Thus, the Markov chain Pi is reversible with respect to πi. Therefore,∑
d∈D

πi(d)Pi(d
∗|d) =

∑
d∈D

πi(d
∗)Pi(d|d∗) = πi(d

∗)
∑
d∈D

Pi(d|d∗) = πi(d
∗),

showing that Pi has stationary distribution πi.
Note that, the Markov chain is also irreducible and aperiodic. It is irreducible

because as per our construction, there is always a positive probability to reach
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any state from any other state through only a finite number of alteration(s).
The Markov chain is also aperiodic since the same state can be retained with
positive probability at each step. Moreover, because of finiteness of the state
space, the above Markov chain is uniformly ergodic. Hence, it follows that the
algorithm converges in probability to the set of global maxima (see, for example,
Andrieu et al. (2001) and the references therein).
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