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Abstract

We present Rosenthal-type moment inequalities for matrix-valued U-statistics of order
2. As a corollary, we obtain new matrix concentration inequalities for U-statistics. One
of our main technical tools, a version of the non-commutative Khintchine inequality
for the spectral norm of the Rademacher chaos, could be of independent interest.
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1 Introduction

Since being introduced by W. Hoeffding [16], U-statistics have become an active topic
of research. Many classical results in estimation and testing are related to U-statistics;
detailed treatment of the subject can be found in excellent monographs [7, 20, 30, 21].
A large body of research has been devoted to understanding the asymptotic behavior of
real-valued U-statistics. Such asymptotic results, as well as moment and concentration
inequalities, are discussed in the works [8, 7, 12, 14, 18, 11, 17], among others. The case
of vector-valued and matrix-valued U-statistics received less attention; natural examples
of matrix-valued U-statistics include various estimators of covariance matrices, such as
the usual sample covariance matrix and the estimators based on Kendall’s tau [37, 15].

Exponential and moment inequalities for Hilbert space-valued U-statistics have been
developed in [2]. The goal of the present work is to obtain moment and concentration
inequalities for generalized degenerate U-statistics of order 2 with values in the set of
matrices with complex-valued entries equipped with the operator (spectral) norm. The
emphasis is made on expressing the upper bounds in terms of computable parameters.
Our results extend the matrix Rosenthal’s inequality for the sums of independent random
matrices due to Chen, Gittens and Tropp [5] (see also [19, 25]) to the framework of
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U-statistics. As a corollary of our bounds, we deduce a variant of the Matrix Bernstein
inequality for U-statistics of order 2.

We also discuss connections of our bounds with general moment inequalities for
Banach space-valued U-statistics due to R. Adamczak [1], and leverage Adamczak’s
inequalities to obtain additional refinements and improvements of the results.

We note that U-statistics with values in the set of self-adjoint matrices have been
considered in [6], however, most results in that work deal with the element-wise sup-
norm, while we are primarily interested in results about the moments and tail behavior
of the spectral norm of U-statistics. Another recent work [26] investigates robust
estimators of covariance matrices based on U-statistics, but deals only with the case of
non-degenerate U-statitistics that can be reduced to the study of independent sums.

The key technical tool used in our arguments is the extension of the non-commutative
Khintchine’s inequality (Lemma 3.3) which could be of independent interest.

2 Notation and background material

Given A € Chxd2, A* ¢ C%*% will denote the Hermitian adjoint of A. H¢ ¢ C%x¢
stands for the set of all self-adjoint matrices. If A = A*, we will write Apax (A) and
Amin (4) for the largest and smallest eigenvalues of A.

Everywhere below, || - || stands for the spectral norm || A|| := y/Amax (A*A). If dy =
ds = d, we denote by tr(A) the trace of A. The Schatten p-norm of a matrix A is defined

as || Alls, = (tr(A*A)p/2)1/p. When p = 1, the resulting norm is called the nuclear norm
and will be denoted by || - ||«. The Schatten 2-norm is also referred to as the Frobenius
norm or the Hilbert-Schmidt norm, and is denoted by || - ||r; and the associated inner
product is (Ay, As) = tr(Aj As).

Given z € C4, ||z||, = Vz*2 stands for the usual Euclidean norm of z. Let A, B € H%.
We will write A > B(orA > B) iff A— B is nonnegative (or positive) definite. For a,b € R,
we set a V b := max(a,b) and a A b := min(a, b). We use C to denote absolute constants
that can take different values in various places.

Finally, we introduce the so-called Hermitian dilation which is a tool that often allows
to reduce the problems involving general rectangular matrices to the case of Hermitian
matrices.

Definition 2.1. Given a rectangular matrix A € C%*%, the Hermitian dilation D :
Chrxdz oy Qlditd2)x(ditd2) jg defined as

D(A) = (j g‘) . 2.1)

AA* 0
0 A*A
The rest of the paper is organized as follows. Section 2.1 contains the necessary
background on U-statistics. Section 3 contains our main results - bounds on the H¢-
valued Rademacher chaos and moment inequalities for H%-valued U-statistics of order 2.
Section 4 provides comparison of our bounds to relevant results in the literature, and
discusses further improvements. Finally, Section 5 contains the technical background
and proofs of the main results.

Since D(A)? = < > it is easy to see that ||D(A)| = || 4]|.

2.1 Background on U-statistics

Consider a sequence of i.i.d. random variables X3, ..., X,, (n > 2) taking values in a
measurable space (S, B), and let P denote the distribution of X;. Define

I o= { (i, i) s 1<i; <m,, ij #ig if j # k},
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and assume that H;, . ;, :S™ — HY, (i1, ... ,4,) € I™, 2 < m < n, are S"-measurable,
permutation-symmetric kernels, meaning that H;,, ;. (z1,...,%m) = Hi . i, (Toryyeeos
xr, ) for any (x1,...,2,) € 8™ and any permutation 7. For example, when m = 2,
this conditions reads as H;, ;,(x1,22) = Hi, i, (z2,21) for all iy # i and z1,22. The

generalized U-statistic is defined as [7]

Un = Z Hihu.,im(Xil?""Xim)‘ (22)

When H;, . ;. = H, we obtain the classical U-statistics. It is often easier to work with
the decoupled version of U,, defined as

Un= 2. Hin (Xfll), . ,Xi(m>) ’

m

n

where {Xi(k)} , k=1,...,m are independent copies of the sequence X1, ..., X,. Our
-
ultimate goal is to obtain the moment and deviation bounds for the random variable

|Un — BU,||.
Next, we recall several useful facts about U-statistics. The projection operator
Tm.k (k < 'm) is defined as

Tk H (Xiys - Xi,) 1= (0, — P)... (6x,, — PP "H,

where

Q" H = / / H(y1,- . ym)dQy1) - dQ(ym),

for any probability measure @ on (S, B), and J,. is a Dirac measure concentrated at z € S.
For example, 1, 1H(z) = E[H(X1,...,Xn)| X1 = 2] —-EH(X1,...,Xn).

Definition 2.2. Let F : S™ — HY be a measurable function. We will say that F is
P-degenerate of orderr (1 < r <m) iff

EF (X1, s Xpy Xog1yoe o, Xin) =0VXg,..., %, €S,

and EF (X1, ...,Xp, Xp41, Xp42,- .., Xm) iS not a constant function. Otherwise, F is non-
degenerate.

For instance, it is easy to check that 7, ;H{ is degenerate of order k — 1. If F' is
degenerate of order m — 1, then it is called completely degenerate. From now on, we
will only consider generalized U-statistics of order m = 2 with completely degenerate
(that is, degenerate of order 1) kernels. The case of non-degenerate U-statistics is easily
reduced to the degenerate case via the Hoeffding’s decomposition; see page 137 in [7]
for the details.

3 Main results

Rosenthal-type moment inequalities for sums of independent matrices have appeared
in a number of previous works, including [5, 25, 31]. For example, the following inequality
follows from Theorem A.1 in [5]:

Lemma 3.1 (Matrix Rosenthal inequality). Suppose that ¢ > 1 is an integer and fix
r > qVlogd. Consider a finite sequence of {Y;} of independent H?-valued random
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matrices. Then

2 1/2q

E(> (Y- EY))

K2

1/2
< 2y/er (ZE(Yi - EYZ->2>

1/2q
+4\@er(EmaX||Yi—EYi||2q> . (3.1)

The bound above improves upon the moment inequality that follows from the matrix
Bernstein’s inequality (see Theorem 1.6.2 in [31]):

Lemma 3.2 (Matrix Bernstein’s inequality). Consider a finite sequence of {Y;} of inde-
pendent H?-valued random matrices such that |Y; — EY,|| < B almost surely. Then

g

where 02 :— HZZ.IE(Yi _ EYi)QH.

> (Y —EY;)

i

4
> 20/u + 3Bu> < 2de™,

Indeed, Lemma 5.8 implies, with ¢y = C (U\/log(Qd) + Blog(Qd)) for some absolute
constant C' > 0 and after some simple algebra, that

<E

for an absolute constant ', > 0 and all ¢ > 1. This bound is weaker than (3.1) as it
requires almost sure boundedness of ||Y; — EY;|| for all i. One the the main goals of
this work is to obtain operator norm bounds similar to inequality (3.1) for H?-valued
U-statistics of order 2.

q\ /4
) < Cy (\/q+log(2d)0+(q+log(2d))B),

> (Y —EY))

i

3.1 Degenerate U-statistics of order 2

Moment bounds for scalar U-statistics are well-known, see for example the work
[12] and references therein. Moreover, in [1], author obtained moment inequalities for
general Banach-space valued U-statistics. Here, we aim at improving these bounds for
the special case of H%-valued U-statistics of order 2. We discuss connections and provide
comparison of our results with the bounds obtained by R. Adamczak [1] in Section 4.

3.2 Matrix Rademacher chaos

The starting point of our investigation is a moment bound for the matrix Rademacher
chaos of order 2. This bound generalizes the spectral norm inequality for the matrix
Rademacher series, see [31, 34, 35, 36]. We recall Khintchine’s inequality for the matrix

Rademacher series for the ease of comparison: let A;,..., A, € H? be a sequence of
fixed matrices, and ¢4, ..., ¢, —a sequence of i.i.d. Rademacher random variables. Then
2\ 1/2 1/2

E (3.2)

< Ve(l+2logd) -

n
E e
i=1

n
2
DA
i=1

Furthermore, Jensen’s inequality implies this bound is tight (up to a logarithmic factor).
Note that the expected norm of > ¢;A; is controlled by the single “matrix variance”
parameter |7 | A?|. Next, we state the main result of this section, the analogue of
inequality (3.2) for the Rademacher chaos of order 2.
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Lemma 3.3. Let {4;, i} ;,—1 € H? be a sequence of fixed matrices. Assume that

{5@} N’ i = 1,2, are two independent sequences of i.i.d. Rademacher random
Jje€

J
variables, and define
2
X = Z Aiyis€ 7,1 52)'
(Zl 22)61/

Then for any q > 1,

1/2
* 1/(29)
max § |GG*||, || > A7, < (B[ Xx|2) "
(il,iz)GIE
1/2
< \[ -r-maxy |GG*|, Z A?M-Q , (3.3)
(il,ig)efﬁ
where r := q V log d, and the matrix G € H"? is defined via its block structure as
0 ALQ . Al,n
A2’1 0 “ee A21n
G = . . ) . . (3.4)
An,l An,2 R 0

Remark 3.4 (Constants in Lemma 3.3). Matrix Rademacher chaos of order 2 has been
studied previously in [29], [27] and [28], where Schatten-p norm upper bounds were
obtained by iterating Khintchine’s inequality for Rademacher series. Specifically, the
following bound holds for all p > 1 (see Lemma 5.4 for the details):

1/2||2P

n
2
ol 22 A

i1,02=1

]E||X||2p <2 (2\[ ) max H (GG™) 122

Sap

Using the fact that for any B € H¢, < < d/??||B|| and taking p = ¢ V log(nd),
one could obtain a “naive” extension of the inequality above, namely

1/2
1/(29) *

(B X[2) " < Cmax (g, log(nd)) max § [GG™[|, | D> A%,

(il,i2)€I£L

that contains an extra log(n) factor which is removed in Lemma 3.3.

One may wonder if the term ||GG*| in Lemma 3.3 is redundant. For instance, in
> |GGl
However, a more careful examination shows that there is no strict dominance among
IGG|| and ||, imyerz 42,

S imer 4| < llGG7.

11,12

the case when {A4;, ;, }i,.i, are scalars, it is easy to see ’Z(il in)erz A2

The following example presents a situation where

Example 3.5. Assume thatd > n > 2,let {a;,...,a,} be any orthonormal basis in R¢,
and a:= [af... allT € R" be the “vertical concatenation” of ay, ...,a,. Define

Ay = aha +a;,a m i1,12 € {1,2,...,n},
and

1 (2
X = Z 521)51(-2)14,»171-2.
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Then |GG*| = ||GGT|| > (n—2)|alZ = (n — 2)n, and Hz A2

5 .
) n
(i1,82)€T 11,12

= 2(n —1).
Details are outlined in Section 5.4.

It follows from Lemma 5.1 that

GG <> | Do A7 Ll (3.5)

i1 ||igriniy

Often, this inequality yields a “computable” upper bound for the right-hand side of the
inequality (3.3), however, in some cases it results in the loss of precision, as the following
example demonstrates.

Example 3.6. Assume that niseven,d > n > 2, let{ay,...,as} be an orthonormal
basis in R?, and let C € R"*" be an orthogonal matrix with entries ¢; ; such that ¢;; = 0
for all ¢. Define

A

_ T T o
i1,z = Ciq,ia (ailai2 +al-2ai1) , d1,d2 € {1,2,...,n},

and X :=3 e 52(»11)5522)&1@2. Then |GG*| = =2, but

'Ll i2

Z Z A?M.Z =n.

i] iz:iz#il
Details are outlined in Section 5.4.

3.3 Moment inequalities for degenerate U-statistics of order 2

Let H;, ;, : SXS — HY, (i1,i) € be a sequence of degenerate kernels, for example
H;, i, (1, 22) = T2 QH“ i» (21, 22) for some non-degenerate permutation-symmetric HZMQ.

Recall that U,,, the generalized U-statistic of order 2, has the form

Un = Z 11712 Xl17X )
(i1,42)€I2

n ’

Everywhere below, E;[-], j = 1,2, stands for the expectation with respect to {X G )}

1
only (that is, conditionally on all other random variables). The following Theorem is éur
most general result; it can be used as a starting point to derive more refined bounds.

Theorem 3.7. Let {X(])} , j = 1,2, be S-valued i.i.d. random variables, H;; :
i=1

S x S — H¢ - permutation-symmetric degenerate kernels. Then for all ¢ > 1 and
r = max(q, log(ed)),

2q 1/2q
9 1/2q 1
(et x| ) 3 s (40 12)
(i1,32)€r
q\ 1/(29)
<128/\/E[16r3/2 Emax| > mz( ir ,Xff))
" (PROT
1/2

| Y B2, (X0 xD)| 4 (B|EGE

(i1,i2)€12

q>1/2q‘|’
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where the matrix G € H™? js defined as

0 Hi o (Xl(l),X§2)> o Hyp (xW, x
_ 1 (x5, X (V) 0 o Hyy (x9, X
G = . . (3.6)
Hos (X,S”, X§2>) Hyo (XT(S), X§2>) . 0
Proof. See Section 5.2.3. O

The following lower bound (proven in Section 5.2.4) demonstrates that all the terms
in the bound of Theorem 3.7 are necessary.

Lemma 3.8. Under the assumptions of Theorem 3.7,
q\ 1/(29)

(EHUn||2q)1/2q > 0 | [ BEmax Z 2 ( 211),X( ))

i1
PRETA

q\ 1/2q

+(EHE2€:G** q)1/2q+ E| Y EH, (Xf}’,X(f))

(217L2)EITL

where C' > 0 is an absolute constant.

Example 3.9. Let {A; i, }1<i,<i»<n be fixed elements of H? and Xi,...,X, - cen-
tered i.i.d. real-valued random variables such that Var(X;) = 1. Consider Y :=
Zil#zz A, iy X Xiy, where A, ;, = A;, i, for io > i;. We will apply Theorem 3.7 to

obtain the bounds for (E||Y||2q)1/2q. In this case, H;, 4, (X(l) X(Q)) = AZMZX(DX(Q)

71 )
and it is easy to see that

q\ 1/(29) 1/2 1/q
E max Z “7“ (Xz(ll),X(z)) < max ZAij <IE max | X q>
" [PRET S ’ J#i ’
d EH? , (x x® v a2 %M
an Z(il,iz)elﬁ i1,i2 i iy = Z(il,ig)el,}; i1,io - Moreover,

(EQéé*)ZJ AXV(1 1) k;j A’L k:A] k>

implying that E>GG* = DG D, where G is defined as in (3.4) and D € H" is a diagonal
matrix D = diag(X 1(1), ... ,X,(Ll)) ® I3, where ® denotes the Kronecker product. It yields

~ ~ 2
that HEQGG* X}”’ -||GG*||, hence

< max;

(E Hméé*

a\ 1/2q 1/24
) < eer i (B e )

Combining the inequalities above, we deduce from Theorem 3.7 that

1/2

1/2q
20\ 1/2¢ 2 2 *(11/2
@YY <ol || X a2+ (Eme )66
(il,iz)eli
1/2
3/2 / 2 Y

q

+r mElLX Z Alm2 (Elrgzag( | X ] ) , (3.7)
ioF£i1
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where r = max(q,log(ed)). If for instance |X;| < M almost surely for some M > 1, it
follows that

1/2 1/2

EIY2) > <c|r[Mjaa 24| S A2, M max | Y A2,
(i1,42)€I2 ia7i1

On the other hand, if X; is not bounded but is sub-Gaussian, meaning that (E|X; |q)1/q <
Co,/q for all ¢ € N and some o > 0, then it is easy to check that

1/2q
<IE max |X; 2q> < Ch1y/log(n)o+/2q,

1<i<n

. 2 1/2q
and the estimate for (]E Yl ) follows from (3.7).

Our next goal is to obtain more “user-friendly” versions of the upper bound, and we
first focus on the term E||E.GG*||” appearing in Theorem 3.7 that might be difficult to

deal with directly. It is easy to see that the (4, j)-th block of the matrix EyGG* is

(E2éé*)” = Z E, {Hi,k(xi(l),X,gz))Hj,k(Xj(-l),X,f))] .
’ k#i,j

It follows from Lemma 5.1 that

182G <Y H (Egéé*)

=3 X Em, (xD.xD)) Ge

i1 G2l

hence

q\ 1/2q

qy\ 1/2q
) s EIX] X EemZ, (x.X0)

i1 i9:ioF£i]

SE| S B, (ij>,X(2))
i1

PRETS

(JE H]E2C~¥é*

1/2

IN

a\ 1/2¢
+24/2¢q | Emax Z E.H? ,, (XZ(11)7 (22)) ’
1

PRETA

where we used Rosenthal’s inequality (Lemma 5.5 applied with d = 1) in the last step.
Together with the fact that HEH2 (Xfﬁ,X@))’ <E H]E2H2 (Xfl”,X@)) H for all iy, is,
and the inequality

q\ 1/2q
(1) (2
Emax| > EoH7,, (x.x)
PRETA
q\ 1/(29)
(1) 5 (2)
< |Bmax| > HE, (XXD) ,
[PHEE 2
we obtain the following result.
EJP 24 (2019), paper 133. http://www.imstat.org/ejp/
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Corollary 3.10. Under the assumptions of Theorem 3.7,

(B ||UnH2q)1/2q §256/\/Elr S

+ 11 r3/2 | Emax

i1

1/2
5w, (X0 x0)
PRETS
q\ 1/(29)
> () ]|
i1
ioiia Al

Remark 3.11. Assume that H, ; = H is independent of 4, j and is such that || H (z1, z2)|| <

M for all z1,z5 € S. Then

Emax
i1

> HEL(x

PROT S

xW

i1

q

X@)) < (n—1)7M%,
ig

and it immediately follows from Lemma 5.7 and Corollary 3.10 that for all ¢ > 1 and an

absolute constant C > 0,
r <||Un|| >C (\/IE HE2H2(X£1)’X2(2))H

Next, we obtain further refinements of the

3/2 [ Emax

i

r

(PROT

Z 11 12 (Xz(11)’X( :

(t +log d) -n—l—M\/ﬁ(t-i-logd)?’/Q)) <et

(3.9)
result that follow from estimating the term

q\ 1/(29)

)

Lemma 3.12. Under the assumptions of Theorem 3.7,

q\ 1/(29)
3/2 (2)
T/ EH&?X Z 1112( i1 ’X )
PRET
1/2
logd 1 @
< 4ev2 1+[ ZIE > EH?, (X0, xP)
PRI
q\ 1/2q
: 1 2
b (B | 3 Banz, (x0,x2)
PREEZ
1/2q
+7’2< B max |H2,, (X x2) ) ]
- PRI 12 “u
i1

Proof. See Section 5.2.5.

O

One of the key features of the bounds established above is the fact that they yield
estimates for IE |U,||: for example, Theorem 3.7 implies that

E ||U,|| <C’logd< (EHEgéé*

logd Emi?x Z

PREEA

EJP 24 (2019), paper 133.

>1/2

1/2

)

1) @
| > mEz, (X0

(i1,42)€12
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i1 0

(3.10)

Page 9/32


https://doi.org/10.1214/19-EJP392
http://www.imstat.org/ejp/

Moment inequalities for U-statistics

for some absolute constant C'. On the other hand, direct application of the non-
commutative Khintchine’s inequality (3.2) followed by Rosenthal’s inequality (Lemma
5.5) only gives that

1/2

E|U.)| <Clogd | Y E| > #2, (x),x2)

i1 12110701

1/2

sclogd( SE[ Y B2, (xP.x2) (3.11)
i1 igtig Ay
1/2
2 1 x@
i (x2)) )

and it is easy to see that the right-hand side of (3.10) is never worse than the bound
(3.11). To verify that it can be strictly better, consider the framework of Example 3.6,
where it is easy to check (following the same calculations as those given in Section 5.4)
that

[PRETS

logd< E max
i1

1/2

1/2
) =1, [Emax|| Y ,17,2()(}1”,)((2)) —1,

1
PREE

(JE H]Ezéé*

1/2

Y EH ( fj%X“”) — 9

(i1,42)€l2
. ( @\ |\ /2
while (3, B[S, B2H2 ,, (X0, Xx2)]) 7 = vin
Remark 3.13 (Extensions to rectangular matrices). All results in this section can be

extended to the general case of C% *?-valued kernels by considering the Hermitian
dilation D(U,,) of U,, as defined in (2.1), namely

DU,)= > D (Hh@ (Xfl),X(z))) € Hh+dz,
(i1,92)€12

and observing that ||U,|| = ||D(U.,)]|-

4 Adamczak’s moment inequality for U-statistics

The paper [1] by R. Adamczak developed moment inequalities for general Banach
space-valued completely degenerate U-statistics of arbitrary order. More specifically,
application of Theorem 1 in [1] to our scenario B = (H, |- ||) and m = 2 yields the
following bounds forall ¢ > 1 and ¢t > 2:

(B[U,2) P < C<E|Un|| Y Va At BT gt D), 1)

Pr (IIUﬂ,II >C (EHUnH +Vt-A+t-B+t32. T 412 ~D)) <e !,

where C' is an absolute constant, and the quantities A, B,I', D will be specified below
(see Section 5.3 for the complete statement of Adamczak’s result). Notice that inequality
(4.1) contains the “sub-Gaussian” term corresponding to ,/q that did not appear in the
previously established bounds.
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We should mention another important distinction between (4.1) and the results of
Theorem 3.7 and its corollaries, such as inequality (3.9): while (4.1) describes the
deviations of ||U, || from its expectation, (3.9) states that U, is close to its expectation as
a random matrix; similar connections exist between the Matrix Bernstein inequality [33]
and Talagrand’s concentration inequality [3]. It particular, (4.1) can be combined with
a bound (3.10) for E||U,|| to obtain a moment inequality that is superior (in a certain
range of ¢) to the results derived from Theorem 3.7.

Theorem 4.1. Inequalities (4.1) hold with the following choice of A, B,T" and D:

1/2
A =+/Tog(de) EH]E2éé* Y EH? ( fll),X(2)>
(1,1 12)612’
1/2
+ log(de) | Emax Z b z2( fll),X(Q)) ,
" i9:i07£71
1/2
B=( sw > B(sHi (X0x2) )
Zecd:‘lzllzgl(il,h)elﬁ
1/2
1 2
< S oEE? (XD, XD) ,
(11,12)612
q\ 1/2q
logd
royi B (S 3w, (00) )
1292701
1/(2q)
_ (1) (2
p=( 5wl (st
(il,iQ)Glz
logd
+ (1-1— o8 ) ( E max Hfl 12( zl),X(Q)H ) ,
q " iz:ig#il 1
where éi were defined in (3.6).
Proof. See Section 5.3. O

It is possible to further simplify the bounds for A (via Lemma 3.12) and D to deduce
that one can choose

1/2
A =log(de) [ E HEQéé* > oEm2,, (x.x2) :
(’Ll 12 612
1/2
B_ sup Z E <Z*Hi1,i2 (Xz(ll)’X(Q)> ) ,
z€C: ” ”2— (i1, 12)612
q\ 1/2q
I =(log(de))? | Y By | Y- Eah?, (X1, X17) ’
il 12 7,2757,1
1/(2q)
q
D =1log(de) Z E H i1 (XZ(11)7X(2)) (4.2)
(il,ig)GIQ
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The upper bound for A can be modified even further as in (3.8), using the fact that

<Y E| X e (0 x)
i1

iz:ig?ﬁil

E H]EQéé*

5 Proofs
5.1 Tools from probability theory and linear algebra

This section summarizes several facts that will be used in our proofs. The first
inequality is a bound connecting the norm of a matrix to the norms of its blocks.

A X
Lemma 5.1. Let M € H% %% be nonnegative definite and such that M = (X* B>’
where A € H% and B € H%. Then
A< LA+ 1Bl
for any unitarily invariant norm ||| - |||.

Proof. It follows from the result in [4] that under the assumptions of the lemma, there
exist unitary operators U, V such that

A X A0\, .. 0 0\, .
(& 5)=r (@ ) 5

hence the result is a consequence of the triangle inequality. O

The second result is the well-known decoupling inequality for U-statistics due to de
la Pena and Montgomery-Smith [8].

Lemma 5.2. Let { X} ; be a sequence of independent random variables with values in

a measurable space (S,S), and let {ka)}?:l, k=1,2,...,m be m independent copies
of this sequence. Let B be a separable Banach space and, for each (ii,...,in) € I,
let H;, . ;, : S™ — B be a measurable function. Moreover, let ® : [0,00) — [0,00) be a
convex nondecreasing function such that
EQ([|Hi,..oip (X, -, X)) < 00
for all (i1,...,im) € I". Then
E® > Hian (X, X)) ] <
(21 50ensim )ELT
E® | Cr| Y Hia, (Xi(ll), .. ,ijj)) ,
(i1, sim )€
where Cp, :=2"(m™ — 1) - ((m —1)™~! —1)-...-3. Moreover, if H;, .. ;  is P-canonical,

then the constant C,,, can be taken to be m™. Finally, there exists a constant D,, > 0
such that for allt > 0,

Pr Z Hh,...,im(Xil""vX’im) >1

(B150eesim )ELT

< D'm Pr Dm Z Hil,.“,im (X(1)7 ce aX(m)) >t

(2150ensim )ETT
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Furthermore, if H;, . ;. is permutation-symmetric, then, both of the above inequalities
can be reversed (with different constants C,,, and D,,,).

The following results are the variants of the non-commutative Khintchine’s inequali-
ties (that first appeared in the works by Lust-Piquard and Pisier) for the Rademacher
sums and the Rademacher chaos with explicit constants, see [24, 23], page 111 in [27],
Theorems 6.14, 6.22 in [28] and Corollary 20 in [32].

Lemma 5.3. Let B; € C"™*' ,j = 1,...,n be the matrices of the same dimension, and let
{¢;};jen be a sequence of i.i.d. Rademacher random variables. Then for any p > 1,

2p v 1/2]|2P 1/2|%P
E|Y &B;|| < = p| -max > B;B; Do BB,
j=1 S j=1 j=1
2p Sap Sap
Lemma 5.4. Let {4;, ;,}} ;,—; be a sequence of Hermitian matrices of the same dimen-

sion, and let { (k)} , k=1,2, beiid. Rademacher random variables. Then for any
1=1
p=>1,

2p
(1) (
Z ZAlhb 7,1 l2 S
’Ll 122 1 S2p
1/2||2P
W) n
i <{p> e H (GG 1/2 Sy | Z A?17i2 ’
2p iy ip=1
Sap

where the matrix G € H™ is defined as

A A .. A
G := . . .
Ayl Ape .. Ann

The following result (Theorem A.1 in [5]) is a variant of matrix Rosenthal’s inequality
for nonnegative definite matrices.

Lemma 5.5. Let Y;,...,Y,, € H¢ be a sequence of independent nonnegative definite

random matrices. Then for all ¢ > 1 and r = max(q, log(d)),

q\ 1/2q 1/2

1/2q
Yy | < |Sen| +2vee (Bmaiyi)
J J

The next inequality (see equation (2.6) in [12]) allows to replace the sum of moments
of nonnegative random variables with maxima.

Lemma 5.6. Let &1,...,&, be independent random variables. Then for all ¢ > 1 and
a>0,
EJP 24 (2019), paper 133. http://www.imstat.org/ejp/
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n n q
00D I617 < 21 +¢°) max ("ME max &, (Zm&l) ) |

i=1 i=1
Finally, the following inequalities allow transitioning between moment and tail
bounds.

Lemma 5.7. Let X be a random variable satisfying (E|X[?)"/? < asp? + asp®/? + asp +
a1./p + ag for all p > 2 and some positive real numbers a;, j = 0,...,3. Then for any
u> 2,

Pr (\X| > e(agu’® + asu®? + asu + ayvu + a0)> <exp(—u).

See Proposition 7.11 and 7.15 in [10] for the proofs of closely related bounds.

Lemma 5.8. Let X be a random variable such that Pr (| X| > ap + a1/u + asu) < e
for allu > 1 and some 0 < ag,ay,a2 < 0co. Then

(E|X )" < C(ag + a1y/p + azp)

for an absolute constant C' > 0 and all p > 1.

The proof follows from the formula E[X [P = p [;° Pr (| X| > ¢) t?~'dt, see Lemma A.2
in [9] and Proposition 7.14 in [10] for the derivation of similar inequalities. Next, we
will use Lemma 5.2 combined with a well-known argument to obtain the symmetrization
inequality for degenerate U-statistics.

Lemma 5.9. Let H;, ;, : S x S — H? be degenerate kernels, X1, ..., X, —ii.d. S-valued
random variables, and assume that {Xi(k)}?:l, k = 1,2, are independent copies of this

sequence. Moreover, let {sgk)} , k =1,2, be ii.d. Rademacher random variables.
i=1
Define

1 2 1 2
v,= Y eVePhy,, (X( ) X}z)). (5.1)

1
(il,iQ)GIEL
Then for any p > 1,

(E1v.17)" < 16(E1027) .

Proof. Note that

p
E|[Un||” =E Z Hj, ip (Xiy, Xiy)
(i1 ,in)E€I2
p
2 1) 5@
<E(22 Y Hiy, (Xil ,XiQ) :

(il,iz)EI%

where the inequality follows from the fact that H;, ;, is P-canonical, hence Lemma 5.2
applies with constant equal to Cs = 4.

Next, for i = 1,2, let ;-] stand for the expectation with respect to {X;i), 5?} N
j>1
J

only (that is, conditionally on { X](k), g(,k)} , k #1). Using iterative expectations and
j>1
the symmetrization inequality for the Rademacher sums twice (see Lemma 6.3 in [22]),

EJP 24 (2019), paper 133. http://www.imstat.org/ejp/
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we deduce that
p

E||U, [P <4’ E Z Hiy i (X(l) X(2))

5 5
(il,iz)elﬁ

_ p
=4PE | E, Z Z H;, 4, (X1(11)7X(2))

i i1=1 12741

— p
BB 2 3D Y Hi, (X0, X2)

L i1=1 ia#11

- P
=4P T |, ||2 Z Z 6(1)H71712 ( fll),X(Q))

i io=1 11 Ais |

— P
<wBlt Y Ve, (X0 xP)) . =

(i1,i2) €12 J

5.2 Proofs of results in Section 3
5.2.1 Proof of Lemma 3.3

Recall that

X = Z Z A21712 11 ig ’

i1=1 40711

2p
where A;, ;, € H¢ for all i1, i9, and let Cp:=2 (¥p> . We will first establish the upper
bound. Application of Lemma 5.4 (Khintchine’s inequality) to the sequence of matrices
{Ai,in}; ;,—, suchthat A; ; =0for j = 1,...,nyields

1/2
1/2p 2v/2
2p 1/2 x\1/2 2
(EHX”SQP) S 2 / p? "p-max H(GG ) ’ Sap ’ (i Z):Elz Ail’h 7
i1,i2)€I2
Sap
(5.2)
where
0 A ... A,
Al Apa ... 0

Our goal is to obtain a version of inequality (5.2) for p = co. To this end, we need to find
an upper bound for
2
SQP

P - max { H(GG*)UQ‘

Since G is a nd x nd matrix, a naive upper bound is of order log(nd). We will show that it
can be improved to logd. To this end, we need to distinguish between the cases when
the maximum in (5.2) is attained by the first or second term. Define

E' :[O|O|---|Ai1,i2|---|O|O]E(Dd><”d’

11,12

1/
(Z(Z‘l,zé)efﬁ Alzl,ig)

1/2
2
(Z(il yiz)€I2 Aihiz)

Szp

inf
= maX{H(GG*)l/2
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where A;,;, sits on the i;-th position of the above block matrix. Moreover, let
Bi,= Y Bi (5.3)
iq:dq #ig

Then it is easy to see that

ZB
Z Azl 79 ZBM

(i1,42)€l2

The following bound gives a key estimate.

Lemma 5.10. Let M,,..., My be a sequence of C**"¢-valued matrices. Let \i, ..., A\na
be eigenvalues of Zj M:M; and let vy,...,vq be eigenvalues of Zj M;M7. Then

Z?ﬁl Ai = Z?Zl vj. Furthermore, if max; A\; < 52?:1 vj, then

1/2]|2P 1/2||2P

S| oz (S )
! Sap ! Sap

for any integer p > 2.

The proof of the Lemma is given in Section 5.2.2. We will apply this fact with M; = Bj,

J=1,...,n. Assuming that max; \; < ; Z"d Aj, it is easy to see that the second term in
the maximum in (5.2) dominates, hence

1/2]|%P P
2
]EHXH ; < C Z A’Lzl,iz = Cp tr Z Alllz
(il,iz)GIE’ (’Ll 7.2)6[2’
Szp
p p
<C,-d- oo AL =Cd-| D> A7 Ll 654
(Zl 22)6] (1,1 12)612’

where the last equality follows from the fact that for any positive semidefinite matrix H,
|HP|| = ||[H||P. On the other hand, when max; \; > 5 Z?il Aj, it is easy to see that for all
p=1,

d>zmaxl i Zz_:(masz)\z> ’

which in turn implies that

nd
p
. D
d (max ;) = A (5.5)
j=1
Moreover,
1/2(|2P P nd
. Bw> —tr <<Z B;;Biz> ) =M. (5.6)
Sap 12 1=1
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Combining (5.5), (5.6), we deduce that

2p

1/2
H(ZB;BD> Sd
i2

Sgp

=d||(GG")"|| = d|GG|",

p
(z B;Bu)
i

where the second from the last equality follows again from the fact that for any positive
semi-definite matrix H, ||H?|| = |H||P. Thus, combining the bound above with (5.2) and
(5.4), we obtain

r
E|X||Z <d-Cpmax{ [GGH|P.|| S0 A2,
(i1,42)€I2
Finally, set p = max(q,log(d)) and note that d'/?” < /e, hence
1/2
(Bl|x[29) % < (B)|X|12) "% < } max{logd, ¢} -max { |GG, Y A2,

(il,ig)EI;

This finishes the proof of upper bound.
Now, we turn to the lower bound. Let It [-] stand for the expectation with respect to

{551)} only. Then
7o)

21\ 1/2
1/(2p) 1/2 1) _(2
(BIX]12) 5 > ()X %) = [ BR[| Y elPel A,

(’il,ig)e[ﬁ
S\ 1/2
2
> E ]El Z 5511)81(-2)141‘1),‘2
(’il,ig)EI%
o\ 1/2
2
=B X 4
il iz:ig#il
It is easy to check that
2

Zn: Z Ez(‘j)Amz = <Z€§§)B¢2> <Z€§S)Biz) ,

i1:1 ig:ig#il
>1/2

A*A 0 " % X
=40t e )| = mestiananpascyy = pasy,

where B; were defined in (5.26). Hence

(Zeii’%) (255?3@)
i2

2

(EHXHzp) 1/(2p) > (E

Next, for any matrix A € C%*d,
0 A*\°
A 0
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where the last equality follows from the fact that | AA*|| = [[A*A[|. Taking A =, sgf)B
yields that

o\ 1/(2p) « 0
(BIX )Y > BB ) = | B <§)a§-?(3
io 2

2||1/2 1/2

@ ( 0 Bj _ B}, B, 0
o(20 (s, F))| =125 e

2 e 2
Z B;;B ’ Z Bi2B ’ }
io 12

\%

1/2
—max ¢ |GG, || Y A7,
(i1,42)€I2
5.2.2 Proof of Lemma 5.10
The equality of traces is obvious since
N N
tr (> MM | => tr(M;M) Ztr M;M;) ZMM
j=1 j=1
Set
nd d
S = Z )\i = ZML‘.
i=1 i=1
Note that
2
N 2% N P nd
> MM =tr | [ > MM, =y,
j=1 j=1 i=1
Szp
2
N 1/2||% P d
S| | =[S )=y
j=1 j=1 i=1
Szp

Moreover, A\; > 0, v; > 0 for all 7, j, and max; \; < 52?:1 vj = % by assumption. It is
clear that

N 1/21|2P
E Mj*Mj < E )\
= 0< )\ g% "d L ANi=S5 ]

SQp

2p

1/2

N / d
g MjM; > min E VP
=1 v; >0 ,5°%  v;=8 -

Sap

Hence, it is enough to show that

d
max Z AP < min Z V. (5.7)
=% =1

o<\ <S5, Sord =57 v;>0, ¢ ;=84
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The right hand side of the inequality (5.7) can be estimated via Jensen’s inequality as

4 1
min g Vf =d- min - E Z/ZP
=1

v;>0, L v;=S v; >0, ¢ v;=S d =

S p
>d. i | =4 (2) . 5.8
24, o B (Z> @(3) 69

It remains to show that Y7, A\’ < d - (5)”. For a sequence {a;}}, C R, let ag;

be the j-th smallest element of the sequence, where the ties are broken arbitrary.
N o N k k

A sequence {a;};_, majorizes a sequence {b;},_, whenever } . av_j) = > bwv—j

forall0 < k < N —2, and Z a; = Z b;. A function g : RY — R is called Schur-convex

ifg(ay,...,an) > g(b1,...,by) whenever {aj} —1 majorizes {b; } . It is well known that
if f: R — R is convex, then g(aq,...,ay) = Zj:l f(aj) is Schur convex. In particular,
g(at,...,an) = Zjv 1 J, where aq,...,ay > 0, is Schur convex for p > 1. Consider the
sequence a; = ... = aq = %, g1 = ... = apg = 0and by = Ay,...,byqg = A\pg. Since

max; \; < % by assumption, the sequence {a;} majorizes {b;}, hence Schur convexity
yields that 27 A? < 7 (5)" =d- ()", implying the result.!
5.2.3 Proof of Theorem 3.7

The first inequality in the statement of the theorem follows immediately from Lemma
5.2. Next, it is easy to deduce from the proof of Lemma 5.9 that

2g 1/2q
Bl S Hia (X0 x2) <a(mpog)”, (5.9)

(i1,42)€I2

where U/, was defined in (5.1). Applying Lemma 3.3 conditionally on {X(])}l 1, =12,
we get

2g\ 1/(20)

20\ 1/24
(Blo*) " = | ®

(i17i2)61

6(1)6522)]'[,;1712 (X(l) X(2))

1 i1

q\ 1/2q

<4e_1/2max(q,logd) Emax ||éé*||7 Z “,22( 1), U) , (5.10)

= 'll 12
(11,12)612
where G was defined in (3.6). Let C:‘i be the i-th column of é, then
=Y GG, Y (XD =3 GG
i=1 (i1,i2)€I2 i=1

Let Qi c H(n-‘rl)dx(’rb-l-l)d be defined as

0 Gr
QZ_<G’,7I O>7

1We are thankful to the anonymous Referee for suggesting an argument based on Schur convexity, instead
of the original proof that was longer and not as elegant.
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so that

Inequality (5.10) implies that

2q\ 1/(20)
1 2 1 2
B Y e, (x0.x2)
(il,iz)elﬁ
1/(2q9)
< 4eV/? max(q,log d) ( ) . (5.11)

Let 5[] stand for the expectation with respect to {X 1-(2) } only (that is, conditionally

on {X ) } ). Then Minkowski inequality followed by the symmetrization inequality

imply that
q\ 1/(29) 1/(2q) q\ 1/2q
q\ 1/(29) n q\ 1/2q
= <EE2 > + (E ZEQQ? >
i=1
qy\ 1/(29)
V2 (]E ) + (]E

q\ 1/2q
) . (5.12)

Next, we obtain an upper bound for (E|> 1, &,Q?|* )1/ 29 Ty this end, we apply

n

Z - E.Q%)

D QF —TEQ}

i=1

Q?

2r
Khintchine’s inequality (Lemma 5.3). Denote C, := (%7‘) , and let E.[-] be the
expectation with respect to {¢;}? ; only. Then for r > ¢ we deduce that

2r

n 1/2 2r
<cy/? <ZQ?>
i=1

Sar

i (z Q?) < Ot (z 0. ||@$|>>
=1 =1

Ea i 52@3
=1

Sa

1/2 2r
<G/ max || Q7| - (ZQ )

527‘

where we used the fact that Q7 < ||Q?||Q? for all i, and the fact that A < B implies that
trg(A) < trg(B) for any non-decreasing ¢ : R — R. Next, we will focus on the term

(&) -=(Eoe)) o ((Eee))

Applying Lemma 5.10 with M; = @j, j=1,...,n, we deduce that
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2r

. if HZZ’:I Gi éi‘

< lg (Z?’:l G é,), then H (Z?‘:l G, 5;‘)1/2

2r

S2r
T
i

(Z?:l @;‘CN}’Z) i , which implies that tr ((2?21 éléf)r) < tr((Z?zl éjé) )

and

Sar

r

S G,
i=1

> Ltr (Z?:l éf@), let \; be the j-th eigenvalue of 3.7 | GG,

n 1/2 2r
(Z Q?) <2d-
i=1

S

. if HZ?:l GG

and note that
HZL GiG; HZL GiGy i maxg Ay Amaxg Ay

where r > 1. In turn, it implies that

e ((Zéé)) <d
(Be) | w((Sea)) e ((Sae))

i=1
no no_ r
D GG +d|> GICs
=1 =1
Putting the bounds together, we obtain that

n 2r
2

E €7QZ

=1

T

y¥eles
=1

Thus

Sap

<d +d

T

I,

7

<2dC}? max ||QZ2H7 max {

¥ee
=1

r

S,
=1

} (5.13)
2r Q/2T
i)

Z?=1 1%

SQT

<2dC/? max ||Q2||” -

> Q3
=1

q
Next, observe that for r such that 2r > ¢, E, ‘Z?Zl {:‘jQ?H < (]EE

by Holder’s inequality, hence

a\ 1/2q a\ 1/2q
n n
2 2
E|>_ Q] = | BE:||>_ @5
j=1 j=1
2r a/2r 1/2q
n
< | BB 03
j=1
or \ 4/2r\ /%
n
< | BB 03
=1 Sar
2
1/4r /2 = 2 v
1/2 214 2
§(2dC,/> E miaXHQiH ) ZQz‘
1=1
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Set r = ¢ V log d and apply Cauchy-Schwarz inequality to deduce that

q\ 1/(4q)
) . (5.14)

q\ 1/2q

n 1/(4q)
E|Y ¢ < ()" (Bmax]|Q?]") (E
3
j=1
Substituting bound (5.14) into (5.12) and letting
q\ 1/(29)
- (E ) 7

Ry < (8142, (EmaxQ2]) " + <E

> Q3
=1

we obtain

q> 1/2q
IJ) 1/2q

Z E»Q7?
i=1

If x,a,b > 0 are such that z < a\/z + b, then z < 4a? Vv 2b, hence

1/(29)
Ry <16v2r (Emax||Q?]") " +2 (]E
Finally, it follows from (5.11) that

2q\ 1/(29)
(E )
(11,12 EI
9 8
<64 EmaXHQ H ) %r E

S D@ x, x?)

21 12 11 0

tI) 1/2q

n
Z EyQ?
i1

f (Ema]) s 3o (e[S mae] e [Sraa])
maX —=T 2 2
\/E i=1
q\ 1/(29)
\f Emax| > #2,, (x).x7)
1222?611
q\ 1/2q

n

q
ve|Y (8w, (x0x®))| )

i1=1 \ig:ia#%;

E i E2G,G;
i=1

(5.15)

where the last equality follows from the definition of (771 To bring the bound to its final
form, we will apply Rosenthal’s inequality (Lemma 5.5) to the last term in (5.15) to get
that

a\ 1/2q 1/2
x x@ xO x@
EZ ZEQ lez(ll’X ) S Z Elllz(h’X )
i1=1 \ig:ia7#i1 (i1,32)€I2
q\ 1/2q
(1) (2
+2v2er | Emax|| Y Eom7,, (x(P.x)
PR P I
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Moreover, Jensen’s inequality implies that

q q
Emax|| > B 2112(X1(11>,X<2)> <Bmax| Y “22()(1(11),)((2)) 7

11 11
PR 12192701

hence this term can be combined with one of the terms in (5.15).

5.2.4 Proof of Lemma 3.8

Let E;[-] stand for the expectation with respect to the variables with the upper index
i only. Since Hj, ;, (-,-) are permutation-symmetric, we can apply the second part of
Lemma 5.2 and (twice) the desymmetrization inequality (see Theorem 3.1.21 in [13]) to
get that for some absolute constant Cy > 0

2q 1/(2q)
/2y 1 1 9
E Un 2q> >— | E Hil . (X( ),X( ))
lA > (Z) o (XS
2\ 1/(29)
_ 1 1) (@
=& | B2 En > N Hia (X“ ,XQ)

i1 dg: 727'511

2q 1/(2q)
1 1 1 2
Zf 25( ) Z Hi1,i2 (Xz(l)vX( )>
0 ’LQZiz?é’il
2q\ 1/(20)
1 1 2
o > e Hia (Xfl)’XfQ))

i 41:11Fl2

1
> B Y e (x,x?)

11 )
(i1,i2)€I2

Applying the lower bound of Lemma 3.3 conditionally on {Xz-(l) } and {XZ-(Q) } , we

=1 i=1
obtain
q\ 1/2q
1/(2q) o~ o~ JU
(E\|Un||2q> 7 se <Emax{ > GG, (D GiG; }) (5.16)
1 q\ 1/2q q\ 1/2q
> E + | E
4260 ( ) ( )
1 q 1/2q q 1/2q
> E E ézé: + | E E éf@l s

Wh~ere éi is thg z';th column if the matrix G deﬁned in (3. 6) we also used the identities
GG* = Y1 | GG, D (i sin)el2 H? (X(l) X ) Dy G:G;. The inequality above

11,12 11 7
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takes care of the second and third terms in the lower bound of the lemma. To show that

the first term is necessary, let
0 G

It follows from the first line of (5.16) that

1/(2q)
2\ 1/ 1
(EI0a1) " 215 .

Let i, be the smallest value of i < n where max; HQ?H is achieved. Then 7" | Q7 = Q7 ,
hence ||Q? || < ||, Q|- Jensen’s inequality implies that

1(29) 1 n q\ 1/(29)
(Blon)>) ™ = ﬁ <]E ZQ? >

1) 1
(Bmax(@?) " = icy

q) 1/2q7

(]E max ’ ~Z ¢

_4C

where the last equality holds since Hé;‘ G i Nl . The claim follows.

5.2.5 Proof of Lemma 3.12

Note that
q\ 1/(29)
3/2 (1) 5 (2)
P2 Bmax | Y0 H2, (x0, X))
[PRET
q\ 1/(29)
1
<t (EX| a6 x)
i1 G210
q\ 1/(29)
=P E Y B S B, ( a ,Xff)) . (5.17)
i PRETA
Next, Lemma 5.5 implies that, for » = max(q, log(d)),
q q
Es Z 11 0 ( b ,X(z)) < 22q—1l Z EoH “ 0 (Xz(ll)7X(2)) (5.18)
i:i2F£11 PR

+ (2v/2e)%%r9E, max

inrinFiy

H2 (X(l) X(Q))

11 )

|

We will now apply Lemma 5.6 with o = 1 and &;, := HZiz#il E,H? (Xi(ll),Xif)) H to get
that
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q
ZE€Z<2(1+q)<EHg?X > Bt (x0,x2)

il 7,2 Zz;ﬁ’bl

q

SE| Y Em?, (x0,x2) ) (5.19)
i1

[PREE S

Combining (5.17) with (5.18) and (5.19), we obtain (using the inequality 1 + g < e7) that

q\ 1/(29)
3/2 (2)
T/ EH&?X Z 1112( i1 ’X )
PRETS
q\ 1/2q
§4e\/§lr3/2 ]En%?x Z By 17, (Xz(ll)7X2(2))
PRETA
1/2

logd
1+ 250 | SE| 3 Eai (X0X)

[PREEZ

intinis

. 1/2q
—|—r2< B max |HZ (ijhxfz))H) ] (5.20)

which yields the result.

5.3 Proof of Theorem 4.1

Let J C I C {1,2}. We will write i to denote the multi-index (i1,i2) € {1,...,n}?. We
will also let i; be the restriction of i onto its coordinates indexed by I, and, for a fixed
value of iz, let (H;);, be the array {H;, i; € {1,...,n}!l}, where H; := H;, ;, (X( ) X(Q)).

71 )
Finally, we let E; stand for the expectation with respect to the variables with upper

indices contained in I only. Following section 2 in [1], we define
[(H)s, |, = B sup EJZ (@, i) [T A7) el <1,
jedJ
, . o2
/958 Rforalli j, and Y E[/Y(x7)| <1, )€ J}
(5.21)

and || (Hy);, ||y = , where (A, Ay) := tr(A; A}) for Ay, Ay € H? and || - || denotes
the nuclear norm. Theorem 1 in [1] states that forall ¢ > 1,

1/2q

(EHUnHQq)l/quC Z Zq|]|/2+|[\ Z]Ezu

1C{1,2} JCI ife

I J ’

where C' is an absolute constant. Obtaining upper bounds for each term in the sum
above, we get that

B0, %) < C (B0 +va-A+q- B+ T+ D
n < nll + V4 q q q ;
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where

1/2
P:||P||. <1

2
A<2E, | sup ZE2 <ZHZ B X, <1>>

1/2
B<| sw > B(Hiu(x),XE), <I>>

|2l <1 (2-171'2)61%

2 1/2q
+2 E, [E;  sup Hi (XD, x2), @ ,
%: 2( 1<I>H<I>H <1<Z 12 1 )
5\ ¢ 1/2q
r<2 E sup Ei (Hi, (X X2 0 ,
(E?,: 2<<1>|cp|| <1Z 1 (Ho (X X, 2)

1/2¢q
2q
D Y B|HLL(xPx2)

11 ) 19
(i1,i2)€I2

The bounds for A, B,I', D above are obtained from (5.21) via the Cauchy-Schwarz in-
equality. For instance, to get a bound for A, note that it corresponds to the choice

I ={1,2} and J = {1} or J = {2}. Due to symmetry of the kernels, it suffices to consider
the case J = {2}, and multiply the upper bound by a factor of 2. When J = {2},

1/2q

2q
ZE]C (Hi)if 1,J - H Vi)
ifc ’

=y sup{ Hiy (XD, X0),0) - 2 (X)) sl <1, 3B
(31,1 i2
2 2 2
{ < Hiy iy (X, X >>,<1>> JP(XP) el <1, > E
i2

2
< E1 sup {Z \J E» <Z Hil,’ig X,fll 7)(<2 ) <I)> E
, fase i i1

------- 2

{1,2}.{2}

2
0 (2 =

12 (x| < 1}

@ (v@\|?
e
2\ 1/2
< IE; sup <ZE2 <ZH¢1112 Xfll 7X<2 ), <I\> ) el <1
in i1
2
= su E }32 2 )((1 ) )(<2 o
1<¢)|¢p<1z 2<Z via (X, )

It is not hard to see that the inequality above is in fact an equality, and it is attained by
setting, for every fixed &,

1/2

fz(f) (ng)) — a, <Z“ Hil,iz(Xfll),X(Q)) <I>> |
\/]Ez <Zh (XD X)), <I>>

(5, 1 XD X0
where «;, = are such that ), ozfg = 1. The bounds for
\/ZiQ E2<Z1,1 Hiyig( X(l) X(z) >

b

other terms are obtained quite 51m11ar1y Next, we will further simplify the upper bounds
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for A, B,T", D by analyzing the supremum over ® with nuclear norm not exceeding 1. To

this end, note that
o B (Hiyin (X, X0, <I>>

11 )

is a convex function, hence its maximum over the convex set {® € H? : ||®|, < 1} is
attained at an extreme point that in the case of a unit ball for the nuclear norm must be
a rank-1 matrix of the form ¢¢* for some ¢ € C?. It implies that

2 2
sup E<Hi17i2(X£1),X2(2)),<I>> < sup E<Hi1,i2(X£1)7X2(2))7¢¢*>
@:(| @[ <1 #:ll¢ll2<1

H]E (X§1>,X2(2))H . (5.22)

01,12

Moreover,
2q
E sup H (XY xP) o
; 2( 1¢|¢||<1<Z 12 1 2)

-3 B, <E1 >ty (X1 X5)
i2
<Y EE, ZH (Xfll 7X<2>)

i2

)

2q

1/2

<ZE2<2\/§ ZEI 1112< 1(11)7X7(2))
i2

2q
2q 1/2q
+4\/§er<E1maxHHim2 (Xl(ll)’X(Q))H > ) , (5.23)
i1

where we have used Lemma 3.1 in the last step, and » = ¢ V logd. Combining (5.22),
(5.23), we get that

1/2

B< S EE,(x0,x?)

11 )
(i1,i2)€12

a\ 1/2q
ZEl 2 (X, x2) )

1/2q
2q
+8v2er (Z ]EmaxHHim (ij),ij))H ) . (5.24)
- 11
22

+ 4/er (Z E,

It is also easy to get the bound for I': first, recall that
0 3B (XS XD, )

is a convex function, hence its maximum over the convex set {® € H? : ||®[, < 1} is
attained at an extreme point of the form ¢¢* for some unit vector ¢. Moreover,

11 0 11 0

<Hi1,i2(X1(1 1X(2)) ¢¢ > = (b*Hil,iz(X(l) X(Q))¢¢*Hi1,i2(X(l) X<2))¢

11,12 11 ’
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due to the fact that ¢¢* < I. Hence

(1) (2 o 2 (1) +(2)
Sup E1< (X x @), > < sup E, ( H2 , (xV x© )¢)
oo, <1Z e o l6lla= 1Z T

"o lol: ¢*< 1M XS’X(Q))

E Y H2, (x(V X
¢ olla=1 Z 1in (X, |

and we conclude that

q\ 1/2q
2
P<2( S B sw > B (Hin(x xD),0)
<z2: 2<<I>|<I>| <1Z i (X )
q\ 1/2q
<2(Z]E2 Z]El 2 (ij>,X<j>) ) . (5.25)

The bound for A requires a bit more work. The following inequality holds:

Lemma 5.11. The following inequality holds:

1/2

2
A <2, sup ZEQ <Z Hi, i 211)’Xl(22))’ > <

P:|| P <1
1/2
64+/elog(de) [ E max E H? (Xfll),X(2)>
i1
[PREEA

1/2

> Ea?, (x(x?) 7

(11 7,2)612

+ 8y/2¢elog(de)

G;G:

where G was defined in (3.6).

Combining the bounds (5.24), (5.25) and Lemma 5.11, and grouping the terms with
the same power of ¢, we get the result of Theorem 4.1.

It remains to prove Lemma 5.11. To this end, note that Jensen’s inequality and an
argument similar to (5.22) imply that

1/2

P:|| P <1

2
o (. ZEQ<ZHM ¢ ,ij>>,¢>

2
< sup Z<ZHH i Xz(ll)vX@)) <I>>

<1> @], <1
o1\ 1/2
|3 (S )
P2
Next, arguing as in the proof of Lemma 3.3, we define
Biriy =[010]...| Hiy iy (X0, X ... 0] 0] € R,
where H;, ;, sits on the i;-th position of the block matrix above. Moreover, let
Bi,= Y Bi, (5.26)
’ili’il#iz
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Using the representation (5.26), we have

1/2 i 1/2
(o) (x2) )
(Z= (5 %)

where {EZ'2}?2:1 is sequence of i.i.d. Rademacher random variables, and the last step
follows from the symmetrization inequality. Next, Khintchine’s inequality (3.2) yields

that
Z B} B;,
0 B; B*

i2

2
B[y (zml . fS%Xf?))

i2

(-

(el 5)]) =

1/2
H ’

iz

A <4+/e(1+2logd) <E

i2

2}>2

S, (X0 xD)

(il,i2>€I;‘;

=4+/e(1 4+ 2logd) <Emax {

1/2

=4y/e(1+ 2logd) [ Emax Héé*

Note that the last expression is of the same form as equation (5.10) in the proof of
Theorem 3.7 with ¢ = 1. Repeating the same argument, one can show that

1/2
A< 64y/elog(de) | Emax|| Y H ( ff)’X'(”)
i1

i2
igiiaFl]
1/2

> e, (xPx@)]

(i1,42)€12

+ 8+/2elog(de)

E|(Y E.GiG;

which is an analogue of (5.15).

5.4 Calculations related to Examples 3.5 and 3.6
We will first estimate ||GG*||. Note that the (4,4)-th block of the matrix GG* is

2
(GG™), Z A2,J = Z azajT +aja; )" = (n—1l)aal + Zajajr.
Jij#i Jij#i Jj#i
The (i, j)-block for j # i is
(GG™), Z Ai A = Z (aiag + akalr) (ajaf + akaf) =(n-— 2)aiaf
k#i.j k#i,j

We thus obtain that

n

GG* = (n — 2)aa’ + Diag Z ajajT, e Z ajajT ,

j=1

n terms
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where Diag(-) denotes the block-diagonal matrix with diagonal blocks in the brackets.
Since

n n
Diag E aja?,...,g ajajr >0,
j=1 j=1

it follows that
|GG = (n—2)|a]l3 = (n - 2)n.

On the other hand,

2: 2 _ Z T T\2|| _ Z AT T
Ai17i2 - (ailalé + ai?ail) - (allail + alZaiz)

(il,iQ)Glg (’il,iz)GI% (il,iz)EI%
T
E a;a;
[

where the last equality follows from the fact that {ay,...,a,} are orthonormal.
For Example 3.6, we similarly obtain that

=2(n—-1) =2(n—1),

(GG"),;; = Z cf,j (aiaJT + ajaiT)2

JrjFi
2 T 2 T T 2 T
= Z Cij | 2id; T Z Cijaja; = aia; + Z Ci 88
Jij#i JijF#i JijF#i
% T T T T C
(GG )ij = g Ci kCj ks (aiak + aja; ) (ajak. + akaj) =0, i # 7,
ki,

hence |GG*|| = max; ||[(GG*)|| = 1. On the other hand,

2 _ 2 T T\2
Z Ai17i2 - Z Ci1 ia (ailaiz + aizail)

(il,iQ)GIﬁ (’il,iz)GI%
— 2 T T _ T
= E Ciy i (ailail—&—aiQaiz) =2 E a;a; || = 2,
(i1,42)€I2 i
and
A2 _ 2 ( al 4 a, T)2
11,02 || T Cil,iQ allaiz a742a’i1
i1 ||i2sinis i1 ||iaztia
_222 _T_T_Z_T ZQ‘T_
- Cil,iQ (azlail + a742ai2) - azlail + ci1,i2a22ai2 =n.
i1 |[iniinin i iotin i
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