
E l e c t r o n i
c

J
o

u
r n a l

o
f

P
r

o b a b i l i t y

Electron. J. Probab. 24 (2019), no. 111, 1–46.
ISSN: 1083-6489 https://doi.org/10.1214/19-EJP361

One-point function estimates for loop-erased random
walk in three dimensions

Xinyi Li* Daisuke Shiraishi†

Abstract

In this work, we consider the loop-erased random walk (LERW) in three dimensions and
give asymptotic estimates for the one-point function of LERW and the non-intersection
probability of LERW and simple random walk for dyadic scales. These estimates will
be crucial to the characterization of the convergence of LERW to its scaling limit in
natural parametrization. As a step in the proof, we also obtain a coupling of two pairs
of LERW and SRW with different starting points conditioned to avoid each other.
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1 Introduction

1.1 Introduction and main results

Loop-erased random walk (LERW) is the random simple path obtained by erasing all
loops chronologically from a simple random walk path, which was originally introduced
by Greg Lawler (see [5]). Since his introduction of LERW, it has been studied extensively
both in mathematics and physics literature. In two dimensions, it is proved that it
has a conformally invariant scaling limit, which is characterized by Schramm-Loewner
evolution (SLE) (see [20] and [14]). LERW also has a strong connection with other
models in statistical physics, e.g., the uniform spanning tree (UST) which arises in
statistical physics in conjunction with the Potts model (see [18] and [24] for the relation
between LERW and UST). In this paper, we consider the one-point function for LERW in
three dimensions, i.e., we study the probability that LERW in Z3 hits a given point and
obtain an asymptotic bound with error estimate for dyadic scales.
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One-point function estimates for 3D LERW

LERW in Zd enjoys a Gaussian behavior if d is large. In fact, it is known that
the scaling limit of LERW is Brownian motion (see Theorem 7.7.6 of [10]) for d ≥ 4.
Furthermore, the probability of LERW hitting a given point x ∈ Zd (we write pxd for this
hitting probability) is of order |x|2−d for d ≥ 5 and |x|−2(log |x|)−1/3 for d = 4 assuming
that LERW starts from the origin (see Section 11.5 of [13] for d ≥ 5 and [6] for d = 4).

On the other hand, if d is small, the situation changes dramatically. In two dimen-
sions, LERW converges to SLE2 when the lattice spacing tends to 0 (see [20] and [14]).
Furthermore, it is established by Rick Kenyon (see [3]) that1 px2 ≈ |x|−3/4. See also [16]
for estimates on p2

x. Recently, using SLE techniques, it is proved in [1] that px2 ∼ c|x|−3/4

for some constant c where the notation ∼ means that the both sides are asymptotic.
In contrast to other dimensions, relatively little is known for LERW in three dimen-

sions. One crucial reason for this is that we have no nice tool like SLE to describe the
LERW scaling limit (the existence of the scaling limit is proved in [4] though). In [8], it is
shown that

c|x|−2+ε ≤ px3 ≤ C|x|−
4
3 (1.1)

for some c, C, ε > 0. The existence of the critical exponent for px3 is established in [21].
Namely, it is proved that

there exists α ∈ [ 1
3 , 1) such that px3 ≈ |x|−1−α. (1.2)

This allows us to show that the dimension of LERW or its scaling limit is equal to 2− α
(see [21] and [22]). Numerical experiments and field-theoretical prediction suggest that
2− α = 1.62± 0.01 (see [2], [25] and [23]).

The main purpose of this paper is to improve (1.2). To state the main results precisely,
let us introduce some notation here. Take a point x 6= 0 from D = {x ∈ R3 | |x| < 1} a
unit open ball in R3 centered at the origin. We consider the simple random walk S on Z3

started at the origin and write T for the first time that S exits from a ball of radius 2n

centered at 0. Let xn be the one of the nearest points from 2nx among Z3. Finally, we set

an,x = P
(
xn ∈ LE(S[0, T ])

)
(1.3)

for the probability that LERW hits xn where LE(λ) stands for the loop-erasure of a path
λ (see Section 2.2 for its precise definition).

Now we can state the main theorem of this paper.

Theorem 1.1. There exist universal constants c > 0, δ > 0 and a function c(x) : D\{0} →
R+ such that for all n ∈ Z+ and x ∈ D \ {0},

an,x = c(x)2−(1+α)n
{

1 +O
(
d−cx 2−δn

)}
(as n→∞), (1.4)

where dx = min{|x|, 1− |x|} and α is the exponent in (1.2). Moreover, the function c(x)

satisfies the following asymptotics

a1|x|−1−α ≤ c(x) ≤ a2|x|−1−α
(

if 0 < |x| ≤ 1

2

)
(1.5)

a1(1− |x|)1−α ≤ c(x) ≤ a2(1− |x|)1−α
(

if
1

2
≤ |x| < 1

)
, (1.6)

where a1, a2 > 0 are universal constants.

In order to prove Theorem 1.1, it turns out that we need to estimate the following
non-intersection probability of LERW and simple random walk (SRW). Let S1 and S2 be

1The notation ≈ means that the logarithm of both sides are asymptotic as |x| → ∞.
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One-point function estimates for 3D LERW

independent SRW’s on Z3 started from the origin. We write T in for the first time that Si

exits from a ball of radius n. We are interested in

Es(n) := P
(

LE(S1[0, T 1
n ]) ∩ S2[1, T 2

n ] = ∅
)

(1.7)

the probability that LERW LE(S1[0, T 1
n ]) and simple random walk S2[1, T 2

n ] do not intersect
(we denote this non-intersection event by An). In this paper, we will show the following
theorem.

Theorem 1.2. There exist universal constants c > 0 and δ > 0 such that for all n ∈ Z+,

Es(2n) = c2−αn
(
1 +O(2−δn)

)
, (1.8)

where α is the exponent in (1.2).

This theorem immediately implies a lot of up-to-constants estimates for LERW. We
summarize them in the following corollary but postpone its proof till the end of Section
3.2. Write

Mn = len
(
LE(S1[0, T 1

n ])
)

(1.9)

for the number of lattice steps for LERW and let Es(·, ·) be another escape probability
defined in (2.8).

Corollary 1.3. It follows that for n ≥ m ≥ 1,

Es(n) � n−α; Es(m,n) �
(m
n

)α
; E(Mn) � n2−α;

Mn

n2−α is tight. (1.10)

Before finishing this subsection, it may be worth mentioning one of the motivations
of this work. It turns out that our results in this work help us characterize how three-
dimensional LERW converges to its scaling limit. In particular, it is a key ingredient for
giving a natural time-parametrization of the scaling limit of three-dimensional LERW.
Some progress towards in this direction will be made in [15].

1.2 Some words about the proof

Let us here sketch the proof for the main results. We first explain that both theorem
are closely related. We recall that S is the simple random walk on Z3 started at the
origin and that T stands for the first time that S exits from B(n) a ball of radius n. We
write γ = LE(S[0, T ]) for the loop-erasure of the simple random walk path. Take a point
x ∈ B(n). In order for γ to hit the point x, the following two conditions are required:

(i) x ∈ S[0, T ]; (ii) LE
(
S[0, σx]

)
∩ S[σx + 1, T ] = ∅

where σx stands for the last time (up to T ) that S hits x. Considering the time reversal
of LE

(
S[0, σx]

)
and translating the path, we can relate the probability of the second

condition (ii) to the non-intersection probability Es(n) defined as in (1.7). In fact, it is
known that the probability that γ hits x is comparable to n−1Es(n) if x is not too close to
the origin and the boundary of B(n) (see [21] for this). Thus, loosely speaking, we see
the proof of Theorem 1.1 boils down to that of Theorem 1.2.

We will now explain how to prove Theorem 1.2. Since the existence of the scaling
limit of LERW (we denote the scaling limit by K) is already proved by Gady Kozma in
[4], in order to estimate on Es(2n), it is natural to compare it with the non-intersection
probability of K and a Brownian motion both started at the origin. However, this
approach unfortunately does not work without modification because of the lattice effect
and the fact that there is still a non-negligible “gap” between the simple random walk and
Brownian motion as well as LERW and K. The solution is to separate the starting points
of LERW and simple random walk wide enough so that the gap becomes negligible.
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One-point function estimates for 3D LERW

Let us here be more precise on how to rigorize the idea of separating starting points.
Note that for clarity of presentation we may not use the same notation as Sections 3
through 5.

• Let bn = Es(2n)/Es(2n−1). It suffices to show that

bn = c
(

1 +O
(
2−δn

))
(1.11)

for some c > 0 and δ > 0. Note that it is proved in [21] that c1 ≤ bn ≤ c2 for some
constants c1, c2 > 0.

• For two sequences {fn} and {gn}, we write fn ' gn if fn = gn
(
1 + O

(
2−δn

))
for

some constant δ > 0.

• Take q ∈ (0, 1). For a path λ and integer k ≥ 0, we denote the first time that λ exits
from B

(
2(1−kq)n) by tk,q. We set t = t0,q.

• We write γn = LE(S1[0, T 1
2n ]) and write λn = S2[1, T 2

2n ] where T im stands for the
first time that Si exits from B(m). Notice that λn(0) 6= 0. Since it is proved in [16]
that the distribution of γn[0, t1,q] is sufficiently close to that of γn−1[0, t1,q], we have
P (F ) ' P (F ′) and (note that An ⊂ F and An−1 ⊂ F ′)

bn '
P
(
An
∣∣ F )

P
(
An−1

∣∣ F ′) (1.12)

where An := A2n

is the event considered in Es(2n) (see (1.7)), F is the event that
γn[0, t1,q] does not intersect with λn[0, t1,q] and F ′ is the event that γn−1[0, t1,q] does
not intersect with λn−1[0, t1,q]. See Lemma 3.1 for more details.

• To write P
(
An
∣∣ F ) explicitly, we introduce the following function g(γ, λ). Suppose

that we have a pair of two paths (γ, λ) which are both in B
(
2(1−q)n) (denote the

set of such pairs by Γ). Let X be a random walk started at the endpoint of γ and
conditioned that X[1, TX2n ] does not intersect with γ. (Here TX2n means first exit time
of B(2n) for X, TY2n below is defined similarly.) Also let Y be the simple random
walk started at the endpoint of λ. Then the function g is defined by

g(γ, λ) = P
((

LE(X[0, TX2n ]) ∪ γ
)
∩
(
Y [0, TY2N ] ∪ λ

)
= ∅
)
, (1.13)

for (γ, λ) ∈ Γ. Note that the starting point of γ does not necessarily coincide with
that of λ for (γ, λ) ∈ Γ.

• It follows from the domain Markov property of γn and the strong Markov property
of λn that

P
(
An
∣∣ F ) =

∑
(γ,λ)∈Γ

g(γ, λ)P
((
γn[0, t1,q], λn[0, t1,q]

)
= (γ, λ)

∣∣∣ F). (1.14)

See Section 3.3 for rigorous arguments for this bullet and the last one.

• The first key observation is that the function g depends only on the end part of
(γ, λ) in the following sense. Take two elements (γ, λ) and (γ′, λ′) of Γ. Suppose
that

(
γ[t3,q, t1,q], λ[t3,q, t1,q]

)
=
(
γ′[t3,q, t1,q], λ

′[t3,q, t1,q]
)
. Then we have

g(γ, λ) ' g(γ′, λ′). (1.15)

Namely, g depends only on
(
γ[t3,q, t1,q], λ[t3,q, t1,q]

)
the end part of (γ, λ). See

Proposition 3.8 for more details.
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One-point function estimates for 3D LERW

• Why does (1.15) hold? To see this, assume that the non-intersection event con-
sidered in (1.13) occurs. This event forces X and Y not to return to an inner
ball B

(
2(1−3q)n

)
(which we refer to later as “backtracking”) with high probability.

Therefore, the initial part of (γ, λ) is not important for computing g(γ, λ).

• This observation allows us to write

P
(
An
∣∣ F ) ' E{g(γn[t3,q, t1,q], λn[t3,q, t1,q]

) ∣∣∣ F}. (1.16)

Namely, in order to deal with P
(
An
∣∣ F ), we only have to control the (conditional)

distribution of the end part
(
γn[t3,q, t1,q], λn[t3,q, t1,q]

)
conditioned on the event F .

With this in mind, for (γ, λ) ∈ Γ, let

µ(γ, λ) = P
((
γn[t3,q, t1,q], λn[t3,q, t1,q]

)
= (γ, λ)

∣∣∣ F) (1.17)

be the probability measure on Γ induced by
(
γn[t3,q, t1,q], λn[t3,q, t1,q]

)
conditioned

on the event F .

• Let v = (2(1−5q)n, 0, 0) and w = −v be two poles of B
(
2(1−5q)n

)
. To change the

starting points of S1 and S2, we write S
1

and S
2

for the simple random walks

started at v and w. Let T
i

r be the first time that S
i

exits from B(r). We write γn =

LE(S
1
[0, T

1

2n ]), γn−1 = LE(S
1
[0, T

1

2n−1 ]), λn = S
2
[0, T

2

2n ] and λn−1 = S
2
[0, T

2

2n−1 ].

• The events An, Ãn−1, F and F̃ are defined through replacing γn, γn−1, λn and
λn−1 by γn, γn−1, λn and λn−1 respectively in the definition of An, An−1, F and F ′

defined in the fourth item. For example, An is the event that γn does not intersect
with λn, and F̃ is the event that γn−1[0, t1,q] does not intersect with λn−1[0, t1,q], etc.

Then, by the same reason for the equation (1.12), we have P (F ) ' P (F̃ ) and

P (An)

P (Ãn−1)
' P

(
An
∣∣ F )

P
(
Ãn−1

∣∣ F̃ ) , (1.18)

since the distribution of γn[0, t1,q] is close to that of γn−1[0, t1,q] by [16] (cf. (1.12)).

• The same ideas used to show (1.16) gives that

P
(
An
∣∣ F ) ' E{g(γn[t3,q, t1,q], λn[t3,q, t1,q]

) ∣∣∣ F}. (1.19)

As in the equation (1.17), we define the probability measure ν by

ν(γ, λ) = P
((
γn[t3,q, t1,q], λn[t3,q, t1,q]

)
= (γ, λ)

∣∣∣ F). (1.20)

• Here is the second key observation. It follows from a coupling technique we will
explain later that the total variation distance between µ and ν is small enough so
that P

(
An

∣∣ F ) ' P
(
An

∣∣ F ). Rigorous arguments are wrapped up in Section 4
with the help of a recent work [12]. This observation also gives that P

(
An−1

∣∣ F ′) '
P
(
Ãn−1

∣∣ F̃ ). Therefore, we have

bn '
P (An)

P (Ãn−1)
. (1.21)

Namely, the original starting points (= the origin) are replaced by the two different
poles of B

(
2(1−5q)n

)
.

• This replacement of the starting points can be carried out for bn−1 as well, which
enables us to compare bn and bn−1 via multiscale analysis established in [4]. In
fact, taking q > 0 sufficiently small, we see that bn = bn−1

{
1 +O

(
2−δn

)}
for some

δ > 0. This gives (1.11).
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O

λn

λn(t1,q)

γn(t1,q)

γn

B(2(1−q)n)

B(2n)

O vw

γn(t1,q)

γn

λn(t1,q)

λn

B(2(1−5q)n)

B(2(1−q)n)

B(2n)

Figure 1: Illustrations for events F and F .

Let us also give a brief explanation on the coupling in the second key observation
above.

• It is well known that LERW is not Markovian per se but can still be regarded as a
Markov process if one records all of its history. In fact, consider an infinite LERW
(abbreviated as ILERW later on) η and write ηn for η[0, T2n ], the part of the path
stopped at first exit from B(2n), then one can construct a formal Markov process
(η0, η1, η2, . . .) with corresponding transition probability at each “step”. Letting
ηm,∞ := η[T2m ,∞). It is also well known that LERW enjoys a weak asymptotic
independence: the correlation of ηk and ηm,∞ decays like O(2k−m). Hence, it is
possible to couple two ILERW’s ηx and ηy started from x, y ∈ B(2k), such that
ηxn+k,∞ = ηyn+k,∞ with probability 1−O(2−βn). Key observations that leads to this
coupling are:

i) 3D LERW rarely “backtrackes” very far. In fact, the actual configuration in
B(2k) barely matters for the distribution of the path after reaching ∂B(2k+m),
if m is large. Hence, it is possible to find an m such that if two LERW’s are
coupled for m steps, then the probability of getting decoupled ever is bounded
by, say, 1/2.

ii) At each step, there is a uniform positive probability for ηx and ηy to be
coupled for m steps from the next step. More precisely, for any realizations
of ηxn and ηyn, there exists c > 0, such that with probability greater than c,
ηxn+1,n+m+1 = ηyn+1,n+m+1.

iii) The exponential convergence rate follows from a combination of i) and ii), by
bundling every (m+ 1) steps as a giant step.

• In the same spirit, it is possible to couple a pair of ILERW and SRW started from a
pair of (not necessarily distinct) points inside B(2k) and conditioned not to intersect
until first exit from B(22n+k), with another such pair, such that their paths agree
from first exit from B(2n+k) onward with probability 1 − O(2−βn). In this case,
observation i) above is still easily verifiable and observation ii) follows thanks to
an auxiliary result generally known as the “separation lemma”. For the form that
satisfies our setup, see Theorem 6.1.5 of [21] or Claim 3.4 of [19].

• As a prototype of such coupling, although with a slightly different setup, has already
been proved by Greg Lawler in [12], we will not reinvent wheels; instead, we are
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One-point function estimates for 3D LERW

going to show that it is possible to obtain the coupling described above through
“tilting” the coupling in [12], as they are in fact intimately related. In [12], Lawler
considers the law of a pair of ILERW’s (η1, η2) both started from the origin and tilts
their law by

1η1n∩η2n={0} exp(−Ln(η1
n, η

2
n)), (1.22)

where Ln(η1
n, η

2
n) stands for the loop term of loops in B(2n) that touch both η1

n

and η2
n. Then, it is shown that it is possible to couple (η1, η2) with another pair

of ILERW’s (η1, η2) started from different initial configurations inside B(2k), and
tilted similarly, such that ηi(n+k)/2,n = ηi(n+k)/2,n, i = 1, 2 with probability greater

than 1−O(2−β(n−k)) for some β > 0.

• In fact, if one decompose the SRW in our setup as LERW and loops from an
independent loop soup, then the conditioning that ILERW and SRW do not intersect
can be interpreted as an ILERW and an LERW do not intersect plus loops that
touches both paths do not appear, which is in a way very similar to the tilting of
(1.22), despite a few stitches in the definition for it is not trivial to deal with the
replacement of ILERW by LERW. In Section 4, we are going to deal with this issue
and then add back loops to obtain the coupling we need.

B(2n)

B(2k)

B(2(n+k)/2))

Figure 2: A schematic sketch of the coupling. Dashed and continuous curves represent
LERW’s and SRW’s respectively. Although it is impossible to couple the beginning parts
of walks, we can find a coupling such that both LERW’s and SRW’s agree after first exit
from B(2(k+n)/2) with high probability.

Finally, let us explain the structure of this paper. In Section 2, we introduce notations
and discuss some basic properties of LERW. We prove Theorem 1.2 and Corollary 1.3 in
Section 3, assuming coupling results from the next section. Section 4 is dedicated to the
discussion and proof of various couplings of two pairs of LERW and SRW conditioned to
avoid each other, crucial to the proof of both main theorems. Finally, we give a proof of
Theorem 1.1 in Section 5. As it resembles a lot the proof of Theorem 1.2, we will be less
pedagogical in the presentation.

2 Notations, conventions and a short introduction to LERW

In this section, we introduce some notations and conventions that we are going to use
throughout the paper in Section 2.1. Then, we give a very short introduction in Sections
2.2 through 2.4 to various properties that will be used in this paper.
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One-point function estimates for 3D LERW

2.1 Notations and conventions

In this subsection, we will give some definitions which will be used throughout the
paper. In the text, we also use “:=” to denote definition.

We call λ = [λ(0), λ(1), · · · , λ(m)], a sequence of points in Z3, a path, if |λ(j − 1) −
λ(j)| = 1 for all j = 1, . . . ,m. Let len(λ) = m denotes the length of λ. We call λ a
self-avoiding path (SAP) if λ(i) 6= λ(j) for all i 6= j. For two paths λ1[0,m1] and λ2[0,m2],
with λ1(m1) = λ2(0), we write

λ1 ⊕ λ2 := [λ1(0), λ1(1), . . . , λ1(m1), λ2(1), . . . , λ2(m2)]

for the concatenation of λ1 and λ2.
We write | · | for the Euclid distance in R3. For n ≥ 0 and z ∈ Z3, we write

B(z, n) :=
{
x ∈ Z3

∣∣ |x− z| < n
}
.

If z = 0, we write B(n) and B(n) = B(2n) for short. We write D = {x ∈ Rd
∣∣ |x| < 1} for

the (open) unit ball and D for its closure.
For any path η, we write Tx,r(η) for the first time that η hits ∂B(x, r) the outer

boundary of B(x, r). We write Tr(η) for the case that x = 0. Let T r(η) = T2r (η). Note
that throughout this work, we will actually be working on dyadic scales mostly. We will
drop the dependence on η in the notation whenever there is no confusion.

For a subset A ⊂ Zd, we let ∂A = {x /∈ A| there exists y ∈ A such that |x − y| = 1}
We write A := A ∪ ∂A. Given a subset A ⊂ Zd and r > 0, we write rA := {ry | y ∈ A}.

Throughout the paper, we will use various letters, e.g. S, S1, S2, R1, R2, etc., to
represent simple random walks on Z3 and will use ad-hoc notations for its probability
law. Unless otherwise indicated, we use E• with the same sub- and superscripts for the
corresponding expectation of a probability measure P•. For the probability law and the
expectation of S started at z, we use P z and Ez respectively.

For a subset A ⊂ Z3 and x, y ∈ A, we write

GA(x, y) = Ex
( τ−1∑
j=0

1{S(j) = y}
)
,

where τ = inf{t
∣∣ S(t) ∈ ∂A}, for Green’s function in A.

We use c, C ′, · · · to denote arbitrary positive constants which may change from line
to line and use c with subscripts, i.e., c1, c2, . . . to denote constants that stay fixed. If a
constant is to depend on some other quantity, this will be made explicit. For example, if
C depends on δ, we write Cδ.

2.2 Loop-erased random walk, reversibility and the domain Markov property

In this subsection, we will give the definition of the loop-erased random walk (LERW)
and review some known facts about it, especially the time reversibility and the domain
Markov property. As we are working in the case of d = 3, we will only state things for Z3.

We begin with the definition of the chronological loop-erasure of a path.

Definition 2.1. Given a path λ = [λ(0), λ(1), · · · , λ(m)] ⊂ Z3, we define its loop-erasure
LE(λ) as follows. Let

s0 := max{t
∣∣λ(t) = λ(0)}, (2.1)

and for i ≥ 1, let
si := max{t

∣∣λ(t) = λ(si−1 + 1)}. (2.2)

We write n = min{i
∣∣si = m}. Then we define LE(λ) by

LE(λ) = [λ(s0), λ(s1), · · · , λ(sn)]. (2.3)
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If λ = [λ(0), λ(1), · · · ] ⊂ Z3 is an infinite path such that for each n,
∣∣{k ≥ n | λ(k) =

λ(n)}
∣∣ <∞, then we can define LE(λ) similarly.

In general, we will use the term loop-erased random walk, or LERW, loosely to refer
to the (random) SAP obtained by loop-erasing from some finite SRW. However, to make
things precise, we have to specify the stopping time of this SRW. A very common scenario
is the following: let D be a finite subset of Z3 and let Sx be the SRW started from x

stopped at the first exit from D, when we call LE(Sx) the LERW from x stopped at exiting
D. In contrast, if Sx is an infinite SRW started from x ∈ Z3, then LE(Sx) will be referred
to as an infinite LERW or ILERW started from x.

“LERW stopped at exiting B(n)” and ILERW are different stochastic objects. More-
over, the law of the former and that of the latter truncated at first exit from B(n) differ
greatly, especially at the ending parts. However, if we only look at beginning parts, they
still look pretty similar. The following quantitative lemma is excerpted from [16].

Lemma 2.2 (Corollary 4.5 of [16]). Given 0 ∈ D ⊂ Z3, let λ◦ be an ILERW started at
the origin, and λ an LERW started from 0 stopped at exiting D. Let P ◦ and P be their
respective laws. Moreover, suppose n ≥ 2 and l ≥ 0 satisfying B(nl) ⊂ D. Truncate λ◦

and λ at first exit from B(l) and denote by λ◦l and λl respectively. Then, for all ω ∈ Γl,

P ◦[λ◦l = ω] =
(
1 +O

(
n−1

))
P [λl = ω].

For a path λ[0,m] ⊂ Zd, we define its time reversal λR by λR := [λ(m), λ(m −
1), · · · , λ(0)]. Note that in general, LE(λ) 6= (LE(λR))R. However, as next lemma shows,
the time reversal of LERW has same distribution to the original LERW. Let Λm be the set
of paths of length m started at the origin.

Lemma 2.3 (Lemma 7.2.1 of [10]). For each m ≥ 0, there exists a bijection Tm : Λm →
Λm such that for each λ ∈ Λm, we have

LE(λ) = (LE((Tmλ)R))R. (2.4)

Moreover, we know that that λ and Tmλ visit the same edges in the same directions with
the same multiplicities.

Note that LERW is not a Markov process. However it satisfies the domain Markov
property in the following sense.

Lemma 2.4 (Proposition 7.3.1 of [10]). Let D be a finite subset of Z3. Suppose that λi
(i = 1, 2) are simple paths of length mi with λ1, λ2[0, 1, . . . ,m2 − 1] ⊂ D, λ1(m1) = λ2(0)

and λ2(m) ∈ ∂D. Let λ be the concatenation of λ1 and λ2 and suppose also that λ is a
SAP. Let Y be a random walk started at λ1(m1) = λ2(0) conditioned on Y [1, TYD ] ∩ λ1 = ∅
and denote the law of Y by P . Then we have

Pλ1(0)
(

LE(S[0, TD]) = λ
∣∣ LE(S[0, TD])[0,m1] = λ1

)
= P

(
LE(Y [0, TYD ]) = λ2

)
. (2.5)

2.3 Random walk loop soup and LERW

In this subsection, we give another description of LERW through random walk loop
soup measure. We refer readers to Sections 4 and 5 of [11] for detailed discussions in
this direction.

Let λ be a loop-erased random walk from x ∈ D ⊆ Z3 stopped at exiting D. For
generality of notation we do not require D to be a finite set. For instance, if D = Z3,
then λ is actually an ILERW. Let η be a SAP in D of length n such that η[0, n − 1] ⊂ D

and write τ = η(n), then

P
[
λ[0, n] = η

]
= 6−nFη(D)Escη,D

(
τ
)
,

EJP 24 (2019), paper 111.
Page 9/46

http://www.imstat.org/ejp/

https://doi.org/10.1214/19-EJP361
http://www.imstat.org/ejp/


One-point function estimates for 3D LERW

where
Escη,D

(
τ
)

:= P τ
[
S[1, 2, . . .] hits ∂D before hitting η

]
denotes the escape probability for SRW, and

Fη(D) :=

n∏
j=0

GAj (η(j), η(j)) where Aj = D
∖
η[0, j − 1], for j = 0, 1, . . . , n.

Note that if τ ∈ ∂D, then Escη,D(τ) = 1. Let m denote the (unrooted) random walk loop
measure defined in Section 5 of [11]. Then,

Fη(D) = exp

 ∑
l⊆D, l∩η 6=∅

m(l)

 . (2.6)

This description may seem mysterious to readers unfamiliar with the subject, but what it
actually does is nothing more than weighting each SAP by the total weight of all SRW
paths whose chronological loop-erasure gives this SAP.

Conversely, starting from an LERW path, we are also able to “add back” loops from a
loop soup and obtain an SRW. More precisely, letting λ be the LERW as above, and let L
be an independent Poissonian loop soup with intensity m. Then we can add back loops
from L to λ through the following procedure.

Proposition 2.5 (Proposition 5.9 of [11]. See also Proposition 4.3, ibid.). Given x ∈ D ⊆
Z3, let λ be an LERW from x stopped at exiting D. Insert loops into λ in the following
way:

• Repeat for each j = 0, 1, . . . , n− 1:

– Choose all loops from L in D\λ[0, j − 1] that touches λ(j).
– For each such loop, choose a representative rooted at λ(j) (if there are several

representatives then choose uniformly among all possibilities).
– Concatenate all these loops in the order they appear in the soup and call the

concatenated loop lj .

• Insert lj ’s into λ in the following order (note that lj starts and stops at λ(j)):

l0 ⊕ λ[0, 1]⊕ l1 ⊕ λ[1, 2]⊕ l2 ⊕ · · · ⊕ ln−1 ⊕ λ[n− 1, n],

and call the new path γ.

Then, γ has the law of the SRW started at x stopped at the first exit from D.

2.4 Escape probability and scaling limit

As discussed in Section 1.2, the probability that an LERW and an independent simple
random walk do not intersect up to exiting a large ball, referred to as escape probability,
is a key object in the paper.

Definition 2.6. Let 0 < m < n. Let S1 and S2 be independent SRW’s on Z3 started at
the origin, and write P for their joint distribution. We define escape probabilities Es(n)

and Es(m,n) as follows: let

Es(n) := P
(

LE(S1[0, Tn(S1)]) ∩ S2[1, Tn(S2)] = ∅
)
, (2.7)

and let
Es(m,n) := P

(
LE(S1[0, Tn(S1)])[s, u] ∩ S2[1, Tn(S2)] = ∅

)
, (2.8)
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where u = len
(
LE(S1[0, τ1

n])
)

and s = sup{t ≤ u | λ(t) ∈ ∂B(0,m)}. More precisely, we
first consider the loop erasure of a random walk up to exiting B(n), then we only look at
the loop erasure after the last visit to B(m). Then Es(m,n) is the probability that this
part of the loop erasure does not intersect an independent simple random walk up to the
first exiting of B(n).

As the most accurate asymptotics of Es(n) and Es(m,n) are given in Corollary 1.3,
we will not talk about existing weaker estimates in the form of (1.2), but only state a fact
which will be used later. It is showed in Lemma 7.2.2 of [21] that

lim
n→∞

log Es
(
2(1−q)n, 2n

)
log 2−αqn

= 1, (2.9)

where α is the same as in (1.2).
Finally, we review some known facts about the scaling limit of LERW in three dimen-

sions, whose existence was first proved in [4]. We refer to [19] for properties of this limit.
Let S be a simple random walk started at the origin on Z3. Remind the definition of D in
Section 2.1. Write

LEWn =
LE(S[0, τn])

n
. (2.10)

We write H(D) for the metric space of the set of compact subsets in D with the Hausdorff
distance dH. Thinking of LEWn as random elements of H(D), let P (n) be the probability
measure on H(D) induced by LEWn. Then [4] shows that P (2j) is a Cauchy sequence
with respect to the weak convergence topology, and therefore P (2j) converges weakly to
some limit probability measure ν. We write K for the random compact subset associated
with ν and call K the scaling limit of LERW in three dimensions. It is also shown in [4]
that K is invariant under rotations and dilations.

3 Non-intersection probability

This section is dedicated to the proof of Theorem 1.2 and is organized in a hierarchical
structure. We lay out the structure of the whole proof in Section 3.1 assuming three
key intermediate results, namely Lemma 3.1, Propositions 3.2 and 3.4. These results
are proved in Sections 3.2, 3.7 and 3.8 respectively. Sections 3.3 through 3.6 contain
intermediate results for Proposition 3.2 which requires the coupling from Section 4.
Section 3.1 also contains the proof of Corollary 1.3.

3.1 Notations and the proof of Theorem 1.2

We start with introducing notations for various walks and paths we are going to
discuss in this section. Then we state without proof a few key propositions that compare
the non-intersection probabilities under different setups. After that, we give a proof of
Theorem 1.2 assuming these intermediate results. At last, we give the proof of Corollary
1.3.

Let n ∈ Z+. Let S1 and S2 be independent SRW’s on Z3. Write

γnx = LE
(
S1[0, Tn]

)
= LE

(
S1[0, T2n ]

)
(3.1)

for the loop-erasure of S1 up to Tn assuming that S1(0) = x. Using the notation above,
γnx [T k, T l] stands for γnx [t, u] where t (resp. u) denotes the first time that γnx hits the
boundary of Bk (resp. Bl). Write γn for γn0 .

Let
λx =

(
λx(k)

)
k≥0

=
(
S2(k)

)
k≥0

(3.2)

be S2 assuming that S2(0) = x. Write λ for λ0.
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As introduced in Section 1, we are interested in the event

An :=
{
γn[0, Tn] ∩ λ[1, Tn] = ∅

}
, (3.3)

and the quantity
an := Es(2n) = P (An),

for α as in (1.2). Write
bn =

an
an−1

. (3.4)

We fix some q ∈ (0, 1/10) whose explicit value will be specified in Proposition 3.4. We
also assume that we always take large n such that n ≥ 30/q. Now, let

An,q :=
{
γn[0, T (1−q)n] ∩ λ[1, T (1−q)n] = ∅

}
;

A−n,q :=
{
γn−1[0, T (1−q)n] ∩ λ[1, T (1−q)n] = ∅

} (3.5)

(note that A−n,q is different from An−1,q). Then we have

an = P
(
An

∣∣∣ An,q)P(An,q) and an−1 = P
(
An−1

∣∣∣ A−n,q)P(A−n,q). (3.6)

The following lemma shows that the probability of An,q is very close to that of A−n,q,
allowing us to relate bn to the ratio of two conditional probabilities.

Lemma 3.1. It follows that for all n and q ∈ (0, 1)

bn =
P
(
An

∣∣∣ An,q)
P
(
An−1

∣∣∣ A−n,q)
(
1 +O(2−qn)

)
. (3.7)

We postpone its proof to Section 3.2.
As explained in Section 1, we will relate quantities such as An and An,q to non-

intersection probabilities of SRW and LERW started at a mesoscopic distance. To this
end, we introduce the following notations.

Let
x1 :=

(
− b2(1−5q)nc, 0, 0

)
, y1 := −x1 (3.8)

be two poles of B
(
2(1−5q)n

)
. Let

γ1 = γnx1
, λ1 = λy1 [0, Tn] (3.9)

be an LERW started from x1 stopped at exiting Tn and SRW started from y1 stopped at
exiting Tn.

Set

Bn =
{
γ1[0, Tn] ∩ λ1[0, Tn] = ∅

}
;

Bn,q =
{
γ1[0, T (1−q)n] ∩ λ1[0, T (1−q)n] = ∅

}
,

(3.10)

which are the analogs of An and An,q defined in (3.3) and (3.5). We also write γ′1 :=

LE(S1[0, Tn−1]) assuming that S1(0) = x1 and define

B−n :=
{
γ′1[0, Tn−1] ∩ λ1[0, Tn−1] = ∅

}
; B−n,q :=

{
γ′1[0, T (1−q)n] ∩ λ1[0, T (1−q)n] = ∅

}
.

We claim that conditional probabilities that appear in (3.7) can be replaced with a
small error by corresponding conditional probabilities for γ1 and λ1.
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Proposition 3.2. There exists δ > 0, such that

P
(
An

∣∣∣ An,q) =
(
1 +O(2−δqn)

)
P
(
Bn

∣∣∣ Bn,q) (3.11)

and
P
(
An−1

∣∣∣ A−n,q) =
(
1 +O(2−δqn)

)
P
(
B−n

∣∣∣ B−n,q). (3.12)

We will postpone the proof to Section 3.7 and dedicate Sections 3.3–3.6 to preparatory
works. Also, we note that this proposition relies on the coupling result from Section 4.
As a corollary, we have:

Corollary 3.3. For some universal constant δ > 0

bn =
P
(
Bn

∣∣∣ Bn,q)
P
(
B−n

∣∣∣ B−n,q)
(
1 +O(2−δqn)

)
. (3.13)

We now introduce quantities that correspond to the scale 2n−1. Let

x2 :=
(
− b2(1−5q)n−1c, 0, 0

)
=
x1

2
, y2 := −x2 =

y1

2
and γ2 := LE(S1[0, Tn−1]) , λ2 := S2

assuming that S1(0) = x2 and S2(0) = y2. We then define

Cn :=
{
γ2[0, Tn−1] ∩ λ2[0, Tn−1] = ∅

}
; Cn,q :=

{
γ2[0, T (1−q)n−1] ∩ λ2[0, T (1−q)n−1] = ∅

}
,

and similarly, let γ′2 := LE(S1[0, Tn−2]) assuming that S1(0) = x2 and then define

C−n :=
{
γ′2[0, Tn−2] ∩ λ2[0, Tn−2] = ∅

}
; C−n,q :=

{
γ′2[0, T (1−q)n−1] ∩ λ2[0, T (1−q)n−1] = ∅

}
.

Similar to (3.13) (note that the only difference between C• and B• is the scale), we also
have

bn−1 =
P
(
Cn

∣∣∣ Cn,q)
P
(
C−n

∣∣∣ C−n,q)
(
1 +O(2−qn)

)
. (3.14)

The following proposition states that the probability of Bn and B−n are actually close
to that of Cn and C−n . We postpone its proof to Section 3.8.

Proposition 3.4. There exist universal constants c1 > 0 and q1 > 0 such that for all
n ≥ 1 and q ∈ (0, q1),

P
(
Bn

)
= P

(
Cn

)(
1 +O(2−c1qn)

)
and (3.15)

P
(
B−n

)
= P

(
C−n

)(
1 +O(2−c1qn)

)
. (3.16)

We are now ready to prove Theorem 1.2.

Proof of Theorem 1.2 assuming Lemma 3.1, Propositions 3.2 and 3.4. To prove (1.8), it
suffices to show that there exist universal constants c1, N > 0 such that for all n ≥ N ,

bn = bn−1

(
1 +O(2−c1n)

)
. (3.17)

Recall (3.13) and (3.14). By Proposition 4.4 of [16] as in the proof of Lemma 3.1, we
have

P
(
Bn

∣∣∣ Bn,q)
P
(
B−n

∣∣∣ B−n,q) =
P
(
Bn

)
P
(
B−n
)(1 +O(2−qn)

)
, and

P
(
Cn

∣∣∣ Cn,q)
P
(
C−n

∣∣∣ C−n,q) =
P
(
Cn

)
P
(
C−n
)(1 +O(2−qn)

)
.

(3.18)
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Hence, it follows that there exists a universal constant δ > 0 such that for all n and
q ∈ (0, 1)

bn =
P
(
Bn

)
P
(
B−n
)(1 +O(2−δqn)

)
and bn−1 =

P
(
Cn

)
P
(
C−n
)(1 +O(2−δqn)

)
. (3.19)

The claim (3.17) hence follows by Proposition 3.4 with appropriately chosen q and
N = 30/q (see above 3.5). This finishes the proof of Theorem 1.2.

Proof of Corollary 1.3. The first statement of (1.10) follows from Proposition 6.2.1 of
[21] and (1.8), and the second follows from the following fact proved in Proposition 6.2.2
and 6.2.4 of [21]: for m ≤ n,

Es(m)Es(m,n) � Es(n).

It follows from Theorem 8.1.4 and Proposition 8.1.5 of [21] that

E(Mn) � n2Es(n) � n2−α,

which gives the third statement. Finally, exponential tail bounds on Mn as in Theorem
8.1.6 and Theorem 8.2.6 of [21] ensure the tightness of Mn/n

2−α.

Before ending this subsection, we introduce some path spaces which will be used in
the following sections. We write Γ for the set of paths satisfying

(i) η is a SAP;
(ii) η(0) = 0, η

(
len(η)

)
∈ ∂B(1−q)n and η

[
0, len(η)− 1

]
⊂ B(1−q)n.

We also write Λ for the set of paths satisfying (ii) above only.

3.2 Proof of Lemma 3.1

Proof of Lemma 3.1. Since

bn =
P
(
An

∣∣∣ An,q)P(An,q)
P
(
An−1

∣∣∣ A−n,q)P(A−n,q) ,
it suffices to show that

P
(
An,q

)
P
(
A−n,q

) =
(
1 +O(2−qn)

)
. (3.20)

For a path η, write

f(η) = P
(
λ[1, T (1−q)n] ∩ η = ∅

)
(3.21)

for the probability that λ up to T (1−q)n and η do not intersect. Using the function f , we
see that

P
(
An,q

)
=
∑
η∈Γ

f(η)P
(
γn[0, T (1−q)n] = η

)
. (3.22)

Similarly, we have

P
(
A−n,q

)
=
∑
η∈Γ

f(η)P
(
γn−1[0, T (1−q)n] = η

)
. (3.23)

However, by Corollary 4.5 of [16], for any η ∈ Γ, we have

P
(
γn[0, T (1−q)n] = η

)
=
(
1 +O(2−qn)

)
P
(
γn−1[0, T (1−q)n] = η

)
. (3.24)

This finishes the proof of this lemma.

EJP 24 (2019), paper 111.
Page 14/46

http://www.imstat.org/ejp/

https://doi.org/10.1214/19-EJP361
http://www.imstat.org/ejp/


One-point function estimates for 3D LERW

3.3 Decomposition of paths and weak independence

In this subsection, we decompose the paths at their first exit from B(1−q)n and state
without proof some preliminary results for Proposition 3.2.

Remind the definition of Λ and Γ at the end of Section 3.1. Define

C =
{

(η1, η2) ∈ Γ× Λ
∣∣∣ η1[0, T (1−q)n] ∩ η2[1, T (1−q)n] = ∅

}
. (3.25)

Take (η1, η2) ∈ C. Let wi be the endpoint of ηi lying on ∂B(1−q)n. Write

R1, R2 for two independednt simple random walks started at w1, w2

and X for R1 conditioned that R1[1, Tn] ∩ η1 = ∅. (3.26)

By the domain Markov property of LERW (see Lemma 2.4), conditioned on γn[0, T (1−q)n]=

η1, the (conditional) distribution of γn[T (1−q)n, Tn] is same as the law of ι := LE(X[0, Tn]).
With this in mind, for (η1, η2) ∈ C, let

g(η1, η2) = P
((
ι ∪ η1[0, len(η1)]

)
∩
(
R2[0, Tn] ∪ η2[1, len(η2)]

)
= ∅
)

(3.27)

be the probability that the loop-erasure of X and R2 do not intersect. We are now able
to re-write P (An) in terms of g:

P
(
An

)
=

∑
(η1,η2)∈C

g(η1, η2)P
((
γn[0, T (1−q)n], λ[0, T (1−q)n]

)
= (η1, η2)

)
.

Hence
P
(
An

∣∣∣ An,q) =
∑

(η1,η2)∈C

g(η1, η2)µn,q(η
1, η2), (3.28)

where
µn,q(η

1, η2) = P
((
γn[0, T (1−q)n], λ[0, T (1−q)n]

)
= (η1, η2)

∣∣∣ An,q) (3.29)

stands for the conditional distribution on An,q.
The next proposition measures the magnitude of g(η1, η2) in terms of a function h of

(η1, η2) we are going to define below and Es(·, ·) in Definition 2.6. We postpone its proof
to Section 3.6.

Proposition 3.5. One has

g(η1, η2) � h(η1, η2)Es
(
2(1−q)n, 2n

)
, (3.30)

where

h(η1, η2) = P
((
ι[0, s] ∪ η1[0, len(η1)]

)⋂(
R2[0, T (1−q)n+1] ∪ η2[1, len(η2)]

)
= ∅
)

and s = inf
{
k ≥ 0

∣∣∣ ι(k) /∈ B(1−q)n+1

}
. (3.31)

Remark 3.6. We now explain the significance of Proposition 3.5. The function h mea-
sures closeness of η1 and η2 in the following sense. Let

D(η1, η2) =
min

{
dist

(
w1, η2

)
,dist

(
w2, η1

)}
2(1−q)n+1

, (3.32)

where wi stands for the endpoint of ηi. It turns out that

h(η1, η2) is small ⇐⇒ D(η1, η2) is small.
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However, we note that if D(η1, η2) ≤ 1
2 , then D(η1, η2) does not depend on the initial part

of (η1, η2), i.e.,

D(η1, η2) = D
(
η1[T (1−q)n, T (1−q)n+1], η2[T (1−q)n, T (1−q)n+1]

)
.

This gives an intuitive explanation why (loosely speaking) h(η1, η2) does not depend on
the initial part of (η1, η2). Therefore, once we show that the dependence of the magnitude
of h(η1, η2) on the initial part of (η1, η2) is negligible, we are able to show the same thing
for g(η1, η2). This proposition will be one of the ingredients for the proof of Proposition
3.2.

3.4 Asymptotic independence of g(η1, η2) from initial parts

The goal of this subsection is to show that roughly speaking, g does not depend
on the “initial part” of (η1, η2). In other words, if two pairs (η1, η2), (η3, η4) ∈ C satisfy
ηi[T (1−3q)n, T (1−q)n] = ηi+2[T (1−3q)n, T (1−q)n] for i = 1, 2, then g(η1, η2) is very close to
g(η3, η4).

We recall that the C, the set of pairs of paths, was defined as in (3.25). Take
(η1, η2) ∈ C. We denote the endpoint of ηi by wi which lies on ∂B(1−q)n. We also define a
truncating operation on paths by

π(ηi) = πn,q(η
i) = ηi[T (1−3q)n, T (1−q)n]; π(η1, η2) = πn,q(η

1, η2) =
(
πn,q(η

1), πn,q(η
2)
)
.

(3.33)

We want to consider an analog of g(η1, η2) for π(η1, η2). With this in mind, we write
(note the difference of X defined here and X in (3.26))

R1, R2 for two independednt simple random walks started at w1, w2 and

X for R1 conditioned that R1[1, Tn] ∩ π(η1) = ∅. (3.34)

Let
g(η1, η2) = P

((
LE(X[0, Tn]) ∪ π(η1)

)
∩
(
R2[0, Tn] ∪ π(η2)

)
= ∅
)
. (3.35)

Note that g(η1, η2) is a function of π(η1, η2) and it does not depend on the initial part of
(η1, η2).

We next define an analog of h(η1, η2) for π(η1, η2) (see (3.31) for the definition of h).
To do it, let

s = inf
{
k ≥ 0

∣∣∣ LE(X[0, Tn]
)
(k) /∈ B(1−q)n+1

}
.

We define

h(η1, η2) = P
((

LE(X[0, Tn])[0, s] ∪ π(η1)
)
∩
(
R2[0, T (1−q)n+1] ∪ π(η2)

)
= ∅
)
. (3.36)

Again we remark that h(η1, η2) is a function of π(η1, η2). An easy modification of the
proof of Proposition 3.5 gives that

Proposition 3.7. One has

g(η1, η2) � h(η1, η2)Es
(
2(1−q)n, 2n

)
. (3.37)

The following proposition shows that g(η1, η2) is close enough to g(η1, η2) for “typical”
(η1, η2) in the sense that h(η1, η2) is not too small. More precisely, we have

Proposition 3.8. There exists C < ∞ such that for all n, q ∈ (0, 1) and (η1, η2) ∈ C
satisfying

h(η1, η2) ≥ 2−
qn
2 , (3.38)

it follows that ∣∣g(η1, η2)− g(η1, η2)
∣∣ ≤ C2−

qn
2 g(η1, η2). (3.39)
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Proof. We follow the notations introduced at the beginning of Section 3.3. Take (η1, η2) ∈
C satisfying (3.38) and set

H1 =
{(

LE(R1[0, Tn]) ∪ η1[0, len(η1)]
)
∩
(
R2[0, Tn] ∪ η2[1, len(η2)]

)
= ∅
}

;

H2 =
{
R1[1, Tn] ∩ η1 = ∅

}
;

H1 =
{(

LE(R1[0, Tn]) ∪ π(η1)
)
∩
(
R2[0, Tn] ∪ π(η2)

)
= ∅
}

;

H2 =
{
R1[1, Tn] ∩ π(η1) = ∅

}
.

(3.40)

Then by definition, we have

g(η1, η2) = P
(
H1

∣∣ H2

)
=
P
(
H1, H2

)
P
(
H2

) ; g(η1, η2) = P
(
H1

∣∣ H2

)
=
P
(
H1, H2

)
P
(
H2

) . (3.41)

We first show that P
(
H2

)
is close to P

(
H2

)
. It is clear that P

(
H2

)
≤ P

(
H2

)
since

π(η1) ⊂ η1. On the other hand, we have

P
(
H2

)
− P

(
H2

)
≤ P

(
H2, R

1[1, Tn] ∩ B(1−3q)n 6= ∅
)
. (3.42)

In order to bound the RHS of (3.42), set

B̃ = B
(
w1,

2(1−q)n

3

)
and J = η1 ∩ B̃ = π(η1) ∩ B̃.

We also let
u = inf{k | R1(k) ∈ ∂B̃}.

By the strong Markov property and Proposition 1.5.10 of [10],

P
(
H2, R

1[1, Tn] ∩ B(1−3q)n 6= ∅
)
≤ c2−2qnP

(
R1[1, u] ∩ J = ∅

)
.

We write D =
{
x ∈ ∂B

∣∣ x /∈ B( 5
4 · 2(1−q)n)} for a subset of ∂B̃. Then by Proposition 6.1.1

of [21] and Proposition 1.5.10 of [10] again, we see that

P
(
H2

)
≥ P

(
R1[1, u] ∩ J = ∅, R1(u) ∈ D, R1[u, Tn] ∩B

(
2(1−q)n) = ∅

)
≥ cP

(
R1[1, u] ∩ J = ∅, R1(u) ∈ D

)
≥ cP

(
R1[1, u] ∩ J = ∅

)
.

Therefore, we have
P
(
H2

)
= P

(
H2

)(
1 +O(2−2qn)

)
. (3.43)

We next compare P
(
H1, H2

)
and P

(
H1, H2

)
. Note that H1 ⊂ H1. Thus,

P
(
H1, H2

)
≤ P

(
H1, H2

)
.

Moreover, by the strong Markov property as above, it follows that

P
(
H1, H2

)
− P

(
H1, H2

)
≤ P

(
H1, H2, R

1[0, Tn] ∩ B(1−3q)n 6= ∅
)

+ P
(
H1, H2, R

2[0, Tn] ∩ B(1−3q)n 6= ∅
)

(3.44)

≤ c2−2qnP
(
R1[1, u] ∩ J = ∅

)
≤ c2−2qnP

(
H2

)
.

By (3.37) and (3.38), we see that

g(η1, η2) ≥ c2− qn
2 Es

(
2(1−q)n, 2n

)
.
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Combining this with (3.41), we have

P
(
H1, H2

)
≥ c2− qn

2 P
(
H2

)
Es
(
2(1−q)n, 2n

)
. (3.45)

Therefore, by (2.9) and the fact that α < 1, we have

P
(
H1, H2

)
≥ c2− 3qn

2 P
(
H2

)
. (3.46)

Thus, using (3.46) and (3.44), we conclude that

P
(
H1, H2

)
− P

(
H1, H2

)
≤ c2− qn

2 P
(
H1, H2

)
,

which gives
P
(
H1, H2

)
= P

(
H1, H2

)(
1 +O(2−

qn
2 )
)
. (3.47)

Finally, using (3.41), (3.43) and (3.47), we have

g(η1, η2) =
P
(
H1, H2

)
P
(
H2

) =
P
(
H1, H2

)
P
(
H2

) (
1 +O(2−

qn
2 )
)

= g(η1, η2)
(
1 +O(2−

qn
2 )
)
,

which completes the proof.

3.5 Comparison of conditional probabilities

The goal of this subsection is (3.60) and (3.62), in which P (An | An,q) and P (Bn | Bn,q)
are both rewritten (with a small error term) into weighted sums of g(·, ·) which allows an
easy comparison using results from Section 4.

We recall that µn,q was defined as in (3.29) which is a probability measure on C
obtained by the conditional distribution on An,q. We also recall the decomposition of
P (An|An,q) in (3.28). The next proposition shows that we can replace g(η1, η2) in the
RHS of (3.28) with g(η1, η2) with small enough error terms.

Proposition 3.9. One has that

P
(
An

∣∣∣ An,q) =
(
1 +O(2−

qn
2 )
) ∑

(η1,η2)∈C

g(η1, η2)µn,q(η
1, η2). (3.48)

Proof. We set

C1 =
{

(η1, η2) ∈ C
∣∣ (η1, η2) satisfies (3.38)

}
and C2 = C \ C1. (3.49)

By the separation lemma (see Theorem 6.1.5 of [21] or Claim 3.4 of [19] for the
separation lemma), we see that there exist universal constants c, c′ > 0 such that for all
n and q ∈ (0, 1)

µn,q

({
(η1, η2) ∈ C

∣∣ η1 and η2 are c-well-separated
})
≥ c′,

where we say η1 and η2 are c-well-separated if

min
{

dist
(
η1
(
len(η1)

)
, η2
)
,dist

(
η2
(
len(η2)

)
, η1
)
≥ c2(1−q)n. (3.50)

If η1 and η2 are c-well-separated, then it is easy to see that there exists c′ > 0

h(η1, η2) ≥ c′,

which gives
g(η1, η2) ≥ cEs

(
2(1−q)n, 2n

)
.
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Therefore, we have ∑
(η1,η2)∈C

g(η1, η2)µn,q(η
1, η2) � Es

(
2(1−q)n, 2n

)
. (3.51)

Combining this with Proposition 3.8, we have∑
(η1,η2)∈C

g(η1, η2)µn,q(η
1, η2)

=
∑

(η1,η2)∈C1

g(η1, η2)µn,q(η
1, η2) +

∑
(η1,η2)∈C2

g(η1, η2)µn,q(η
1, η2)

(3.39)
=

(3.37)

(
1 +O(2−

qn
2 )
) ∑

(η1,η2)∈C1

g(η1, η2)µn,q(η
1, η2)

+
∑

(η1,η2)∈C2

h(η1, η2)Es
(
2(1−q)n, 2n

)
µn,q(η

1, η2)

(3.49)
≤

(3.38)

(
1 +O(2−

qn
2 )
) ∑

(η1,η2)∈C

g(η1, η2)µn,q(η
1, η2)

+O(2−
qn
2 )Es

(
2(1−q)n, 2n

) ∑
(η1,η2)∈C

µn,q(η
1, η2)

(3.51)
≤

(
1 +O(2−

qn
2 )
) ∑

(η1,η2)∈C

g(η1, η2)µn,q(η
1, η2) =

(
1 +O(2−

qn
2 )
)
P
(
An

∣∣∣ An,q).
Similarly, we also have

P
(
An

∣∣∣ An,q) ≤ (1 +O(2−
qn
2 )
) ∑

(η1,η2)∈C

g(η1, η2)µn,q(η
1, η2),

which gives the proposition.

The following corollary is a byproduct of the proof above (see (3.51)).

Corollary 3.10. One has that

P
(
An

∣∣∣ An,q) � Es
(
2(1−q)n, 2n

)
. (3.52)

Recall that g(η1, η2) is a function of π(η1, η2) (see (3.35) for the definition of g(η1, η2)).
With this in mind, we define a set of pairs of paths C by

C =
{

(η1, η2)
∣∣ (η1, η2) satisfies (iii), (iv) and (v)

}
(3.53)

where

(iii) η1 is a SAP and η2 is a path. (3.54)

(iv) ηi(0) ∈ ∂B(1−3q)n, η
i[0, len(ηi)− 1] ⊂ B(1−q)n and ηi

(
len(ηi)

)
∈ ∂B(1−q)n for i = 1, 2.

(3.55)

(v) η1[0, len(η1)] ∩ η2[0, len(η2)] = ∅. (3.56)

With little abuse of notation, we can then define g(η1, η2) for (η1, η2) ∈ C through g(η1, η2)

for any (η1, η2) such that π(η1, η2) = (η1, η2).
We next define a probability measure µn,q on C. For (η1, η2) ∈ C, define µn,q(η

1, η2) by

µn,q(η
1, η2) =

{
µn,q

(
Fn,q(η

1, η2)
)

if Fn,q(η
1, η2) 6= ∅

0 otherwise
(3.57)
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where
Fn,q(η

1, η2) =
{

(η1, η2) ∈ C
∣∣ π(η1, η2) = (η1, η2)

}
, (3.58)

see (3.29) and (3.33) for µn,q and π(η1, η2) respectively. Note that µn,q is a probability

measure on C which is induced by

π
(
γn[0, T (1−q)n], λ[0, T (1−q)n]

)
conditioned on An,q. (3.59)

The next corollary rephrases Proposition 3.9 in terms of µn,q.

Corollary 3.11. It follows that

P
(
An

∣∣∣ An,q) =
(
1 +O(2−

qn
2 )
) ∑

(η1,η2)∈C

g(η1, η2)µn,q(η
1, η2). (3.60)

We now turn to P (Bn|Bn,q). We let µ?n,q be the probability measure on C which is
induced by

π
(
γ1[0, T (1−q)n], λ1[0, T (1−q)n]

)
conditioned on Bn,q. (3.61)

As the next proposition can be proved very similarly, we will omit its proof.

Proposition 3.12. It follows that

P
(
Bn

∣∣∣ Bn,q) =
(
1 +O(2−

qn
2 )
) ∑

(η1,η2)∈C

g(η1, η2)µ?n,q(η
1, η2). (3.62)

3.6 Proof of Propositions 3.5 and 3.7

As two propositions are extremely similar, we will only prove Proposition 3.5. We
treat two directions of (3.30) in Lemmas 3.13 and 3.15 separately.

We recall the definition of Es(n) and Es(m,n) in Definition 2.6.

Lemma 3.13. There exists c <∞ such that for all n, q and (η1, η2) ∈ C,

g(η1, η2) ≤ ch(η1, η2)Es
(
2(1−q)n, 2n

)
. (3.63)

Proof. Take (η1, η2) ∈ C. Recall the definition of F = Fn,q in (3.58). Then we have

g(η1, η2) =
P
(
An, F (η1, η2)

)
P
(
F (η1, η2)

) .

Define
t1 = max

{
k
∣∣∣ γn(k) ∈ ∂B(1−q)n+3

)}
. (3.64)

Then it follows that

P
(
An, F (η1, η2)

)
≤ P

(
γn[t1, T

n] ∩ λ[1, Tn] = ∅, γn[0, T (1−q)n+1] ∩ λ[1, T (1−q)n+1] = ∅, F (η1, η2)
)
.

By Proposition 4.6 of [16], since γn[t1, T
n] and γn[0, T (1−q)n+1] are “independent up

to constant”, we see that

P
(
γn[t1, T

n] ∩ λ[1, Tn] = ∅, γn[0, T (1−q)n+1] ∩ λ[1, T (1−q)n+1] = ∅, F (η1, η2)
)

� E2
(
Y1Y21

{
λ[0, T (1−q)n] = η2

})
,
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where P i stands for the probability law of Si assuming Si(0) = 0 and Y i are defined by

Y 1 = P 1
(
γn[t1, T

n] ∩ λ[1, Tn] = ∅
)

= P 1
(
γn[t1, T

n] ∩ λ[T (1−q)n+2, Tn] = ∅
)

;

Y 2 = P 1
(
γn[0, T (1−q)n+1] ∩ λ[1, T (1−q)n+1] = ∅, γn[0, T (1−q)n] = η1

)
.

Note that Y 1 is a function of λ[T (1−q)n+2, Tn] while Y 21
{
λ[0, T (1−q)n] = η2

}
is a function

of λ[0, T (1−q)n+1]. Therefore by the Harnack principle (see Theorem 1.7.6 of [10]), it
follows that Y 1 and Y 21

{
λ[0, T (1−q)n] = η2

}
are also “independent up to constant”. Thus,

we have

E2
(
Y1Y21

{
λ[0, T (1−q)n] = η2

})
� E2

(
Y1

)
E2
(
Y21

{
λ[0, T (1−q)n] = η2

})
.

Again by the Harnack principle, we see that

E2
(
Y 1
)
� E2

{
P 1
(
γn[t1, T

n] ∩ λ[1, Tn] = ∅
)}

= Es
(
2(1−q)n+3, 2n

)
.

By Propositions 6.2.1, 6.2.2 and 6.2.4 of [21], we see that

Es
(
2(1−q)n+3, 2n

)
� Es

(
2(1−q)n, 2n

)
.

On the other hand,

E2
(
Y21

{
λ[0, T (1−q)n] = η2

})
= P

(
γn[0, T (1−q)n+1] ∩ λ[1, T (1−q)n+1] = ∅, F (η1, η2)

)
.

Therefore, by the domain Markov property of LERW (see Lemma 2.4), we have

g(η1, η2) =
P
(
An, F (η1, η2)

)
P
(
F (η1, η2)

)
≤ cEs

(
2(1−q)n, 2n

)
P
(
F (η1, η2)

) P
(
γn[0, T (1−q)n+1] ∩ λ[1, T (1−q)n+1] = ∅, F (η1, η2)

)
= cEs

(
2(1−q)n, 2n

)
P
(
γn[0, T (1−q)n+1] ∩ λ[1, T (1−q)n+1] = ∅

∣∣∣ F (η1, η2)
)

= cEs
(
2(1−q)n, 2n

)
h(η1, η2),

which completes the proof of (3.63).

The following claim can be proved in a similar way.

Corollary 3.14. There exists some c > 0 such that for all (η1, η2) ∈ C,

g(η1, η2) ≤ cEs
(
2(1−q)n, 2n

)
. (3.65)

The next lemma shows the opposite direction.

Lemma 3.15. There exists c > 0 such that for all n, q and (η1, η2) ∈ C,

g(η1, η2) ≥ ch(η1, η2)Es
(
2(1−q)n, 2n

)
. (3.66)

Proof. We will follow the proof of Proposition 5.3 of [16] and Proposition 6.2.4 of [21].
We recall that t1 is the last time that γn lies in ∂B

(
2(1−q)n+3

)
(see (3.64) for t1). Let

(these notations pertain only in this proof)

γ1 = γn[0, T (1−q)n+1]; γ2 = γn[t1, T
n]; γ̂ = γn[T (1−q)n+1, t1],
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so that γn = γ1⊕ γ̂⊕γ2. Let γ0 = γn[0, T (1−q)n]. We decompose λ into λ1 = λ[1, T (1−q)n+2]

and λ2 = λ[T (1−q)n+2, Tn]. Let λ0 = λ[0, T (1−q)n].
For κ ∈ [0, 1], define π(κ) = {(x1, x2, x3) ∈ R3 | x1 = κ}. We set H(κ) = {x ∈ R3 | |x| ≤

1} ∩ π(κ) and a cone O(κ) = {rx | r ≥ 0, x ∈ H(κ)}. We set Oi = O
(

2+i
3+i

)
for i = 1, 2, 3.

Note that O3 ⊂ O2 ⊂ O1. Define

W =
{
x ∈ Z3

∣∣∣ 3

4
· 2(1−q)n+1 ≤ |x| ≤ 5

4
· 2(1−q)n+3

}
∩O2 and

W ∗ =
{
x ∈ Z3

∣∣∣ 3

4
· 2(1−q)n+1 ≤ |x| ≤ 5

4
· 2(1−q)n+3

}
∩O3,

and set A = W ∪ B(1−q)n+1. Let K1,K2 be sets of paths defined by

K1 =
{
η
∣∣∣ η ∩ ∂B(1−q)n+1 ∈ O3, P

(
γ1 = η

)
> 0
}

;

K2 =
{
η
∣∣∣ η ∩ ∂B(1−q)n+3 ∈ O3, P

(
γ2 = η

)
> 0
}
.

Then we have

P
(
An, F (η1, η2)

)
= P

(
γn[0, Tn] ∩ λ[1, Tn] = ∅, (γ0, λ0) = (η1, η2)

)
= P

(
λ1 ∩ γ1 ⊕ γ̂ = ∅, λ2 ∩ γ1 ⊕ γ̂ ⊕ γ2 = ∅, (γ0, λ0) = (η1, η2)

)
≥ E1

[
1{γ1 ∈ K1}1{γ2 ∈ K2}1{γ̂ ⊂W}1{γ0 = η1}

P 2
(
λ1 ∩ (γ1 ∪W ∗) = ∅, λ2 ∩ (γ2 ∪A) = ∅, λ0 = η2

)]
≥ E1

[
X̃Ỹ 1{γ̂ ⊂W}

]
,

where

X̃ = 1{γ1 ∈ K1}1{γ0 = η1}P 2
(
λ1 ∩ (γ1 ∪W ∗) = ∅, λ0 = η2

)
Ỹ = 1{γ2 ∈ K2} min

x∈∂B(1−q)n+2\W∗
P 2
x

(
S2[0, Tn] ∩ (γ2 ∪A) = ∅

)
.

Note that X̃ is a function of γ1 while Ỹ is a function of γ2.
By the domain Markov property of LERW and Lemma 6.2.3 of [21], it follows that

there exists c > 0 such that for all η ∈ K1 and η′ ∈ K2

P 1
(
γ̂ ⊂W

∣∣∣ γ1 = η, γ2 = η′
)
≥ c.

This gives

P
(
An, F (η1, η2)

)
≥ cE1

[
X̃Ỹ

]
.

However, by Proposition 4.6 of [16], we see that

P
(
An, F (η1, η2)

)
≥ cE1(X̃)E1(Ỹ ).

It follows from (6.43) of [21] that

E1(Ỹ ) ≥ cEs
(
2(1−q)n, 2n

)
.

Therefore, it suffices to show that

E1(X̃) ≥ cP
(
γ1 ∩ λ[1, T (1−q)n+1] = ∅, (γ0, λ0) = (η1, η2)

)
. (3.67)
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Write λ′ = λ[1, T (1−q)n+1] and λ′′ = λ[T (1−q)n+1, T (1−q)n+2] so that λ1 = λ′ ⊕ λ′′.
To prove (3.67), by the separation lemma (see (6.13) of [21] for the version of the

separation lemma that we need here), we see that there exists some universal constant
c > 0 such that (see (3.50) for definition of being well-separated):

E1(X̃) ≥ P
(

(γ0, λ0) = (η1, η2), γ1 ∩ λ′ = ∅,

γ1 and λ′ are c-well-separated, λ′′ ∩ (γ1 ∪W ∗) = ∅
)

≥ cP
(

(γ0, λ0) = (η1, η2), γ1 ∩ λ′ = ∅, γ1 and λ′ are c-well-separated
)

≥ cP
(

(γ0, λ0) = (η1, η2), γ1 ∩ λ′ = ∅
)
,

which finishes the proof of (3.66).

3.7 Proof of Proposition 3.2

Proof of Proposition 3.2. We only prove (3.11) as (3.12) follows in a similar manner. To
show (3.11), it suffices to show∣∣∣P(An ∣∣∣ An,q)− P(Bn ∣∣∣ Bn,q)∣∣∣ ≤ O(2−δqn)P(An ∣∣∣ An,q). (3.68)

We observe that applying Proposition 4.2 with (k,N) therein equal to
(
(1−3q)n, (1−q)n

)
,

we have ∣∣∣∣∣∣µn,q(η1, η2)− µ?n,q(η1, η2)
∣∣∣∣∣∣

TV
≤ c2−δqn, (3.69)

where || · ||TV stands for the total variation distance. Hence,∣∣∣∣∣ ∑
(η1,η2)∈C

g(η1, η2)µn,q(η
1, η2)−

∑
(η1,η2)∈C

g(η1, η2)µ?n,q(η
1, η2)

∣∣∣∣∣
(3.65)
≤ CEs(2(1−q)n, 2n)

∑
(η1,η2)∈C

∣∣∣µn,q(η1, η2)− µ?n,q(η1, η2)
∣∣∣

(3.69)
≤ C ′Es(2(1−q)n, 2n)2−δqn

(3.60)
≤

(3.52)
C ′′2−δqn

∑
(η1,η2)∈C

g(η1, η2)µn,q(η
1, η2).

Thus, (3.68) follows by rewriting the leftmost and rightmost expression above back to
conditional probabilities, thanks to (3.60) and (3.62). This finishes the proof of (3.11).

3.8 Proof of Proposition 3.4

We recall that λ1 and λ2 stands for the SRW on Z3 started at y1 and y2, respectively.
We also recall that

Bn = {γ1 ∩ λ1 = ∅} and Cn = {γ2 ∩ λ2 = ∅}.

In order to keep coherence of notation in this subsection we will use notations on the
right hand side above in the proposition below.

Proposition 3.16. There exist universal constants c3 > 0 and q1 > 0 such that for all
n ≥ 1 and q ∈ (0, q1),∣∣∣P(γ1 ∩ λ1 = ∅

)
− P

(
γ2 ∩ λ2 = ∅

)∣∣∣ ≤ c32−10qn. (3.70)
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Proof. We will closely follow the proof of Proposition 7.1.1 of [21]. We seek to replace
the SRW in both probabilities in (3.70) by Wiener sausages (see (3.81) and (3.82)), and
establish an inequality between them (which is (3.77)).

Lemma 3.2 of [7] proves that it is possible to couple λ2 and W , a Brownian motion in
R3 started at y2, on the same probability space P 2 such that

P 2
(
Jc1

)
≤ ae−2bn

, (3.71)

where
J1 =

[
max

0≤t≤Tn

∣∣W (t)− λ2(3t)
∣∣ ≤ 2

2n
3 −1

]
, (3.72)

for some universal constants a, b > 0. Throughout this proof, we will assume (λ2,W ) is
defined on the same probability space as above. We also write E2 for the corresponding
expectation. Define the event J2 by

J2 =
[
W [0,∞) ∩B

(
x2, 2

(1−15q)n−1
)

= ∅
]
. (3.73)

Then by Theorem 3.17 of [17], it follows that

P 2(J2) ≥ 1− c2−10qn. (3.74)

We now consider the Wiener sausage. For a discrete or continuous path η and L ∈ R,
write

(η)+L :=
[
x ∈ R3

∣∣ there exists y ∈ η[0, len(η)] such that |x− y| ≤ 2L
]

(3.75)

for its sausage of radius 2L. We also write

W2 = W [0, Tn−1], W ′2 = 2W2. (3.76)

We let R = (R(j))j≥0 be the simple random walk on 2Z3 started at x1 and let γ̃2 =

LE(R[0, Tn]) be its loop-erasure up to Tn.
By Theorem 5 of [4], there exist deterministic universal constants q0 ∈ (0, 1), c0 ∈

(0, 1
4 ) and c1 <∞ such that for all q ∈ (0, q0) and W satisfies J2 then it follows that

PR
(
γ̃2 ∩ (W ′2)+( 2n

3 +1) = ∅
)
≥ P 1

(
γ1 ∩ (W ′2)+(1−c0)n = ∅

)
− c12−c0n, (3.77)

where PR stands for the probability law of R while P 1 stands for the law of S1 (or
equivalently law of γ1). Thus, the two probabilities in (3.77) are functions of W2. (Note
that we can take q0 = 1

15 ×min{ 1
6 ,

ε
8 ,

δ2
8 } where ε and δ2 are universal constants as in the

proof of Theorem 5 of [4] for the case that G1 = Z3 and G2 = 2Z3. Taking q0 like this
form and conditioned W on J2, we can take universal deterministic constants c0 and c1
such that they do not depend on the starting point, see (132) of [4]. See also the remarks
below (5.51).)

Next, we will replace each probability of (3.77) by the corresponding non-intersection
probability of LERW and SRW as in the proof of Proposition 7.1.1 of [21]. We start with
the left one. Note that

PR
(
γ̃2 ∩ (W ′2)+( 2n

3 +1) = ∅
)

= P 1
(
γ2 ∩ (W2)+ 2n

3 = ∅
)
. (3.78)

Therefore, taking expectation with respect to W , we have

P
(
γ2 ∩ (W2)+ 2n

3 = ∅
)
≥ E2

[
PR
(
γ̃2 ∩ (W ′2)+( 2n

3 +1) = ∅
)

; J2

]
≥ E2

[
P 1
(
γ1 ∩ (W ′2)+(1−c0)n = ∅

)
− c12−c0n ; J2

]
(3.79)

≥ E2
[
P 1
(
γ1 ∩ (W ′2)+(1−c0)n = ∅

)]
− c12−c0n − c2−10qn,
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for all q ∈ (0, q0). But the scaling property of the Brownian motion ensures that the law of
W ′2 with W2 started from y2 coincides with the law of the Brownian motion B1 := B[0, Tn]

started from y1 up to Tn. Thus, we have

P
(
γ2 ∩ (W2)+ 2n

3 = ∅
)
≥ P

(
γ1 ∩ (B1)+(1−c0)n = ∅

)
− c12−c0n − c2−10qn, (3.80)

for all q ∈ (0, q0).

Now we compare the probability of RHS of (3.80) and P (Bn). We again assume that
λ1 and B are coupled such that the Hausdorff distance between them is ≤ 2

2n
3 with

probability at least 1− ae−2bn

for some universal constants a, b > 0 (this is possible by
Lemma 3.2 of [7]). Applying Lemma 4.8 of [4] (see Theorem 3.1 of [19] for a stronger
version of it), it follows that there exists universal constants c2, ρ > 0 such that for all
q ∈ (0, q0), ∣∣∣P(γ1 ∩ λ1 = ∅

)
− P

(
γ1 ∩ (λ1)+(1−c0)n = ∅

)∣∣∣ ≤ c22−c0ρn.

Combining this with our coupling of λ1 and B, we see that∣∣∣P(γ1 ∩ λ1 = ∅
)
− P

(
γ1 ∩ (B1)+(1−c0)n = ∅

)∣∣∣ ≤ c22−c0ρn. (3.81)

Similarly, we see that∣∣∣P(γ2 ∩ λ2 = ∅
)
− P

(
γ2 ∩ (W2)+ 2n

3 = ∅
)∣∣∣ ≤ c22−c0ρn. (3.82)

Set q1 = min{ c0ρ10 ,
q0
10}. Note that q1 is a universal constant. We have showed that

there exists a universal constant c3 such that for all q ∈ (0, q1),

P
(
γ2 ∩ λ2 = ∅

)
≥ P

(
γ1 ∩ λ1 = ∅

)
− c32−10qn.

An inequality in the opposite direction also follows similarly. This gives (3.70).

Proof of Proposition 3.4. We will only prove (3.15) as the second claim (3.16) follows
similarly. Since

P
(
γ1 ∩ λ1 = ∅

)
� P

(
γ2 ∩ λ2 = ∅

)
� Es

(
2(1−5q)n, 2n

)
≥ c2−5qn,

by (3.70), it follows that for q ∈ (0, q1),

P (Bn) = P (Cn) +O
(
2−10qn

)
= P (Cn)

(
1 +O(2−5qn)

)
, (3.83)

which gives (3.15) and completes the proof.

4 Coupling

In this section, we establish various couplings of pairs of loop-erased walk and simple
random walk conditioned to avoid each other under different setups and different initial
configurations. As a corollary we obtain (3.69) which is a key ingredient in Section 3. As
the prototype of such couplings already appears in [12], in this work we will not give a
direct proof, but rather argue through a fine-tuning of the coupling result from [12]. For
more discussion, see the beginning of Section 4.2.
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4.1 Setup and statement

We start by giving a brief introduction to our coupling. Pick k, n > 0 (not necessarily
integers) and N ≥ 2n + k. Let γ be an ILERW and λ be an SRW both in Z3 with
γ(0) = λ(0) = 0, independent of each other. We write η = (γ, λ) for the pair of walks and
write P = P0,0 for its law. We write

ηN :=
(
γN , λN

)
:=
(
γ[0, TN ], λ[0, TN ]

)
(4.1)

for the walks truncated at the first exit from BN .
Let x, y ∈ Bk. Similarly, let η′ = (γ′, λ′) where γ′ is an ILERW with γ′(0) = x and λ′ is

a simple random walk with λ′(0) = y, again, independent from each other. We write Px,y
for its joint law. For N ≥ k, we define γ′N , λ′N = λ′[0, TN ] and η′N similarly.

We write

UN :=
{
γN ∩ λN [1, TN ] = ∅

}
(4.2)

for the event that γN and λN have no intersection and define the event

U ′N :=
{
γN
⋂ λN [1, TN ]

λN
= ∅
}

if
γN (0) = λN (0);

γN (0) 6= λN (0)

similarly. Note that in the second case, there is no need to exclude λN (0). We write

P
N

[η ∈ ·] = P[η ∈ ·|UN ] (4.3)

and

P
N

x,y[η ∈ ·] = Px,y[η ∈ ·|U ′N ], (4.4)

for the laws of η and η′ conditioned on UN and U ′N , respectively.
For N ≥ n+ k, we write ηN =n η′N if the paths agree from their first exit from BN−n

onward, i.e.,

γN−n,N = γ′N−n,N , λN−n,N = λ′N−n,N ,

where γN−n,N = γ[TN−n, TN ], with other notations defined similarly.
We are now ready to state our coupling.

Proposition 4.1. There exist β1 > 0 and c1 < ∞ such that for all n, k > 0, N ≥ 2n + k,

x, y ∈ Bk, there is a coupling Q of η under P
N

and η′ under P
N

x,y, such that

Q[ηN =n η′N ] ≥ 1− c12−β1n. (4.5)

In the coupling above, we can also replace the ILERW in η′ by a long LERW from
x to ∂BM , with M > N (in applications we would like 2M � 2N ). Since the law of the
beginning part of an ILERW and that of anv LERW are almost the same, such replacement
should not change much if we only look at what is happening inside BN .

Now let M > N and let γM be an LERW started from x ∈ Bk stopped at exiting

BM . Replacing γ′ by γM in the definition above, we define ηM , ηMN , UMN , PMx,y and P
N,M

x,y

accordingly.
As a corollary of Proposition 4.1, we have the following coupling.

Proposition 4.2. There exist β2 > 0 and c2 < ∞ such that for all k, n > 0, M ≥ N ≥
2n+ k, and x, y ∈ Bk, there is a coupling QM of η under P

N
and ηM under P

N,M

x,y , such
that

QM [ηN =n ηMN ] ≥ 1− c22−β2 min(n,M−N). (4.6)

Note that (3.69) follows as a corollary of Proposition 4.2.
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Proof of Proposition 4.2 given Proposition 4.1. In the setting of Proposition 4.1, instead
of sampling γ′, we sample γ′ and γM coupled in the same probability space P, such that
there exists c′ > 0,

P[γMN = γ′N |γ′N = γ◦] > 1− c′2−M+N

uniformly for any self avoiding path γ◦ from x to ∂BN . This is possible thanks to Lemma
2.2. Note that conditioning on γMN = γ′N , we have 1U ′N = 1UM

N
. Hence,∣∣∣∣ Px,y[U ′N ]

PNx,y[UMN ]
− 1

∣∣∣∣ < c2−M+N .

This observation, along with the coupling P between γ′ and γN , allows us to modify the

coupling in Proposition 4.1 to obtain a new coupling QM of η under P
N

and ηM under

P
N,M

x,y such that (4.6) is satisfied with β2 = min(β1, 1). This finishes the proof.

Remark 4.3. If both η and η′ are replaced by LERW with certain initial configurations
stopped at exiting ∂BM , then, since boundary issues are no longer a problem, one can
have a coupling with better error probability estimates. In fact, in Proposition 4.12 we
are going to state such a version, which replaces min(n,M −N) in (4.6) by n.

4.2 Variations on a coupling by Lawler

In this subsection, we are going to restate the coupling result from [12] under the
setup that suits our needs.

In the course of proving the existence of infinite two-sided loop-erased random walk,
Greg Lawler considered a pair of ILERW’s started from the origin, conditioned to not
intersect each other up to some level and then tilted by a loop term. Then he constructed
a coupling between such a pair of loop-erased walks and another pair conditioned on
some prefixed initial configurations. As we are going to see, this coupling is intimately
related to the non-intersection probability of an LERW and an SRW. For instance, if we
consider η under Pn (see the previous subsection for precise definition), and let ι be
the loop erasure of λn, then the law of (γn, ι) can also be described through a pair of
non-intersecting LERW tilted by loop terms. Hence, it is possible to modify the coupling
from [12] to obtain Proposition 4.1. However, as the setup and tilting terms are slightly
different in [12] and in our case, some care must be taken.

We start by restating the coupling in [12].
Let γ1 and γ2 be two infinite self-avoiding path, not necessarily starting from the

same point. For N > 0, define

GN (γ1
N , γ

2
N ) : =1γ1

N∩γ2
N=γ1

N (0)∩γ2
N (0) exp(−LN (γ1

N , γ
2
N )), (4.7)

where LN (γ1
N , γ

2
N ) is the loop measure of loops in BN that touch both γ1

N and γ2
N .

We now write M for the joint law γ1 and γ2 if they are two independent ILERW’s

starting from 0 and. For 0 < k < N , write M
N

for the law of M tilted by GN (γ1
N , γ

2
N ).

Let g1, g2 be two SAP’s started from 0 and stopped at first exit from Bk, such that

g1 ∩ g2 = {0}. (4.8)

Let Mg be the law of γ1 and γ2 conditioned on (γ1
k, γ

2
k) = (g1, g2) (in this case we write

γ1,g and γ2,g for γ1 and γ2) and let M
N

g be Mg tilted by GN (γ1,g
N , γ2,g

N ).

Remark 4.4. Note that in [12], the definition of LN (γ1
N , γ

2
N ) for d = 3 is the measure of

loops in BN\{0} that touches both γ1
N and γ2

N . Our choice in (4.7) does not change the
tilted probability law but gives us some convenience in notation when we do not start
both walks from the same point any more.
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We are now ready to state the original version of this coupling. Note that although
the original version used e as the ratio between exponential scales, it is not a problem
for us since it was stated explicitly in [12] that exponents do not have to be integers.

Proposition 4.5 (Proposition 2.31 of [12]). There exist β3 > 0 and c3 <∞ such that for
all k, n > 0, N ≥ 2n+ k and any g = (g1, g2) satisfying (4.8), we can find a coupling Q∞

of M
N

and M
N

g such that

Q∞
[
(γ1
N , γ

2
N ) =n (γ1,g

N , γ2,g
N )
]
> 1− c32−β3n.

Remark 4.6. Although it is tempting to claim that we can obtain the coupling in Propo-
sition 4.1 by appropriately “adding back” loops from an independent loop soup to γ2 and
γ2,g simultaneously, it is in fact imprecise due to the fact that the distributions of the “tip”
of an LERW and an ILERW differ greatly (also, there are a few stitches in the choice of
loop terms). We will not discuss this in detail here but mention that in order to generate
objects with the right distribution, one has to be very careful both in the sampling of γ’s
and the choice of loop terms (e.g. LN (γ1

N , γ
2
N ) in (4.7)) in tilting procedures.

In fact, the “initial configuration” in the definition above does not have to be a
nearest-neighbor SAP. As we now explain, this coupling also works under more general
setups, especially when walks start from points other than the origin.

Pick x, y ∈ Bk and let (γ1,x, γ2,y) be two independent ILERW starting from x and y

respectively and record their joint law by Mx,y. Define (γ1,x
N , γ2,y

N ) accordingly. Again let

M
N

x,y be the law of Mx,y tilted by GN (γ1,x
N , γ2,y

N ).
We now state a variant of Proposition 4.5. Note that we still denote the coupling by

Q∞.

Proposition 4.7 (Variant of Proposition 4.5). There exists β3 > 0 and c3 <∞ such that

for all 0 < k < n, N ≥ 2n+ k and any x, y ∈ Bk, we can find a coupling Q∞ of M
N

and

M
N

x,y such that

Q∞
[
(γ1
N , γ

2
N ) =3n/2 (γ1,x

N , γ2,y
N )
]
> 1− c32−β3n. (4.9)

We now explain briefly this variant holds.

• The constant in the separation lemmas (Lemmas 2.28 and 2.29 in [12]) stays
unchanged and hence is uniform if one replaces paths from the origin by a pair
of paths with different starting points, for it is inherited from Lemma 2.11, ibid.,
where the constant does not depend on (in the notation of that lemma in [12]) the
choice of A′ as long as it is a subset of Cn;

• Throughout the proof in [12] the probability of the coupling getting destroyed is
always bounded by the probability that a (conditioned) random walk returns to the
ball Bk, see e.g. Lemma 2.32, ibid, hence the argument is still valid for the setup of
Proposition 4.7.

• Also, we note that the change from n to 3n/2 is merely for the convenience of the
coherence of notations in this paper.

Remark 4.8. Although it is not needed in this work, we would like to mention that the
coupling in [12] actually works for even more general initial configurations which can
just be two subsets of Bk with a terminal point (in other words, starting points for the
walks).

4.3 Proof of Proposition 4.1

We now give a proof of Proposition 4.1 through fine-tuning the coupling in Proposition
4.7.
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First, we claim that it suffices to prove the following coupling, which serves as a link
between ILERW-SRW couplings of this work and the ILERW-ILERW couplings of [12].
For more comments, see the beginning of Section 4.2.

Pick N > k > 0. Let γ be an ILERW and γ̃ be an LERW stopped at the first exit from
∂BN with γ(0) = γ̃(0) = 0, independent from each other. We write by N for their joint
law and write Ñ for their joint law tilted by GN (γN , γ̃) (see (4.7)) for the definition of
GN ). Similarly, let γx be an ILERW and γ̃y be an LERW stopped at the first exit from
∂BN with γ(0) = x and γ̃(0) = y, independent from each other. We write by Nx,y for its

joint law and write Ñx,y for their joint law tilted by GN (γxN , γ̃
y).

Proposition 4.9. There exist β4 > 0 and c4 <∞ such that for all n, k > 0, N ≥ 2n+k+ 1

and any x, y ∈ Bk, there is a coupling Q̃ of (γ, γ̃) under Ñ and (γx, γ̃y) under Ñx,y, such
that

Q̃[(γN , γ̃) =3n/2+1 (γxN , γ̃
y)] ≥ 1− c42−β4n. (4.10)

Proof of Proposition 4.1 given Proposition 4.9. Independently from Q̃, sample a loop
soup L with intensity measure m (see above (2.6) for definition of m) and denote the
product measure by Q. We then add loops from L that stay inside BN and do not touch
γN to γ̃, and add loops inside BN that do not touch γxN to γ̃y, according to the procedure
described in Proposition 2.5. Also, to both γ̃ and γ̃y we attach an independent SRW that
starts from the terminal point respectively and denote the new, concatenated paths by λ
and λy respectively.

We claim that (γ, λ) and (γx, λy) have the law of P
N

and P
N

x,y respectively, as required
in Proposition 4.1. To verify this claim, it suffices to check the distribution of (γN , λN )

and (γxN , λ
y
N ). For brevity we only check the first one.

Let
F (γ†, ι†) = N

(
γN = γ†, γ̃N = ι†

)
GN (γ†, ι†) (4.11)

be the “energy” function for (γN , γ̃N ) under Ñ. Similarly, let

H(γ†, λ†) = P[γN = γ†, λN = λ†]1γ†∩λ†={0} (4.12)

be the the “energy” function for (γN , λN ) under PN .
Given ι† and a loop soup L†, let λ†(ι†,L†) stand for the path formed by adding back

loops in L† to ι†. Then, to verify the claim above, it suffices to check

F (γ†, ι†) =
∑
L†

H
(
γ†, λ†(ι†,L†)

)
P [L = L†], (4.13)

where summation is over all possible realizations of a loop soup. Here we let P stand for
the law of L. Let µ∞ be the law of γ∞ an ILERW starting from 0 and µN be the law of ιN
an LERW from 0 stopped at TN . Thus, we can rewrite (4.11) as

F (γ†, ι†) = µ∞[γ∞N = γ†]µN [ιN = ι†]1γ†∩ι†={0}e
−LN (γ†,ι†). (4.14)

Let p0 be the law of S a simple random walk from 0 stopped at the first exit from BN ,
then

H
(
γ†, λ†(ι†,L†)

)
= µ∞[γ∞N = γ†]p0

[
S = λ†(ι†,L†)

]
1γ†∩λ†={0}

= µ∞[γ∞N = γ†]µN [ιN = ι†]P [L = L†]1γ†∩ι†={0}1L†(γ†,ι†)=∅,
(4.15)

where L†(γ†, ι†) stands for the set of loops that touch both γ† and ι†. Comparing (4.14)
and (4.15), it suffices to show that given γ† and ι† such that γ† ∩ ι† = {0},∑

L†
P [L = L†]1L†(γ†,ι†)=∅ = e−LN (γ†,ι†), (4.16)
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where the summation is again over all possible realizations of a loop soup. But this
follows from the definition of LN and the restriction property of Poissonian loop soups.
Hence, we have verified (4.13).

Now it suffices to show that with the construction above,

Q[λN =n+1 λ
y
N ] ≥ 1− c2−βn. (4.17)

Note that in general LE
[
λ[TN−n−1, TN ]

]
6= γ[TN−n−1, TN ].

We observe that if λN 6=n+1 λ
y
N , then at least one of

L
(
BN−3n/2−1,BcN−n−1

)
6= ∅ and

{
(γN , γ̃) 6=n+1 (γxN , γ̃

y)
}

must happen. We can bound the probability of the former by c2−n/2 through a classical
estimate on loop measures, see for instance Lemma 2.6 in [12] and that of the latter by
c2−βn through (4.10). This finishes the proof of (4.17) as well as Proposition 4.1.

We now turn to Proposition 4.9. To construct the coupling in Proposition 4.9 for N + 1

from Proposition 4.7 for N , we tilt the law of (γN , γ̃) and (γ′N , γ̃
′) from Q∞ to Q̃ by “extra

loop terms” (we will explain what this means immediately below). To show that under
the new law Q̃ paths are also coupled in the sense of (4.10) with high probability, it
suffices to show that

1) the “Radon-Nikodym” derivative is uniformly bounded;

2) if paths have been coupled for many steps, then the “Radon-Nikodym” derivative
should not differ too much and the laws of the “tips” we need to add from step N
to N + 1 do not differ too much either.

In order to describe the tilting procedure we need to introduce some notations.
As in the proof above, let µ∞i be the law of an ILERW γi started from the origin,

i = 1, 2, and µN be the law of LERW γ2
N from 0 stopped at TN .

Let ΓN be the set of paths from the origin stopped at the first exit from BN . Let
υi ∈ ΓN and ζi = υi ⊕ ιi ∈ ΓN+1, i = 1, 2. As a shorthand, we use bold fonts to denote a
pair of paths, i.e., • = (·1, ·2) Thus the decomposition above is written as γN+1 = γN ⊕ ι.

Note that the law Ñ can be written as follows:

Ñ(γN+1 = ζ) = µ∞1 [γ1
N+1 = ζ1]µN+1[γ2

N+1 = ζ2]
GN+1(ζ)

N[GN+1(γN+1)]
,

and the law M
N

can be written as follows.

M
N

(γN = υ) = µ∞1 [γ1
N = υ1]µ∞2 [γ2

N = υ2]
GN (υ)

M[GN (γN )]
.

For g ∈ ΓN+1, let z be the terminal point of gN and decompose g as gN ⊕ ι and define a
new probability law of γN+1 by

µ∞′2 [γ2
N+1 = g] = µ∞2 [γ2

N = gN , pz
[
LE(W [0, TN+1]) = ι

∣∣W [0, TN+1] ∩ gN = {z}
]
,

where pz is the probability law of W , a simple random walk started from z. In other
words, the law of µ∞′ can be described as: take an ILERW, truncate it at first exit from
BN , then regard it as if it were part of γ2

N+1 under µN+1, and “attach the tail” through
the conditional law under µN+1. Hence, for all g ∈ ΓN

µ∞′2 [(γ2
N+1)N = g] = µ∞[γN = g].
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Therefore, if we define

M̂[γN+1 = υ] = µ∞1 [γ1
N+1 = υ1]µ∞′2 [γ2

N+1 = υ2]
GN (υN )

M[GN (γN )]
,

then (γN+1)N under M̂ has the same marginal of γN under M
N

.
We define γx,yN+1 ∼ M̂x,y similarly.
For υ ∈ ΓN+1×ΓN+1, we write the Radon-Nikodym derivative we need to investigate

by

Z(υ) =
Ñ(γN+1 = υ)

M̂(γN+1 = υ)
.

We define Zx,y(υx,y) similarly. As in Section 3 of [12], we have the following properties
of Z and Zx,y. We will only sketch its proof as it is very similar to Proposition 3.1 in [12].

Lemma 4.10. There exist β5 > 0, c5, C5 <∞ such that for all υ,υx,y ∈ ΓN+1 × ΓN+1

Z(υ), Zx,y(υx,y) ≤ C5. (4.18)

For υ with M̂(υ) > 0 and υx,y with M̂x,y(υx,y) > 0, if υ =n υx,y, then∣∣∣∣ Z(υ)

Zx,y(υx,y)
− 1

∣∣∣∣ ≤ c5e−β5n. (4.19)

Sketch of proof of Lemma 4.10. To check (4.18), it suffices to see that both

µN+1[γ2
N = υ2]

µ∞[γ2
N = υ2]

≤ C and
M[GN (γN )]

N[GN+1(γN+1)]
≤ C ′, (4.20)

as GN+1(ζ) ≤ GN (υ) by definition. The first claim of (4.20) follows Lemma 2.2. The
second claim is a corollary of the asymptotics of one-point functions for LERW.

To check (4.19), it suffices to express both Z and Zx,y in loop terms and see that if
υ =n υx,y, then the ratio Z(υ)/Zx,y(υx,y) can be bounded by the exponential of loop
terms of loops connecting BcN and BN−n, which gives the right-hand side of the inequality
in (4.19).

Finally, Proposition 4.9 follows easily from Proposition 4.7 and Lemma 4.10.

Proof of Proposition 4.9. We start with Q∞ from Proposition 4.7. First, sample (γ1
N , γ

2
N )

and (γ1,x
N , γ2,y

N ) according to Q∞. Attach to γ1
N an SRW conditioned to avoid γ1

N , erase
loops, and stop at exiting BN+1 and to γ2

N an SRW stopped at exiting BN+1 conditioned
to avoid γ2

N , both independent from (γ1
N , γ

2
N ) and of each other. We denote the pair of

attached paths by (ι1, ι2) and write

γN+1 = (γ1
N+1, γ

2
N+1) = (γ1

N ⊕ ι1, γ2
N ⊕ ι2).

Similarly, we attach to (γ1,x
N , γ2,y

N ) a pair of (ι1,x, ι2,y) and write

γx,yN+1 = (γ1,x
N+1, γ

2,y
N+1) = (γ1,x

N ⊕ ι1,x, γ2,y
N ⊕ ι2,y).

Then it is easy to see that γN+1 and γx,yN+1 has the law of M̂ and M̂x,y.
We now claim that it is still possible to couple γN+1 and γx,yN+1 (with little abuse of

notation we still call it Q∞) such that for some β > 0,

Q∞[γN+1 =3n/2+1 γx,yN+1] ≥ 1− c2−βn. (4.21)
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To prove this, it suffices to show that on the event
{

(γ1
N , γ

2
N ) =3n/2 (γ1,x

N , γ2,y
N )
}
,

the conditional law of (ι1, ι2) and (ι1,x, ι2,y) under M̂ and M̂x,y respectively has a total
variation distance uniformly bounded by c2−3n/2. Here “uniformly” means regardless of
actual configuration of (γ1

N , γ
2
N ) and (γ1,x

N , γ2,y
N ). This follows from Lemma 2.2.

We finish by constructing a new measure Q̃ through “tilting” γN+1 and γx,yN+1 in
Q∞ by Z and Zx,y respectively. Then, (4.21) combined with (4.18) for the “bad” case
ηN 6=3n/2 ηg

N and (4.19) for the good case ηN =3n/2 ηg
N guarantees that for some c4 <∞

and β4 > 0,
Q̃[ηN+1 =3n/2+1 ηg

N+1] ≥ 1− c42−β4n. (4.22)

This finishes the proof of (4.10) (note that N in the setup of (4.10) is N + 1 here).

Remark 4.11. The crucial observation here that leads to the proof above is that the
ratio between µ∞[γN ∈ ·] and µN+1[γN ∈ ·] are uniformly bounded from above and below.
This is not true for µ∞[γN ∈ ·] and µN [γN ∈ ·]. See also Remark 4.6.

At the end of this subsection, we state another coupling which is related to but not a
direct consequence of Proposition 4.1. Although we do not need it in this work, we still
state it here as it is a strengthened version of Proposition 4.2 which should have a place
in the family portrait of couplings that appear in this section. We will not provide its
proof here but remark that it follows from a modification of the tilting arguments in the
proof above. In this case, we will need to tilt both γ1

N and γ2
N and derive bounds similar

to (4.18) and (4.19).

In the notation of Proposition 4.2, we consider ηM under P
N,M

0,0 and for x, y ∈ Bk
consider ηM,x,y under the tilted law P

N,M

x,y . Then one has the following coupling.

Proposition 4.12. There exist β6 > 0 and c6 < ∞ such that for all k, n > 0, M ≥ N ≥
2n+ k, any x, y ∈ Bk, there is a coupling Q

N
of ηM under P

N,M

0,0 and ηM,x,y under P
N,M

x,y ,
such that

Q
M

[ηM =(n+M−N) η
M,x,y] ≥ 1− c62−β6n. (4.23)

5 One-point function estimates for LERW

The goal of this section is to establish the main result of this work, namely Theorem
1.1. We lay out the main structure of the proof in Section 5.1, and then give the proof of
two key propositions in Sections 5.2 and 5.3 respectively.

5.1 Outline of the proof

We start by a recap on the setup. Let D be the unit open ball in R3 and let D be its
closure. Fix x ∈ D \ {0}. We write xn for the nearest point in Z3 from 2nx (if there is a
tie, choose one arbitrarily). As introduced in Section 1, we are interested in

an,x := P
(
xn ∈ LE(S[0, Tn])

)
, (5.1)

where S is the SRW started from the origin and Tn = T2n(S). We first claim that in
order to establish (1.4), it suffices to estimate Green’s function and a non-intersection
probability under a setup which is slightly different from that of Section 3.

Write

• X = Xn for a simple random walk started at xn;

• X◦ = X◦n := LE(X[0, τ0]) for the loop-erasure of X[0, τ0] where τ0 stands for the
first time that it hits the origin;

• X = Xn for the random walk conditioned that τ0 < Tn;

• X
◦

= X
◦

:= LE(X[0, τ0]) for for the loop-erasure of X[0, τ0].
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As a convention, we will (and will only) omit the X in the notation when it comes to
hitting times for Xn. Let Y be an independent simple random walk started at xn and
write Y ◦ for Y [1, Tn(Y )].

Lemma 5.1. With the notation above,

an,x = GBn
(0, xn)P

(
LE(X[0, τ0]) ∩ Y ◦ = ∅

)
. (5.2)

Proof. Let Z be a random walk started at the origin conditioned that it hits xn before
hitting ∂B(2n), independent of Y . Write

u = max{k ≤ Tn | Z(k) = xn} (5.3)

for the last time that Z hits xn up to Tn(Z). Then, by Proposition 8.1.1 of [21], we have

an = GBn(0, xn)P
(

LE(Z[0, u]) ∩ Y ◦ = ∅
)
. (5.4)

Then (5.2) follows from the reversibility of LERW (see Lemma 2.3).

Remark 5.2. The one-point function an and the expected length M2n are intimately
related quantities. Loosely speaking, for a ‘typical’ point x, in (5.2), GBn(0, xn) � 2−n

while the non-intersection probability in the RHS is comparable to Es(2n). Thus, taking
sum for x ∈ Z3, we see that E(M2n) is comparable to 22nEs(2n) which gives an intuitive
explanation for (1.10).

It is known (see Proposition 1.5.9 of [10]) that there exists a universal constant a > 0

such that

GBn
(0, xn) =

a(1− |x|)
2n|x| +O

(
|x|−22−2n

)
=
a(1− |x|)

2n|x|
{

1 +O
(

2−n|x|−1(1− |x|)−1
)}
.

(5.5)

Thus, it suffices to estimate

P
(
X
◦ ∩ Y ◦ = ∅

)
= P

(
τ0 < Tn, X◦ ∩ Y ◦ = ∅

)/
P
(
τ0 < Tn

)
. (5.6)

By Proposition 1.5.10 of [10], it follows that there exists a universal constant b > 0 such
that

P
(
τ0 < Tn

)
=
b(1− |x|)

2n|x|
[
1 +O

(
2−n|x|−1(1− |x|)−1

)]
. (5.7)

(Compare this with (5.5).) Therefore, what we really need to estimate is the numerator
of the fraction in (5.6).

We want to compare LE
(
Xn[0, τXn

0 ]
)

and LE
(
Xn+1[0, τ

Xn+1

0 ]
)

via Theorem 5 of [4],

as in the proof of Proposition 3.4. We will accomplish this in two steps:

(A): show that the shape of X◦ ∩ B(1−q)n is not important for the probability of the
numerator of the fraction in (5.6) if q ∈ (0, 1) is chosen suitably;

(B): replace the starting points of (Xn, Yn) and (Xn+1, Yn+1) appropriately.

We will first deal with part (A). The next lemma show that we may consider Xq,◦ :

=LE(Xn[0, T (1−q)n]) instead of LE(Xn[0, τ0]) (i.e. X◦) for the non-intersection probability.
As its proof is long and technical, we postpone its proof to Section 5.2.

Lemma 5.3. There exists a universal constant δ > 0 such that for all n, q ∈ (0, 1) and
x ∈ D \ {0},

P
(
τ0 < Tn, X◦ ∩ Y ◦ = ∅

)
= P

(
τ0 < Tn, Xq,◦ ∩ Y ◦ = ∅

)(
1 +O(|x|−12−δqn)

)
. (5.8)
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We now discuss part (B). By the strong Markov property and Proposition 1.5.10 of
[10], we have

P
(
τ0 < Tn, Xq,◦ ∩ Y ◦ = ∅

)
=

∑
y∈∂B(1−q)n

P
(
T (1−q)n < Tn, X(T (1−q)n) = y,Xq,◦ ∩ Y ◦ = ∅

)
· P y

(
τ0(W ) < Tn(W )

)
= c2−(1−q)n(1 +O(2−qn)

)
P
(
T (1−q)n < Tn, Xq,◦ ∩ Y ◦ = ∅

)
, (5.9)

where P y is the law of the SRW W that starts from y and c > 0 in the last line is a
universal constant. Therefore, it suffices to estimate

P
(
T (1−q)n < Tn, Xq,◦ ∩ Y ◦ = ∅

)
(5.10)

i.e., we do not need to worry about X[T (1−q)n, τ0].
Let

fn,x = P
(
τ0 < Tn, Xq,◦ ∩ Y ◦ = ∅

)
and gn,x =

fn,x
fn−1,x

. (5.11)

Note that Xq,◦ and Y ◦ implicitly depend on n. We will show that there exist a universal
constant ρ > 0 and a constant cx > 0 depending only on x such that for all n

fn,x = cx2−(1+α)n
(
1 +Ox(2−ρn)

)
(5.12)

by proving that there exists universal constants r > 0 (in fact, r = 2−(1+α)) and ρ > 0

such that
gn,x = r

(
1 +Ox(2−ρn)

)
. (5.13)

This is in turn proved through the following proposition.

Proposition 5.4. Let dx = min{|x|, 1− |x|}. There exist universal constants c > 0, δ > 0

and q0 > 0 such that for all n and x ∈ D \ {0}, if we let q = q0,

gn,x = gn−1,x ·
{

1 +O
(
d−cx 2−δq0n

)}
. (5.14)

Now we are ready to prove the main theorem of this paper.

Proof of Theorem 1.1. Using Proposition 8.1.2 and Proposition 8.1.5 of [21] together
with Corollary 1.3, it follows that there exist universal constants a1, a2 > 0 and Nx ∈ N
depending only on x ∈ D \ {0} such that for all n ≥ Nx and x ∈ D \ {0} with |x| ∈ (0, 1

2 ],

a12−(1+α)n|x|−1−α ≤ fn,x ≤ a22−(1+α)n|x|−1−α, (5.15)

and that for all n ≥ Nx and x ∈ D \ {0} with |x| ∈ [ 1
2 , 1),

a12−(1+α)n(1− |x|)1−α ≤ fn,x ≤ a22−(1+α)n(1− |x|)1−α. (5.16)

This shows that there exist universal constants b1, b2 > 0 and Nx ∈ N depending only on
x ∈ D \ {0} such that for all n ≥ Nx and x ∈ D \ {0}.

b1 ≤ gn,x ≤ b2. (5.17)

It follows from (5.14) and (5.17) that {gn,x}n≥1 is a Cauchy sequence for each x ∈ D\{0}.
So let

rx := lim
n→∞

gn,x. (5.18)
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We know that b1 ≤ rx ≤ b2 for all x ∈ D \ {0}. Moreover, by (5.14), we have

gn,x = rx

{
1 +O

(
d−cx 2−δq0n

)}
. (5.19)

However, by (5.15) and (5.16), we see that for each x ∈ D \ {0}

0 < lim inf
n→∞

2(1+α)nfn,x ≤ lim sup
n→∞

2(1+α)nfn,x <∞. (5.20)

This ensures that rx = 2−(1+α) for all x ∈ D \ {0} and that

fn,x = c′x2−(1+α)n
{

1 +O
(
d−cx 2−δq0n

)}
, (5.21)

for some c′x > 0 depending only on x.
We recall (see (5.2), (5.6) and (5.8)) that

an,x = GBn
(0, xn) · fn,x

P xn
(
τ0 < Tn

)(1 +O(|x|−12−δqn)
)
.

It follows from (5.5) and (5.7) that

an,x =
a

b
· fn,x ·

(
1 +O

(
d−1
x 2−n

))(
1 +O(|x|−12−δqn)

)
.

Therefore, by (5.21), we have

an,x = c(x)2−(1+α)n
{

1 +O
(
d−cx 2−δq0n

)}
. (5.22)

Here c′x = a
b · c′x. It follows from (5.15) and (5.16) that c′x satisfies

a′1|x|−1−α ≤ c(x) ≤ a′2|x|−1−α
(

if 0 < |x| ≤ 1

2

)
(5.23)

a′1(1− |x|)1−α ≤ c(x) ≤ a′2(1− |x|)1−α
(

if
1

2
≤ |x| < 1

)
, (5.24)

where a′1, a
′
2 > 0 are universal constants. Thus, we finish the proof of the theorem.

5.2 Proof of Lemma 5.3

We define k0, k1 ∈ N as follows (note that dx > 0).

• k0 is a unique integer satisfying

2(1−q)n+k0 ≤ dx2n
/

3 < 2(1−q)n+k0+1.

• k1 is the smallest integer satisfying

dx2n−k1
/

3 < 1.

• For k ∈ {0, 1, · · · , k0}, we write

Dk = B(1−q)n+k.

• For k ∈ {0, 1, · · · , k1}, we write

D′k = B
(
xn, dx2n−k

/
3
)
.
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Note that

B(1−q)n = D0 ⊂ D1 ⊂ · · · ⊂ B
(
dx2n−1

/
3
)
⊂ Dk0 ⊂ B

(
dx2n

/
3
)
;

{xn} = D′k1 ⊂ D′k1−1 ⊂ · · · ⊂ D′0 = B
(
xn, dx2n

/
3
)

;

Dk0 ∩D′0 = ∅ and Dk0 ∪D′0 ⊂ B(2n).

Proof of Lemma 5.3. Suppose that τ0 < Tn. Then there are three cases for the shape of
X∼ := X[T (1−q)n, τ0] as follows.

Case 1: X∼ ⊂ Dk0 . In this case, we define

k2 := min{k ≥ 0 | X∼ ⊂ Dk} ∈ {1, 2, · · · , k0}.

In other words, this is the case where X∼ ⊂ Dk0 .

Case 2: X∼ 6⊂ Dk0 and X∼ ∩D′0 = ∅.
Case 3: X∼ ∩D′0 6= ∅. In this case, we define

k3 := max{k ≤ k1 | X∼ ∩D′k 6= ∅} ∈ {0, 1, · · · , k1}.

Remind that Xq,◦ = LE
(
X[0, T (1−q)n]

)
and X◦ = LE

(
X[0, τ0]

)
. Let

P
(
τ0 < Tn, X◦ ∩ Y ◦ = ∅

)
=

3∑
i=1

P (Hi), (5.25)

where Hi =
{
τ0 < Tn, X◦ ∩ Y ◦ = ∅, Case i

}
, i = 1, 2, 3.

We will first deal with P (H1). Note that

P (H1) =

k0∑
k=1

P (H1, k2 = k).

Suppose that H1 ∩ {k2 = k} occurs. Then we see that

Xq,◦[0, T (1−q)n+k] = X◦[0, T (1−q)n+k],

i.e., the loop-erased walk Xq,◦ up to the first time that it hits ∂B(1−q)n+k coincides with
that for X◦ since X∼ does not “destroy” the initial part of Xq,◦. Therefore,

P (H1, k2 = k) ≤ c
(
dx2n

)−α 1

|x|2
−qn2−k2−(1−q)n = c

(
dx2n

)−α 1

|x|2
−k2−n.

We remark that

P
(
τ0 < Tn, X◦ ∩ Y ◦ = ∅

)
� P

(
τ0 < Tn, Xq,◦ ∩ Y ◦ = ∅

)
�
(
dx2n

)−α 1

|x|2
−n.

Thus,

P (H1) =

k0∑
k=1

P (H1, k2 = k)

≤ P
(
τ0 < Tn, Xq,◦[0, T (1− q

2 )n] ∩ Y ◦ = ∅
)

+ P
(
τ0 < Tn, Xq,◦ ∩ Y ◦ = ∅

)
O
(
2−

qn
2

)
.

However, it follows that

P
(
τ0<T

n, Xq,◦[0, T (1− q
2 )n] ∩ Y ◦ = ∅

)
= P

(
τ0 < Tn, Xq,◦ ∩ Y ◦ = ∅

)(
1 +O

(
|x|−12−

qn
4

))
.
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Thus, we have

P (H1) ≤ P
(
τ0 < Tn, Xq,◦ ∩ Y ◦ = ∅

)(
1 +O

(
|x|−12−

qn
4

))
.

Similarly, we have

P (H2) + P (H3) ≤ P
(
τ0 < Tn, Xq,◦ ∩ Y ◦ = ∅

)
O
(
2−

qn
2

)
.

Thus, it follows that

P
(
τ0 < Tn, X◦ ∩ Y ◦ = ∅

)
≤ P

(
τ0 < Tn, Xq,◦ ∩ Y ◦ = ∅

)(
1 +O

(
|x|−12−

qn
4

))
.

On the other hand, it is not difficult to see the above inequality in the other direction as
well. This completes the proof.

5.3 Proof of Proposition 5.4

As the proof is very similar to that in Section 3, we will state results in a parallel
way. As for the proof we will be brief and less pedagogical in the presentation of the
argument. Notations are introduced right before the proposition where it first appears.
The proof of Proposition 5.4 is at the end of this subsection.

Recall that q ∈ (0, 1).

• Let B1
i,q := B

(
xn, 2

{1−(2i−1)q}n
)

for i = 1, 2, · · · ; B2
i,q := B

(
xn−1, 2

{1−(2i−1)q}n
)

for

i = 1, 2, · · · .
• Let R1

1, R
1
2 and R2

1, R
2
2 be two pairs of independent SRW’s started from xn and

xn−1, respectively. We sometimes write R1
2 and R2

2 for R1
2[1, Tn] and R2

2[1, Tn−1],
respectively.

• Let T l
Ri

1
:= inf{k ≥ 0 | Ri1(k) ∈ ∂Bl)} for l ≥ 1 and i = 1, 2 and let

† t1 = Tn
R1

1
∧ T (1−q)n

R1
1

; t2 = Tn−1
R2

1
∧ T (1−q)n

R2
1

.

• Write LE(Ri1) = LE(Ri1[0, ti]) for i = 1, 2.

• Let F i := {ti = T
(1−q)n
Ri

1
} for i = 1, 2 and write Zi for Ri1 conditioned on F i for

i = 1, 2.

• Write LE(Zi) = LE(Zi[0, T (1−q)n]) for i = 1, 2.

• For a path λ, let U ij := inf{k ≥ 0 | λ(k) ∈ ∂Bij,q} for i = 1, 2 and j = 1, 2, · · · .
• Let Hi :=

{
LE(Zi)[0, U i1] ∩Ri2[1, U i1] = ∅

}
for i = 1, 2.

The following proposition is similar to Lemma 3.1.

Proposition 5.5. One has

gn,x =
P (F 1)P

(
LE(Z1) ∩R1

2 = ∅
∣∣∣ H1

)
P (F 2)P

(
LE(Z2) ∩R2

2 = ∅
∣∣∣ H2

) · {1 +O
(
d−1
x 2−qn

)}
. (5.26)

Proof. Note that by Lemma 5.3 and (5.9), we have

fn,x = c2−(1−q)nP
(
F 1,LE(R1

1) ∩R1
2 = ∅

)(
1 +O

(
d−1
x 2−δqn

))
, (5.27)

where c > 0, δ > 0 are universal constants. Also we recall that fn,x is defined as in (5.11).
Using the same constants c, δ as above, similarly we have

fn−1,x = c2−(1−q)nP
(
F 2,LE(R2

1) ∩R2
2 = ∅

)(
1 +O

(
d−1
x 2−δqn

))
.
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Therefore, we have

gn,x :=
fn,x
fn−1,x

=
P
(
F 1, LE(R1

1) ∩R1
2 = ∅

)
P
(
F 2, LE(R2

1) ∩R2
2 = ∅

) · {1 +O
(
d−1
x 2−δqn

)}
. (5.28)

By Proposition 4.2 and 4.4 of [16], it follows that

P (H1) = P (H2) ·
{

1 +O
(
d−1
x 2−qn

)}
. (5.29)

This gives

P
(
F 1, LE(R1

1) ∩R1
2 = ∅

)
P
(
F 2, LE(R2

1) ∩R2
2 = ∅

) =
P (F 1)P

(
LE(Z1) ∩R1

2 = ∅
)

P (F 2)P
(

LE(Z2) ∩R2
2 = ∅

)
=
P (F 1)P

(
LE(Z1) ∩R1

2 = ∅
∣∣∣ H1

)
P
(
H1
)

P (F 2)P
(

LE(Z2) ∩R2
2 = ∅

∣∣∣H2
)
P
(
H2
) (5.30)

=
P (F 1)P

(
LE(Z1) ∩R1

2 = ∅
∣∣∣ H1

)
P (F 2)P

(
LE(Z2) ∩R2

2 = ∅
∣∣∣ H2

) · {1 +O
(
d−1
x 2−qn

)}
,

which finishes the proof of (5.26).

We now decompose the conditional probabilities in (5.26), just as in Section 3.3.
Before stating the parallel result, let us first introduce a few path spaces and probability
measures associated with them.

• Let Π1 = {(γ, λ) | (γ, λ) satisfies (i), (ii) and (iii)} be a set of pairs of paths (γ, λ)

satisfying

(i) γ(0), λ(0) ∈ ∂B1
2,q and γ

(
len(γ)

)
, λ
(
len(λ)

)
∈ ∂B1

1,q;

(ii) γ
[
0, len(γ)− 1

]
⊂ B1

1,q and λ
[
0, len(λ)− 1

]
⊂ B1

1,q;

(iii) γ ∩ λ = ∅.

• Let Π2 = {(γ, λ) | (γ, λ) satisfies (i’), (ii’) and (iii’)} be a set of pairs of paths (γ, λ)

satisfying

(i’) γ(0), λ(0) ∈ ∂B2
2,q and γ

(
len(γ)

)
, λ
(
len(λ)

)
∈ ∂B2

1,q;

(ii’) γ
[
0, len(γ)− 1

]
⊂ B2

1,q and λ
[
0, len(λ)− 1

]
⊂ B2

1,q;

(iii’) γ ∩ λ = ∅.

• Take (γ, λ) ∈ Π1. Define g1(γ, λ) by

g1(γ, λ) = P
((

LE(Z ′1) ∪ γ
)
∩
(
R′1 ∪ λ

)
= ∅
)
, where

– Z1 is a random walk started at γ
(
len(γ)

)
conditioned not to exit from Bn before

hitting ∂B(1−q)n;

– Z ′1 is Z1 conditioned that Z1[1, T (1−q)n] ∩ γ = ∅;
– R′1 is an SRW started at λ

(
len(λ)

)
which is independent of Z ′1.
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• Take (γ, λ) ∈ Π2. Define g2(γ, λ) by

g2(γ, λ) = P
((

LE(Z ′2) ∪ γ
)
∩
(
R′2 ∪ λ

)
= ∅
)
, where

– Z2 is a random walk started at γ
(
len(γ)

)
conditioned not to exit from Bn−1

before hitting ∂B(1−q)n;

– Z ′2 is Z2 conditioned that Z2[1, T (1−q)n] ∩ γ = ∅;
– R′2 is an SRW started at λ

(
len(λ)

)
which is independent of Z ′2.

• Let J1
1 , J

1
2 be two independent SRW’s started at xn. For (γ, λ) ∈ Π1, let

µ1
0(γ, λ) = P

{(
LE(J1

1 )
[
U1

2 , U
1
1

]
, J1

2

[
U1

2 , U
1
1

])
= (γ, λ)

∣∣∣ H1
0

}
, where

– u = inf{k ≥ 0 | J1
1 (k) ∈ ∂B

(
xn, dx2n

)
};

– LE(J1
1 ) = LE(J1

1 [0, u]);

– H1
0 = {LE(J1

1 )
[
0, U1

1

]
∩ J1

2

[
1, U1

1

]
= ∅}.

• Let J2
1 , J

2
2 be two independent SRW’s started at xn−1. For (γ, λ) ∈ Π2, let

µ2
0(γ, λ) = P

{(
LE(J2

1 )
[
U2

2 , U
2
1

]
, J2

2

[
U2

2 , U
2
1

])
= (γ, λ)

∣∣∣ H2
0

}
, where

– t = inf{k ≥ 0 | J2
1 (k) ∈ ∂B

(
xn−1, dx2n−1

)
};

– LE(J2
1 ) = LE(J2

1 [0, t]);

– H2
0 = {LE(J2

1 )
[
0, U2

1

]
∩ J2

2

[
1, U2

1

]
= ∅}.

• Let L1
1, L

1
2 be two independent SRW’s started at x1

q and y1
q . For (γ, λ) ∈ Π1, let

ν1
0(γ, λ) = P

{(
LE(L1

1)
[
U1

2 , U
1
1

]
, L1

2

[
U1

2 , U
1
1

])
= (γ, λ)

∣∣∣ I1
0

}
, where

– u′ = inf{k ≥ 0 | L1
1(k) ∈ ∂B

(
xn, dx2n

)
};

– LE(L1
1) = LE(L1

1[0, u′]);

– I1
0 = {LE(L1

1)
[
0, U1

1

]
∩ L1

2

[
1, U1

1

]
= ∅}.

• Let L2
1, L

2
2 be two independent SRW’s started at x2

q and y2
q . For (γ, λ) ∈ Π2, let

ν2
0(γ, λ) = P

{(
LE(L2

1)
[
U2

2 , U
2
1

]
, L2

2

[
U2

2 , U
2
1

])
= (γ, λ)

∣∣∣ I2
0

}
, where

– u′′ = inf{k ≥ 0 | L2
1(k) ∈ ∂B

(
xn−1, dx2n−1

)
};

– LE(L2
1) = LE(L2

1[0, u′′]);

– I2
0 = {LE(L2

1)
[
0, U2

1

]
∩ L2

2

[
1, U2

1

]
= ∅}.

We are now ready to state and prove the decomposition result which is parallel to
(3.60).

Proposition 5.6. For some universal constants c, δ > 0, one has

P
(

LE(Z1) ∩R1
2 = ∅

∣∣∣ H1
)

=
(

1 +O
(
d−cx 2−δqn

)) ∑
(γ,λ)∈Π1

g1(γ, λ)ν1
0(γ, λ); (5.31)

P
(

LE(Z2) ∩R2
2 = ∅

∣∣∣ H2
)

=
(

1 +O
(
d−cx 2−δqn

)) ∑
(γ,λ)∈Π2

g2(γ, λ)ν2
0(γ, λ). (5.32)
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Proof. By the same argument as in the proof of Corollary 3.11, and using Proposition 4.2
and 4.4 of [16] again, it follows that there exists a universal constant c <∞ such that
for all n and q ∈ (0, 1)

P
(

LE(Z1) ∩R1
2 = ∅

∣∣∣ H1
)

=
(

1 +O
(
d−cx 2−

qn
2

)) ∑
(γ,λ)∈Π1

g1(γ, λ)µ1
0(γ, λ); (5.33)

P
(

LE(Z2) ∩R2
2 = ∅

∣∣∣ H2
)

=
(

1 +O
(
d−cx 2−

qn
2

)) ∑
(γ,λ)∈Π2

g2(γ, λ)µ2
0(γ, λ). (5.34)

Again, by Proposition 4.2, it follows that there exists universal constants δ > 0 and C
such that

‖ µ1
0 − ν1

0 ‖TV≤ C2−δqn, and ‖ µ2
0 − ν2

0 ‖TV≤ C2−δqn. (5.35)

(See also (3.69)). The separation lemma (see (6.13) of [21] for exact form of the sep-
aration lemma we need) ensures that (γ, λ) is well-separated with positive probability
with respect to µ1

0. For such a pair (γ, λ), it follows that g1(γ, λ) ≥ cd−αx 2−αqn for some
universal constant c > 0 (see Lemma 3.15 for the use of the separation lemma). On the
other hand, using the same argument as in the proof of Lemma 3.13, we see that for
all (γ, λ) ∈ Π1, g1(γ, λ) ≤ Cd−αx 2−αqn for some universal constant C <∞. Therefore, we
have ∑

(γ,λ)∈Π1

g1(γ, λ)µ1
0(γ, λ) ≥ cd−αx 2−αqn, and g1(γ, λ) ≤ Cd−αx 2−αqn for all (γ, λ) ∈ Π1.

(5.36)
Similarly, we see that∑

(γ,λ)∈Π2

g2(γ, λ)µ2
0(γ, λ) ≥ cd−αx 2−αqn, and g2(γ, λ) ≤ Cd−αx 2−αqn for all (γ, λ) ∈ Π2.

(5.37)
Combining (5.35) with (5.36), we have∣∣∣ ∑

(γ,λ)∈Π1

g1(γ, λ)µ1
0(γ, λ)−

∑
(γ,λ)∈Π1

g1(γ, λ)ν1
0(γ, λ)

∣∣∣
≤

∑
(γ,λ)∈Π1

g1(γ, λ)
∣∣µ1

0(γ, λ)− ν1
0(γ, λ)

∣∣ ≤ Cd−αx 2−αqn
∑

(γ,λ)∈Π1

∣∣µ1
0(γ, λ)− ν1

0(γ, λ)
∣∣

≤ Cd−αx 2−αqn2−δqn ≤ C2−δqn
∑

(γ,λ)∈Π1

g1(γ, λ)µ1
0(γ, λ),

i.e., ∑
(γ,λ)∈Π1

g1(γ, λ)ν1
0(γ, λ) =

∑
(γ,λ)∈Π1

g1(γ, λ)µ1
0(γ, λ)

(
1 +O

(
2−δqn

))
. (5.38)

Similarly, we have∑
(γ,λ)∈Π2

g2(γ, λ)ν2
0(γ, λ) =

∑
(γ,λ)∈Π2

g2(γ, λ)µ2
0(γ, λ)

(
1 +O

(
2−δqn

))
. (5.39)

Therefore, (5.31) and (5.32) follow.

We now replace the starting points of the walks. Again, we start with notations.

• Let

† x1
q := xn −

(
2(1−5q)n, 0, 0

)
and y1

q := xn +
(
2(1−5q)n, 0, 0

)
;
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† x2
q := xn−1 −

(
2(1−5q)n, 0, 0

)
and y2

q := xn−1 +
(
2(1−5q)n, 0, 0

)
;

† x3
q := xn−1 −

(
2(1−5q)n−1, 0, 0

)
and y3

q := xn−1 +
(
2(1−5q)n−1, 0, 0

)
;

† x4
q := xn−2 −

(
2(1−5q)n−1, 0, 0

)
and y4

q := xn−2 +
(
2(1−5q)n−1, 0, 0

)
,

and define pairs of independent SRW’s started from these points:

† let S1
i , S

i
2 start from xiq and yiq, i = 1, 2, 3, 4.

We sometimes write S1
2 , S2

2 , S3
2 and S4

2 for S1
2 [0, Tn], S2

2 [0, Tn−1], S3
2 [0, Tn−1], and

S4
2 [0, Tn−2], respectively.

• Write T l
Si
1

:= inf{k ≥ 0 | Si1(k) ∈ ∂Bl)} for l ≥ 1 and i = 1, 2, 3, 4, and let

† u1 = Tn
S1
1
∧ T (1−q)n

S1
1

; u2 = Tn−1
S2
1
∧ T (1−q)n

S2
1

;

† u3 = Tn−1
S3
1
∧ T (1−q)n−1

S3
1

; u4 = Tn−2
S4
1
∧ T (1−q)n−1

S4
1

.

We write LE(Si1) = LE(Si1[0, ui]) for i = 1, 2, 3, 4.

• Let

F 3 =
{

SRW started at xn−1 hits ∂B(1−q)n−1 before hitting ∂Bn−1

}
,

F 4 =
{

SRW started at xn−2 hits ∂B(1−q)n−1 before hitting ∂Bn−2

}
.

• Let Gi := {ui = T
(1−q)n
Si
1

} for i = 1, 2 and Gi := {ui = T
(1−q)n−1

Si
1

} for i = 3, 4.

• Let W i be Si1 conditioned on Gi for i = 1, 2.

• Write LE(W i) = LE(W i[0, T (1−q)n]) for i = 1, 2.

• Remind that for a path λ, we write U ij := inf{k ≥ 0 | λ(k) ∈ ∂Bij,q} for i = 1, 2 and
j = 1, 2, · · · .

• Let V i :=
{

LE(W i)[0, U i1] ∩ Si2[1, U i1] = ∅
}

for i = 1, 2.

We are now ready to state the decomposition result similar to Proposition 5.6 for the
walks introduced above. Again we omit the proof for brevity. Compare this with the
(3.62) (versus (3.60)).

Proposition 5.7. For some universal constants c, δ > 0, one has

P
(

LE(W 1) ∩ S1
2 = ∅

∣∣∣ V 1
)

=
(

1 +O
(
d−cx 2−

qn
2

)) ∑
(γ,λ)∈Π1

g1(γ, λ)ν1
0(γ, λ), (5.40)

P
(

LE(W 2) ∩ S2
2 = ∅

∣∣∣ V 2
)

=
(

1 +O
(
d−cx 2−

qn
2

)) ∑
(γ,λ)∈Π2

g2(γ, λ)ν2
0(γ, λ). (5.41)

Now we can change the starting points. The following proposition is parallel to (3.13)
and (3.14).

Proposition 5.8. We have

gn,x =
P (F 1)P

(
LE(S1

1) ∩ S1
2 = ∅, G1

)
P (G1)−1

P (F 2)P
(

LE(S2
1) ∩ S2

2 = ∅, G2
)
P (G2)−1

·
[
1 +O

(
d−cx 2−δqn

)]
, (5.42)

and

gn−1,x =
P (F 3)P

(
LE(S3

1) ∩ S3
2 = ∅, G3

)
P (G3)−1

P (F 4)P
(

LE(S4
1) ∩ S4

2 = ∅, G4
)
P (G4)−1

·
[
1 +O

(
d−cx 2−δqn

)]
. (5.43)
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Proof. By (5.31), (5.32), (5.40) and (5.41), we have

P
(

LE(Z1) ∩R1
2 = ∅

∣∣∣ H1
)

P
(

LE(Z2) ∩R2
2 = ∅

∣∣∣H2
) =

P
(

LE(W 1) ∩ S1
2 = ∅

∣∣∣ V 1
)

P
(

LE(W 2) ∩ S2
2 = ∅

∣∣∣ V 2
) · {1 +O

(
d−cx 2−δqn

)}

=
P
(

LE(W 1) ∩ S1
2 = ∅

)
P (V 1)

P
(

LE(W 2) ∩ S2
2 = ∅

)
P (V 2)

·
{

1 +O
(
d−cx 2−δqn

)}

=
P
(

LE(W 1) ∩ S1
2 = ∅

)
P
(

LE(W 2) ∩ S2
2 = ∅

) · {1 +O
(
d−cx 2−δqn

)}
,

where in the last equality we used the following fact

P (V 1) =
(

1 +O
(
d−1
x 2−qn

))
P (V 2) (5.44)

which again follows from Propositions 4.2 and 4.4 of [16]. Combining this with (5.28), it
follows that

gn,x =
fn,x
fn−1,x

=
P
(
F 1, LE(R1

1) ∩R1
2 = ∅

)
P
(
F 2, LE(R2

1) ∩R2
2 = ∅

) · {1 +O
(
d−cx 2−δqn

)}

=
P (F 1)P

(
LE(Z1) ∩R1

2 = ∅
∣∣∣ H1

)
P (F 2)P

(
LE(Z2) ∩R2

2 = ∅
∣∣∣ H2

) · {1 +O
(
d−cx 2−δqn

)}

=
P (F 1)P

(
LE(W 1) ∩ S1

2 = ∅
)

P (F 2)P
(

LE(W 2) ∩ S2
2 = ∅

) · {1 +O
(
d−cx 2−δqn

)}

=
P (F 1)P

(
LE(S1

1) ∩ S1
2 = ∅, G1

)
P (G1)−1

P (F 2)P
(

LE(S2
1) ∩ S2

2 = ∅, G2
)
P (G2)−1

·
{

1 +O
(
d−cx 2−δqn

)}
. (5.45)

This gives (5.42). The claim (5.43) follows similarly.

Note that, an easy consequence of Proposition 1.5.10 of [10] is

P (F 1) = P (F 3) ·
{

1 +O
(
d−cx 2−δqn

)}
; P (F 2) = P (F 4) ·

{
1 +O

(
d−cx 2−δqn

)}
; (5.46)

P (G1) = P (G3) ·
{

1 +O
(
d−cx 2−δqn

)}
; P (G2) = P (G4) ·

{
1 +O

(
d−cx 2−δqn

)}
. (5.47)

Therefore, with (5.42) and (5.43) in mind, it suffices to compare

P
(

LE(S1
1) ∩ S1

2 = ∅, G1
)

P
(

LE(S2
1) ∩ S2

2 = ∅, G2
) with

P
(

LE(S3
1) ∩ S3

2 = ∅, G3
)

P
(

LE(S4
1) ∩ S4

2 = ∅, G4
) . (5.48)

The following proposition is similar to Proposition 3.4.

Proposition 5.9. There exist universal constants c1 > 0, c2 > 0 and q2 > 0 such that for
all n ≥ 1 and q ∈ (0, q2)

P
(

LE(S1
1) ∩ S1

2 = ∅, G1
)

= P
(

LE(S3
1) ∩ S3

2 = ∅, G3
)(

1 +O
(
d−c1x 2−c2qn)

)
. (5.49)

Similarly, for all n ≥ 1 and q ∈ (0, q2)

P
(

LE(S2
1) ∩ S2

2 = ∅, G2
)

= P
(

LE(S4
1) ∩ S4

2 = ∅, G4
)(

1 +O
(
d−c1x 2−c2qn)

)
. (5.50)
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Proof. We will show that the numerator of the first fraction of (5.48) is well approximated
by that of the second fraction by using the same idea as in the proof of Proposition 3.4.
We first couple S3

2 with the Brownian motion B3(t) started at y3
q so that the Hausdorff

distance between S3
2 [0, Tn−1] and B3[0, Tn−1] is less than 22n/3 with probability at least

1− c′ exp{−2cn} for some universal constants c, c′ > 0 (this is possible by Lemma 3.1 of
[7]). We write B3 = B3[0, Tn−1] for the trace of the Brownian motion.

Let ε, δ and δ2 be the same constants as in the proof of Theorem 5 of [4] for the case
of G1 = Z3 and G2 = 2Z3 in the statement of that theorem. (For some technical reason,
we assume ε < c4 where c4 is a universal constant coming from Lemma 3.3 of [4].) Note
that these three constants are universal. Taking these three universal constants, let
ρ = 1

10 ·min{ε, δ, δ2} and write

B3,1 =
{
x ∈ R3

∣∣∣ there exists y ∈ 2B3 such that |x− y| ≤ 2
3n
4 + 20 · 2(1−ρ)n

}
B3,2 =

{
x ∈ R3

∣∣∣ there exists y ∈ 2B3 such that |x− y| ≤ 2
3n
4

}
for sets of points within a distance 2

3n
4 +20 ·2(1−ρ)n and 2

3n
4 of 2B3 (i.e., Wiener sausages).

Let
A =

{
B3 ∩B

(
x3
q, 2

(1−15q)n
)

= ∅
}
.

Write S̃1
1 for the simple random walk on 2Z3 started at x1

q. We also write S̃1
1 = S̃1

1 [0, ũ1]

where ũ1 = Tn
S̃1
1

∧ T (1−q)n
S̃1
1

. Set G̃1 = {ũ1 = T
(1−q)n
S̃1
1

}.
As in the proof of Proposition 3.4, having conditioned B3 on on A, we will compare

PS1
1

(
LE(S1

1) ∩B3,1 = ∅, G1
)

with PS̃1
1

(
LE(S̃1

1) ∩B3,2 = ∅, G̃1
)

for sufficiently small q > 0 via Theorem 5 of [4]. For this purpose, take q1 := ρ/100. We
assume q ∈ (0, q1). We now apply Theorem 5 of [4] with the parameters in the following
table:

Theorem 5 of [4] G1 G2 D s sa sE
Here Z3 2Z3 D \Dq,n 2n x1

q 2nD \
(
B3,1 ∪D

)
where Dq,n = 2−qnD and

D =
{
x ∈ R3

∣∣∣ dist
(
x, ∂

(
2nD

))
≤ 2

3n
4 + 20 · 2(1−ρ)n

}
.

Then it follows that there exist universal constants C0 < ∞, c0 > 0 such that if B3

satisfies A, we have

PS1
1

(
LE(S1

1) ∩
(
B3,1 ∪D

)
= ∅
)
≤ PS̃1

1

(
LE(S̃1

1) ∩
(
B3,2 ∪D′

)
= ∅
)

+ C02−c0n, (5.51)

where
D′ =

{
x ∈ R3

∣∣∣ dist
(
x, ∂

(
2nD

))
≤ 2

3n
4

}
.

We note that we can take C0 and c0 as universal constants because if q ≤ q1

• The LHS of (132) of [4] is bounded above by C2−4εn/5 for some universal constant
C. We have the same upper bound for |p7 − p8| in line -8 page 133 of [4].

• For the constants K and k in (137) of [4], we can take K as a universal constant
and can take k = −1, because the LHS of (137) of [4] can be approximated by
the probability that the coupled Brownian motion as in Section 3.4 of [4] avoids
the boundary of D \ Dq,n even though its starting point is close to the boundary.
Namely, since q < q1 and ε < c4 (see Lemma 3.3 of [4] for c4), the LHS of (137) is
bounded above by C2−εn/2 for some universal constant C.
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• By the same reason as above, we can take C and c of (138) of [4] as universal
constants.

• The other constants appeared in the comparison between pi and pi+1 in the proof
of Theorem 5 of [4] can be taken as universal constants.

Given (5.51), we want to compare

PS1
1

(
LE(S1

1) ∩B3,1 = ∅, G1
)

with the LHS of (5.51). Note that

PS1
1

(
LE(S1

1) ∩B3,1 = ∅, G1
)

= PS1
1

(
LE(S1

1) ∩
(
B3,1 ∪ ∂Bn

)
= ∅
)
,

which is clearly bigger than the LHS of (5.51). The difference of the two probabilities is
bounded above by

PS1
1

(
S1

1 ∩ ∂Bn = ∅, S1
1 ∩D 6= ∅

)
≤ C2−ρn.

Similarly, we have∣∣∣PS̃1
1

(
LE(S̃1

1) ∩
(
B3,2 ∪D′

)
= ∅
)
− PS̃1

1

(
LE(S̃1

1) ∩B3,2 = ∅, G̃1
)∣∣∣ ≤ C2−

n
4 .

Consequently, we see that there exist universal constants C1 and c1 such that if we
condition B3 on A and if q ≤ q1,

PS1
1

(
LE(S1

1) ∩B3,1 = ∅, G1
)
≤ PS̃1

1

(
LE(S̃1

1) ∩B3,2 = ∅, G̃1
)

+ C12−c1n. (5.52)

Given (5.52), the remaining part can be dealt with the same argument as in the proof
of Proposition 3.4. We can replace the Wiener sausages B3,1 and B3,2 with S1

2 and S3
2 .

Namely, for q ≤ q1

P
(

LE(S1
1) ∩ S1

2 = ∅, G1
)
≤ P

(
LE(S3

1) ∩ S3
2 = ∅, G3

)
+ C12−c1n + C2−10qn. (5.53)

Thus, if we let q2 = q1 ∧ c1
10 then we have for q ≤ q2

P
(

LE(S1
1) ∩ S1

2 = ∅, G1
)
≤ P

(
LE(S3

1) ∩ S3
2 = ∅, G3

)
+ C2−10qn.

Similarly we have

P
(

LE(S3
1) ∩ S3

2 = ∅, G3
)
≤ P

(
LE(S1

1) ∩ S1
2 = ∅, G1

)
+ C2−10qn.

However, we know that

P
(

LE(S1
1) ∩ S1

2 = ∅, G1
)
≥ cd1−α

x 2−q(1+5α)n.

Since α ∈ [ 1
3 , 1), we conclude with (5.49) as desired. We also obtain (5.50) through an

easy modification.

We are now ready to prove the main result of this subsection.

Proof of Proposition 5.4. Combining (5.42), (5.43), (5.46), (5.47), (5.49) and (5.50), it
follows that there exist universal constants c > 0, δ > 0 and q0 > 0 (in fact, we can take
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q0 = q2/2 of Proposition 5.9) such that for all n and x ∈ D \ {0}, if we let q = q0,

gn,x =
P (F 1)P

(
LE(S1

1) ∩ S1
2 = ∅, G1

)
P (G1)−1

P (F 2)P
(

LE(S2
1) ∩ S2

2 = ∅, G2
)
P (G2)−1

·
{

1 +O
(
d−cx 2−δq0n

)}

=
P (F 3)P

(
LE(S3

1) ∩ S3
2 = ∅, G3

)
P (G3)−1

P (F 4)P
(

LE(S4
1) ∩ S4

2 = ∅, G4
)
P (G4)−1

·
{

1 +O
(
d−cx 2−δq0n

)}
= gn−1,x ·

{
1 +O

(
d−cx 2−δq0n

)}
. (5.54)

This finishes the proof.
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