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Abstract

We study a real-valued Lévy-type process X, which is locally α-stable in the sense
that its jump kernel is a combination of a ‘principal’ (state dependent) α-stable part
with a ‘residual’ lower order part. We show that under mild conditions on the local
characteristics of a process (the jump kernel and the velocity field) the process is
uniquely defined, is Markov, and has the strong Feller property. We approximate X
in law by a non-linear regression X̃x

t = ft(x) + t1/αUxt with a deterministic regressor
term ft(x) and α-stable innovation term Uxt , and provide error estimates for such an
approximation. A case study is performed, revealing different types of assumptions
which lead to various choices of regressor/innovation terms and various types of the
estimates. The assumptions are quite general, cover the super-critical case α < 1, and
allow non-symmetry of the Lévy kernel and unboundedness of the drift coefficient.
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1 Introduction

Lévy processes are used nowadays in a wide variety of models in physics, biology,
finance etc., where the random noise — by different reasons — can not be assumed
Gaussian, and thus the entire model does not fit to the diffusion framework. For
instance, the famous Ditlevsen model of the millennial climate changes [3] is based on
the observation that the available ice-core data necessarily requires non-Gaussian noise
to be included into the model. In the basic Ditlevsen model the non-Gaussian noise is
α-stable; nowadays it is understood that it would be physically more realistic to have
the parameters of the noise state-dependent; e.g. the skewness parameter should be
positive in the cold glacial periods and negative in the warmer interstadials. The similar
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Approximation of locally α-stable Lévy-type processes by non-linear regressions

problem appears in many other models with state-dependent parameters, which gives a
natural background for the notion of a Lévy-type process. The latter is understood as a
(kind of) a Lévy process whose characteristic triplet is allowed to depend on the current
value of the process; we refer to [2] for a detailed introduction, see also Section 2 below.
The definition of a Lévy-type process has the same spirit with the classical Kolmogorov’s
definition of a diffusion process as a location-dependent Brownian motion with a drift.
However, to the contrast with the classical theory of diffusions, in the general theory of
such Lévy-type process some principal questions remain unsolved in general, e.g.

(I) for a given set of local characteristics, is the corresponding Lévy-type process
uniquely defined?

(II) what kind of local properties of the law of the process can be derived, and under
which assumptions on characteristics?

Not being able to discuss in details a considerable list of references devoted to these
questions, we refer to [10], [20], [13] for such a discussion, and only note that the
available methods contain a list of limitations, which exclude from the consideration
many natural and physically relevant Lévy-type models.

In this paper we provide a detailed study of one class of Lévy-type processes, which
is highly relevant for applications and, on the other hand, reveals numerous hidden
challenges which one encounters while trying to resolve the above questions (I), (II) in
general Lévy-type setting. The class to be studied can be shortly described as a mixture
of a real-valued α-stable-type process with state dependent drift, intensity, and skewness
parameters on one hand, and a certain (state dependent) lower order ‘nuisance’ part
on the other hand; see a detailed definition in Section 2. The α-stable noise, because
of its scaling property, has an exceptional importance in physical applications, and at
the same time there are strong reasons to require the parameters of the noise to be
state-dependent, likewise to the Ditlevsen model discussed above. Presence of the
‘residual’ lower order part is quite reasonable, as well. Namely, this part allows one to
introduce a wide spectrum of tempering/damping effects for the tails of the noise, which
combines both the α-stable and Gaussian regimes (see [21]) and thus appear frequently
in physical models (see [22] and references therein). On the other hand, a lower order
microstructural noise terms without a specified inner structure appear quite naturally in
finance models; see [1] for a detailed discussion.

For such a locally α-stable Lévy-type model we prove the corresponding process to be
uniquely defined and to be a Markov process with strong Feller property, thus resolving
the general question (I). To approach the question (II), we specify a family of α-stable
probability densities gt,x, t > 0, x ∈ R and a function ft(x), t ≥ 0, x ∈ R such that the
transition density pt(x, y) of X has representation

pt(x, y) =
1

t1/α
gt,x

(
y − ft(x)

t1/α

)
+Rt(x, y), (1.1)

where the residual kernel Rt(x, y) is negligible (in a certain sense) as t→ 0. This repre-
sentation essentially means that, conditioned byX0 = x, processX admits approximation
in law by the non-linear regression

X̃x
t = ft(x) + t1/αUxt , t > 0, (1.2)

where U t,x is a random variable with the α-stable distribution density gt,x. We call ft(x) a
(deterministic) regressor term for X, and U t,x an α-stable innovation term. It is natural
to call (1.2) a conditionally α-stable approximation to X, in the same spirit with the
standard conditionally Gaussian approximation for a diffusion. However, we will see
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that the regressor term ft(x) in general should have a more sophisticated form than just
x+ b(x)t, typical for the diffusion case.

Our study is based on the parametrix method, which in the diffusion case is a classical
analytical tool to construct and investigate transition densities. To apply this method
in the (non-Gaussian) Lévy-type setting, we modify it substantially; here we outline
the most crucial change. The classical parametrix method relies on the fact that a
(properly chosen) ‘zero order approximation’ to the unknown pt(x, y) and corresponding
‘differential error term’ (see Section 4.1 below for these definitions) follow certain
prior bounds, which then propagate to the transition density pt(x, y). For diffusions
these kernels are Gaussian; for certain α-stable-type models similar kernel estimates
with α-stable kernels are available as well; see [12] and [14] for the cases α > 1 and
α ≤ 1, b ≡ 0 respectively, and [19], where in the technically more involved super-critical
regime with α < 1 and non-trivial b the kernel estimates are obtained as a combination
of stable kernels with deterministic flows. However, all these models are ‘regular’ in the
sense that the Lévy kernel of the noise is assumed to have a density w.r.t. the Lebesgue
measure. Presence of singular terms may change situation drastically; see Example 3.7
below, where pt(x, ·) is unbounded and thus kernel estimates simply fail. The same effect
have been discussed in the recent preprint [18] for solutions of multidimensional SDEs
with cylindrical α-stable noise and non-trivial rotation, see [18, Remark 4.23].

To study such highly singular settings, we adopt the following two-stage scheme.
First, we establish integral-in-y estimates (actually, operator norm estimates in C∞)
and perform the parametrix method with the convergence of corresponding series
understood in this (L1) sense. This resolves question (I) and gives L1-estimates for the
error term Rt(x, y) in (1.1). Second, we analyse the series representation for pt(x, y) and
clarify additional assumptions, which one should require in order to get stronger types of
estimates for Rt(x, y): uniform-in-(x, y) and kernel estimates. This scheme is motivated
by perspective applications, where the choice among several types of estimates will
allow one to avoid limitations in the model’s assumptions when a particular application
is considered. We plan to use integral-in-y estimates in the proof of Local Asymptotic
(Mixed) Normality property for statistical models with discretely observed Lévy-type
processes (this is an ongoing project with A. Kohatsu-Higa) and, combined with uniform-
in-(x, y) estimates, in the asymptotic study of the Least Absolute Deviation estimator
for a drift parameter (this is an ongoing project with H. Masuda). Motivated by these
applications, we restrict the current exposition by the real-valued case with constant
α. The multidimensional locally stable-like model with state-dependent α = α(x) is
considered in the widest generality in the companion paper [11].

The structure of the paper is the following. In Section 2 we introduce the notation
and specify the model. In Section 3 we specify the conditions and formulate the main
results. For these results we also provide a discussion, including examples, possible
extensions, and related references. In Section 4 we separately explain the essence of
the parametrix method and derive the corresponding integral representation of the
(candidate for) the transition probability density of the required process. Sections 5–7
respectively contain the proofs of three main results, Theorem 3.3–Theorem 3.5. The
proofs of certain technicalities, which otherwise would make the reading much more
difficult, are postponed to Appendix.
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2 Notation and preliminaries

In what follows, C∞ denotes the class of continuous functions R→ R vanishing at∞,
and C0 denotes the class of continuous functions with compact support. By C2

∞, C
2
0 we

denote the classes of twice differentiable functions f such that f, f ′, f ′′ belong to C∞ or
C0, respectively. A Lévy-type operator L with the domain C2

∞ is defined by

Lf(x) = b(x)f ′(x) +
1

2
a(x)f ′′(x) +

∫
R

(
f(x+ u)− f(x)− uf ′(x)1|u|≤1

)
µ(x; du), f ∈ C2

∞.

(2.1)
Here b : R → R, a : R → R+ are given measurable functions, and µ(x; du) is a Lévy
kernel ; that is, a measurable function w.r.t. x and a Lévy measure w.r.t. du.

There are two natural and closely related ways to associate a Lévy-type process X
with the Lévy type operator L. Within the first one, X is a time-homogeneous Markov
process which generates a Feller semigroup (that is, a strongly continuous semigroup in
C∞) such that its generator A coincides with L on C2

∞ (or, which is slightly more general,
on C2

0 ). The second way is based on the notion of the Martingale Problem (MP). Recall
that a process X is said to be a solution to the martingale problem (L,D), if for every
f ∈ D the process

f(Xt)−
∫ t

0

Lf(Xs) ds, t ≥ 0

is a martingale w.r.t. the natural filtration for X. A martingale problem (L,D) is said to
be well posed in D(R+) (the Skorokhod space of càdlàg functions), if for any probability
measure π on R there exists a solution X to this problem with càdlàg trajectories and
Law(X0) = π, and for any two such solutions their distributions in D(R+) coincide. By
the second definition, Lévy-type process associated to L is a solution to the MP (L,D)

with L given by (2.1) and D = C2
∞ or C2

0 .
Arbitrary Lévy process X satisfies both of the above definitions; the corresponding

operator L is defined by (2.1) with b(x) ≡ b, a(x) ≡ a, µ(x, ·) ≡ µ, where (b, a, µ) is
the characteristic triplet for X. This explains the name Lévy-type process, which
we use systematically. The principal problem (I) outlined in the Introduction can be
now formulated precisely: given a triplet b(x), a(x), µ(x, du), is the Lévy-type process,
associated with L, uniquely defined in either/both of two ways explained above? That is,
does there exist a unique Feller process with the prescribed restriction of the generator,
or/and is the MP (L,D) well posed? The problem (II) then would be to describe — in the
most explicit way it is possible — the transition probability Pt(x, dy) of the process X.

We will study these two questions in the particular setting of locally α-stable Lévy-
type operators/ processes, which we now introduce. A real-valued α-stable process is
a Lévy process which lacks the diffusion term (a = 0), may contain a non-trivial shift
(b 6= 0), and has the Lévy measure

µ(du) = µ(α;λ,ρ)(du) := λ
1 + ρ sgnu

|u|α+1
du.

Taking the intensity and skewness parameters state dependent, λ : R → R+, ρ : R →
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[−1, 1], we obtain an α-stable Lévy kernel

µ(α)(x; du) := µ(α;λ(x),ρ(x))(du) = λ(x)
1 + ρ(x) sgnu

|u|α+1
du.

Our actual Lévy kernel has the form

µ(x; du) = µ(α)(x; du) + ν(x; du); (2.2)

that is, it is a perturbation of an α-stable kernel by a certain ‘residual’ kernel ν(x; du).
The residual kernel ν(x; du) is allowed to be signed, and we denote by ν+(x; du), ν−(x; du)

the positive (resp. the negative) parts of its Hahn decomposition ν(x; du) = ν+(x; du)−
ν−(x; du). The negative part ν−(x; du) is assumed to be dominated by µ(α)(x; du), and
|ν|(x; du) = ν+(x; du) + ν−(x; du) — the variation of ν(x; du) — is assumed to be a Lévy
kernel. The main assumption imposed on the residual kernel is that, uniformly in x, the
Blumenthal-Getoor activity index for |ν| is strictly smaller than α; that is, for some β < α

|ν|(x; {|u| > r}) ≤ Cr−β , r ∈ (0, 1]. (2.3)

Since the Blumenthal-Getoor index for an α-stable Lévy measure equals α, this condition
actually means that the small jump behavior of µ(x; du) is asymptotically the same as for
its α-stable part µ(α)(x; du), and this is our reason to call the kernel (2.2) locally α-stable.

Summarizing all the above, we specify the locally α-stable Lévy-type operator as an
operator of the form (2.1) with µ(x, du) given by (2.2), a(x) ≡ 0, and possibly non-trivial
b(x); that is,

Lf(x) = b(x)f ′(x) +

∫
R

(
f(x+ u)− f(x)− uf ′(x)1|u|≤1

)(
µ(α)(x; du) + ν(x; du)

)
. (2.4)

3 The main results

In this section we specify the conditions imposed on the model, formulate the main
results, and make a discussion which includes examples, possible extensions, and related
references.

3.1 Conditions

In what follows, L is the Lévy-type operator defined by (2.4), and (2.3) is assumed.
Throughout the paper we denote by C a generic constant whose particular value may
vary from place to place. We define the compensated drift coefficient by

b̃(x) = b(x)− 1α<1

∫
|u|≤1

uµ(α)(x; du)− 1β<1

∫
|u|≤1

u ν(x; du),

and assume the following.

Hdrift. (On the compensated drift coefficient). There exists index η ∈ [0, 1] satisfying the
balance condition

α+ η > 1, (3.1)

such that

|̃b(x)− b̃(y)| ≤ C|x− y|η, |x− y| ≤ 1. (3.2)

H(α). (On coefficients λ, ρ of the kernel µα).

(i) λ, ρ are Hölder continuous with some index ζ ∈ (0, α);
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(ii) for some 0 < λmin < λmax,

λmin ≤ λ(x) ≤ λmax.

Hν . (On the residual kernel ν). We deal with two types of upper bounds:

(i) (weak bound) the kernel ν(x, du) satisfies (2.3) and the following ‘tail condi-
tion’:

sup
x∈R
|ν|(x, {|u| ≥ R})→ 0, R→∞; (3.3)

(ii) (strong bound) the kernel has the density

qν(x, u) =
ν(x, du)

du
,

which satisfies

|qν(x, u)| ≤ C|u|−β−11|u|≤1 + C|u|−γ−11|u|>1 (3.4)

with some β ∈ (0, α), γ > 0.

Hcont. (Continuity assumptions). The kernel ν(x, du) is assumed to have the following
weak continuity property: for any f ∈ C(R) with compact support in R \ {0}, the
function

x 7→
∫
R

f(u)ν(x, du) (3.5)

is continuous. The drift coefficient b is assumed to be continuous.

Note that, thanks to condition H(α), the continuity of (3.5) yields similar continuity
for the entire kernel µ(x, du) = µ(α)(x, du) + ν(x, du).

Remark 3.1. In the super-critical regime α < 1, the balance condition (3.1) is close
to the necessary one for the process to be well defined. This observation dates back
to [24], where a natural example of an SDE driven by a symmetric additive α-stable
noise with η-Hölder continuous b is given, which has two different weak solutions. We
emphasise that in the current setting the balance condition involves the compensated
drift coefficient b̃ instead of the original b.

Remark 3.2. A good way to understand the role of the continuity condition Hcont is to
observe that, if (say) ν ≡ 0 and b is discontinuous, it is impossible for the operator (2.4)
that Lf is continuous for all f ∈ C2

0 , and thus the first definition of the Lévy-type process
becomes inappropriate. This complication is of a technical kind, which is not related to
our main goal to derive representation (1.1) for the transition probability of the process.
Thus we adopt Hcont and avoid further technical complications.

3.2 The main statements

Our first main result uniquely identifies a locally α-stable Lévy type process with
given characteristics.

Theorem 3.3. Let L be given by (2.4) and conditions Hdrift, H(α), Hν(i), and Hcont hold
true. Then the martingale problem (L,C2

0 ) is well posed in D(R+) and, at the same time,
the solution X of this martingale problem is the unique Feller process, whose generator
A restricted to C∞0 coincides with L. This process is strong Feller and possesses a
transition probability density pt(x, y).
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Next, we provide several versions of the representation (1.1) with different types of
bounds on the residual kernel Rt(x, y), depending on the actual assumptions imposed
in the characteristics of the process. Following the two-stage scheme outlined in the
Introduction, we first do this under the basic set of conditions Hdrift, H(α), Hν (i), an
then discuss modifications under additional assumptions.

Let us introduce more notation. By g(λ,ρ,υ)(w) we denote the density of the α-stable
distribution with the intensity λ, skewness ρ, and a shift υ:

g(λ,ρ,υ)(w) =
1

2π

∫
R

e−iwξ+Ψ(λ,ρ,υ)
α (ξ) dξ, (3.6)

Ψ(λ,ρ,υ)
α (ξ) = iξυ +

∫
R

(
eiuξ − 1− iuξ1|u|≤1

)
µ(α,λ,ρ)(du). (3.7)

Next, we denote

δη =
η + α− 1

α
> 0, δζ =

ζ

α
> 0, δβ =

α− β
α

> 0, δη,ζ,β = min(δη, δζ , δβ);

note that the positivity of δη is just the balance condition (3.1). We fix (arbitrary) positive
δ < δη,ζ,β. We also fix (arbitrary) T > 0 and furthermore consider t ≤ T , only. Denote

mµ
t (x) =

∫
t1/α<|u|≤1

uµ(x, du), bt(x) = b(x)−mµ
t (x), (3.8)

the partial compensator of the kernel (2.2) with the truncation level t1/α, and par-
tially compensated drift coefficient, respectively. Define the corresponding mollified
coefficient

Bt(x) =

∫
R

bt(x− z)
1

2
√
πt1/α

e−z
2t−2/α

dz.

This coefficient is chosen in such a way that

sup
x
|bt(x)−Bt(x)| ≤ Ct−1+1/α+δ, (3.9)

Lip (Bt) = sup
x 6=y

|Bt(x)−Bt(y)|
|x− y|

≤ Ct−1+δ, (3.10)

see Appendix A.1 (recall that δ < δβ < 1). We define χs(x), s ≥ 0, x ∈ R as the solution to
the Cauchy problem

d

ds
χs(x) = Bs(χs(x)), χ0(x) = x. (3.11)

Note that by (3.10) the family of Lipschitz constants Lip (Bt), t > 0 is integrable on
any finite segment, thus χt(x) is uniquely defined by the classical Picard successful
approximation procedure. We define

λt(x) =
1

t

∫ t

0

λ(χs(x)) ds, ρt(x) =
1

tλt(x)

∫ t

0

λ(χs(x))ρ(χs(x)) ds;

that is, λt(x) and λt(x)ρt(x) are the averages of the functions λ(·), λ(·)ρ(·) along the
trajectory χ·(x) on the segment [0, t]. We also denote υ(x) = 2λ(x)ρ(x),

Wα(t; s) = t−1/α

∫ t1/α

s1/α

dr

rα
=

{
1

1−α t
−1/α(t1/α−1 − s1/α−1), α 6= 1,

t−1(log t− log s), α = 1,
0 ≤ s ≤ t, (3.12)

and put

υt(x) =

∫ t

0

υ(χs(x))Wα(t; s) ds.
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Note that ∫ t

0

Wα(t, s) ds = 1; (3.13)

that is, υt(x) is also an average of υ(·) along the trajectory χ·(x), but with respect to a
certain (non-uniform) probability distribution on [0, t]. We finally define

gt,x(w) = g(λt(x),ρt(x),υt(x))(w), (3.14)

the α-stable density with the ‘χ-averaged’ parameters λt(x), ρt(x), υt(x) defined above.
Now we are ready to state our second main result. Recall that we consider t ∈ [0, T ],

where T is arbitrary but fixed; the particular values of the constants C below may depend
on T and particular choice of δ < δη,ζ,β.

Theorem 3.4. I. Let conditions Hdrift, H(α), Hν(i), and Hcont hold true. Then

pt(x, y) =
1

t1/α
gt,x

(
y − χt(x)

t1/α

)
+Rt(x, y), (3.15)

where

sup
x

∫
R

|Rt(x, y)| dy ≤ Ctδ. (3.16)

II. Assume in addition that for some δν > 0

sup
w∈R

∣∣∣∣t−1/α

∫
R

ν
(
x;
{
|u| > t1/α, |x+ u− w| ≤ t1/α

})
dx

∣∣∣∣ ≤ Ct−1+δν . (3.17)

Then

sup
x,y
|Rt(x, y)| ≤ Ct−1/α+δ∞ , δ∞ = min(δ, δν). (3.18)

Our last main result provides a point-wise kernel estimate for the residual term
Rt(x, y) under the stronger assumption Hν (ii). Denote

G
(α,β,γ)
t (x, y) =


t−1/α, |y − x| ≤ (t1/α ∧ 1),

tβ/α|y − x|−β−1, (t1/α ∧ 1) < |y − x| ≤ 1,

tβ/α|y − x|−γ−1, |y − x| > 1.

(3.19)

Theorem 3.5. Let conditions Hdrift, H(α), Hν (ii), and Hcont hold true. Then

|Rt(x, y)| ≤ CtδG(α,α,α)
t (χt(x), y) + Ctδ

′
G

(α,β′,γ′)
t (χt(x), y) (3.20)

with

β′ = max(β, α− ζ), γ′ = min(α, γ), δ′ =
α− β′

α
> 0. (3.21)

As a direct corollary, we get an upper bound for the entire transition probability
density pt(x, y). Denote G(α)(x) = |x|−α−1 ∧ 1.

Corollary 3.6. Let conditions Hdrift, H(α), Hν (ii), and Hcont hold true. Then

pt(x, y) ≤ C

t1/α
G(α)

(
y − χt(x)

t1/α

)
+ Ct|y − χt(x)|−γ

′−11|y−χt(x)|>1, t ∈ (0, T ]. (3.22)

The following two examples show that there is a the substantial difference between
three types of the estimates given above: (i) integral-in-y (Theorem 3.4, I); (ii) uniform-
in-(x, y) (Theorem 3.4, II); (iii) kernel (Theorem 3.5). The first example shows that, for
singular kernels µ(x; du), the estimates (ii), (iii) may simply fail.
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Example 3.7. Let the ‘nuisance part’ of the noise correspond to the possibility of the
process Xt to jump, at Poisson time instants, to the point 0; that is, ν(x, du) = δ−x(du).
Then

pt(x, y) ≥ e−1

∫ t

0

p
(α)
t−s(0, y) ds,

where p(α)
t (x, y) denotes the transition probability density for the process with the kernel

µ(α)(x, du). If b ≡ 0, λ ≡ 1, ρ ≡ 0, then

p
(α)
t (x, y) � t−1/αG(α)

(
y − x
t1/α

)
,

and thus for α ≤ 1 the function pt(x, y) is unbounded at the vicinity of the point y = 0.

The difference between the kernel and uniform-in-(x, y) estimates is more subtle. Of
course, the kernel estimates yield both the integral-in-y and uniform-in-(x, y) estimates,
but the cost is that the (strong) condition Hν (ii) is needed, which in particular requires
ν(x, du) to be smooth. This may be too restrictive when a model with a microstructural
residual noise in the spirit of [1] is considered. Our second example shows that the
additional assumption (3.17), which guarantees uniform-in-(x, y) bounds, is substantially
weaker than Hν (ii), and can hold true for singular nuisance kernels.

Example 3.8. Let ν(x, du) = ν(du), then simply by the Fubini theorem and (2.3) we have∣∣∣∣t−1/α

∫
R

ν
(
x;
{
|u| > t1/α, |x+ u− w| ≤ t1/α

})
dx

∣∣∣∣
≤
∫
|u|>t1/α

(
t−1/α

∫
|x+u−w|≤t1/α

dx

)
|ν|(du) ≤ Ct−β/α = Ct−1+δβ .

More generally, let ν(x; du) possess a bound

|ν|(x, du) ≤ ν′(v : c(x, v) ∈ du),

where ν′ is a Lévy measure satisfying (2.3) and c(x, u) satisfies |c(x, u)| ≤ C|u|, for each
u the function x+ c(x, u) is C1 and is invertible (in x), and

|1 + c′x(x, u)|−1 ≤ C. (3.23)

Then we can obtain (3.17) first changing the variables x′ = x + c(x, u) and then using
the Fubini theorem and (2.3) in the same way as above.

3.3 SDEs

For the reader’s convenience, we formulate separately the version of the above
results in the case where the process X is a solution to an SDE. Consider the SDE

dXt = b(Xt) dt+σ(Xt−) dZt+

∫
|u|≤1

c(Xt−, u)Ñ(dt, du)+

∫
|u|>1

c(Xt−, u)N(dt, du) (3.24)

where Z is an α-stable process, N(dt, du) is an independent of Z Poisson point measure
with the compensator dtν′(du), and N(dt, du) = N(dt, du)− dtν′(du) is the corresponding
martingale measure. Assume that Z has the characteristic triplet (0, 0, µ(α;λ,ρ)) and
|c(x, u)| ≤ C|u|. Denote

b̃(x) = b(x)− 1α<1
2λρ

1− α
σ(x)− 1β<1

∫
|u|≤1

c(x, u) ν′(du).
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Proposition 3.9. Let the following assumptions hold:

• b̃ satisfies Hdrift;

• σ is ζ-Hölder continuous and for some c1, c2 > 0

c1 ≤ σ(x) ≤ c2;

• for some β < α,

ν′(x; {|u| > r}) ≤ Cr−β , r ∈ (0, 1];

• the functions b(x) and x 7→ c(x, ·) ∈ L1((u2 ∧ 1)ν′(du)) are continuous.

Then the SDE (3.24) has unique weak solution X, and this solution is a strong Feller
Markov process. The transition probability of this process has a density pt(x, y) which
has representation (1.1), where

• the regressor ft(x) = χt(x) is defined by (3.11) with Bt(x) which corresponds to

bt(x) = b(x)− 2λρσ(x)

∫ 1

t1/α

du

uα
−
∫
t1/α<|u|≤1

c(x, u) ν′(du)

• the density of the α-stable innovation term has the form gt,x(w) = g(λt(x),ρ,υt(x))(w)

with

λt(x) =
λ

t

∫ t

0

σ(χs(x))α ds, υt(x) = 2λρ

∫ t

0

σ(χs(x))αWα(t; s) ds;

• the residual term Rt(x, y) satisfies (3.16).

In addition,

• if the function x+ c(x, u) is C1, is invertible in x and (3.23) holds, then the residual
term Rt(x, y) satisfies (3.18);

• if
ν′(du)

du
= C|u|−β−11|u|≤1 + C|u|−γ−11|u|>1,

c(x, ·) ∈ C1 and

inf
x,u
|c′u(x, u)| > 0,

then (3.20) holds.

The Lévy-type operator, which formally corresponds to the SDE (3.24) is given by

Lf(x) = b(x)f ′(x) +

∫
R

(
f(x+ σ(x)u)− f(x)− σ(x)uf ′(x)1|u|≤1

)
µ(α;λ,ρ)(du)

+

∫
R

(
f(x+ c(x, u)− f(x)− c(x, u)uf ′(x)1|u|≤1

)
ν′(du).

Then the uniqueness of the weak solution to the SDE is close to the well posedness of
the MP (L,C∞0 ); for a (simple) formal argument which connects these two notions see
e.g. [19, Section 4.3]. Thus the required statements follow from Theorems 3.3–3.5 by
simple re-arrangements.
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3.4 Possible extensions

Let us briefly discuss several possible modifications and extensions of the main
results. First, let us note that the case of state-dependent α = α(x) can be treated
similarly, but with a more sophisticated and less transparent estimates. We postpone its
study to the companion paper [11], where the multidimensional locally α-stable model is
considered in the widest possible generality. It is also visible that the sensitivities (i.e.
derivatives) of pt(x, y) w.r.t. t and external parameters can be treated with the same
method; in particular we refer to [10], [19] for representations and bounds for ∂tpt(x, y)

and to [6] for an application of such bounds in the accuracy bounds for approximation of
integral functionals. In order not to overextend the exposition, in the current paper we
do not address the sensitivities, leaving their study to a further research.

Next, let us mention that the particular form of the conditionally α-stable approxima-
tion (1.1) obtained in Theorem 3.4 is not the only possible one. Namely, one can change
consistently the regressor ft(x) = χt(x) and the α-stable innovation term, providing the
following alternative representation, which may be more convenient e.g. for simulation
purposes. Define for a given t > 0 the family χts(x), s ∈ [0, t], x ∈ R as the solution to the
Cauchy problem

d

ds
χts(x) = Bt(χ

t
s(x)), χt0(x) = x,

and put

λt(x) =
1

t

∫ t

0

λ(χts(x)) ds, ρt(x) =
1

tλt(x)

∫ t

0

λ(χts(x))ρ(χts(x)) ds,

gt,x(w) = g(λt(x),ρt(x),0)(w).

Proposition 3.10. Let conditions Hdrift, H(α), Hν(i), and Hcont hold true. Then

pt(x, y) =
1

t1/α
gt,x

(
y − χtt(x)

t1/α

)
+Rt(x, y), (3.25)

where Rt(x, y) satisfies (3.16). Under the additional condition (3.17) Rt(x, y) satisfies
(3.18), and under the condition Hν (ii) the term Rt(x, y) satisfies (3.20). In the latter
case, χt(x) in the right hand side of (3.20) can be replaced by χtt(x).

Sketch of the proof. It is clear from the definition of the density gt,x that

g(λt(x),ρt(x),υt(x))(w) = gt,x(w − υt(x)),

where we denote

υt(x) =

∫ t

0

υ(χts(x))Wα(t; s) ds.

On the other hand, one can show similarly to (A.36) that∣∣χts(x)− χs(x)
∣∣ ≤ Ct1/α, s ≤ t, and

∣∣∣(χtt(x)− t1/αυt(x)
)
− χt(x)

∣∣∣ ≤ Ct1/α+δ.

(3.26)
It follows from the Hölder continuity of λ, ρ, υ and the first inequality in (3.26) that

|λt(x)− λt(x)|+ |ρt(x)− ρt(x)|+ |υt(x)− υt(x)| ≤ Ctζ/α ≤ Ctδ.

Then the required bounds for

Rt(x, y) = Rt(x, y) +
1

t1/α
g(λt(x),ρt(x),υt(x))

(
y − χt(x)

t1/α

)
− 1

t1/α
g(λt(x),ρt(x),υt(x))

(
y − χtt(x) + t1/αυt(x)

t1/α

)
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follow by respective bounds for Rt(x, y) and the basic properties of stable densities (e.g.
(A.30)).

In the above representations, we define the regressor as the solution to the ODE
driven by the (mollified) partially compensated drift, and then determine the parameters
of the α-stable density of the innovation term by averaging of the correspondent space
dependent parameters of the model w.r.t. the solution to the ODE on the time interval
[0, t]. These principal components can be further simplified by the cost of making the
bounds less precise and (possibly) under additional assumptions. First, let us mention
briefly that the true solution χt to (3.11) can be replaced by its k-th iteration χ

(k)
t in

the Picard approximation procedure. The situation here is similar to the one studied in
[19, Section 2.2], thus we omit a detailed discussion and just mention that for such an
approximation to be successful one needs

1 + η + · · ·+ ηk >
1

α
.

In particular, the naive choice of the regressor ft(x) = x+b(x)t mentioned in Introduction
corresponds to the case k = 1. That is, for such a choice to be successful it is required
that α > (1 + η)−1, which in particular excludes small values α ≤ 1/2.

Next, in the case of bounded b̃, the innovation term can be further simplified. Namely,
in this case it is easy to verify that

|χt(x)− x| ≤ C
(
t+ t1/α

)
if α 6= 1 (in the exceptional case α = 1 an additional logarithmic term should appear).
Since λ is ζ-Hölder continuous, this yields

|λt(x)− λ(x)| ≤ C
(
tζ + tδζ

)
,

and the similar bounds hold true for ρt, υt, λt, ρt, υt. Then essentially the same argument
as in the proof of (4.33) (see Appendix A.4) makes it possible to deduce representations

pt(x, y) =
1

t1/α
gx
(
y − χt(x)

t1/α

)
+Rfrozent (x, y) =

1

t1/α
gx
(
y − χt(x)

t1/α

)
+R

frozen

t (x, y)

(3.27)
with the α-stable densities

gx(w) = g(λ(x),ρ(x),υ(x))(w), gx(w) = g(λ(x),ρ(x),0)(w),

which just correspond to the values of the parameters ‘frozen’ at the initial point x.

The error terms Rfrozent (x, y), R
frozen

t (x, y) under the corresponding conditions satisfy
analogues of (3.16), (3.18), and (3.20) with δ changed to δ ∧ ζ. Note that δ < ζ/α; that is,
for α ≥ 1 the bounds actually remain unchanged.

3.5 Some related results

We do not give a wide overview of the related results in this extensively developing
domain, referring an interested reader to [10], [20], and a survey paper [13] for such
reviews. Instead, we focus on a discussion of references directly related to the particular
issues treated in the current paper.

1. Various types of estimates. We have already mentioned that the most attention in
the available literature is devoted to kernel-type estimates, see detailed surveys in [10],
[13]. The separate study of integral-in-y and uniform-in-(x, y) estimates is apparently
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new; note however the forthcoming book [15], Sections 5.4, 5.5, where a systematic
treatment is given, which leads to a pair of dual L1-C∞ estimates. These estimates are
of the same spirit with ours; however, one should note note that the additive-in-space
bounds (see [15, (5.69)]) adopted there as the main assumption, in certain settings, may
become too restrictive. Namely, it will become clear from the proof of uniform-in-(x, y)

estimate in Section 5 below that the main property required for such estimate to hold is
the integral-in-x bound (6.4) which is actually a ‘dual’ analogue of the ‘direct’ integral-in-
y estimate. Example (3.7) shows that, for singular Lévy kernels, the ‘direct’ and the ‘dual’
estimates should be treated separately. On the other hand, the additive structure of [15,
(5.69)] makes the integral-in-x and the integral-in-y estimates synonymic, which does not
allow one to approach singular Lévy-type models. In the recent preprint [18], another
(mixed L1-C∞) type of estimates is proposed to treat the singular model Lévy-type based
on the multidimensional SDEs with cylindrical α-stable noise and non-trivial rotation.

Let us mention that the L1-approach, based on integral-in-y estimates only, has a
deep connection, at least on the level of the principle ideas, with the approach to the
well-posedness of the martingale problem for integro-differential operators which dates
back to [7] and [16], [17].

2. Non-symmetry of the Lévy noise. The heat kernel estimates for Lévy and Lévy-type
processes were mainly studied for symmetric noises; the non-symmetric setting becomes
the subject of a study just in the few last years. The most advanced study in this direction
available to the author is given by the recent preprint [23]; we refer there for an overview
of few other recent results in the same direction. In the model from [23], the external
drift (our b) is not included, as well as the nuisance kernel ν. On the other hand, the class
of the kernels treated therein is substantially wider than our class of α-stable principal
parts.

3. Non-boundedness of the drift coefficient. It is traditional for the literature
exploiting the analytical parametrix-type methods that the coefficients are assumed
to be globally bounded. On the other hand, it was specially pointed to the author by
H. Masuda that, for various applications esp. in statistics it is highly desirable for the
theory to cover mean reverting models of the Ornstein-Uhlenbeck type. This explains
the special attention paid in the paper to the case of unbounded b. The only reference
known to the author, where such non-boundedness is allowed, is an apparently yet not
published preprint [8].

4 Preliminaries to the proofs: the parametrix method and an in-
tegral representation for pt(x, y)

In this section we make preparation for the proofs of the main results. We introduce
an integral equation whose unique solution pt(x, y) later on will be proved to be the
transition probability density of the target processX. Such a construction is motivated by
the parametrix method, which is a classical tool for constructing fundamental solutions
to parabolic Cauchy problems. We present here only the rigorous step-by-step exposition
without additional discussion of the heuristics behind the method; for such a discussion
e.g. [10], [19].

4.1 The parametrix method: an outline, and the choice of the zero order ap-
proximation

In this section, we introduce the main objects and explain the method. We will
repeatedly use the following notation for space- and time-space convolutions of functions:

(f ∗ g)t(x, y) :=

∫
Rd
ft(x, z)gt(z, y) dz, (f ~ g)t(x, y) :=

∫ t

0

∫
Rd
ft−s(x, z)gs(z, y) dzds.
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We will fix a function p0
t (x, y), a ‘zero order approximation’ to the unknown pt(x, y),

which will belong to C1(0,∞) in t and to C2
∞ in x. In particular, the following ‘differential

error term’ will be well defined point-wisely:

Φt(x, y) := −
(
∂t − Lx

)
p0
t (x, y), x, y ∈ R, (4.1)

here and below the lower index of an operator indicates the variable at which the
operator is applied. Under the proper choice of p0

t (x, y), the kernel Φt(x, y) will satisfy

sup
x∈R

∫
R

|Φt(x, y)| dy ≤ Ct−1+δ. (4.2)

The cornerstone of the construction is given by the 2nd type Fredholm integral equation

pt(x, y) = p0
t (x, y) + (p~ Φ)t(x, y), (4.3)

which we interpret in the following way. With the time horizon T > 0 being fixed,
consider the Banach space of the kernels Υt(x, y) on [0, T ]×R×R with the norm

‖Υ‖∞,1,1 = sup
x∈R

∫ T

0

∫
R

|Υt(x, y)| dydt.

Consider also the Banach space LT∞,∞,1 of functions ft(x, y) with the norm

‖f‖∞,∞,1 = sup
x∈R,t∈[0,T ]

∫
R

|ft(x, y)| dy.

Any kernel Υ ∈ LT∞,1,1 generates a bounded linear operator in LT∞,∞,1

(AΥf)t(x, y) = (f ~ Υ)t(x, y),

with the operator norm of AΥ bounded by ‖Υ‖∞,1,1. By (4.2), the kernel Φt(x, y) belongs
to LT∞,1,1. Then we naturally interpret (4.3) as an equation

p = p0 +AΦp (4.4)

in the Banach space LT∞,∞,1. It is an easy calculation that (4.2) yields

sup
x

∫
R

|Φ~k
t (x, y)| dy ≤ t−1+kδC

kΓ(δ)k

Γ(kδ)
, Φ~k = Φ ~ · · ·~ Φ︸ ︷︷ ︸

k

, k ≥ 1, (4.5)

see Section 4.3 below. Then

∞∑
k=1

‖(AΦ)k‖ =

∞∑
k=1

‖AΦ~k

‖ ≤
∞∑
k=1

‖Φ~k‖∞,1,1 ≤
∞∑
k=1

T kδ
CkΓ(δ)k

Γ((k + 1)δ)
<∞,

and therefore the solution to the equation (4.4) in LT∞,∞,1 is uniquely specified by the
classical von Neumann series representation:

pt(x, y) = p0
t (x, y) +

∑
k≥1

(p0 ~ Φ~k)t(x, y) = p0
t (x, y) + (p0 ~ Ψ)t(x, y), (4.6)

Ψt(x, y) =
∑
k≥1

Φ~k
t (x, y), (4.7)

with the series convergent in LT∞,∞,1 and LT∞,1,1, respectively.
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Now, let us proceed with specification of the zero-order approximation p0
t (x, y) for

our particular model. We define the function κs(y), s ≥ 0, y ∈ R as the solution to the
Cauchy problem

d

ds
κs(y) = −Bs(κs(y)), s ≥ 0, κ0(y) = y, y ∈ R.

Define for z ∈ R, t > 0

Ψα(t, z; ξ) =

∫ t

0

∫
R

(
eiuξ − 1− iuξ1|u|≤s1/α

)
µ(α)(κs(z); du) ds,

which has representation in the form

Ψα(t, z; ξ) = Ψ(λ̃t(z),ρ̃t(z),υ̃t(z))
α (t1/αξ) (4.8)

with

λ̃t(z) =
1

t

∫ t

0

λ(κs(z)) ds, ρ̃t(z) =
1

tλ̃t(z)

∫ t

0

λ(κs(z))ρ(κs(z)) ds,

υ̃t(z) =

∫ t

0

υ(κs(z))Wα(t; s) ds,

recall that Wα(t; s) is defined in (3.12). We will prove (4.8) in Appendix A.4; this identity
actually means that Ψα(t, z; ξ) is a characteristic exponent of an α-stable law. We denote
by ht,z(w) the corresponding α-stable distribution density

ht,z(w) =
1

2π

∫
R

e−iwξ+Ψα(t,z;ξ) dξ,

and define
p0
t (x, y) = ht,y(κt(y)− x). (4.9)

Denote
g̃t,z(w) = g(λ̃t(z),ρ̃t(z),υ̃t(z))(w), (4.10)

then by (4.8) the formula can be written as

p0
t (x, y) =

1

t1/α
g̃t,y

(
κt(y)− x
t1/α

)
. (4.11)

4.2 Kernel Φt(x, y): decomposition and estimates

Define an auxiliary operator

L̃(α),z,tf(x) =

∫
R

(
f(x+ u)− f(x)− uf ′(x)1|u|≤t1/α

)
µ(α)(κt(z); du), f ∈ C2

∞.

The following identity is crucial for the entire construction.

(∂t − L̃(α),z,t
x )ht,z (w − x) = 0, t > 0, x, w, z ∈ R. (4.12)

This identity can be verified using the formula (4.9) and a standard Fouier analysis-based
argument; see Appendix A.4. We have

∂tp
0
t (x, y) = ∂th

t,y(κt(y)− x) = ∂th
t,y(w − x)

∣∣∣
w=κt(y)

+ ∂wh
t,y(w − x)

∣∣∣
w=κt(y)

∂tκt(y)

= ∂th
t,y(w − x)

∣∣∣
w=κt(y)

− ∂xht,y(w − x)
∣∣∣
w=κt(y)

∂tκt(y).
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Thus, combining (4.12) and the fact that ∂t(κt(y)) = −Bt(κt(y)), we get

∂tp
0
t (x, y) = L̃(α),y,t

x ht,y(κt(y)− x) + ∂xh
t,y(κt(y)− x)Bt(κt(y))

= L̃(α),y,t
x p0

t (x, y) +Bt(κt(y))∂xp
0
t (x, y).

(4.13)

On the other hand, for the operator L defined by (2.4) we have the following decomposi-
tion:

L = b∂x + L(α),x,1 + Lν,x,1 = bt∂x + L(α),x,t + Lν,x,t, (4.14)

where

L(α),z,tf(x) =

∫
R

(
f(x+ u)− f(x)− uf ′(x)1|u|≤t1/α

)
µ(α)(z; du), f ∈ C2

∞,

Lν,z,tf(x) =

∫
R

(
f(x+ u)− f(x)− uf ′(x)1|u|≤t1/α

)
ν(z; du), f ∈ C2

∞. (4.15)

Now we can represent Φ in the following form:

Φt(x, y) = (Lx − ∂t)p0
t (x, y)

=
(
bt(x)−Bt(κt(y))

)
∂xp

0
t (x, y) +

(
L(α),x,t
x − L̃(α),y,t

x

)
p0
t (x, y) + Lν,x,tx p0

t (x, y)

=: Φdriftt (x, y) + Φ
(α)
t (x, y) + Φνt (x, y).

(4.16)
In what follows, we estimate separately the components of Φ in the decomposition

(4.16) and deduce an integral estimate for the entire Φ, which holds true under Hν

(i). We will repeatedly use representation (4.11) and the following observation. The
functions λ̃t(z), ρ̃t(z), υ̃t(z) are bounded since they are obtained by averaging of bounded
functions w.r.t. probability measures. In addition, λ̃t(z) is uniformly separated from zero.
That is, for the function (4.10) with z = y the bounds (A.23), (A.30)–(A.33) can be used.

Step 1: Estimate for Φdrift. By (3.9), (3.10) we have

|bt(x)−Bt(κt(y))|≤|bt(x)−Bt(x)|+ |Bt(x)−Bt(κt(y))|≤C
(

1 +

∣∣∣∣κt(y)− x
t1/α

∣∣∣∣) t−1+1/α+δ.

We have

∂xp
0
t (x, y) = − 1

t2/α

(
g̃t,y
)′(κt(y)− x

t1/α

)
.

Applying (A.30), and then (A.18), (A.19), we easily get

|Φdriftt (x, y)| ≤ Ct−1−1/α+δG(α)

(
κt(y)− x
t1/α

)
= Ct−1+δG

(α,α,α)
t (x, κt(y)). (4.17)

Step 2: Estimate for Φ(α). Denote for f ∈ C2
∞

L(α),symf(x) =

∫
R

(
f(x+ u)− f(x)− uf ′(x)1|u|≤1

) du

|u|α+1
, (4.18)

L(α),asymf(x) =

∫
R

(
f(x+ u)− f(x)− uf ′(x)1|u|≤1

)
sgn(u)

du

|u|α+1
. (4.19)

Then

L(α),z,tf
( x

t1/α

)
=
λ(z)

t
(L(α),symf)

( x

t1/α

)
+
λ(z)ρ(z)

t
(L(α),asymf)

( x

t1/α

)
,

L̃(α),z,tf
( x

t1/α

)
=
λ(κt(z))

t
(L(α),symf)

( x

t1/α

)
+
λ(κt(z))ρ(κt(z))

t
(L(α),asymf)

( x

t1/α

)
,
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and thus

Φ
(α)
t (x, y) =

λ(x)− λ(κt(y))

t
(L(α),symg̃t,y)

(
κt(y)− x
t1/α

)
+
λ(x)ρ(x)− λ(κt(y))ρ(κt(y))

t
(L(α),asymg̃t,y)

(
κt(y)− x
t1/α

)
.

(4.20)

On the other hand, we have by (A.32), (A.33)

|L(α),symg̃t,z(x)|+ |L(α),asymg̃t,z(x)| ≤ CG(α)(x).

Since the functions λ(x) and ρ(x) are bounded and ζ-Holder continuous, this gives

Φ
(α)
t (x, y) ≤ C

(
|x− κt(y)|ζ ∧ 1

)
t−1G

(α,α,α)
t (x, κt(y)) = Ct−1+ζ/αG

(α,α−ζ,α)
t (x, κt(y))

= Ct−1+δζG
(α,α−ζ,α)
t (x, κt(y)).

Step 3: Estimate for Φν . We decompose

Φνt (x, y) =

∫
R

(
p0
t (x+ u, y)− p0

t (x, y)− u∂xp0
t (x+ u, y)1|u|≤t1/α

)
ν(x; du)

=

∫
|u|≤t1/α

(
p0
t (x+ u, y)− p0

t (x, y)− u∂xp0
t (x+ u, y)

)
ν(x; du)

+

∫
|u|>t1/α

p0
t (x+ u, y)ν(x; du)−

∫
|u|>t1/α

p0
t (x, y)ν(x; du)

=: Φν,smallt (x, y) + Φν,large,+t (x, y) + Φν,large,−t (x, y).

We have by (A.30)

|∂2
xxp

0
t (x, y)| ≤ Ct−3/αG(α+2)

(
κt(y)− x
t1/α

)
,

which gives

|Φν,smallt (x, y)| ≤ Ct−3/α sup
|v|≤t1/α

G(α+2)

(
κt(y)− x− v

t1/α

)∫
|u|≤t1/α

u2|ν|(x; du)

≤ Ct−3/αG(α+2)

(
κt(y)− x− v

t1/α

)
(t1/α)2−β ,

in the last inequality we used (A.20), condition (2.3), and (A.3). Next, we have by (A.23)

p0
t (x, y) ≤ Ct−1/αG(α)

(
κt(y)− x
t1/α

)
,

thus by (2.3)

|Φν,large,−t (x, y)| ≤ p0
t (x, y)

∫
|u|>t1/α

|ν|(x; du) ≤ Ct−1/αG(α)

(
κt(y)− x
t1/α

)(
t1/α

)−β
.

Then by (A.18)

|Φν,smallt (x, y)|+ |Φν,large,−t (x, y)| ≤ Ct−3/αG(α+2)

(
κt(y)− x− v

t1/α

)
(t1/α)2−β

+ Ct−1/αG(α)

(
κt(y)− x
t1/α

)(
t1/α

)−β
≤ Ct−1/α−β/αG(α)

(
κt(y)− x
t1/α

)
= Ct−β/αG

(α,α,α)
t (x, κt(y))

= Ct−1+δβG
(α,α,α)
t (x, κt(y)).
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That is, the first and the third parts in the above decomposition of Φν satisfy a bound
similar to the bound (4.17) for Φdrift. For the second part, we simply write

|Φν,large,+t (x, y)| ≤ t−1+δβQt(x, y),

where

Qt(x, y) = tβ/α|Φν,large,+t (x, y)| = t1−δβ |Φν,large,+t (x, y)| (4.21)

is just a notation. This gives

|Φνt (x, y)| ≤ Ct−1+δβG
(α,α,α)
t (x, κt(y)) + Ct−1+δβQt(x, y).

Summary: Proof of (4.2). The above calculation gives

|Φt(x, y)| ≤ Ct−1+δG
(α,α,α)
t (x, κt(y)) + C−1+δζG

(α,α−ζ,α)
t (x, κt(y)) + Ct−1+δβQt(x, y),

(4.22)
and thus

|Φt(x, y)| ≤ Ct−1+δHt(x, y), Ht(x, y) = G
(α,α−ζ,α)
t (x, κt(y)) +Qt(x, y). (4.23)

We have for any α, β, γ > 0

sup
x

∫
R

G
(α,β,γ)
t (x, κt(y)) dy ≤ C, (4.24)

see Appendix A.5. Since

g̃t,y(w) ≤ CG(α)(w), w ∈ R

by (A.23), we have then

p0
t (x, y) ≤ CG(α,α,α)

t (x+ u, κt(y)). (4.25)

Applying (4.24) with α = β = γ, we get by (2.3)

sup
x

∫
R

Qt(x, y) dy ≤ Ct−β/α
∫
|u|>t1/α

(∫
R

G
(α,α,α)
t (x+ u, κt(y)) dy

)
|ν|(x; du)

≤ Ctβ/α
∫
|u|>t1/α

|ν|(x; du) ≤ C.
(4.26)

Applying once again (4.24) with γ = α, β = α− ζ, we get

sup
x

∫
R

Ht(x, y) dy ≤ C, (4.27)

which combined with (4.23) completes the proof of (4.2).

Remark 4.1. Using (3.3), we can also get

sup
x∈R,t∈(0,T ]

∫
{y:|y−x|>R}

Ht(x, y) dy → 0, R→∞. (4.28)

The proof is completely analogous and is omitted.
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4.3 Solution to (4.3): specification and further re-arrangement

For any k > 1 we have

Φ~k
t (x, y) =

∫
0<s1<···<sk−1<t

Φs1−s0,...,sk−sk−1
(x, y) ds1 . . . dsk−1,

where we denote s0 = 0, sk = t,

Φτ1,...,τk(x, y) =
(

Φτ1 ∗ · · · ∗ Φτk

)
(x, y) =

∫
Rk−1

Φτ1(x,w1) . . .Φτk(wk−1, y) dw1 . . . dwk−1.

By (4.23),∫
R

|Φτ1,...,τk(x, y)| dy ≤
∫
Rk−1

∫
R

|Φτ1(x,w1) . . .Φτk(wk−1, y)| dw1 . . . dwk−1dy

≤ Cτ−1+δ
k

∫
Rk−1

|Φτ1(x,w1) . . .Φτk−1
(wk−2, wk−1)| dw1 . . . dwk−1 ≤ · · · ≤ Ck

k∏
j=1

τ−1+δ
j .

Thus

sup
x

∫
R

|Φ~k
t (x, y)| dy ≤ Ck

∫
0<s1<···<sk−1<t

k∏
j=1

(sj − sj−1)−1+δ ds1 . . . dsk−1

= Ckt−1+kδ

∫
0<υ1<···<υk−1<1

k∏
j=1

(υj − υj−1)−1+δ dυ1 . . . dυk−1 = t−1+kδC
kΓ(δ)k

Γ(kδ)
,

which is just (4.5). That is, the solution pt(x, y) to the integral equation (4.3) is uniquely
defined by (4.6).

Note that the resolvent kernel Ψt(x, y) for the integral equation (4.3) inherits from
Φt(x, y) the integral bounds and the tail behavior. Namely, we have

sup
x

∫
R

|Ψt(x, y)| dy ≤
∞∑
k=1

t−1+kδC
kΓ(δ)k

Γ(kδ)
≤ Ct−1+δ. (4.29)

Next, by (4.28) we have

sup
x∈R,t∈(0,T ]

t1−δ
∫
{y:|y−x|>R}

|Φt(x, y)| dy → 0, R→∞.

Then it is easy to show by induction that, for any k,

sup
x∈R,t∈(0,T ]

t1−δ
∫
{y:|y−x|>R}

|Φ~k
t (x, y)| dy → 0, R→∞.

These bounds combined with (4.5) yield the similar tail behavior of the kernel Ψt(x, y):

sup
x∈R,t∈(0,T ]

t1−δ
∫
{y:|y−x|>R}

|Ψt(x, y)| dy → 0, R→∞. (4.30)

The solution to (4.3) can be written as

pt(x, y) = p0
t (x, y) + rt(x, y), rt(x, y) = (p0 ~ Ψ)t(x, y), (4.31)

and by (4.29), (4.25), and (4.24) we have

sup
x

∫
R

|rt(x, y)| dy ≤
∫ t

0

∫
R

∫
R

p0
t−s(x, z)|Ψs(z, y)| dzdyds

≤ C
∫ t

0

(∫
R

p0
t−s(x, z) dz

)
s−1+δds ≤ Ctδ.

(4.32)
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Note that representation (4.31) differs from the one claimed in Theorem 3.4; in particular,
zero order term p0

t (x, y) in (4.31) is not equal to the principal term

pmaint (x, y) =
1

t1/α
gt,x

(
y − ft(x)

t1/α

)
in (1.1). The difference between these two terms admits the following bound; the proof
is postponed to Appendix A.4:

|pmaint (x, y)− p0
t (x, y)| ≤ CtδζG(α,α−ζ,α)

t (χt(x), y) + CtδG
(α,α,α)
t (χt(x), y). (4.33)

We have

sup
x

∫
R

G
(α,β,γ)
t (x, y) dy ≤ C, (4.34)

see Appendix A.5. That is, by (4.33)∫
R

|pmaint (x, y)− p0
t (x, y)| dy ≤ Ctδ. (4.35)

Now it is easy to prove the following.

Lemma 4.2. For any f ∈ C∞,

sup
x

∣∣∣∣∫
R

pmaint (x, y)f(y) dy − f(x)

∣∣∣∣→ 0, sup
x

∣∣∣∣∫
R

p0
t (x, y)f(y) dy − f(x)

∣∣∣∣→ 0, t→ 0,

Proof. We first note that there exists C > 1 such that, for |x| large enough,

C−1|x| ≤ |χt(x)| ≤ C|x|,

see Proposition A.3. Since f(x)→ 0, |x| → ∞, this gives

sup
x
|f(χt(x))− f(x)| → 0, t→ 0. (4.36)

Next, gt,x are stable densities with uniformly bounded intensities and shifts, and thus for
every ε > 0

sup
x

∫
|w|>ε

1

t1/α
gt,x

( w

t1/α

)
dw → 0, t→ 0.

Since f ∈ C∞ is uniformly continuous, this yields

sup
x

∣∣∣∣∫
R

1

t1/α
gt,x

(
y − χt(x)

t1/α

)
f(y) dy − f(χt(x))

∣∣∣∣→ 0, t→ 0,

which proves the first assertion. The second assertion follows from the first one by
(4.35).

5 Proof of Theorem 3.3

We have defined the function pt(x, y) as a solution to the integral equation (4.3). In
this section we make a further analysis of its representation (4.6) and prove that function
pt(x, y), in a certain approximate sense, provides a fundamental solution to the Cauchy
problem for the operator ∂t − L. This fact will be a cornerstone for the proof of Theorem
3.3.
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5.1 Continuity properties and approximate fundamental solution

Denote

Ptf(x) =

∫
R

f(y)pt(x, y) dy, t > 0, P0f(x) = f(x).

Lemma 5.1. For a given bounded measurable f , the function Ptf(x) is continuous w.r.t.
(t, x) ∈ (0,∞)×R.

For f ∈ C∞, one has Ptf ∈ C∞, t ≥ 0, and Pt, t ≥ 0 is a continuous family of bounded
linear operators in C∞.

Proof. The proof is fairly standard, thus we just sketch it. We have

Ptf(x) =

∫
R

f(y)p0
t (x, y) dy +

∫ t

0

∫
R

p0
t−s(x, y)Ψf

s (y) dyds, (5.1)

Ψf
t (y) =

∫
R

Ψt(y, z)f(z) dz. (5.2)

The function p0
t (x, y), given by an explicit formula (4.9), is continuous w.r.t. x, t for any y.

Then one can deduce continuity of Ptf(x) using the bounds (4.25), (4.29) and a standard
domination convergence argument; e.g. [10, Section 3.3]. Using (4.30), one can show in
addition that

Ptf(x)→ 0, |x| → ∞ (5.3)

uniformly in t ∈ [0, T ]. Combined with continuity of Ptf(x) in (t, x) ∈ (0, T ] × R and
Lemma 4.2, this yields continuity in t ∈ [0, T ] of the family {Ptf} ∈ C∞. Clearly, each Pt
is a linear operator; these operators are bounded thanks to (4.25), (4.29).

Lemma 5.2. For a given f ∈ C∞, the function Ψf
t (x) is continuous w.r.t. (t, x) ∈

(0,∞)×R. In addition, for any 0 < τ < T

Ψf
t (x)→ 0, |x| → ∞ (5.4)

uniformly on t ∈ [τ, T ].

Proof. The argument here is close to the one from the previous proof, with p0
t changed

to Φ; recall that Ψt(x, y) satisfies

Ψt(x, y) = Φt(x, y) +

∫ t

0

∫
R

Φt−s(x, y
′)Ψs(y

′, y) dy. (5.5)

Therefore we omit the details, and only discuss two points which make the difference
with the previous proof. First, the bound (4.23), when compared to (4.25), contains an
extra term t−1+δ. This is the reason why (5.4) is stated for t ∈ [τ, T ] with positive τ .
Next, we yet have to verify that Φt(x, y) is continuous in x, t. Recall the decomposition
(4.16), and observe that the term Φ(α) has the required continuity. However, two other
terms in the decomposition (4.16) may fail to be continuous. Namely, since the function
1|u|>t1/α is discontinuous, weak continuity of the kernel ν(x, du) does not imply, in general,
continuity of the corresponding integral mν

t (x). This trouble is artificial, and can be fixed
by a proper re-arrangement of the compensating terms in these two summands. Namely,
we take function θ ∈ C(R) with

θ(u) = 0, |u| ≤ 1

2
, θ(u) = 1, |u| ≥ 1,

and put

m̂ν
t (x) =

∫
|u|≤1

uθ(ut−1/α)ν(x, du), b̂t = b−m(α)
t − m̂ν

t ,
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Φ̂driftt (x, y) =
(
b̂t(x)−Bt(κt(y))

)
∂xp

0
t (x, y).

Φ̂νt (x, y) =

∫
R

(
p0
t (x+ u, y)− p0

t (x, y)− u
(
1− θ(ut−1/α)

)
∂xp

0
t (x, y)1|u|≤1

)
ν(x; du).

Then

Φ̂driftt (x, y) + Φ̂νt (x, y) = Φdriftt (x, y) + Φνt (x, y),

and the terms Φ̂drift and Φ̂ν have the required continuity. The latter can be verified
via a routine calculation involving the continuity condition Hcont, we omit a detailed
discussion.

The parametrix construction described in Section 4.1 originates in the general
interpretation of pt(x, y) as a (sort of) fundamental solution to the Cauchy problem
for the operator ∂t − L; that is, in other words, pt(x, y) should satisfy the backward
Kolmogorov equation for the (yet unknown) process X. In some cases one can show that
pt(x, y) indeed satisfies

(∂t − Lx)pt(x, y) = 0 (5.6)

in a classical way; for instance, this is the mainstream approach in the classical diffu-
sive/parabolic setting, see [5]. A necessary pre-requisite for such an approach is to prove
that pt(x, y) belongs to C1 w.r.t. t and to C2

∞ (which is just the domain of L) w.r.t. x.
In the current setting, zero order approximation p0

t (x, y) has the required smoothness
properties, however one can hardly extend these properties to pt(x, y) using (5.1) in
the way used in the proof of Lemma 5.1. The main obstacle is that ∂xp0

t (x, y), ∂2
xxp

0
t (x, y)

exhibit strongly singular behavior as t → 0 (see (A.30), (A.31)), which does not allow
one to differentiate (5.1). This observation leads to the following auxiliary construction.
Define for ε > 0

pt,ε(x, y) = p0
t+ε(x, y) +

∫ t

0

∫
R

p0
t−s+ε(x, y

′)Ψs(y
′, y)dy′ds, (5.7)

Pt,εf(x) =

∫
Rd
pt,ε(x, y)f(y)dy, f ∈ C∞. (5.8)

The following lemma shows that pt,ε(x, y) approximates pt(x, y) and satisfies an approx-
imative analogue of (5.6). This is our reason to call the family {pt,ε(x, y), ε > 0} an
approximate fundamental solution.

Lemma 5.3. For every f ∈ C∞ we have the following.

1. For every T > 0,

‖Pt,εf − Ptf‖∞ → 0, ε→ 0, (5.9)

uniformly in t ∈ (0, T ], and

Pt,εf(x)→ 0, |x| → ∞ (5.10)

uniformly in t ∈ (0, T ], ε ∈ (0, 1].

2.

lim
t,ε→0+

‖Pt,εf − f‖∞ = 0. (5.11)

3. For every ε > 0, Pt,εf(x) belongs to C1 as a function of t, to C2
∞ as a function of x,

and ∂tPt,εf(x), LxPt,εf(x) are continuous w.r.t. (t, x).
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4. For every 0 < τ < T , R > 0

Qt,εf(x) =
(
∂t − Lx

)
Pt,εf(x)→ 0, ε→ 0, (5.12)

uniformly in (t, x) ∈ [τ, T ]× [−R,R]. In addition,∫ T

0

sup
x∈[−R,R]

|Qt,εf(x)| dt→ 0, ε→ 0. (5.13)

Proof. Statements 1–3 follow easily by the same continuity/domination argument which
was used in Lemma 5.1 and thus we omit the proof; see [10, Section 4.1] for a detailed
exposition of similar group of statements.

To prove statement 4, we apply the argument from the proof of [10, Lemma 5.2].
Since the additional time shift by ε > 0 removes the singularity at the point t = 0 in (5.7),
the continuity/domination argument similar to the one used in Lemma 5.1 allows one
to interchange the operator

(
∂t − Lx

)
with the integrals in the definition of Pt,εf . Then,

recalling the definition (4.1) of Φt(x, y) and (5.2), we get

Qt,εf(x) = −
∫
R

Φt+ε(x, y)f(y) dy −
∫ t

0

∫
R

Φt−s+ε(x, y)Ψf
s (y) dyds+

∫
R

p0
ε(x, y)Ψf

t (y) dy,

see [10, (4.13)] By the continuity of Φt(x, y) in t, we have∫
R

Φt+ε(x, y)f(y) dy+

∫ t

0

∫
R

Φt−s(x, y)Ψf
s (y) dyds→

∫
R

Φt(x, y)f(y) dy

+

∫ t

0

∫
R

Φt−s+ε(x, y)Ψf
s (y) dyds, ε→ 0

uniformly in x ∈ [−R,R], t ∈ [τ, T ]. On the other hand, since Ψf
t (x) is continuous, we

have by Lemma 4.2 ∫
R

p0
ε(x, y)Ψf

t (y) dy → Ψf
t (x), ε→ 0

uniformly in x ∈ [−R,R], t ∈ [τ, T ], which combined with (5.5) completes the proof of
(5.12). On the other hand it follows from (4.25) and (4.29) that∫ τ

0

sup
x
|Qt,εf(x)| dt ≤ Cτ δ sup

y
|f(y)|.

Combined with (5.12), this yields (5.13).

Definition 5.4. We say a continuous function h(t, x) to be approximate harmonic for an
operator ∂t − L, if there exists a family {hε(t, x), ε ∈ (0, 1]} ∈ C([0,∞)×R) such that

(i) for any T > 0

sup
x∈R,t∈[0,T ]

|hε(t, x)− h(t, x)| → 0, ε→ 0, sup
t∈[0,T ],ε∈(0,1]

|hε(t, x)| → 0, |x| → ∞;

(ii) each function hε(t, x) is C1 w.r.t. t, C2
∞ w.r.t. x, and for every 0 < τ <,R > 0

sup
x∈[−R,R],t∈[τ,T ]

|(∂t − Lx)hε(t, x)| → 0, ε→ 0.

Note that, by Lemma 5.3, for any f ∈ C∞ the function hf (t, x) = Ptf(x) is approximate
harmonic for ∂t − L. The corresponding approximating family is given by

hfε (t, x) = Pt,εf(x), ε > 0. (5.14)
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5.2 The Positive Maximum Principle and the semigroup properties

In this section we establish the semigroup properties for the family of the operators
{Pt, t ≥ 0}. A classical method for this is based on the Positive Maximum Principle (PMP)
for the operator L. It is usually applied when pt(x, y) is a (true) fundamental solution
for ∂t − L; e.g. [12]. In our setting pt(x, y) satisfies (5.6) in a weaker approximate
sense; however, the classical PMP-based argument admits an extension which is well
applicable in such an approximate setting. This extended argument is essentially due
to [10, Section 4]. For the reader’s and further reference convenience, here we give
a systematic version of this argument, based on the notion of approximate harmonic
functions.

Recall that an operator L with a domain D is said to satisfy PMP if for any f ∈ D and
x0 such that

0 ≤ f(x0) = max
x

f(x)

one has
Lf(x0) ≤ 0.

Clearly, the operator (2.4) with the domain D = C2
∞ satisfies PMP; note that Lf is

continuous for any f ∈ C2
∞, but does not necessarily belong to C∞.

Proposition 5.5. Let h(t, x) be an approximate harmonic function for ∂t − L such that
h(0, ·) ≥ 0.

Then h(t, ·) ≥ 0, t > 0.

Proof. Assuming h(t, x) being negative at some point, we have that for some T > 0

inf
t≤T,x∈R

h(t, x) < 0. (5.15)

Let {hε(t, x), ε ∈ (0, 1]} be the approximating family from Definition 5.4, then by assertion
(i) there exist υ > 0, θ > 0, ε1 > 0 such that

inf
t≤T,x∈R

(
hε(t, x) + θt

)
< −υ, ε < ε1.

Denote
uε(t, x) = hε(t, x) + θt, ε ∈ (0, 1]

these functions are continuous in (t, x) (because each hε is continuous) and satisfy

uε(t, x)→ θt > 0, |x| → ∞

uniformly in t ∈ [0, T ] (because of the assertion (i)). Then for some R > 0 and ε < ε1

inf
t≤T,x∈R

uε(t, x) = inf
t≤T,x∈R

(
hε(t, x) + θt

)
< 0

is actually attained at some point in [0, T ]× [−R,R]; we fix one such a point for each ε,
and denote it by (tε, xε). We observe that tε is separated from 0 when ε is small enough.
Indeed, by the assertion (i) and non-negativity assumption h(0, x) ≥ 0, there exist ε0 > 0,
τ > 0 such that

uε(t, x) ≥ hε(t, x) ≥ hε(0, x)− υ

2
≥ −υ

2
, t ≤ τ, ε < ε0, x ∈ R.

Since
uε(tε, xε) = min

t∈[0,T ],x∈R
uε(t, x) < −υ,

this yields tε > τ for ε < ε0.
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Now we can conclude the proof in a quite standard way. Let ε < ε0 ∧ ε1. Since xε is
the maximal point for −uε(tε, ·) and −uε(tε, xε) > 0, we have by the PMP

Lxuε(tε, xε) ≥ 0.

Since tε is the maximal point for uε(·, xε) and tε > τ , we have

∂tuε(tε, xε) ≤ 0,

where the sign ‘<’ may appear only if tε = T . Then

(∂t − Lx)uε(t, x)|(t,x)=(tε,xε) ≤ 0. (5.16)

On the other hand, we by the assertion (ii) from Definition 5.4

(∂t − Lx)uε(t, x)|(t,x)=(tε,xε) ≥ θ + inf
x∈[−R,R],t∈[τ,T ]

(∂t − Lx)hε(t, x)→ θ > 0, ε→ 0.

This gives contradiction and shows that (5.15) fails.

Now the semigroup properties for the family {Pt, t ≥ 0} can be derived in a standard
way.

Corollary 5.6. 1. Each operator Pt, t ≥ 0 is positivity preserving: for any f ≥ 0 one
has Ptf ≥ 0.

2. The family {Pt} is a semigroup:

Pt+sf = PtPsf, f ∈ C∞, s, t ≥ 0. (5.17)

3. For any f ∈ C2
0 (R),

Ptf(x)− f(x) =

∫ t

0

PsLf(x) ds, t ≥ 0. (5.18)

Proof. Statement 1 follows from Proposition 5.5 applied to h(t, x) = hf (t, x), which is
already known to be approximate harmonic. To prove statement 2, we fix s ≥ 0, f ∈ C∞
and apply Proposition 5.5 to functions

h±(t, x) = ±Pt+sf(x)∓ PtPsf(x) = ±hf (t, x)∓ hPsf (t, x),

which are approximate harmonic and satisfy h±(0, ·) = 0. Finally, to prove statement 3
we apply Proposition 5.5 to the function

h(t, x) = Ptf(x)− f(x)−
∫ t

0

PsLf(x) ds,

with the approximating family defined by

hε(t, x) = Pt,εf(x)− f(x)−
∫ t

0

Ps,εLf(x) ds.

Note that hε(t, x) satisfies assertion (i) from Definition 5.4 by Lemma 5.3, and

(∂t − Lx)hε(t, x) = Qt,εf(x)−
(

0− Lf(x)
)
−
(
Pt,εLf(x)−

∫ t

0

L
(
Ps,εLf

)
(x) ds

)
= Qt,εf(x)−

∫ t

0

∂s

(
Ps,εLf

)
(x) +

∫ t

0

L
(
Ps,εLf

)
(x) ds

= Qt,εf(x)−
∫ t

0

Qs,εLf(x) ds.

Applying (5.12) and (5.13), we get assertion (ii) from Definition 5.4.
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It is easy to deduce from (5.18) that∫
R

pt(x, y) dy = 1, t > 0, x ∈ R.

Indeed, take f ∈ C0
∞ such that f(x) = 1, |x| ≤ 1, and put fk(x) = f(k−1x). Then

fk(x)→ 1, Lfk(x)→ 0, k →∞

for every x, and ‖Lfk‖ ≤ C. Using (4.31), (4.25), and (4.32) we can apply the dominated
convergence theorem and prove∫ t

0

PsLfk(x) ds→ 0, k →∞,

which combined with (5.18) gives the required identity.
Summarizing all the above, we conclude that Pt, t ≥ 0 is a strongly continuous

semigroup in C∞, which is positivity preserving and conservative; that is, this semigroup
is Feller. It follows from (5.18) that C2

0 belongs to the domain of its generator, and the
restriction of this generator to C2

0 equals L. For any probability measure π on R there
exists a Markov process {Xt} with the transition semigroup {Pt}, càdlàg trajectories,
and the initial distribution Law (X0) = π; see [4, Theorem 4.2.7]. Finally, by Lemma 5.1
the process X is strong Feller.

5.3 The martingale problem: uniqueness

Note that any Feller process Y , whose generator A restricted to C2
0 coincides with

L, is a D(R+)-solution to the martingale problem (L,C2
0 ); this is essentially the Dynkin

formula combined with [4, Theorem 4.2.7]. In particular, this is the case for the Markov
process X, constructed in the previous section. In this section, we prove that the D(R+)-
solution to the martingale problem (L,C2

0 ) with a given initial distribution π is unique;
this will complete the proof of Theorem 3.3. The argument here is principally the same
as in [19], with the one important addition which appears because the drift term now is
not necessarily bounded.

By [4, Corollary 4.4.3], the required uniqueness holds true if for any two D(R+)-
solutions to (L,C2

0 ) with the same initial distribution π corresponding one-dimensional
distributions coincide. In what follows, we fix some solution Y and prove that

Ef(YT ) =

∫
R

PT f(x)π(dx), f ∈ C∞, T > 0. (5.19)

It is easy to prove that Yt, t ≥ 0 is stochastically continuous; see [10]. Then for any
function h(t, x) which is differentiable w.r.t. t, belongs to C2

0 w.r.t. x, and has continuous
and bounded ∂th(t, x), Lxh(t, x), the process

h(t, Yt)−
∫ t

0

(
∂sh(s, Ys) + Lxh(s, Ys)

)
ds

is a martingale, see [4, Lemma 4.3.4 (a)]. We use this fact for a certain family of functions
which approximate

hT,f (t, x) = PT−tf(x), t ∈ [0, T ], x ∈ R;

here and below f ∈ C∞, T > 0 are fixed. Consider a family of functions {ϕR, R > 0} ⊂ C2

such that ‖ϕR‖C2 ≤ C and

ϕR(x) =

{
1, |x| ≤ R+ 1;

0, |x| ≥ R+ 2.
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Define
hT,fR,ε(t, x) = ϕR(x)PT−t,εf(x), R > 0, ε > 0.

Recall that PT−t,εf(x) ∈ C2, and is bounded together with its derivatives uniformly for
t ∈ [0, T1], |x| ≤ R for any T1 < T,R > 0. Multiplying this function by ϕR, we get a
function from the class C2

0 . That is, we have that

MT,f
R,ε (t) = hT,fR,ε(t, Yt)−

∫ t

0

(
∂sh

T,f
R,ε(s, Ys) + Lxh

T,f
R,ε(s, Ys)

)
ds, t ∈ [0, T1]

is a martingale. Denote hT,fε (t, x) = PT−t,εf(x). It is clear that

∂th
T,f
R,ε(t, x) = ϕR(x)hT,fε (t, x).

In addition, we have

Lxh
T,f
R,ε(t, x)=ϕR(x)Lxh

T,f
ε (t, x)+

∫
|u|≥1

(
ϕR(x+u)−ϕR(x)

)
hT,fε (t, x+u)µ(x, du), |x| ≤ R.

Thus for |x| ≤ R we can write

∂th
T,f
R,ε(t, x) + Lxh

T,f
R,ε(t, x) = −ϕR(x)QT−s,εf(x) + ΘT,f

R,ε(t, x),

where Qt,εf is defined in Lemma 5.3, and

ΘT,f
R,ε(t, x) =

∫
|u|≥1

(
ϕR(x+ u)− ϕR(x)

)
hT,fε (t, x+ u)µ(x, du)

Observe that, for |x| ≤ R,(
ϕR(x+ u)− ϕR(x)

)
6= 0⇒ |x+ u| ≥ R+ 1,

which yields
|ΘT,f
R,ε(t, x)| ≤ C sup

t∈[0,T ],|y|≥R+1

|hT,fε (t, y)| =: FT,fR,ε .

Now we can finalize the proof. Without loss of generality, we assume that the initial
distribution π has a compact support, and take R large enough, so that suppπ ⊂ (−R,R).
Denote

τR = inf{t : |Yt| ≥ R} > 0,

then for any T1 < T we have

|EhT,fR,ε(T1 ∧ τR, YT1∧τR)−EhT,fR,ε(0, Y0)|

≤ E

∫ T1∧τR

0

|QT−s,εf(Ys)| ds+ TFT,fR,ε .

Using Lemma 5.3, we pass to the limit as ε→ 0 and get

|EhT,f (T1 ∧ τR, YT1∧τR)−EhT,f (0, Y0)| ≤ CT sup
t∈[0,T ],|y|≥R+1

|hT,f (t, y)|.

Taking R→∞ and using Lemma 5.1, we get by the domination convergence theorem

EhT,f (T1, YT1
) = EhT,f (0, Y0), T1 < T.

Taking T1 → T and using the domination convergence theorem again, we get

Ef(YT ) = EPT f(Y0) =

∫
R

PT f(x)π(dx),

which proves (5.19).
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6 Proof of Theorem 3.4

Statement I follows straightforwardly from (4.32) and (4.33). To prove statement II,
we further re-arrange decomposition (4.16). Namely, we write

Φt(x, y) = Φkernelt (x, y) + Φintegralt (x, y), (6.1)

where

Φintegralt (x, y) = Φν,large,+t =

∫
|u|>t1/α

p0
t (x+ u, y)ν(x; du),

and the term Φkernelt (x, y) = Φt(x, y)−Φintegralt (x, y) admits a point-wise (‘kernel’) bound

|Φkernelt (x, y)| ≤ Ct−1+δG
(α,α−ζ,α)
t (x, κt(y)).

Since the kernel G(α,α−ζ,α)
t (u, v) is bounded by Ct−1/α, satisfies (4.34), and is symmetric,

one has

|Φkernelt (x, y)| ≤ Ct−1/α−1+δ, sup
y

∫
R

|Φkernelt (x, y)| dx ≤ Ct−1+δ. (6.2)

Next, it is straightforward to see that Φintegralt (x, y) satisfies the similar sup-bound: since
p0
t (x, y) is bounded by Ct−1/α, we have by (2.3), (3.3)

|Φintegralt (x, y)| ≤ Ct−1/α

∫
|u|>t1/α

|ν|(x; du) ≤ Ct−1/α−1+δβ . (6.3)

To obtain an integral bound for Φintegralt (x, y), we recall that

p0
t (x+ u, y) ≤ C

t1/α
G(α)

(
κt(y)− x− u

t1/α

)
,

and observe that
G(α)(x) ≤ C

(
1[−1,1] +G(α) ∗ 1[−1,1]

)
(x).

Then by (3.17)∫
R

|Φintegralt (x, y)| dx ≤ Ct−1/α

∣∣∣∣∣
∫
R

∫
|u|>t1/α

G(α)

(
w − x− u
t1/α

)
ν(x; du) dx

∣∣∣∣∣
≤ Ct−1/α

∣∣∣∣∣
∫
R

∫
|u|>t1/α

1[−1,1]

(
w − x− u
t1/α

)
ν(x; du) dx

∣∣∣∣∣
+ Ct−1/α

∣∣∣∣∣
∫
R

(∫
R

∫
|u|>t1/α

1[−1,1]

(
w − x− u
t1/α

− z
)
G(α)(z)ν(x; du) dx

)
dz

∣∣∣∣∣ ≤ Ct−1+δν.

Combined with (6.2), (6.3), this yields

|Φt(x, y)| ≤ Ct−1/α−1+δ, sup
y

∫
R

|Φt(x, y)| dx ≤ Ct−1+δ∞ . (6.4)

These bounds can be extended to the kernel Ψ =
∑
k≥1 Φ~k:

|Ψt(x, y)| ≤ Ct−1/α−1+δ, sup
y

∫
R

|Ψt(x, y)| dx ≤ Ct−1+δ∞ . (6.5)

The second bound follows from the second bound in (6.4) literally in the same way with
(4.29). To get the first bound, we slightly modify the argument from Section 4.3. In what
follows we use the notation of this section. Let k ≥ 1, τ1, . . . , τk ∈ [0, T ] be given, and
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let j ∈ {1, . . . , k} be such that τj = maxi=1,...,k τi. Using the first inequality in (6.4) with
t = τj , we get

|Φτ1,...,τk(x, y)| ≤
∫
Rk−1

∫
R

|Φτ1(x,w1) . . .Φτk(wk−1, y)| dw1 . . . dwk−1

≤ Cτ−1−1/α+δ
j

∫
Rj−1

|Φτ1(x,w1) . . .Φτj−1
(wj−2, wj−1)| dw1 . . . dwj−1

×
∫
Rk−j−1

|Φτj+1(wj , wj+1) . . .Φτk−1
(wk−2, wk−1)| dwj+1 . . . dwk−1.

Then, using repeatedly (4.2) and the second inequality in (6.4) we get

|Φτ1,...,τk(x, y)| ≤

≤ Cτ−1−1/α+δ
j (Cτ−1+δ

j−1 )

∫
Rj−2

|Φτ1(x,w1) . . .Φτj−2
(wj−3, wj−2)| dw1 . . . dwj−2

× (Cτ−1+δ∞
j+1 )

∫
Rk−j−2

|Φτj+2(wj+1, wj+2) . . .Φτk−1
(wk−2, wk−1)| dwj+2 . . . dwk−1

≤ · · · ≤ Ck
( j−1∏
i=1

τ−1+δ
i

)
τ
−1−1/α+δ
j

( k∏
i=j+1

τ−1+δ∞
i

)
≤ τ−1−1/α−δ

j

( ∏
i 6=j,i≤k

τ−1+δ∞
i

)
.

Now we take 0 ≤ s1 ≤ · · · ≤ sk−1 ≤ t and put s0 = 0, sk = t, τi = si − si−1, i = 1, . . . , k.
Then the maximal value τj is ≥ t/k, and we get

|Φ~k
t (x, y)|

≤ k1/αt−1/αCk
k∑
j=1

∫
0≤s1≤···≤sk−1≤t

( ∏
i 6=j,i≤k

(si − si−1)−1+δ∞
)

(sj − sj−1) ds1, . . . dsk

≤ t−1/α+δ+(k−1)δ∞Ckk1/α+1 Γ(δ∞)k−1Γ(δ)

Γ((k − 1)δ∞ + δ)
.

Taking the sum in k ≥ 1, we obtain the first bound in (6.5).

We also have

p0
t (x, y) ≤ Ct−1/α, sup

y

∫
R

p0
t (x, y) dx ≤ C.

Repeating the calculation used in the proof of (6.5), we get

|rt(x, y)| =

(∫ t/2

0

+

∫ t

t/2

)
|(p0

t−s ∗Ψs)(x, y)| ds

≤ C21/αt−1/αtδ∞ + C21+1/α−δt−1/α+δ ≤ Ct−1/α+δ∞ .

Combined with (4.33), this completes the proof.

7 Proof of Theorem 3.5

We further analyze the bound (4.22) under the stronger assumption Hν (ii). To
simplify the notation, we assume γ ≤ α and write γ instead of γ′. This does not restrict
generality because decreasing γ in the assumption (3.4) leaves this assumption true. We
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have

Qt(x, y) = tβ/α|Φν,large,+t (x, y)|

≤ Ctβ/α|
∫
|u|>t1/α

t−1/αG(α)

(
κt(y)− x− u

t1/α

)(
|u|−β−11|u|≤1 + |u|−γ−11|u|>1

)
du

= C

∫
|u|>t1/α

G
(α,α,α)
t (x+ u, κt(y))G

(α,β,γ)
t (0, u) du

≤ C
(
G

(α,α,α)
t ∗G(α,β,γ)

t

)
(x, κt(y)),

in the last inequality we have used that G(α,α,α)
t (x, y) and G(α,β,γ)

t (x, y) actually depend
on |x− y|, only. Recall that β < α, γ ≤ α. Then it is a direct calculation to check that

G
(α,α,α)
t (x, y) ≤ G(α,β,γ)

t (x, y), G
(α,β,γ)
2t (x, y) ≤ CG(α,β,γ)

t (x, y).

Then it follows from the sub-convolution property for G(α,β,γ)
t (x, y) (see Appendix A.5)

that
Qt(x, y) ≤ CG(α,β,γ)

t (x, κt(y)).

That is, by (4.22) we have

|Φt(x, y)| ≤ Ct−1+δG
(α,α,α)
t (x, κt(y))

+ Ct−1+δζG
(α,α−ζ,α)
t (x, κt(y)) + Ct−1+δβG

(α,β,γ)
t (x, κt(y)).

Since

t−1+δζG
(α,α−ζ,α)
t (x, y) =


t−1/α−(α−ζ)/α, |y − x| ≤ t1/α
|y − x|−(α−ζ)−1, t1/α < |y − x| ≤ 1,

|y − x|−α−1, |y − x| > 1,

t−1+δβG
(α,β,γ)
t (x, y) =


t−1/α−β/α, |y − x| ≤ t1/α
|y − x|−β−1, t1/α < |y − x| ≤ 1,

|y − x|−γ−1, |y − x| > 1,

the sum of these kernels satisfies

t−1+δζG
(α,α−ζ,α)
t (x, y) + t−1+δβG

(α,β,γ)
t (x, y) ≤ 2


t−1/α−β′/α, |y − x| ≤ t1/α
|y − x|−β′−1, t1/α < |y − x| ≤ 1,

|y − x|−γ−1, |y − x| > 1,

= 2t−1+δ′G
(α,β′,γ)
t (x, y),

where

β′ = max(β, α− ζ), δ′ =
α− β′

α
> 0

(recall that we have assumed γ ≤ α). This finally gives the bound

|Φt(x, y)| ≤ Ct−1+δH1
t (x, y) + Ct−1+δ′H2

t (x, y) (7.1)

with

H1
t (x, y) = G

(α,α,α)
t (x, κt(y)) =

1

t1/α
G(α)

(
κt(y)− x
t1/α

)
, H2

t (x, y) = G
(α,β′,γ)
t (x, κt(y)).

(7.2)
Denote δ1 = δ, δ2 = δ′. For any k > 1 we have

|Φ~k
t (x, y)| ≤Ck

∑
i1,...,ik∈{1,2}

∫
0<s1<···<sk−1<t

 k∏
j=1

(sj − sj−1)−1+δij

×
×
(
Hi1
s1 ∗ · · · ∗H

ik
t−sk

)
(x, y) ds1, . . . , dsk−1.
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The kernels H1, H2 satisfy H1
t (x, y) ≤ H2

t (x, y) and have the sub-convolution property,
see Proposition A.10 below. Then for t ∈ (0, T ]

∫
0<s1<···<sk−1<t

 k∏
j=1

(sj − sj−1)−1+δ1

(H1
s1 ∗ · · · ∗H

1
t−sk

)
(x, y) ds1, . . . , dsk−1

≤ CkH1
t (x, y)

∫
0<s1<···<sk−1<t

 k∏
j=1

(sj − sj−1)−1+δ1

 ds1, . . . , dsk−1

= t−1+kδ1
CkΓ(δ1)k

Γ(kδ1)
H1
t (x, y) ≤ C̃t−1+δ1

CkΓ(δ1)k

Γ(kδ1)
H1
t (x, y),

and (recall that δ1 < δ2)∫
0<s1<···<sk−1<t

 k∏
j=1

(sj − sj−1)−1+δij

(Hi1
s1 ∗ · · · ∗H

ik
t−sk

)
(x, y) ds1, . . . , dsk−1

≤ CkH2
t (x, y)

∫
0<s1<···<sk−1<t

 k∏
j=1

(sj − sj−1)−1+δij

 ds1, . . . , dsk−1

= t−1+
∑
j δij

Ck
∏
j Γ(δij )

Γ(
∑
j δij )

H2
t (x, y) ≤ C̃t−1+δ2

CkΓ(δ2)k

Γ(kδ1)
H2
t (x, y),

if at least one of the indices i1, . . . , ik equals 2. Thus

|Ψt(x, y)| ≤
∑
k≥1

|Φ~k
t (x, y)| ≤ Ct−1+δ1H1

t (x, y) + Ct−1+δ2H2
t (x, y). (7.3)

Recall that δ1 = δ, δ2 = δ′ and

rt(x, y) = (p~ Ψ)t(x, y), p0
t (x, y) ≤ CH1

t (x, y).

Then, using the sub-convolution properties of H1, H2 and the inequality H1 ≤ H2 in the
same way we did before, we get

|rt(x, y)| ≤ C∆(t)H1
t (x, y) + Ctδ

′
H2
t (x, y). (7.4)

In the notation from the proof of Proposition A.10, we have

H1
t (x, y) = F

(α,α,α)
t

(
x− κt(y)

t1/α

)
, H2

t (x, y) = F
(α,β′,γ)
t

(
x− κt(y)

t1/α

)
.

Using (A.17) and (A.40), (A.41), we get

|rt(x, y)| ≤ C∆(t)G
(α,α,α)
t (χt(x), y) + Ctδ

′
G

(α,β′,γ′)
t (χt(x), y). (7.5)

Combined with (4.33), this completes the proof.

A Appendix

A.1 Proof of (3.9), (3.10)

Denote

Nβ(ε) :=

{ 1
|1−β|ε

1−β , β ∈ (0, 2), β 6= 1;

1 + log ε−1, β = 1.

The proof of the following statement is easy and omitted.

EJP 24 (2019), paper 83.
Page 31/45

http://www.imstat.org/ejp/

https://doi.org/10.1214/19-EJP339
http://www.imstat.org/ejp/


Approximation of locally α-stable Lévy-type processes by non-linear regressions

Proposition A.1. Let υ(du) be a measure satisfying

υ(|u| > r) ≤ Cυr−β , r ∈ (0, 1]

for some β ∈ (0, 2). Then ∫
ε<|u|≤1

|u|σ(du) ≤ CNβ(ε), ε ≤ 1 (A.1)

for β ∈ [1, 2), and ∫
|u|≤ε

|u| υ(du) ≤ CNβ(ε), ε ≤ 1, (A.2)

for β ∈ (0, 1). In addition, for any β ∈ (0, 2)∫
|u|≤ε

|u|2 υ(du) ≤ Cε2−β , ε ≤ 1. (A.3)

The constants C in (A.1), (A.2), and (A.3) depend on β and Cυ, only.

Proposition A.2. Let f be such that for some σ ∈ [0, 1]

‖f‖Hσ,loc := sup
x 6=y,|x−y|≤1

|f(x)− f(y)|
|x− y|σ

<∞. (A.4)

Then for each t ∈ (0, T ]

Ft(x) :=
1

2
√
πt1/α

∫
R

e−z
2t−2/α

f(x− z)dz

satisfies
sup
x
|f(x)− Ft(x)| ≤ Cσ,α,T tσ/α‖f‖Hσ,loc , (A.5)

and Ft is Lipschitz continuous with Lip(ft) ≤ Cσ,α,T tσ/α−1/α‖f‖Hσ,loc .

Proof. It follows from (A.4) that for |x− y| ≥ 1

|f(x)− f(y)| ≤ 2|x− y|‖f‖Hσ,loc .

This inequality for large |x−y|, combined with the inequality (A.4) for small |x−y| yields
the following bound valid for all x, y ∈ R:

|f(x)− f(y)| ≤ 2
(
|x− y|σ ∨ |x− y|

)
‖f‖Hσ,loc ≤ 2

(
|x− y|σ + |x− y|

)
‖f‖Hσ,loc . (A.6)

Then

|Ft(x)− f(x)| ≤ 1

2
√
πt1/α

∫
R

e−z
2t−2/α

|f(x− z)− f(x)|dz

≤ 1

2
√
πt1/α

‖f‖Hσ,loc
∫
R

e−z
2t−2/α

(
C|z|σ + C|z|

)
dz

=
(
C1t

σ/α + C2t
1/α
)
‖f‖Hσ,loc ,

which proves (A.5). Since

∂xFt(x) =
1

2
√
πt1/α

∫
R

e−z
2t−2/α

f ′(x− z) dz

= − 1√
πt1/α

∫
R

zt−2/αe−z
2t−2/α

f(x− z)dz

=
1√
πt1/α

∫
R

zt−2/αe−z
2t−2/α

(f(x)− f(x− z)) dz,
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similar calculation gives

Lip(Ft) ≤ sup
x
|∂tf(x)| ≤

(
C1t

σ/α−1 + C2t
1/α−1

)
‖f‖Hσ,loc .

Now we are ready to prove (3.9), (3.10). We decompose

bt(x) = b̃(x) + m̃
(α)
t (x) + m̃ν

t (x) =: f1(x) + f2,t(x) + f3,t(x), (A.7)

where we denote

m̃
(α)
t (x) =

{
−
∫
t1/α<|u|≤1

uµ(α)(x; du), α ∈ [1, 2),∫
|u|≤t1/α uµ

(α)(x; du), α ∈ (0, 1),

m̃ν
t (x) =

{
−
∫
t1/α<|u|≤1

uν(x; du), β ∈ [1, 2),∫
|u|≤t1/α uν(x; du), β ∈ (0, 1).

By condition (3.2), we have ‖f1‖Hη,loc ≤ C. By condition H(α)(i) and Proposition A.1,
we have ‖f2,t‖Hζ ,loc ≤ CNα(t1/α). Finally, by (2.3), (3.3), and Proposition A.1, we have
‖f3,t‖H0,loc ≤ CNβ(t1/α). Applying Proposition A.2, we get (3.9), (3.10):

|bt(x)−Bt(x)| ≤ Ctη/α + Ctζ/αNα(t1/α) + CNβ(t1/α) ≤ Ctδ,

Lip (Bt) ≤ Ctη/α−1 + Ctζ/α−1Nα(t1/α) + Ct−1Nβ(t1/α) ≤ Ct−1+δ.

Note that the above calculation also gives

|bt(x)− b̃(x)| ≤ CNα(t1/α) ≤ Ct−1+1/α
(

1 + 1α=1 log+ t
−1
)
. (A.8)

A.2 Auxiliary family χts(x) and properties of χt(x), κt(y)

Proposition A.3. For any T > 0 there exists C > 1 such that

C−1|x| ≤ |χt(x)| ≤ C|x|, 0 ≤ t ≤ T, |x| ≥ C. (A.9)

Proof. By Hdrift, the function b̃ satisfies (A.4) with σ = η. Therefore for this function
(A.6) with σ = η holds. Then by (3.9) and (A.8) the coefficient Bt in the ODE, which
defines χt, satisfies the following linear growth bound:

|Bt(x)| ≤ C1 + C2t
−1+1/α

(
1 + 1α=1 log+ t

−1
)

+ C3|x|.

This in a standard way provides

e−C3 |x| − C4 ≤ |χt(x)| ≤ eC3 |x|+ C4.

In order to relate the families χs(x), κs(y), we introduce an auxiliary family χts(x), the
solution to the Cauchy problem

d

ds
χts(x) = Bt−s(χ

t
s(x)), s ∈ [0, t], χt0(x) = x. (A.10)

Proposition A.4. For any T > 0 there exists C such that for any s ≤ t ≤ T

e−Ct
δ

|κt(y)− x| ≤ |κt−s(y)− χts(x)| ≤ eCt
δ

|κt(y)− x|. (A.11)
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Proof. Denote xs = χts(x), ys = κt−s(y), then

(xs − ys)′ = (xs − ys)qt,s, qt,s =
Bt−s(xs)−Bt−s(ys)

xs − ys

with the convention 0
0 = 1. Then

χts(x)− κt−s(y) = xs − ys = (x0 − y0) exp

(∫ s

0

qt,r dr

)
= (x− κt(y)) exp

(∫ s

0

qt,r dr

)
,

which provides the required statement by (3.10) since |qt,r| ≤ Lip (Bt−r).

Proposition A.5. For any T > 0 and δ < min(δη, δζ , δβ) there exist C such that for

χts(x) = χs(x) + t1/α
∫ s

0

υ(χr(x))
(
Wα(t; r)−Wα(t; t− r)

)
dr +Qs,t(x), s ≤ t (A.12)

with
|Qs,t(x)| ≤ Ct1/α+δ, s ≤ t ≤ T. (A.13)

Proof. Denote xs = χts(x), x̃s = χs(x), then

(xs − x̃s)′ = (xs − x̃s)q̃t,s + Q̃t,s

with

q̃t,s =
Bt−s(xs)−Bt−s(x̃s)

xs − x̃s
, Q̃t,s = Bt−s(x̃s)−Bs(x̃s),

and thus

xs − x̃s =

∫ s

0

Q̃t,r exp

(∫ s

r

q̃t,w dw

)
dr. (A.14)

By (3.10), ∣∣∣∣exp

(∫ s

r

q̃t,w dw

)
− 1

∣∣∣∣ ≤ Ctδ. (A.15)

On the other hand, by (3.9)

|Q̃t,r − (bt−r(x̃r)− br(x̃r))| ≤ C
(

(t− r)−1+1/α+δ + r−1+1/α+δ
)
,

and by (3.8)

bt−r(x)− br(x) = mµ
r (x)−mµ

t−r(x) =
(
m(α)
r (x)−m(α)

t−r(x)
)

+
(
mν
r (x)−mν

t−r(x)
)
,

where we denote

m(α)
r (x) =

∫
r1/α<|u|≤1

uµ(α)(x, du), mν
r (x) =

∫
r1/α<|u|≤1

uν(x, du).

Assume for a while that r ≤ t− r. By Proposition A.1,

|mν
r (x)−mν

t−r(x)| ≤
∫
r1/α<|u|≤(t−r)1/α

|u| |ν|(x, du) ≤
{
CNβ((t− r)1/α), β ∈ (0, 1);

CNβ(r1/α), β ∈ [1, 2).

Similarly, for t− r ≤ r ≤ t

|mν
r (x)−mν

t−r(x)| ≤
∫

(t−r)1/α<|u|≤r1/α
|u| |ν|(x, du) ≤

{
CNβ(r1/α), β ∈ (0, 1);

CNβ((t− r)1/α), β ∈ [1, 2).
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That is, in any case we have

|mν
r (x)−mν

t−r(x)| ≤ CNβ(r1/α) + CNβ((t− r)1/α) ≤ C
(

(t− r)−1+1/α+δ + r−1+1/α+δ
)
.

On the other hand, for r ≤ t we have

m(α)
r (x) = m

(α)
t (x) +

∫
r1/α<|u|≤t1/α

uµ(α)(x, du)

= m
(α)
t (x) + υ(x)

∫ t1/α

r1/α

dw

wα
= m

(α)
t (x) + υ(x)t1/αW (t; r).

Summarizing these calculations we get∣∣∣Q̃t,r − υ(x̃r)t
1/α
(
Wα(t; r)−Wα(t; t− r)

)∣∣∣ ≤ C((t− r)−1+1/α+δ + r−1+1/α+δ
)
.

This bound combined with (A.14) and (A.15), provides (A.12) and (A.13).

Recall that υ(·) is bounded and Wα(t; ·) is a probability density. That is, directly from
(A.12), (A.13) we get the bound

|χts(x)− χs(x)| ≤ Ct1/α, s ≤ t ≤ T. (A.16)

Combined with Proposition A.4, this gives the following.

Corollary A.6. For each T > 0, there exists C such that for any s ≤ t ≤ T

e−Ct
δ

|κt(y)− x| − Ct1/α ≤ |κt−s(y)− χs(x)| ≤ eCt
δ

|κt(y)− x|+ Ct1/α, s ≤ t ≤ T.
(A.17)

A.3 Stable densities

The kernel G(α)(x) (see the definition before Corollary 3.6) possess the following
properties which can be verified straightforwardly:

G(α)(x) ≤ G(β)(x), 0 < β < α; (A.18)

(1 + |x|)βG(α)(x) ≤ CG(α−β)(x), 0 < β < α; (A.19)

sup
|v|≤1

G(α)(x+ v) ≤ CG(α)(x), (A.20)

and for any c > 0 there exists C such that

G(α)(cx) ≤ CG(α)(x). (A.21)

We also have (
G(α) ∗G(α)

)
(x) ≤ CG(α)(x). (A.22)

The following two propositions collect the properties of the α-stable densities
g(λ,ρ,υ)(x), see (3.6) for the definition.

Proposition A.7. The density g(λ,ρ,υ)(x) is well defined and belongs to the class C1 w.r.t.
(λ, ρ), and the class C2

∞ w.r.t. x. The following bounds hold true for each α ∈ (0, 2),
0 < λmin ≤ λmax, R > 0 uniformly in λ ∈ [λmin, λmax], ρ ∈ [−1, 1], |υ| ≤ R, x ∈ R:

g(λ,ρ,υ)(x) ≤ CG(α)(x), (A.23)

|∂λg(λ,ρ,υ)(x)| ≤ CG(α)(x), (A.24)

|∂ρg(λ,ρ,υ)(x)| ≤ CG(α)(x), (A.25)
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Proof. We use the standard trick of a decomposition of an infinitely divisible law into a
convolution of ‘small’ and ‘large’ jump parts. Namely, we put

Ψ
(λ,ρ,υ)
α,small(ξ) = iξυ +

∫
|u|≤1

(
eiuξ − 1− iuξ

)
µ(α,λ,ρ)(du),

Ψ
(λ,ρ)
α,large(ξ) =

∫
|u|>1

(
eiuξ − 1

)
µ(α,λ,ρ)(du),

and observe that exp Ψ
(λ,ρ)
α,large(ξ) is the Fourier transform of a compound Poisson process

with the intensity of the ‘Poisson clock’ equal∫
|u|>1

µ(α,λ,ρ)(du) =
2λ

α
,

and with the law of a single jump having the density

m(α,ρ)(u) =
α(1 + ρ sgnu)

2|u|α+1
1|u|>1.

On the other hand,

Ψ
(λ,ρ,υ)
α,small(ξ) = iξυ − λ

∫
|u|≤1

1− cos(uξ)

|u|α+1
du− iλρ

∫
|u|≤1

uξ sin(uξ)

|u|α+1
du,

and in particular

Re Ψ
(λ,ρ,υ)
α,small(ξ) = −λ

∫
|u|≤1

1− cos(uξ)

|u|α+1
du ≤ −c1|ξ|α + c2 (A.26)

with some positive c1, c2. This yields that the inverse Fourier transform

f (λ,ρ,υ)(x) =
1

2π

∫
R

e−ixξ+Ψ
(λ,ρ,υ)
α,small(ξ) dξ

is well defined. Then the density g(λ,ρ,υ)(x) is also well defined and possesses the
representation

g(λ,ρ,υ)(x) = e−2λ/αf (λ,ρ,υ)(x) + e−2λ/α
∞∑
k=1

1

k!

(
f (λ,ρ,υ) ∗ [m̃(λ,ρ,υ)]∗k

)
(x) (A.27)

with
m̃(α,λ,ρ)(ξ) = (2λ/α)m(α,ρ)(ξ).

We claim that, uniformly in λ ∈ [λmin, λmax], ρ ∈ [−1, 1], |υ| ≤ R, x ∈ R,

|f (λ,ρ,υ)(x)|+ |∂λf (λ,ρ,υ)(x)|+ |∂ρf (λ,ρ,υ)(x)|+ |∂xf (λ,ρ,υ)(x)|+ |∂2
xxf

(λ,ρ,υ)(x)| ≤ Ce−|x|.
(A.28)

The argument here is quite standard (e.g. [9]), but for the sake of completeness we
outline the proof. The function Ψ

(λ,ρ,υ)
α,small is defined as an integral over the bounded

interval [−1, 1], and thus has an analytic extension to C:

Ψ
(λ,ρ,υ)
small (ξ + iϕ) = iξυ − ϕυ +

∫
|u|≤1

(e−uϕ+iuξ − 1− iuξ + uϕ)µ(α,λ,ρ)(du)

=

∫
|u|≤1

e−uϕ(eiuξ − 1− iuξ)µ(α,λ,ρ)(du)

+

∫
|u|≤1

(e−uϕ − 1 + uϕ)µ(α,λ,ρ)(du)

− ϕυ + iξυ + i

∫
|u|≤1

(e−uϕ − 1)uξ µ(α,λ,ρ)(du).
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Then for ϕ ∈ [−1, 1] we have

Re Ψ
(λ,ρ,υ)
α,small(ξ + iϕ) = −

∫
|u|≤1

e−uϕ(1− cos(uξ))µ(α,λ,ρ)(du)

+

∫
|u|≤1

(e−uϕ − 1 + uϕ)µ(α,λ,ρ)(du)− ϕυ

≤ −e−1λ

∫
|u|≤1

1− cos(uξ)

|u|α+1
du ≤ −e−1(c1|ξ|α + c2), ξ ∈ R,

(A.29)

see (A.26). This makes it possible to change the integration contour in the inverse
Fourier transform formula from R = R+ i0 to R+ iϕ, which gives

f (λ,ρ,υ)(x) =
1

2π

∫
R

e−ixξ+xϕ+Ψ
(λ,ρ,υ)
α,small(ξ+iϕ) dξ.

Take ϕ = ϕx = −sgnx, then

f (λ,ρ,υ)(x) =
e−|x|

2π

∫
R

e−ixξ+Ψ
(λ,ρ,υ)
α,small(ξ+iϕx) dξ.

This representation and (A.29) give

f (λ,ρ,υ)(x) + |∂λf (λ,ρ,υ)(x)|+ |∂ρf (λ,ρ,υ)(x)|+ |∂xf (λ,ρ,υ)(x)|+ |∂2
xxf

(λ,ρ,υ)(x)|

≤ Ce−|x|
∫
R

eRe Ψ
(λ,ρ,υ)
α,small(ξ+iϕx)

×
(

1 + |∂λΨ
(λ,ρ,υ)
α,small(ξ + iϕx)|+ |∂ρΨ(λ,ρ,υ)

α,small(ξ + iϕx)|+ |ξ|+ ξ2
)
dξ.

It is easy to check that

|∂λΨ
(λ,ρ,υ)
α,small(ξ + iϕx)|+ |∂ρΨ(λ,ρ,υ)

α,small(ξ + iϕx)| ≤ C(1 + ξ2),

hence (A.28) follows by (A.29).
Next, we give explicitly the function m̃(α,λ,ρ)(u) and its derivatives:

m̃(α,λ,ρ)(u) = λ
1 + ρ sgnu

|u|α+1
1|u|>1,

∂λm̃
(α,λ,ρ)(u) =

1 + ρ sgnu

|u|α+1
1|u|>1, ∂ρm̃

(α,λ,ρ)(u) =
λ sgnu

|u|α+1
1|u|>1,

and observe that the absolute values of these functions are dominated by CG(α)(u).
Now we can finalize the proof. It follows from (A.28) that

f (λ,ρ,υ)(x) ≤ CG(α)(x),

then taking C large enough we obtain inductively(
f (λ,ρ,υ) ∗ [m̃(α,λ,ρ)]∗k

)
(x) ≤ C2k+1G(α)(x),

and applying (A.27) we complete the proof of (A.23). The proofs of (A.24), (A.25) are
essentially the same. The minor difference is that respective derivatives of f (λ,ρ,υ) ∗
[m̃(α,λ,ρ)]∗k now actually contain (k + 1) summands, each of them being a (k + 1)-fold
convolution where each term is dominated by CG(α)(x); however the extra multiplier
(k + 1) is not essential thanks to the term 1/k! in (A.27).
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Proposition A.8. The density g(λ,ρ,υ)(x) belongs to the class C2
∞ w.r.t. x. The following

bounds hold true for each α ∈ (0, 2), 0 < λmin ≤ λmax, R > 0 uniformly in λ ∈ [λmin, λmax],
ρ ∈ [−1, 1], |υ| ≤ R, x ∈ R:

|∂xg(λ,ρ,υ)(x)| ≤ CG(α+1)(x), (A.30)

|∂2
xxg

(λ,ρ,υ)(x)| ≤ CG(α+2)(x). (A.31)

|L(α),sym
x g(λ,ρ,υ)(x)| ≤ CG(α)(x), (A.32)

|L(α),asym
x g(λ,ρ,υ)(x)| ≤ CG(α)(x), (A.33)

see (4.18), (4.19) for the definition of L(α),sym, L
(α),sym
x .

Proof. The proofs of (A.32), (A.33) are completely analogous to the previous proof.
Namely, using (A.28) it is easy to verify that

|L(α),sym
x f (λ,ρ,υ)(x)|+ |L(α),asym

x f (λ,ρ,υ)(x)| ≤ CG(α)(x).

Then the required bounds follow by (A.27) and (A.22). The new difficulty in (A.30), (A.31)
is that the kernels in the right hand sides has the higher order of decay in x, and thus
cannot be derived simply by (A.22). We will prove the first of these inequalities only: the
second one is quite analogous, though the calculation is more cumbersome. Like we did
that in the previous proof, we use representation (A.27) and analyze the derivatives of
the terms in the right hand side sum. Note that by (A.26) the derivative ∂xf (λ,ρ,υ)(x) is
well defined and

∂xf
(λ,ρ,υ)(x) =

1

2π

∫
R

(−iξ)e−ixξ+Ψ
(λ,ρ,υ)
α,small(ξ) dξ.

Similarly to the previous proof, we deduce that

|∂xf (λ,ρ,υ)(x)| ≤ Ce−|x| ≤ CG(α+1)(x).

On the other hand, for u 6= ±1 there exists

∂um̃
(α,λ,ρ)(u) = −(α+ 1)λ

sgnu+ ρ

|u|α+2
1|u|>1,

and the absolute value of the latter function is dominated by CG(α+1)(u).
Let us prove the following: there exists C such that for any f ∈ C1 with |f(x)| ≤

CfG
(α)(x), |∂xf(x)| ≤ CfG(α+1)(x) the following inequalities hold:

|(f ∗ m̃(α,λ,ρ))(x)| ≤ CCfG(α)(x), |∂x(f ∗ m̃(α,λ,ρ))(x)| ≤ CCfG(α+1)(x). (A.34)

This will easily yield

|∂x
(
f (λ,ρ,υ) ∗ [m̃(α,λ,ρ)]∗k

)
(x)| ≤ Ck+1G(α+1)(x)

and complete the proof.
The first inequality in (A.34) follows just from (A.22). To prove the second inequality,

we first note that (A.22) also yields that, for some C,

|∂x(f ∗ m̃(α,λ,ρ))(x)| = |(f ′ ∗ m̃(α,λ,ρ))(x)|

is dominated by CCfG(α)(x). Hence it is sufficient to consider the case |x| > 2, only. Let
x > 2, the case x < −2 is quite analogous. We have

∂x(f ∗ m̃(α,λ,ρ))(x) =

∫ x/2

−∞
f ′(x− u)m̃(α,λ,ρ)(u) du+

∫ ∞
x/2

f ′(x− u)m̃(α,λ,ρ)(u) du

=

∫ x/2

−∞
f ′(x− u)m̃(α,λ,ρ)(u) du+

∫ ∞
x/2

f(x− u)
(
m̃(α,λ,ρ)

)′
(u) du

− f(x/2)m̃(α,λ,ρ)(x/2);
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note that m̃(α,λ,ρ) is smooth on [x/2,∞) ⊂ (1,∞), hence we can apply the integration by

parts formula here. The term f ′(x− u) in the first integral and the term
(
m̃(α,λ,ρ)

)′
(u)

in the second integral are dominated by CG(α+1)(x/2). Then both these integrals are
dominated by CCfG(α+1)(x/2), and we complete the proof of (A.34) using (A.21).

A.4 Properties of p0
t (x, y): proofs of (4.8), (4.12), and (4.33)

Proof of (4.8). We decompose

Ψα(t, z; ξ) =

∫ t

0

∫
R

(
eiuξ − 1− iuξ1|u|≤t1/α

)
µ(α)(κs(z); du) ds

+ iξ

∫ t

0

∫
s1/α<|u|≤t1/α

uµ(α)(κs(z); du)ds.

Since the density of µ(α)(κs(z); du) is a homogeneous function of u of the order −(α+ 1),
changing the variables v = ut−1/α we get∫ t

0

∫
R

(
eiuξ − 1− iuξ1|u|≤t1/α

)
µ(α)(κs(z); du) ds

=
1

t

∫ t

0

∫
R

(
eivt

1/αξ − 1− ivt1/αξ1|v|≤1

)
µ(α)(κs(z); dv) ds = Ψ(λ̃t(z),ρ̃t(z),0)

α (t1/αξ),

see (3.7) for the definition of Ψλ,ρ,υ
α . On the other hand, we have straightforwardly∫ t

0

∫
s1/α≤|u|≤t1/α

uµ(α)(κs(z); du)ds =

∫ t

0

υ(κs(z))

∫ t1/α

s1/α
r
dr

rα+1
ds = t1/αυ̃t(z),

see Section 4.1 for the definition of υ̃t. Thus

Ψα(t, z; ξ) = iξt1/αυ̃t(z) + Ψ(λ̃t(z),ρ̃t(z),0
α (t1/αξ) = Ψ(λ̃t(z),ρ̃t(z),υ̃t(z))

α (t1/αξ).

Therefore

ht,z(w) =
1

2π

∫
R

exp [−iwξ + Ψα(t, z; ξ)] dξ

=
1

2π

∫
R

exp
[
−iwξ + Ψ(λ̃t(z),ρ̃t(z),υ̃t(z))

α (t1/αξ)
]
dξ = t−1/αg(λ̃t(z),ρ̃t(z),υ̃t(z))

( w

t1/α

)
,

which yields (4.11).

Proof of (4.12). Denote

ψα(t, z; ξ) = ∂tΨα(t, z; ξ) =

∫
R

(
eiuξ − 1− iuξ1|u|≤t1/α

)
µ(α)(κt(z); du).

It is easy to show that |ψα(t, z; ξ)| ≤ C(1 + ξ2). On the other hand, similarly to (A.26), we
have that for any 0 < τ < T there exist constants c1, c2 such that

Re Ψα(t, z; ξ) ≤ −c1|ξ|α + c2, t ∈ [τ, T ].

Then the dominated convergence gives

∂th
t,z(w − x) = lim

R→∞

1

2π

∫ R

−R
ψα(t, z; ξ)e−iwξ+ixξ+Ψα(t,z;ξ) dξ

=
1

2π

∫
R

ψα(t, z; ξ)e−iwξ+ixξ+Ψα(t,z;ξ) dξ,
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for t ∈ [τ, T ]. Repeating the same argument, we get

L̃(α),z,t
x ht,z(w − x) =

1

2π

∫
R

e−iwξ+Ψα(t,z;ξ)
(
L̃(α),z,t
x eixξ

)
dξ

=
1

2π

∫
R

e−iwξ+Ψα(t,z;ξ)ψα(t, z; ξ)eixξ dξ,

t ∈ [τ, T ], which proves (4.12) for these values of t. Since 0 < τ < T are arbitrary, this
completes the proof.

Proof of (4.33). Denote

←−υ t(x) =

∫ t

0

υ(χs(x))Wα(t; t− s) ds.

We have

p0
t (x, y)− pmain

t (x, y)

=

(
1

t1/α
g(λ̃t(y),ρ̃t(y),υ̃t(y))

(
κt(y)− x
t1/α

)
− 1

t1/α
g(λt(x),ρt(x),←−υ t(x))

(
κt(y)− x
t1/α

))
+

(
1

t1/α
g(λt(x),ρt(x),←−υ t(x))

(
κt(y)− x
t1/α

)
− 1

t1/α
g(λt(x),ρt(x),υt(x))

(
y − χt(x)

t1/α

))
=: R1

t (x, y) +R2
t (x, y).

Note that
g(λ,ρ,υ)(w) = g(λ,ρ,0)(w − υ).

Then by (A.24), (A.25), and (A.30) for any 0 < λmin ≤ λmax, R > 0 there exists C such
that for any λ1, λ2 ∈ [λmin, λmax], ρ1, ρ2 ∈ [−1, 1], υ1, υ2 ∈ [−R,R], and x ∈ R

|g(λ1,ρ1,υ1)(x)− g(λ2,ρ2,υ2)(x)| ≤ C
(
|λ1 − λ2|+ |ρ1 − ρ2|+ |υ1 − υ2|

)
G(α)(x). (A.35)

We have

|λ̃t(y)− λt(x)| =
∣∣∣∣1t
∫ t

0

λ(κτ (y)) dτ − 1

t

∫ t

0

λ(χs(x)) ds

∣∣∣∣
=

∣∣∣∣1t
∫ t

0

(
λ(κt−s(y))− λ(χs(x))

)
ds

∣∣∣∣ ,
in the last identity we changed the variable τ = t− s. By (A.17),

|κt−s(y)− χs(x)| ≤ C|y − χt(x)|+ Ct1/α, s ∈ [0, t].

Since function λ(·) is ζ-Hölder continuous and bounded, this gives

|λ̃t(y)− λt(x)| ≤ C
(
tδζ + |y − χt(x)|ζ ∧ 1

)
.

Similarly,

|ρ̃t(y)− ρt(x)| ≤ C
(
tδζ + |y − χt(x)|ζ ∧ 1

)
.

Finally,

|υ̃t(y)−←−υ t(x)| =
∣∣∣∣∫ t

0

υ(κτ (y))Wα(t; τ) dτ −
∫ t

0

υ(χs(x))Wα(t; t− s) ds
∣∣∣∣

≤
∫ t

0

|υ(κt−s(y))− υ(χs(x))|Wα(t; t− s) ds ≤ C
(
tδζ + |y − χt(x)|ζ ∧ 1

)
.
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Thus by (A.35)

|R1
t (x, y)| ≤ C

(
tδζ + |y − χt(x)|ζ ∧ 1

)( 1

t1/α
G(α)

(
κt(y)− x
t1/α

))
.

By (A.17) and (A.20), (A.21),

1

t1/α
G(α)

(
κt(y)− x
t1/α

)
≤ C 1

t1/α
G(α)

(
y − χt(x)

t1/α

)
= G

(α,α,α)
t (χt(x), y).

This gives finally

|R1
t (x, y)| ≤ C

(
tδζ + |y − χt(x)|ζ ∧ 1

)
G

(α,α,α)
t (χt(x), y) ≤ CtδζG(α,α−ζ,α)

t (χt(x), y).

Next, we decompose

R2
t (x, y) =

(
1

t1/α
g(λt(x),ρt(x),←−υ t(x))

(
κt(y)− x
t1/α

)
− 1

t1/α
g(λt(x),ρt(x),←−υ t(x))

(
y − χtt(x)

t1/α

))
+

(
1

t1/α
g(λt(x),ρt(x),←−υ t(x))

(
y − χtt(x)

t1/α

)
− 1

t1/α
g(λt(x),ρt(x),υt(x))

(
y − χt(x)

t1/α

))
=: R2,1

t (x, y) +R2,2
t (x, y).

We have

|R2,1
t (x, y)| =

∣∣∣∣∫ t

0

∂s

(
1

t1/α
g(λt(x),ρt(x),←−υ t(x))

(
κt−s(y)− χts(x)

t1/α

))
ds

∣∣∣∣
=

∣∣∣∣ 1

t1/α

∫ t

0

(
g(λt(x),ρt(x),←−υ t(x))

)′(κt−s(y)− χts(x)

t1/α

)
Bt−s(κt−s(y))−Bt−s(χts(x))

t1/α
ds

∣∣∣∣ .
Using (A.30), (3.10), (A.11), and (A.16), we get∣∣∣∣ 1

t1/α
(
g(λt(x),ρt(x),←−υ t(x))

)′(κt−s(y)− χts(x)

t1/α

)
Bt−s(κt−s(y))−Bt−s(χts(x))

t1/α

∣∣∣∣
≤ C

t1/α
G(α+1)

(
κt−s(y)− χts(x)

t1/α

)
Lip (Bt−s)

|κt−s(y)− χts(x)|
t1/α

≤ C(t− s)−1+δ

t1/α
G(α)

(
y − χt(x)

t1/α

)
,

which gives

|R2,1
t (x, y)| ≤ CtδG(α,α,α)

t (χt(x), y).

Finally, we have

g(λt(x),ρt(x),←−υ t(x))

(
y − χtt(x)

t1/α

)
= g(λt(x),ρt(x),0)

(
y − χtt(x)− t1/α←−υ t(x)

t1/α

)
,

g(λt(x),ρt(x),υt(x))

(
y − χt(x)

t1/α

)
= g(λt(x),ρt(x),0)

(
y − χt(x)− t1/αυt(x)

t1/α

)
,

and by (A.12)

χtt(x)− χt(x) = t1/α
∫ t

0

υ(χr(x))
(
Wα(t; r)−Wα(t; t− r)

)
dr +Qt,t(x)

= t1/αυt(x)− t1/α←−υ t(x) +Qt,t(x).
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Then by (A.13) ∣∣∣(χtt(x) + t1/α←−υ t(x)
)
−
(
χt(x) + t1/αυt(x)

)∣∣∣ ≤ Ct1/α+δ, (A.36)

and similarly to the above estimates, using (A.30), (A.11), and (A.16), we get

|R2,2
t (x, y)| ≤ CtδG(α,α,α)

t (χt(x), y).

That is,

|p0
t (x, y)− p̃t(x, y)| ≤ |R1

t (x, y)|+ |R2,1
t (x, y)|+ |R2,2

t (x, y)|

≤ CtδζG(α,α−ζ,α)
t (χt(x), y) + CtδG

(α,α,α)
t (χt(x), y),

which is just (4.33).

A.5 Properties of the kernels G(α,β,γ)

Proofs of (4.34) and (4.24). We have

G
(α,β,γ)
t (x, y) = G

(α,β,β)
t (x, y) + tβ/α

[
|y − x|−γ−1 − |y − x|−β−1

]
1|y−x|>1,

and

G
(α,β,β)
t (x, y) ≤ t−1/αG(β)

(
y − x
t1/α

)
.

Since G(β) ∈ L1(R), we get (4.34):∫
R

G
(α,β,γ)
t (x, y) dx ≤ C,

∫
R

G
(α,β,γ)
t (x, y) dy ≤ C, t ∈ (0, T ]. (A.37)

Next, the kernel G(α,β,γ)
t depends only on (y − x)/t1/α:

G
(α,β,γ)
t (x, y) = F

(α,β,γ)
t

(
y − x
t1/α

)
. (A.38)

It is straightforward to verify that the corresponding function

F
(α,β,γ)
t (x) =


t−1/α, |x| ≤ (1 ∧ t−1/α),

t−1/α|x|−β−1, (1 ∧ t−1/α) < |x| ≤ t−1/α),

t(β−γ−1)/α|x|−γ−1, |x| > t−1/α

(A.39)

satisfies the analogues of (A.20), (A.21):

F
(α,β,γ)
t (x+ v) ≤ CF (α,β,γ)

t (x), |v| ≤ 1, (A.40)

and for any c > 0 there exists C such that

F
(α,β,γ)
t (cx) ≤ CF (α,β,γ)

t (x) (A.41)

(the constants C can be chosen the same for all t ∈ (0, T ]). Using (A.17) with s = t and
(A.40), (A.41), we get

G
(α,β,γ)
t (x, κt(y)) ≤ CG(α,β,γ)

t (χt(x), y). (A.42)

Combined with (4.34) this gives (4.24).

We say that a non-negative kernel Ht(x, y) has a sub-convolution property, if for every
T > 0 there exists a constant C such that

(Ht−s ∗Hs)(x, y) ≤ CHt(x, y), t ∈ (0, T ], s ∈ (0, t), x, y ∈ R. (A.43)
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Proposition A.9. For arbitrary α, β, γ > 0, the kernel G(α,β,γ)
t (x, y) has a sub-convolution

property.

Proof. We have for Ht(x, y) = G
(α,β,γ)
t (x, y)

sup
x,y

Ht−s(x, y) ≤
(

2

t

)1/α

for s < t/2, and

sup
x,y

Hs(x, y) ≤
(

2

t

)1/α

otherwise. In both these cases we have by (A.37)

sup
x,y

(Ht−s ∗Hs)(x, y) =

∫
R

Ht−s(x, z)Hs(z, y) dz ≤ Ct−1/α.

This proves (A.43) for x, y such that |x− y| ≤ 2t1/α. Next, Ht(x, y) is positive and thus

(Ht−s ∗Hs)(x, y) =

∫
R

Ht−s(x, z)Hs(z, y) dz

≤
∫
|x−z|>|x−y|/2

Ht−s(x, z)Hs(z, y) dz +

∫
|y−z|>|x−y|/2

Ht−s(x, z)Hs(z, y) dz.

The function F (α,β,γ)
t (x) in the presentation (A.38) of Ht(x, y) = G

(α,β,γ)
t (x, y), for a fixed

t, depends only on |x|, and is a non-increasing function of |x|. Hence

Ht−s(x, z) ≤ Ht−s(x/2, y/2), for |x− z| > |x− y|/2⇔ |x− z| >
∣∣∣x
2
− y

2

∣∣∣ ,
and

Hs(z, y) ≤ Hs(x/2, y/2), for |y − z| > |x− y|/2⇔ |y − z| >
∣∣∣x
2
− y

2

∣∣∣ .
Therefore by (A.37)

(Ht−s ∗Hs)(x, y) ≤
∫
|x−z|>|x−y|/2

Ht−s(x/2, y/2)Hs(z, y) dz

+

∫
|y−z|>|x−y|/2

Ht−s(x, z)Hs(x/2, y/2) dz

≤ C
(
Ht−s(x/2, y/2) +Hs(x/2, y/2)

)
.

Then for |x− y| ≥ 2t1/α we deduce

(Ht−s ∗Hs)(x, y)≤C((t− s)β/α + sβ/α)F (β,γ)

(
y − x

2

)
, F (β,γ)(x)=

{
|x|−β−1, |x| ≤ 1;

|x|−γ−1, |x| > 1.

Clearly, (t− s)β/α + sβ/α ≤ 2tβ/α and

F (β,γ)(x/2) ≤ CF (β,γ)(x),

which completes the proof of (A.43) for |x− y| ≥ 2t1/α.

Proposition A.10. The kernel

Ht(x, y) = G
(α,β,γ)
t (x, κt(y))

has the sub-convolution property.
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Proof. Using (A.42) and Proposition A.9, we get

(Hs ∗Ht−s)(x, y) ≤ C
∫
R

G(α,β,γ)
s (χs(x), y′)G

(α,β,γ)
t−s (y′, κt−s(y)) dy′

≤ CG(α,β,γ)
t (χs(x), κt−s(y)).

Using (A.17), (A.40), and (A.41), we get similarly to (A.42)

G
(α,β,γ)
t (χss(x), κt−s(y)) ≤ CG(α,β,γ)

t (x, κt(y)) = CHt(x, y),

which completes the proof.
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