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Abstract

We consider a general class of stochastic optimal control problems, where the state
process lives in a real separable Hilbert space and is driven by a cylindrical Brow-
nian motion and a Poisson random measure; no special structure is imposed on the
coefficients, which are also allowed to be path-dependent; in addition, the diffusion co-
efficient can be degenerate. For such a class of stochastic control problems, we prove,
by means of purely probabilistic techniques based on the so-called randomization
method, that the value of the control problem admits a probabilistic representation
formula (known as non-linear Feynman-Kac formula) in terms of a suitable backward
stochastic differential equation. This probabilistic representation considerably extends
current results in the literature on the infinite-dimensional case, and it is also relevant
in finite dimension. Such a representation allows to show, in the non-path-dependent
(or Markovian) case, that the value function satisfies the so-called randomized dy-
namic programming principle. As a consequence, we are able to prove that the value
function is a viscosity solution of the corresponding Hamilton-Jacobi-Bellman equation,
which turns out to be a second-order fully non-linear integro-differential equation in
Hilbert space.
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BSDEs and stochastic control problems of infinite-dimensional jump-diffusions

1 Introduction

In the present paper we study a general class of stochastic optimal control problems,
where the infinite-dimensional state process, taking values in a real separable Hilbert
space H, has a dynamics driven by a cylindrical Brownian motion W and a Poisson
random measure π. Moreover, the coefficients are assumed to be path-dependent, in the
sense that they depend on the past trajectory of the state process. In addition, the space
of control actions Λ can be any Borel space (i.e., any topological space homeomorphic
to a Borel subset of a Polish space). More precisely, the controlled state process is a
so-called mild solution to the following equation on [0, T ]:


dXt = AXt dt+ bt(X,αt)dt+ σt(X,αt)dWt +

∫
U\{0}

γt(X,αt, z)
(
π(dt dz)− λπ(dz) dt

)
,

X0 = x0,

where A is a linear operator generating a strongly continuous semigroup {etA, t ≥ 0},
λπ(dz)dt is the compensator of π, while α is an admissible control process, that is a
predictable stochastic process taking values in Λ. Given an admissible control α, the
corresponding gain functional is given by

J(α) = E

[ ∫ T

0

ft(X
x0,α, αt) dt+ g(Xx0,α)

]
,

where the running and terminal reward functionals f and g may also depend on the past
trajectory of the state process. The value of the stochastic control problem, starting at
t = 0 from x0, is defined as

V0 = sup
α
J(α). (1.1)

Stochastic optimal control problems of infinite-dimensional processes have been
extensively studied using the theory of Backward Stochastic Differential Equations
(BSDEs); we mention in particular the seminal papers [11], [12] and the last chapter of
the recent book [9], where a detailed discussion of the literature can be found. Notice
however that the current results require a special structure of the controlled state
equations, namely that the diffusion coefficient σ = σ(t, x) is uncontrolled and the drift
has the following specific form b = b1(t, x) + σ(t, x)b2(t, x, a). Up to our knowledge,
only the recent paper [6], which is devoted to the study of ergodic control problems,
applies the BSDEs techniques to a more general class of infinite-dimensional controlled
state processes; in [6] the drift has the general form b = b(x, a), however the diffusion
coefficient is still uncontrolled and indeed constant, moreover the space of control
actions Λ is assumed to be a real separable Hilbert space (or, more generally, according
to Remark 2.2 in [6], Λ has to be the image of a continuous surjection ϕ defined on some
real separable Hilbert space). Finally, [6] only addresses the non-path-dependent (or
Markovian) case, and does not treat the Hamilton-Jacobi-Bellman (HJB) equation related
to the stochastic control problem.

The stochastic optimal control problem (1.1) is studied by means of the so-called
randomization method. This latter is a purely probabilistic methodology which al-
lows to prove directly, starting from the definition of V0, that the value itself admits
a representation formula (also known as non-linear Feynman-Kac formula) in terms
of a suitable backward stochastic differential equation, avoiding completely analyti-
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BSDEs and stochastic control problems of infinite-dimensional jump-diffusions

cal tools, as for instance the Hamilton-Jacobi-Bellman equation or viscosity solutions
techniques.

This procedure was previously applied in [10] and [1], where a stochastic control
problem in finite dimension for diffusive processes (without jumps) was addressed. We
also mention [15], which has inspired [10] and [1], where a non-linear Feynman-Kac
formula for the value function of a jump-diffusive finite-dimensional stochastic control
problem is provided. Notice, however, that the methodology implemented in [15] (and
adapted in various different framework, see e.g. [2], [3], [7]) is quite different and
requires more restrictive assumptions; as a matter of fact, there the authors find the
BSDE representation passing through the Hamilton-Jacobi-Bellman equation, and in
particular using viscosity solutions techniques; moreover, in order to apply the techniques
in [15], one already needs to know that the value function is the unique viscosity solution
to the HJB equation.

The randomization method developed in the present paper improves considerably the
methodology used in [15] and allows to extend the results in [10] and [1] to the infinite
dimensional jump-diffusive framework, addressing, in addition, the path-dependent
case. We notice that it would be possible to consider a path-dependence, or delay, in
the control variable as well; however, in order to make the presentation more under-
standable and effective, we assume a path-dependence only in the state variable. We
underline that our results are also relevant for the finite-dimensional case, as it is the
first time the randomization method (understood as a pure probabilistic methodology as
explained above) is implemented when a jump component appears in the state process
dynamics.

Roughly speaking, the key idea of the randomization method consists in randomizing
the control process α, by replacing it with an uncontrolled pure jump process I associated
with a Poisson random measure θ, independent of W and π; for the pair of processes
(X, I), a new randomized intensity-control problem is then introduced in such a way
that the corresponding value coincides with the original one. The idea of this control
randomization procedure comes from the well-known methodology implemented in [16]
to prove the dynamic programming principle, which is based on the use of piece-wise
constant policies. More specifically, in [16] it is shown (under quite general assumptions;
the only not usual assumption is the continuity of all coefficients with respect to the
control variable) that the supremum over all admissible controls α can be replaced
by the supremum over a suitable class of piece-wise constant policies. This allows to
prove in a relatively easy but rigorous manner the dynamic programming principle, see
Theorem III.1.6 in [16]. Similarly, in the randomization method we prove (Theorem 4.7),
under quite general assumptions (the only not usual assumption is still the continuity
of all coefficients with respect to the control variable), that we can optimize over a
suitable class of piece-wise constant policies, whose dynamics is now described by the
Poisson random measure θ. This particular class of policies allows to prove the BSDE
representation (Theorem 5.6), as well as the randomized dynamic programming principle.
Notice that in the present paper we have made an effort to simplify various arguments
in the proof of Theorem 4.7 and streamline the exposition.

In the Markovian case (Section 6), namely when the coefficients are non-path-
dependent, we consider a family of stochastic control problems, one for each (t, x) ∈
[0, T ] × H, and define the corresponding value function. Then, exploiting the BSDE
representation derived in Section 5, we are able to prove the so-called randomized
dynamic programming principle (Theorem 6.6), which is as powerful as the classical
dynamic programming principle, in the sense that it allows to prove (Proposition 6.12)
that the value function is a viscosity solution to the Hamilton-Jacobi-Bellman equation,
which turns out to be a second-order fully non-linear integro-differential equation on
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[0, T ]×H:


vt + 〈Ax,Dxv〉
+ supa∈Λ

{
1
2Tr
(
σ(t, x, a)σ∗(t, x, a)D2

xv
)

+ 〈b(t, x, a), Dxv〉+ f(t, x, a)

+
∫
U\{0}(v(t, x+ γ(t, x, a, z))− v(t, x)−Dxv(t, x)γ(t, x, a, z))λπ(dz)

}
= 0,

v(T, x) = g(x).

(1.2)

Notice that in the non-diffusive case, namely when σ ≡ 0, the control problem corre-
sponding to equation (1.2) has already been studied in [20]. Here the authors prove
rigorously the (classical) dynamic programming principle (Theorem 4.2 in [20]) and
show that the value function solves in the viscosity sense equation (1.2) (with σ ≡ 0),
Theorem 5.4 in [20]. Then, Theorem 6.6 below, which provides the randomized dynamic
programming principle, can be seen as a generalization of Theorem 4.2 in [20]; similarly,
Proposition 6.12 extends Theorem 5.4 in [20] to the case with σ not necessarily equal to
zero. Finally, we recall [19], which is devoted to the proof of a comparison principle for
viscosity solutions to equation (1.2) (with σ not necessarily equal to zero), to which we
refer in Remark 6.13.

The paper is organized as follows. In Section 2 we introduce the notations used in
the paper and state the assumptions imposed on the coefficients (notice however that
in the last section, namely Section 6, concerning the Markovian case, we introduce a
different set of assumptions and some additional notations). Section 3 is devoted to the
formulation of the stochastic optimal control problem, while in Section 4 we introduce
the so-called randomized control problem, which allows to prove one of our main results,
namely Theorem 4.7. In Section 5 we prove the BSDE representation of the value V0

(Theorem 5.6). Finally, Section 6 is devoted to the study of the non-path-dependent
(or Markovian) case, where we prove that the value function satisfies the randomized
dynamic programming principle (Theorem 6.6) and we show that it is a viscosity solution
to the corresponding Hamilton-Jacobi-Bellman equation (Proposition 6.12).

2 Notations and assumptions

Let H, U and Ξ be two real separable Hilbert spaces equipped with their respective
Borel σ-algebrae. We denote by | · | and 〈·, ·〉 (resp. | · |U , | · |Ξ and 〈·, ·〉Ξ, 〈·, ·〉U ) the norm
and scalar product in H (resp. in U and Ξ). Let (Ω,F ,P) be a complete probability
space on which are defined a random variable x0 : Ω→ H, a cylindrical Brownian motion
W = (Wt)t≥0 with values in Ξ, and a Poisson random measure π(dt dz) on [0, ∞)×U with
compensator λπ(dz) dt. We assume that x0, W , π are independent. We denote by µ0 the
law of x0, which is a probability measure on the Borel subsets of H. We also denote by
Fx0,W,π = (Fx0,W,π

t )t≥0 the P-completion of the filtration generated by x0, W , π, which
turns out to be also right-continuous, as it follows for instance from Theorem 1 in [13].
So, in particular, Fx0,W,π satisfies the usual conditions. When x0 is deterministic (that is,
µ0 is the Dirac measure δx0

) we denote Fx0,W,π simply by FW,π.

Let L(Ξ;H) be the Banach space of bounded linear operators P : Ξ → H, and let
L2(Ξ;H) be the Hilbert space of Hilbert-Schmidt operators P : Ξ→ H.

Let T > 0 be a finite time horizon. For every t ∈ [0, T ], we consider the Banach
space D([0, t];H) of càdlàg maps x : [0, t] → H endowed with the supremum norm
x∗t := sups∈[0,t] |x(s)|; when t = T we also use the notation ‖x‖∞ := sups∈[0,T ] |x(s)|.
On D([0, T ];H) we define the canonical filtration (D0

t )t∈[0,T ], with D0
t generated by the
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coordinate maps

Πs : D([0, T ];H) → H,

x(·) 7→ x(s),

for all s ∈ [0, t]. We also define its right-continuous version (Dt)t∈[0,T ], that is Dt = ∩s>tD0
s

for every t ∈ [0, T ) and DT = D0
T . Then, we denote by Pred(D([0, T ];H)) the predictable

σ-algebra on [0, T ]×D([0, T ];H) associated with the filtration (Dt)t∈[0,T ].
Let Λ be a Borel space, namely a topological space homeomorphic to a Borel subset

of a Polish space. We denote by B(Λ) the Borel σ-algebra of Λ. We also denote by dΛ a
bounded distance on Λ.

Let A : D(A) ⊂ H → H be a linear operator and consider the maps b : [0, T ] ×
D([0, T ];H)×Λ→ H, σ : [0, T ]×D([0, T ];H)×Λ→ L(Ξ;H), γ : [0, T ]×D([0, T ];H)×Λ×
U → H, f : [0, T ] ×D([0, T ];H) × Λ → R, g : D([0, T ];H) → R, on which we impose the
following assumptions.

(A)

(i) A generates a strongly continuous semigroup {etA, t ≥ 0} in H.

(ii) µ0, the law of x0, satisfies
∫
H
|x|p0µ0(dx) < ∞ for some p0 ≥ max(2, 2p̄), with the

same p̄ ≥ 0 as in (2.1) below.

(iii) There exists a Borel measurable function ρ : U → R, bounded on bounded subsets
of U , such that

inf
|z|U>R

ρ(z) > 0, for every R > 0 and

∫
U

|ρ(z)|2λπ(dz) < ∞.

(iv) The maps b and f are Pred(D([0, T ];H))⊗ B(Λ)-measurable. For every v ∈ H, the
map σ(·, ·, ·)v : [0, T ]×D([0, T ];H)×Λ→ H is Pred(D([0, T ];H))⊗B(Λ)-measurable.
The map γ is Pred(D([0, T ];H)) ⊗ B(Λ) ⊗ B(U)-measurable. The map g is DT -
measurable.

(v) The map g is continuous on D([0, T ];H) with respect to the supremum norm. For
every t ∈ [0, T ], the maps bt(·, ·) and ft(·, ·) are continuous on D([0, T ];H) × Λ.
For every (t, z) ∈ [0, T ] × U , the map γt(·, ·, z) is continuous on D([0, T ];H) × Λ.
For every t ∈ [0, T ] and any s ∈ (0, T ], we have esAσt(x, a) ∈ L2(Ξ;H), for all
(x, a) ∈ D([0, T ];H) × Λ, and the map esAσt(·, ·) : D([0, T ];H) × Λ → L2(Ξ;H) is
continuous.

(vi) For all t ∈ [0, T ], s ∈ (0, T ], x,x′ ∈ D([0, T ];H), a ∈ Λ,

|bt(x, a)− bt(x′, a)|+ |esAσt(x, a)− esAσt(x′, a)|L2(Ξ;H) ≤ L(x− x′)∗t ,

|γt(x, a, z)− γt(x′, a, z)| ≤ Lρ(z)(x− x′)∗t ,

|bt(0, a)|+ |σt(0, a)|L2(Ξ;H) ≤ L,

|γt(0, a, z)| ≤ Lρ(z),

|ft(x, a)|+ |g(x)| ≤ L
(
1 + ‖x‖p̄

∞

)
, (2.1)

for some constants L ≥ 0 and p̄ ≥ 0.

3 Stochastic optimal control problem

In the present section we formulate the original stochastic optimal control problem on
two different probabilistic settings. More precisely, we begin formulating (see subsection
3.1 below) such a control problem in a standard way, using the probabilistic setting
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previously introduced. Afterwards, in subsection 3.2 we formulate it on the so-called
randomized probabilistic setting (that will be used for the rest of the paper and, in
particular, for the formulation of the randomized control problem in Section 4). Finally,
we prove that the two formulations have the same value.

3.1 Formulation of the control problem

We formulate the stochastic optimal control problem on the probabilistic setting
introduced in Section 2. An admissible control process will be any Fx0,W,π-predictable
process α with values in Λ. The set of all admissible control processes is denoted by A.
The controlled state process satisfies the following equation on [0, T ]:

dXt = AXt dt+ bt(X,αt)dt+ σt(X,αt)dWt

+

∫
U\{0}

γt(X,αt, z)
(
π(dt dz)− λπ(dz) dt

)
,

X0 = x0.

(3.1)

We look for a mild solution to the above equation in the sense of the following definition.

Definition 3.1. Let α ∈ A. We say that a càdlàg Fx0,W,π-adapted stochastic process
X = (Xt)t∈[0,T ] taking values in H is a mild solution to equation (3.1) if, P-a.s.,

Xt = etA x0 +

∫ t

0

e(t−s)A bs(X,αs) ds+

∫ t

0

e(t−s)A σs(X,αs) dWs

+

∫ t

0

∫
U\{0}

e(t−s)A γs(X,αs, z)
(
π(ds dz)− λπ(dz) ds

)
, for all 0 ≤ t ≤ T.

Proposition 3.2. Under assumption (A), for every α ∈ A, there exists a unique mild
solution Xx0,α = (Xx0,α

t )t∈[0,T ] to equation (3.1). Moreover, for every 1 ≤ p ≤ p0,

E
[

sup
t∈[0,T ]

|Xx0,α
t |p

]
≤ Cp

(
1 + E [|x0|p]

)
, (3.2)

for some positive constant Cp, independent of x0 and α.

Proof. Under assumption (A), the existence of a unique mild solution Xx0,α =

(Xx0,α
t )t∈[0,T ] to equation (3.1), for every α ∈ A, can be obtained by a fixed point ar-

gument proceeding as in Theorem 3.4 in [19], taking into account the fact that the
coefficients of equation (3.1) are path-dependent.

We now prove estimate (3.2). In the sequel, we denote by C a positive constant
depending only on T and p, independent of x0 and α, that may vary from line to line. For
brevity we will denote Xx0,α simply by X. We start by noticing that

E
[

sup
t∈[0,T ]

|Xt|p
]1/p

≤ E
[

sup
t∈[0,T ]

|etA x0|p
]1/p

+ E
[

sup
t∈[0,T ]

∣∣∣ ∫ t

0

e(t−s)A bs(X,αs) ds
∣∣∣p]1/p

+ E
[

sup
t∈[0,T ]

∣∣∣ ∫ t

0

e(t−s)A σs(X,αs) dWs

∣∣∣p]1/p
+ E

[
sup
t∈[0,T ]

∣∣∣ ∫ t

0

∫
U\{0}

e(t−s)A γs(X,αs, z) (π(ds dz)− λπ(dz) ds)
∣∣∣p]1/p. (3.3)

On the other hand, by the Burkölder-Davis-Gundy inequalities, we have

E
[

sup
t∈[0,T ]

∣∣∣ ∫ t

0

e(t−s)A σs(X,αs)dWs

∣∣∣p]1/p≤CE[( ∫ T

0

e2(t−s)A|σs(X,αs)|2ds
)p/2]1/p

(3.4)

= C
∣∣∣∣∣∣ ∫ T

0

e2(t−s)A|σs(X,αs)|2ds
∣∣∣∣∣∣1/2
Lp/2(Ω,F,P)

≤ C
(∫ T

0

E
[
ep(t−s)A|σs(X,αs)|p

]2/p
ds
)1/2

,
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and

E
[

sup
t∈[0,T ]

∣∣∣ ∫ t

0

∫
U\{0}

e(t−s)A γs(X,αs, z) (π(ds dz)− λπ(dz) ds)
∣∣∣p]1/p

≤ C E
[( ∫ T

0

||φs||2L2(U,λπ ;H) ds
)p/2]1/p

= C
∣∣∣∣∣∣ ∫ T

0

||φs||2L2(U,λπ ;H) ds
∣∣∣∣∣∣1/2
Lp/2(Ω,F,P)

≤ C
(∫ T

0

E
[∣∣∣||φs||pL2(U,λπ ;H)

]2/p
ds
)1/2

, (3.5)

where we have set φs(z) = e(t−s)A γs(X,αs, z) and ||φs||L2(U,λπ ;H) =

(
∫
U\{0} |φs(z)|

2λπ(dz))1/2. By (3.4), (3.5), together with assumption (A), we get

E
[

sup
t∈[0,T ]

∣∣∣ ∫ t

0

e(t−s)A σs(X,αs) dWs

∣∣∣p]1/p ≤ C (∫ T

0

E
[(

1 + sup
r∈[0, s]

|Xr|
)p]2/p

ds
)1/2

≤ C
(

1 +
(∫ T

0

E
[

sup
r∈[0, s]

|Xr|p
]2/p

ds
)1/2)

(3.6)

and

E
[

sup
t∈[0,T ]

∣∣∣ ∫ t

0

∫
U\{0}

e(t−s)A γs(X,αs, z) (π(ds dz)− λπ(dz) ds)
∣∣∣p]1/p

≤ C
(∫ T

0

e2(t−s)AE
[(

1 + sup
r∈[0, s]

|Xr|
)p(∫

U\{0}
|ρ(z)|2λπ(dz)

)p/2]2/p
ds
)1/2

≤ C
(∫ T

0

E
[(

1 + sup
r∈[0, s]

|Xr|
)p]2/p

ds
)1/2

≤ C
(

1 +
(∫ T

0

E
[

sup
r∈[0, s]

|Xr|p
]2/p

ds
)1/2)

. (3.7)

Moreover, using again assumption (A),

E
[

sup
t∈[0,T ]

∣∣∣ ∫ t

0

e(t−s)A bs(X,αs) ds
∣∣∣p]1/p ≤ ∫ T

0

E
[
ep(t−s)A |bs(X,αs)|p

]1/p
ds

≤ C
∫ T

0

E
[(

1 + sup
r∈[0, s]

|Xr|
)p]1/p

ds ≤ C
(

1 +

∫ T

0

E
[

sup
r∈[0, s]

|Xr|p
]1/p

ds
)
. (3.8)

Therefore, plugging (3.6), (3.7) and (3.8) in (3.3), we get

E
[

sup
t∈[0,T ]

|Xt|p
]1/p

≤ C E
[
|x0|p

]1/p
+ C

(
1 +

∫ T

0

E
[

sup
r∈[0, s]

|Xr|p
]1/p

ds
)

+ C
(∫ T

0

E
[

sup
r∈[0, s]

|Xr|p
]2/p

ds
)1/2

.

Taking the square of both sides and using the Cauchy-Schwarz inequality, we find (we
set ψs = E[supr∈[0, s] |Xr|p]2/p)

ψT ≤ E
[
|x0|p

]2/p
+ C

(
1 +

∫ T

0

ψs ds
)
,

and we conclude by the Gronwall inequality.

The controller aims at maximizing over all α ∈ A the gain functional

J(α) = E

[ ∫ T

0

ft(X
x0,α, αt) dt+ g(Xx0,α)

]
.
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By assumption (2.1) and estimate (3.2), we notice that J(α) is always finite. Finally, the
value of the stochastic control problem is given by

V0 = sup
α∈A

J(α).

3.2 Formulation of the control problem in the randomized setting

We formulate the stochastic optimal control problem on a new probabilistic setting
that we now introduce, to which we refer as randomized probabilistic setting. Such
a setting will be used for the rest of the paper and, in particular, in Section 4 for the
formulation of the randomized stochastic optimal control problem.

We consider a new complete probability space (Ω̂, F̂ , P̂) on which are defined a
random variable x̂0 : Ω̂→ H, a cylindrical Brownian motion Ŵ = (Ŵt)t≥0 with values in
Ξ, a Poisson random measure π̂(dt dz) on [0, ∞) × U with compensator λπ(dz) dt (with
λπ as in Section 2), and also a Poisson random measure θ̂(dt da) on [0, ∞) × Λ with
compensator λ0(da) dt (on λ0 we impose assumption (AR)(i) below). We assume that
x̂0, Ŵ , π̂, θ̂ are independent. We denote by µ0 the law of x̂0 (with µ0 as in Section 2).

We also denote by F̂x̂0,Ŵ ,π̂,θ̂ = (F̂ x̂0,Ŵ ,π̂,θ̂
t )t≥0 (resp. F̂θ̂ = (F̂ θ̂t )t≥0) the P̂-completion of

the filtration generated by x̂0, Ŵ , π̂, θ̂ (resp. θ̂), which satisfies the usual conditions.
Moreover, we define P(F̂x̂0,Ŵ ,π̂,θ̂) as the predictable σ-algebra on [0, T ]× Ω̂ associated

with F̂x̂0,Ŵ ,π̂,θ̂. Finally, we denote by Â the family of all admissible control processes,
that is the set of all P(F̂x̂0,Ŵ ,π̂,θ̂)-measurable maps α̂ : [0, T ]× Ω̂→ Λ.

We impose the following additional assumptions.

(AR)

(i) λ0 is a finite positive measure on B(Λ), the Borel subsets of Λ, with full topological
support.

(ii) a0 is a fixed point in Λ.

Similarly to Proposition 3.2, for every admissible control α̂ ∈ Â, we can prove the
following result.

Proposition 3.3. Under assumptions (A)-(AR), for every α̂ ∈ Â, there exists a unique
mild solution X̂ x̂0,α̂ = (X̂ x̂0,α̂

t )t∈[0,T ] to equation (3.1) with x0, W , π, α replaced respec-

tively by x̂0, Ŵ , π̂, α̂. Moreover, for every 1 ≤ p ≤ p0,

Ê
[

sup
t∈[0,T ]

|X̂ x̂0,α̂
t |p

]
≤ Cp

(
1 + Ê [|x̂0|p]

)
,

with the same constant Cp as in Proposition 3.2, where Ê denotes the expectation under
P̂.

In the present randomized probabilistic setting the formulations of the control prob-
lem reads as follows: the controller aims at maximizing over all α̂ ∈ Â the gain functional

Ĵ(α̂) = Ê

[ ∫ T

0

ft(X̂
x̂0,α̂, α̂t) dt+ g(X̂ x̂0,α̂)

]
. (3.9)

The corresponding value is defined as

V̂0 = sup
α̂∈Â

Ĵ(α̂). (3.10)

Proposition 3.4. Under assumptions (A)-(AR), the following equality holds:

V0 = V̂0.
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Proof. The proof is organized as follows:

1) firstly we introduce a new probabilistic setting in product form on which we formulate
the control problem (3.10) and denote the new value function V̄0; then, we show that
V̂0 = V̄0;

2) we prove that V0 = V̄0.

Step 1. Let (Ω′,F ′,P′) be another complete probability space where a Poisson random
measure θ on [0,∞)× Λ, with intensity λ0(da)dt, is defined. Denote Ω̄ = Ω× Ω′, F̄ the
completion of F ⊗ F ′ with respect to P⊗ P′, and P̄ the extension of P⊗ P′ to F̄ . Notice
that x0,W, π, which are defined on Ω, as well as θ, which is defined on Ω′, admit obvious
extensions to Ω̄. We denote those extensions by x̄0, W̄ , π̄, θ̄. Let F̄x̄0,W̄ ,π̄ = (F̄ x̄0,W̄ ,π̄

t )t≥0

(resp. F̄x̄0,W̄ ,π̄,θ̄ = (F̄ x̄0,W̄ ,π̄,θ̄
t )t≥0) be the P̄-completion of the filtration generated by

x̄0, W̄ , π̄ (resp. x̄0, W̄ , π̄, θ̄). Finally, let Ā (resp. Āθ̄) be the set of A-valued F̄x̄0,W̄ ,π̄-
predictable (F̄x̄0,W̄ ,π̄,θ̄-predictable) stochastic processes. Notice that Ā ⊂ Āθ̄.

For any ᾱ ∈ Āθ̄ define (with Ē denoting the expectation under P̄)

J̄(ᾱ) = Ē

[ ∫ T

0

ft(X̄
x̄0,ᾱ, ᾱt) dt+ g(X̄ x̄0,ᾱ)

]
,

where X̄ x̄0,ᾱ = (X̄ x̄0,ᾱ
t )t≥0 denotes the stochastic process on Ω̄, mild solution to equation

(3.1), with α, x0, W , π replaced respectively by ᾱ, x̄0, W̄ , π̄. We define the value function

V̄0 = sup
ᾱ∈Āθ̄

J̄(ᾱ).

Finally, we notice that V̂0 = V̄0. As a matter of fact, the only difference between the
control problems with value functions V̂0 and V̄0 is that they are formulated on two
different probabilistic settings. Given any α̂ ∈ Â, it is easy to see (by a monotone
class argument) that there exists ᾱ ∈ Āθ̄ such that (α̂, x̂0, Ŵ , π̂, θ̂) has the same law as
(ᾱ, x̄0, W̄ , π̄, θ̄), so that Ĵ(α̂) = J̄(ᾱ), which implies V̂0 ≤ V̄0. In an analogous way we get
the other inequality V̂0 ≥ V̄0, from which we deduce that V̂0 = V̄0.

Step 2. Let us prove that V0 = V̄0. We begin noting that, given any α ∈ A, denoting by
ᾱ the canonical extension of α to Ω̄, we have that ᾱ ∈ Ā, moreover (α, x0,W, π) has the
same law as (ᾱ, x̄0, W̄ , π̄), so that J(α) = J̄(ᾱ). Since ᾱ ∈ Ā and Ā ⊂ Āθ̄, ᾱ belongs to Āθ̄,
hence J(α) = J̄(ᾱ) ≤ V̄0. Taking the supremum over α ∈ A, we conclude that V0 ≤ V̄0.

It remains to prove the other inequality V0 ≥ V̄0. In order to prove it, we begin
denoting F̄θ̄ = (F̄ θ̄t )t≥0 the P̄-completion of the filtration generated by θ̄. Notice that

F̄ x̄0,W̄ ,π̄,θ̄
t = F̄ x̄0,W̄ ,π̄

t ∨ F̄ θ̄t , for every t ≥ 0. Now, fix ᾱ ∈ Āθ̄ and observe that, for every
ω′ ∈ Ω′, the stochastic process αω

′
: Ω× [0, T ]→ A, defined by

αω
′

t (ω) = ᾱt(ω, ω
′), for all (ω, ω′) ∈ Ω̄ = Ω× Ω′, t ≥ 0,

is Fx0,W,π-progressively measurable, as ᾱ is F̄x̄0,W̄ ,π̄,θ̄-predictable and so, in particular,
F̄x̄0,W̄ ,π̄,θ̄-progressively measurable. It is well-known (see for instance Theorem 3.7 in [4])
that, for every ω′ ∈ Ω′, there exists an Fx0,W,π-predictable process α̂ω

′
: Ω× [0, T ] → A

such that αω
′

= α̂ω
′
, dP⊗ dt-a.e..

Now, recall that X̄ x̄0,ᾱ = (X̄ x̄0,ᾱ
t )t≥0 denotes the mild solution to equation (3.1) on Ω̄,

with α, x0,W, π replaced respectively by ᾱ, x̄0, W̄ , π̄. Similarly, for every fixed ω′ ∈ Ω′, let

Xx0,α̂
ω′

= (Xx0,α̂
ω′

t )t≥0 denotes the mild solution to equation (3.1) on Ω, with α replaced
by α̂ω

′
. It is easy to see that there exists a P′-null set N ′ ⊂ Ω′ such that, for every

ω′ /∈ N ′, the stochastic processes X̄ x̄0,ᾱ(·, ω′) and Xx0,α̂
ω′

(·) solve the same equation on
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Ω. Therefore, by pathwise uniqueness, for every ω′ /∈ N ′ we have that X̄ x̄0,ᾱ(·, ω′) and

Xx0,α̂
ω′

(·) are P-indistinguishable. Then, by Fubini’s theorem we obtain

J̄(ᾱ) =

∫
Ω′
E

[ ∫ T

0

ft
(
Xx0,α̂

ω′

, α̂ω
′

t

)
dt+ g

(
Xx0,α̂

ω′ )]
P′(dω′) = E′

[
J
(
α̂ω
′)]
≤ V0.

The claim follows taking the supremum over all ᾱ ∈ Āθ̄.

We end this section stating a result slightly stronger than Proposition 3.4. More
precisely, we fix a σ-algebra Ĝ independent of (x̂0, Ŵ , π̂) and such that F̂ θ̂∞ ⊂ Ĝ. We

denote by F̂x̂0,Ŵ ,π̂,Ĝ = (F̂ x̂0,Ŵ ,π̂,Ĝ
t )t≥0 the P̂-completion of the filtration generated by

x̂0, Ŵ , π̂, Ĝ and satisfying Ĝ ⊂ F̂ x̂0,Ŵ ,π̂,Ĝ
0 . Then, we define ÂĜ as the family of all

F̂x̂0,Ŵ ,π̂,Ĝ-predictable processes α̂ : [0, T ]× Ω̂→ Λ. Notice that Â ⊂ ÂĜ .

Proposition 3.5. Under assumptions (A)-(AR), the following equality holds:

V0 = sup
α̂∈ÂĜ

Ĵ(α̂).

Proof. We begin observing that there exists measurable space (M,M) and a random
variable Γ̂ : (Ω̂, F̂)→ (M,M) such that Ĝ = σ(Γ̂) (for instance, take (M,M) = (Ω̂, Ĝ) and
Γ̂ the identity map). Then, the proof can be done proceeding along the same lines as
in the proof of Proposition 3.4, simply noting that the role played by θ̂ in the proof of
Proposition 3.4 is now played by Γ̂.

4 Formulation of the randomized control problem

We now formulate the randomized stochastic optimal control problem on the proba-
bilistic setting introduced in subsection 3.2. Our aim is then to prove that the value of
such a control problem coincides with V0 or, equivalently (by Proposition 3.4), with V̂0.
Here we simply observe that the randomized problem may depend on λ0 and a0, but its
value will be independent of these two objects, as it will coincide with the value V0 of the
original stochastic control problem (which is independent of λ0 and a0).

We begin introducing some additional notation. We firstly notice that there exists
a double sequence (T̂n, η̂n)n≥1 of Λ × (0,∞)-valued pairs of random variables, with
(T̂n)n≥1 strictly increasing, such that the random measure θ̂ can be represented as
θ̂(dt da) =

∑
n≥1 δ(T̂n,η̂n)(dt da). Moreover, for every Borel set B ∈ B(Λ), the stochastic

process (θ̂((0, t]×B)− t λ0(B))t≥0 is a martingale under P̂. Now, we introduce the pure
jump stochastic process taking values in Λ defined as

Ît =
∑
n≥0

η̂n 1[T̂n,T̂n+1)(t), for all t ≥ 0, (4.1)

where we set T̂0 := 0 and η̂0 := a0 (notice that, when Λ is a subset of a vector space, we
can write (4.1) simply as Ît = a0 +

∫ t
0

∫
A

(a− Îs−) θ̂(ds da)).

We use Î to randomize the control in equation (3.1), which then becomes:
dX̂t = AX̂t dt+ bt(X̂, Ît)dt+ σt(X̂, Ît)dŴt

+

∫
U\{0}

γt(X̂, Ît−, z)
(
π̂(dt dz)− λπ(dz)dt

)
,

X̂0 = x̂0.

(4.2)
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As for equation (3.1), we look for a mild solution to (4.2), namely an H-valued càdlàg
F̂x̂0,Ŵ ,π̂,θ̂-adapted stochastic process X̂ = (X̂t)t∈[0,T ] such that, P̂-a.s.,

X̂t = etA x̂0 +

∫ t

0

e(t−s)A b(X̂, Îs) ds+

∫ t

0

e(t−s)A σ(X̂, Îs) dŴs (4.3)

+

∫ t

0

∫
U\{0}

e(t−s)A γ(X̂, Îs−, z) (π̂(ds dz)− λπ(dz) ds), for all 0 ≤ t ≤ T.

Under assumptions (A)-(AR), proceeding as in Proposition 3.2, we can prove the follow-
ing result.

Proposition 4.1. Under assumptions (A)-(AR), there exists a unique mild solution
X̂ = (X̂t)t∈[0,T ] to equation (4.2), such that, for every 1 ≤ p ≤ p0,

Ê
[

sup
t∈[0,T ]

|X̂t|p
]
≤ Cp

(
1 + Ê [|x̂0|p]

)
, (4.4)

with the same constant Cp as in Proposition 3.2. In addition, for every t ∈ [0, T ] and any
1 ≤ p ≤ p0, we have

Ê
[

sup
s∈[t,T ]

|X̂s|p
∣∣∣F̂ x̂0,Ŵ ,π̂,θ̂
t

]
≤ Cp

(
1 + sup

s∈[0,t]

|X̂s|p
)
, P̂-a.s. (4.5)

with the same constant Cp as in Proposition 3.2.

Proof. Concerning estimate (4.4), the proof can be done proceeding along the same lines
as in the proof of Proposition 3.2. Regarding estimate (4.5), we begin noting that, given

any two integrable F̂ x̂0,Ŵ ,π̂,θ̂
t -measurable random variables η and ξ, then the following

property holds: η ≤ ξ, P̂-a.s., if and only if Ê[η 1E ] ≤ Ê[ξ 1E ], for every E ∈ F̂ x̂0,Ŵ ,π̂,θ̂
t . So,

in particular, estimate (4.5) is true if and only if the following estimate holds:

Ê
[

sup
s∈[t,T ]

|X̂s|p 1E
]
≤ Cp

(
Ê[1E ] + Ê

[
sup
s∈[0,t]

|X̂s|p 1E
])
, for every E ∈ F̂ x̂0,Ŵ ,π̂,θ̂

t . (4.6)

The proof of estimate (4.6) can be done proceeding along the same lines as in the proof
of Proposition 3.2, firstly multiplying equation (4.3) by 1E .

We can now formulate the randomized control problem. The family of all admissible
control maps, denoted by V̂, is the set of all P(F̂x̂0,Ŵ ,π̂,θ̂)⊗ B(Λ)-measurable functions
ν̂ : [0, T ] × Ω̂ × Λ → (0,∞) which are bounded from above and bounded away from
zero, namely 0 < inf [0,T ]×Ω̂×Λ ν̂ ≤ sup[0,T ]×Ω̂×Λ ν̂ < +∞. Given ν̂ ∈ V̂, we consider the

probability measure P̂ν̂ on (Ω̂, F̂ x̂0,Ŵ ,π̂,θ̂
T ) given by dP̂ν̂ = κ̂ν̂T dP̂, where (κ̂ν̂t )t∈[0,T ] denotes

the Doléans-Dade exponential

κ̂ν̂t = Et
(∫ ·

0

∫
Λ

(
ν̂s(a)− 1

) (
θ̂(ds da)− λ0(da) ds

))
. (4.7)

By Girsanov’s theorem (see e.g. Theorem 15.2.6 in [5]), under P̂ν̂ the F̂x̂0,Ŵ ,π̂,θ̂-
compensator of θ̂ on [0, T ]× Λ is ν̂s(a)λ0(da)ds.

Notice that, under P̂ν̂ , Ŵ remains a Brownian motion and the F̂x̂0,Ŵ ,π̂,θ̂-compensator
of π̂ on [0, T ]× Λ is λπ(dz)ds (see e.g. Theorem 15.3.10 in [5] or Theorem 12.31 in [14]).

As a consequence, the following generalization of estimate (4.4) holds: for every
1 ≤ p ≤ p0,

sup
ν̂∈V̂

Êν̂
[

sup
t∈[0,T ]

|X̂t|p
]
≤ Cp

(
1 + Êν̂

[
|x0|p

])
, (4.8)
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with the same constant Cp as in (4.4), where Êν̂ denotes the expectation with respect to
P̂ν̂ .

The controller aims at maximizing over all ν̂ ∈ V̂ the gain functional

ĴR(ν̂) = Êν̂
[ ∫ T

0

ft(X̂, Ît) dt+ g(X̂)

]
.

By assumption (2.1) and estimate (4.8), it follows that ĴR(ν̂) is always finite. Finally, the
value function of the randomized control problem is given by

V̂ R0 = sup
ν̂∈V̂

ĴR(ν̂).

In the sequel, we denote the probabilistic setting we have adopted for the randomized
control problem shortly by the tuple (Ω̂, F̂ , P̂; x̂0, Ŵ , π̂, θ̂; Î , X̂; V̂).

Our aim is now to prove that V̂ R0 coincides with the value V0 of the original control
problem. Firstly, we state three auxiliary results:

1) the first result (Lemma 4.2) shows that the value V̂ R0 of the randomized control prob-
lem is independent of the probabilistic setting on which the problem is formulated;

2) in Lemma 4.3 we prove that there exists a probabilistic setting for the randomized
control problem where ĴR can be expressed in terms of the gain functional Ĵ in (3.9);
as noticed in Remark 4.5, this result allows to formulate the randomized control
problem in “strong” form, rather than as a supremum over a family of probability
measures;

3) finally, in Lemma 4.6 we prove, roughly speaking, that given any α ∈ A and ε > 0

there exist a probabilistic setting for the randomized control and a suitable ν̂ such
that the “distance” under P̂ν̂ between the pure jump process Î and α is less than ε.
In order to do it, we need to introduce the following distance on Â (see Definition
3.2.3 in [16]), for every fixed ν̂ ∈ V̂:

d̂ν̂Kr(α̂, β̂) := Êν̂
[ ∫ T

0

dΛ(α̂t, β̂t) dt

]
,

for all α̂, β̂ ∈ Â.

Lemma 4.2. Suppose that assumptions (A)-(AR) hold. Consider a new probabilistic set-
ting for the randomized control problem characterized by the tuple (Ω̄, F̄ , P̄; x̄0, W̄ , π̄, θ̄; Ī,
X̄; V̄). Then

V̂ R0 = V̄ R0 .

Proof. The proof can be done proceeding along the same lines as in the proof of Propo-
sition 3.1 in [1]. Here we just recall the main steps. Firstly we take ν̂ ∈ V̂ which
admits an explicit functional dependence on (x̂0, Ŵ , π̂, θ̂). For such a ν̂ it is easy to
find ν̄ ∈ V̄ such that (ν̂, x̂0, Ŵ , π̂, θ̂) has the same law as (ν̄, x̄0, W̄ , π̄, θ̄) (simply replacing
x̂0, Ŵ , π̂, θ̂ by ν̄, x̄0, W̄ , π̄, θ̄ in the expression of ν̂). So, in particular, ĴR(ν̂) = J̄R(ν̄). By
a monotone class argument, we deduce that the same equality holds true for every
ν̂ ∈ V̂, which implies V̂ R0 ≤ V̄ R0 . Interchanging the role of (Ω̂, F̂ , P̂; x̂0, Ŵ , π̂, θ̂; Î , X̂; V̂)

and (Ω̄, F̄ , P̄; x̄0, W̄ , π̄, θ̄; Ī , X̄; V̄), we obtain the other inequality, from which the claim
follows.

Lemma 4.3. Suppose that assumptions (A)-(AR) hold. Then, there exists a probabilistic
setting for the randomized control problem (Ω̄, F̄ , P̄; x̄0, W̄ , π̄, θ̄; Ī , X̄; V̄) and a σ-algebra
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Ḡ ⊂ F̄ , independent of x̄0, W̄ , π̄, with F̄ θ̄∞ ⊂ Ḡ, such that: given any ν̄ ∈ V̄ there exists
ᾱν̄ ∈ ĀḠ satisfying

Law of (x̄0, (W̄t)0≤t≤T , π̄|[0,T ]×Λ
, (Īt)0≤t≤T ) under P̄ν̄

= Law of (x̄0, (W̄t)0≤t≤T , π̄|[0,T ]×Λ
, ᾱν̄) under P̄. (4.9)

So, in particular,
J̄R(ν̄) = J̄(ᾱν̄).

Remark 4.4. Recall that ĀḠ was defined just before Proposition 3.5, even though it was
denoted ÂĜ since it was defined in the probabilistic setting (Ω̂, F̂ , P̂; x̂0, Ŵ , π̂, θ̂; Î , X̂; V̂)

instead of (Ω̄, F̄ , P̄; x̄0, W̄ , π̄, θ̄; Ī , X̄; V̄).

Proof of Lemma 4.3. Let (Ω,F ,P;x0,W, π;X;A) be the setting of the original stochastic
control problem in Section 3.1.

Proceeding along the same lines as at the beginning of Section 4.1 in [1], we construct
an atomless finite measure λ′0 on (R,B(R)) and a surjective Borel-measurable map
π : R → Λ such that λ0 = λ′0 ◦ π−1. Let (Ω′,F ′,P′) be the completion of the canonical
probability space of a Poisson random measure θ′ =

∑
n≥1 δ(T ′n,ρ′n) on [0,∞) × Λ with

intensity measure λ′0(dr)dt, where (T ′n, ρ
′
n)n≥1 is the marked point process associated

with θ′. Then, θ =
∑
n≥1 δ(T ′n,π(ρ′n)) is a Poisson random measure on [0,∞) × Λ with

intensity measure λ0(dr)dt.
Let Ω̄ = Ω × Ω′, F̄ the P ⊗ P′-completion of F ⊗ F ′, and P̄ the extension of P ⊗ P′

to F̄ . Then, we consider the corresponding probabilistic setting for the randomized
control problem (Ω̄, F̄ , P̄; x̄0, W̄ , π̄, θ̄; Ī , X̄; V̄), where x̄0, W̄ , π̄, θ̄ denote the canonical
extensions of x0, W , π, θ to Ω̄. We also denote by θ̄′ the canonical extension of θ′ to Ω̄.
Let F̄θ̄

′
= (F̄ θ̄′t )t≥0 (resp. F̄θ̄ = (F̄ θ̄t )t≥0) the filtration generated by θ̄′ (resp. θ̄). We define

Ḡ := F̄ θ̄′∞. Notice that F̄ θ̄∞ ⊂ Ḡ and Ḡ is independent of x̄0, W̄ , π̄. Finally, we denote by

F̄x̄0,W̄ ,π̄,Ḡ = (F̄ x̄0,W̄ ,π̄,Ḡ
t )t≥0 the P̄-completion of the filtration generated by x̄0, W̄ , π̄, Ḡ

and satisfying Ḡ ⊂ F̄ x̄0,W̄ ,π̄,Ḡ
0 .

Now, fix ν̄ ∈ V̄. By an abuse of notation, we still denote by F the canonical extension of
the σ-algebra F to Ω̄. Then, we notice that in the probabilistic setting (Ω̄, F̄ , P̄; x̄0, W̄ , π̄, θ̄;
Ī , X̄; V̄) just introduced (4.9) follows if we prove the following: there exists ᾱν̄ ∈ ĀḠ
satisfying

Conditional law of (Īt)0≤t≤T under P̄ν̄ given F=Conditional law of ᾱν̄ under P̄ given F.
(4.10)

It only remains to prove (4.10). To this end, we recall that the process Ī is defined as

Īt =
∑
n≥0

η̄n 1[T̄n,T̄n+1)(t), for all t ≥ 0,

where (T̄0, η̄0) := (0, a0), while (T̄n, η̄n), n ≥ 1, denotes the canonical extension of
(T ′n, π(ρ′n)) to Ω̄. Then, (4.10) follows if we prove the following: there exists a sequence
(T̄ ν̄n , η̄

ν̄
n)n≥1 on (Ω̄, F̄ , P̄) such that:

(i) (T̄ ν̄n , η̄
ν̄
n) : Ω̄→ (0,∞)× Λ and T̄ ν̄n < T̄ ν̄n+1;

(ii) T̄ ν̄n is a F̄x̄0,W̄ ,π̄,Ḡ-stopping time and η̄ν̄n is F x̄0,W̄ ,π̄,Ḡ
T̄ ν̄n

-measurable;

(iii) limn→∞ T̄ ν̄n =∞;

(iv) the conditional law of the sequence (T̄1, η̄1)1{T̄1≤T}, . . ., (T̄n, η̄n)1{T̄n≤T}, . . . under
P̄ν̄ given F is equal to the conditional law of the sequence (T̄ ν̄1 , η̄

ν̄
1 )1{T̄ ν̄1 ≤T}, . . .,

(T̄ ν̄n , η̄
ν̄
n)1{T̄ ν̄n≤T}, . . . under P̄ given F .
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As a matter of fact, if there exists (T̄ ν̄n , η̄
ν̄
n)n≥1 satisfying (i)-(ii)-(iii)-(iv), then the process

ᾱν̄ , defined as

ᾱν̄t :=
∑
n≥0

η̄ν̄n 1[T̄ ν̄n ,T̄
ν̄
n+1)(t), for all 0 ≤ t ≤ T , with (T̄ ν̄0 , η̄

ν̄
0 ) := (0, a0),

belongs to ĀḠ and (4.10) holds.
Finally, concerning the existence of a sequence (T̄ ν̄n , η̄

ν̄
n)n≥1 satisfying (i)-(ii)-(iii)-(iv),

we do not report the proof of this result as it can be done proceeding along the same
lines as in the proof of Lemma 4.3 in [1], the only difference being that the filtration
FW in [1] (notice that in [1] W denotes a finite dimensional Brownian motion) is now
replaced by Fx0,W,π: this does not affect the proof of Lemma 4.3 in [1].

Remark 4.5. Let (Ω̄, F̄ , P̄; x̄0, W̄ , π̄, θ̄; Ī , X̄; V̄) and Ḡ be respectively the probabilistic
setting for the randomized control problem and the σ-algebra mentioned in Lemma 4.3.
We denote by ĀV̄ the family of all controls ᾱ ∈ ĀḠ for which there exists some ν̄ ∈ V̄
such that J̄(ᾱ) = J̄R(ν̄). Then, by definition ĀV̄ ⊂ ĀḠ . Moreover, by Lemma 4.3 we have
the following “strong” formulation of the randomized control problem:

V̄ R0 = sup
ᾱ∈ĀV̄

J̄(ᾱ).

Lemma 4.6. Suppose that assumptions (A)-(AR) hold. For any α ∈ A and ε > 0 there
exist:

1) a probabilistic setting for the randomized control problem (Ω̄, F̄ , P̄α,ε; x̄0, W̄ , π̄, θ̄α,ε;
Īα,ε, X̄α,ε; V̄α,ε) (notice that Ω̄, F̄ , x̄0, W̄ , π̄ do not depend on α, ε);

2) a probability measure Q̄ on (Ω̄, F̄) equivalent to P̄α,ε, which does not depend on
α, ε;

3) a stochastic process ᾱ : [0, T ]× Ω̄→ Λ, depending only on α but not on ε, which is
predictable with respect to the P̄α,ε-completion (or, equivalently, Q̄-completion) of
the filtration generated by x̄0, W̄ , π̄;

4) ν̄α,ε ∈ V̄α,ε,

such that, denoting by P̄ν̄
α,ε

the probability measure1 on (Ω̄, F̄ x̄0,W̄ ,π̄,θ̄α,ε

T ) defined as
dP̄ν̄

α,ε

= κ̄ν̄
α,ε

T dP̄α,ε, the following properties hold:

(i) the restriction of Q̄ to F̄ x̄0,W̄ ,π̄,θ̄α,ε

T coincides with P̄ν̄
α,ε

;

(ii) the following inequality holds:

ĒQ̄
[ ∫ T

0

dΛ(Īα,εt , ᾱt) dt

]
≤ ε;

(iii) the quadruple (x0,W, π, α) under P has the same law as (x̄0, W̄ , π̄, ᾱ) under P̄α,ε.

Proof. Fix α ∈ A and ε > 0. In order to construct the probabilistic setting of item 1),
we apply Proposition A.1 in [1] (with filtration G = Fx0,W,π and δ = ε), from which we
deduce the existence of a probability space (Ω̄, F̃ , Q̃) independent of α, ε (corresponding
to (Ω̂, F̂ ,Q) in the notation of Proposition A.1) and a marked point process (T̄α,εn , η̄α,εn )n≥1

with corresponding random measure θ̄α,ε =
∑
n≥1 δ(T̄α,εn ,η̄α,εn ) on Ω̄ (corresponding re-

spectively to (Ŝn, η̂n)n≥1 and µ̂ in Proposition A.1) with the following properties:

1Here F̄x̄0,W̄ ,π̄,θ̄α,ε = (F̄ x̄0,W̄ ,π̄,θ̄α,ε

t )t≥0 denotes the P̄α,ε-completion of the filtration generated by

x̄0, W̄ , π̄, θ̄α,ε, while κ̄ν̄
α,ε

is the Doléans-Dade exponential given by (4.7) with ν̂, θ̂ replaced respectively by
ν̄α,ε, θ̄α,ε.
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(a) there exists a probability space (Ω′,F ′,P′) such that Ω̄ = Ω × Ω′, F̃ = F ⊗ F ′,
Q̃ = P⊗ P′; we denote by x̄0, W̄ , π̄ the natural extensions of x0, W , π to Ω̄ (which
obviously do not depend on α, ε); we also denote by F̃x̄0,W̄ ,π̄ the extension of Fx0,W,π

to Ω̄;

(b) denoting ẼQ̃ the expectation with respect to Q̃, we have

ẼQ̃
[ ∫ T

0

dΛ(Īα,εt , ᾱt) dt

]
≤ ε,

where ᾱ is the natural extension of α to Ω̄ = Ω× Ω′ (which clearly depend only on α,
not on ε), while Īα,ε is given by

Īα,εt =
∑
n≥0

η̄α,εn 1[T̄α,εn ,T̄α,εn+1)(t), for all t ≥ 0,

with T̄α,ε0 = 0 and η̄α,ε0 = a0;

(c) let F̃θ̄
α,ε

= (F̃ θ̄α,εt )t≥0 denote the filtration generated by θ̄α,ε; let also P(F̃ x̄0,W̄ ,π̄
t ∨

F̄ θ̃α,εt ) be the predictable σ-algebra on [0, T ] × Ω̄ associated with the filtration

(F̃ x̄0,W̄ ,π̄
t ∨ F̃ θ̄α,εt )t≥0; then, there exists a P(F̃ x̄0,W̄ ,π̄

t ∨ F̄ θ̃α,εt )⊗B(Λ)-measurable map
ν̄α,ε : [0, T ] × Ω̄ × Λ → (0,∞), with 0 < inf [0,T ]×Ω̄×Λ ν̄

α,ε ≤ sup[0,T ]×Ω̄×Λ ν̄
α,ε < +∞,

such that under Q̃ the random measure θ̄α,ε has (F̃ x̄0,W̄ ,π̄
t ∨ F̃ θ̄α,εt )-compensator on

[0, T ]× Λ given by ν̄α,εt (a)λ0(da)dt.

Now, proceeding as in Section 4.2 of [1], we consider the completion (Ω̄, F̄ , Q̄) of (Ω̄, F̃ , Q̃).
Then, from item (b) above we immediately deduce item (ii).

Let F̄x̄0,W̄ ,π̄,θ̄α,ε = (F̄ x̄0,W̄ ,π̄,θ̄α,ε

t )t≥0 be the Q̄-completion of the filtration (F̃ x̄0,W̄ ,π̄
t ∨

F̃ θ̄α,εt )t≥0. It easy to see that under Q̄ the F̄x̄0,W̄ ,π̄,θ̄α,ε -compensator of θ̄α,ε on [0, T ]× Λ

is still given by ν̄α,εt (a)λ0(da)dt. Denote by P(F̄x̄0,W̄ ,π̄,θ̄α,ε) the predictable σ-algebra on
[0, T ] × Ω̄ associated with F̄x̄0,W̄ ,π̄,θ̄α,ε . Then, we define V̄α,ε as the set of all
P(F̄x̄0,W̄ ,π̄,θ̄α,ε)⊗B(Λ)-measurable functions ν̄ : [0, T ]×Ω̄×Λ→ (0,∞) which are bounded
from above and bounded away from zero. Notice that ν̄α,ε ∈ V̄α,ε. Let κ̄ν̄

α,ε

be the
Doléans-Dade exponential given by (4.7) with ν̂, θ̂ replaced respectively by ν̄α,ε, θ̄α,ε.
Since inf [0,T ]×Ω̄×Λ ν̄

α,ε > 0, it follows that ν̄α,ε has bounded inverse, so that we can define

the probability measure P̄α,ε on (Ω̄, F̄), equivalent to Q̄, by dP̄α,ε = (κ̄ν̄
α,ε

T )−1dQ̄. Notice

that the restriction of Q̄ to F̄ x̄0,W̄ ,π̄,θ̄α,ε

T coincides with P̄ν̄
α,ε

, which is the probability

measure on (Ω̄, F̄ x̄0,W̄ ,π̄,θ̄α,ε

T ) defined as dP̄ν̄
α,ε

= κ̄ν̄
α,ε

T dP̄α,ε. This proves item (i).
By Girsanov’s theorem, under P̄α,ε the random measure θ̄α,ε has F̄x̄0,W̄ ,π̄,θ̄α,ε -compen-

sator on [0, T ] × Λ given by λ0(da)dt, so in particular it is a Poisson random measure.
Moreover, under P̄α,ε the random variable x̄0 has still the same law, the process W̄ is
still a Brownian motion, and the random measure π̄ is still a Poisson random measure
with F̄x̄0,W̄ ,π̄,θ̄α,ε -compensator on [0, T ]×U given by λπ(dz)dt. In addition, x̄0, W̄ , π̄, θ̄ are
independent under P̄α,ε. This shows the validity of item (iii) and concludes the proof.

Theorem 4.7. Under assumptions (A)-(AR), the following equality holds:

V0 = V̂ R0 .

Proof. Proof of the inequality V0 ≥ V̂ R0 . Let (Ω̄, F̄ , P̄; x̄0, W̄ , π̄, θ̄; Ī , X̄; V̄) and Ḡ be respec-
tively the probabilistic setting for the randomized control problem and the σ-algebra
mentioned in Lemma 4.3. Recall from Proposition 3.5 that

V0 = sup
ᾱ∈ĀḠ

J̄(ᾱ).
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Then, the inequality V0 ≥ V̂ R0 follows directly by Lemma 4.2 and Remark 4.5, from which
we have

V̂ R0 = V̄ R0 = sup
ᾱ∈ĀV̄

J̄(ᾱ) ≤ sup
ᾱ∈ĀḠ

J̄(ᾱ) = V0.

Proof of the inequality V0 ≤ V̂ R0 . Fix α ∈ A. Then, for every positive integer k, it follows
from Lemma 4.6 with ε = 1/k that there exist a probabilistic setting for the randomized
control problem (Ω̄, F̄ , P̄α,k; x̄0, W̄ , π̄, θ̄α,k; Īα,k, X̄α,k; V̄α,k), a probability measure Q̄ on
(Ω̄, F̄) equivalent to P̄α,k, ᾱ : [0, T ]× Ω̄→ Λ, ν̄α,k ∈ V̄α,k such that:

(i) Q̄|F̄x̄0,W̄ ,π̄,θ̄α,k

T
coincides with P̄ν̄

α,k

;

(ii) ĒQ̄
[ ∫ T

0
dΛ(Īα,kt , ᾱt) dt

]
≤ 1/k, so, in particular,

ĒQ̄
[ ∫ T

0

dΛ(Īα,kt , ᾱt) dt

]
k→+∞−→ 0; (4.11)

(iii) (x0,W, π, α) under P has the same law as (x̄0, W̄ , π̄, ᾱ) under P̄α,k.

The claim follows if we prove that

lim
k→+∞

J̄R,α,k(ν̄α,k) = J(α), (4.12)

where J̄R,α,k denotes the gain functional for the randomized control problem (Ω̄, F̄ , P̄α,k;

x̄0, W̄ , π̄, θ̄α,k; Īα,k, X̄α,k; V̄α,k), which is given by

J̄R,α,k(ν̄α,k) = Ēν̄
α,k

[ ∫ T

0

ft(X̄
α,k, Īα,kt ) dt+ g(X̄α,k)

]
,

with 
dX̄α,k

t = AX̄α,k
t dt+ bt(X̄

α,k, Īα,kt )dt+ σt(X̄
α,k, Īα,kt )dW̄t

+

∫
U\{0}

γt(X̄
α,k, Īα,kt− , z)

(
π̄(dt dz)− λπ(dz)dt

)
,

X̄α,k
0 = x̄0.

As a matter of fact, if (4.12) holds true then for every ε > 0 there exists kε such that
J(α) ≤ J̄R,α,k(ν̄α,k) + ε ≤ V̄ R,α,k0 + ε, for all k ≥ kε. By Lemma 4.2 we know that
V̄ R,α,k0 = V̂ R0 , so the claim follows.

It remains to prove (4.12). By item (i) above we notice that J̄R,α,k(ν̄α,k) can be
equivalently written in terms of ĒQ̄:

J̄R,α,k(ν̄α,k) = ĒQ̄
[ ∫ T

0

ft(X̄
α,k, Īα,kt ) dt+ g(X̄α,k)

]
.

On the other hand, by item (iii) above, J(α) is also given by

J(α) = ĒQ̄
[ ∫ T

0

ft(X̄
ᾱ, ᾱt) dt+ g(X̄ ᾱ)

]
,

with 
dX̄ ᾱ

t = AX̄ ᾱ
t dt+ bt(X̄

ᾱ, ᾱt)dt+ σt(X̄
ᾱ, ᾱt)dW̄t

+

∫
U\{0}

γt(X̄
ᾱ, ᾱt, z)

(
π̄(dt dz)− λπ(dz)dt

)
,

X̄ ᾱ
0 = x̄0.
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Hence, (4.12) can be equivalently rewritten as follows:

ĒQ̄
[ ∫ T

0

ft(X̄
α,k, Īα,kt ) dt+ g(X̄α,k)

]
k→+∞−→ ĒQ̄

[ ∫ T

0

ft(X̄
ᾱ, ᾱt) dt+ g(X̄ ᾱ)

]
. (4.13)

Now, we notice that, under assumptions (A)-(AR), proceeding along the same lines as in
the proof of Proposition 3.2, we can prove the following result: for every 1 ≤ p ≤ p0,

ĒQ̄
[

sup
t∈[0,T ]

∣∣X̄α,k
t − X̄ ᾱ

t

∣∣p] k→+∞−→ 0. (4.14)

It is then easy to see that, from the continuity and polynomial growth assumptions on f
and g in (A)-(v) and (A)-(vi), convergence (4.13) follows directly from (4.11) and (4.14).
This concludes the proof of the inequality V0 ≤ V̂ R0 .

5 BSDE with non-positive jumps

Let (Ω̂, F̂ , P̂) be the complete probability space on which are defined x̂0, Ŵ , π̂, θ̂ as

in Section 3.2. F̂x̂0,Ŵ ,π̂,θ̂ = (F̂ x̂0,Ŵ ,π̂,θ̂
t )t≥0 still denotes the P̂-completion of the filtration

generated by x̂0, Ŵ , π̂, θ̂; we also recall that P(F̂x̂0,Ŵ ,π̂,θ̂) is the predictable σ-algebra on

[0, T ]× Ω̂ corresponding to F̂x̂0,Ŵ ,π̂,θ̂. We begin introducing the following notations.

• S2 denotes the set of càdlàg F̂x̂0,Ŵ ,π̂,θ̂-adapted processes Y : [0, T ]× Ω̂→ R satisfy-
ing

‖Y ‖2
S2

:= Ê
[

sup
0≤t≤T

|Yt|2
]
< ∞.

• Lp(0, T ), p ≥ 1, denotes the set of F̂x̂0,Ŵ ,π̂,θ̂-adapted processes φ : [0, T ] × Ω̂ → R

satisfying

‖φ‖p
Lp(0,T )

:= Ê

[ ∫ T

0

|φt|p dt
]
< ∞.

• Lp(Ŵ ), p ≥ 1, denotes the set of P(F̂x̂0,Ŵ ,π̂,θ̂)-measurable processes Z : [0, T ]× Ω̂→
Ξ satisfying

‖Z‖p
Lp(Ŵ )

:= Ê

[(∫ T

0

|Zt|2Ξ dt
) p

2
]
< ∞.

We shall identify Ξ with its dual Ξ∗. Notice also that Ξ∗ = L2(Ξ,R), the space of
Hilbert-Schmidt operators from Ξ into R endowed with the usual scalar product.

• Lp(π̂), p ≥ 1, denotes the set of P(F̂x̂0,Ŵ ,π̂,θ̂)⊗ B(U)-measurable maps L : [0, T ]×
Ω̂× U → R satisfying

‖L‖p
Lp(π̂)

:= Ê

[(∫ T

0

∫
U

|Lt(z)|2 λπ(dz) dt

) p
2
]
< ∞.

• Lp(θ̂), p ≥ 1, denotes the set of P(F̂x̂0,Ŵ ,π̂,θ̂) ⊗ B(Λ)-measurable maps R : [0, T ] ×
Ω̂× Λ→ R satisfying

‖R‖p
Lp(θ̂)

:= Ê

[(∫ T

0

∫
Λ

|Rt(b)|2 λ0(db) dt

) p
2
]
< ∞.

• Lp(λ0), p ≥ 1, denotes the set of B(Λ)-measurable maps r : Λ→ R satisfying

‖r‖p
Lp(λ0)

:=

∫
Λ

|r(b)|p λ0(db) < ∞.
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• K2 denotes the set of non-decreasing P(F̂x̂0,Ŵ ,π̂,θ̂)-measurable processes K ∈ S2

satisfying K0 = 0, so that
‖K‖2

S2
= Ê|KT |2.

Consider the following backward stochastic differential equation with non-positive jumps:

Yt = g(X̂) +

∫ T

t

f(X̂, Îs) ds+KT −Kt −
∫ T

t

∫
Λ

Rs(b) θ̂(ds db) (5.1)

−
∫ T

t

Zs dŴs −
∫ T

t

∫
U

Ls(z) (π̂(ds dz)− λπ(dz) ds), 0 ≤ t ≤ T, P̂-a.s.

Rt(b) ≤ 0, dt⊗ dP̂⊗ λ0(db)-a.e. on Ω̂× [0, T ]× Λ. (5.2)

Definition 5.1. A minimal solution to equation (5.1)-(5.2) is a quintuple (Y,Z, L,R,K)

∈ S2×L2(Ŵ )×L2(π̂)×L2(θ̂)×K2 satisfying (5.1)-(5.2) such that for any other quintuple
(Ỹ , Z̃, L̃, R̃, K̃) ∈ S2 × L2(Ŵ )× L2(π̂)× L2(θ̂)×K2 satisfying (5.1)-(5.2), we have

Yt ≤ Ỹt, 0 ≤ t ≤ T, P̂-a.s.

Lemma 5.2. Under assumptions (A)-(AR), there exists at most one minimal solution to
equation (5.1)-(5.2).

Proof. The uniqueness of Y follows from the definition of minimal solution. Now, let
(Y,Z, L,R,K), (Y, Z̃, L̃, R̃, K̃) ∈ S2×L2(Ŵ )×L2(π̂)×L2(θ̂)×K2 be two minimal solutions.
Then

Kt − K̃t −
∫ t

0

(
Zs − Z̃s

)
dŴs +

∫ t

0

∫
U

(
Ls(z)− L̃s(z)

)
λπ(dz)ds

=

∫ t

0

∫
U

(
Ls(z)− L̃s(z)

)
π̂(ds dz) +

∫ t

0

∫
Λ

(
Rs(b)− R̃s(b)

)
θ̂(ds db), (5.3)

for all 0 ≤ t ≤ T , P̂-a.s.. Observe that on the left-hand side of (5.3) there is a predictable
process, which has therefore no totally inaccessible jumps, while on the right-hand side
in (5.3) there is a pure jump process which has only totally inaccessible jumps. We
deduce that both sides must be equal to zero. Therefore, we obtain the two following
equalities: for all 0 ≤ t ≤ T , P̂-a.s.,

Kt − K̃t +

∫ t

0

∫
U

(
Ls(z)− L̃s(z)

)
λπ(dz)ds =

∫ t

0

(
Zs − Z̃s

)
dŴs,∫ t

0

∫
U

(
Ls(z)− L̃s(z)

)
π̂(ds dz) =

∫ t

0

∫
Λ

(
Rs(b)− R̃s(b)

)
θ̂(ds db).

Concerning the first equation, the left-hand side is a finite variation process, while
the process on the right-hand side has not finite variation, unless Z = Z̃ and K − K̃ +∫ ·

0

∫
U

(Ls(z) − L̃s(z))λπ(dz)ds = 0. On the other hand, since π̂ and θ̂ are independent,

they have disjoint jump times, therefore from the second equation above we find L = L̃

and R = R̃, from which we also obtain K = K̃.

We now prove that focus on the existence of a minimal solution to (5.1)-(5.2). To this
end, we introduce, for every integer n ≥ 1, the following penalized backward stochastic
differential equation:

Y nt = g(X̂) +

∫ T

t

f(X̂, Îs) ds+Kn
T −Kn

t −
∫ T

t

∫
Λ

Rns (b) θ̂(ds db) (5.4)

−
∫ T

t

Zns dŴs −
∫ T

t

∫
U

Lns (z) (π̂(ds dz)− λπ(dz)ds), 0 ≤ t ≤ T, P̂-a.s.

EJP 24 (2019), paper 81.
Page 18/37

http://www.imstat.org/ejp/

https://doi.org/10.1214/19-EJP333
http://www.imstat.org/ejp/


BSDEs and stochastic control problems of infinite-dimensional jump-diffusions

where

Kn
t = n

∫ t

0

∫
Λ

(
Rns (b)

)+
λ0(db)ds, 0 ≤ t ≤ T, P̂-a.s.

with f+ = max(f, 0) denoting the positive part of the function f .

Lemma 5.3 (Martingale representation). Suppose that assumptions (A)-(iii) and (AR)-(i)

hold. Given any ξ ∈ L2(Ω̂, F̂ x̂0,Ŵ ,π̂,θ̂
T , P̂), there exist Z ∈ L2(Ŵ ), L ∈ L2(π̂), R ∈ L2(θ̂)

such that

ξ = Ê[ξ|x̂0] +

∫ T

0

Zt dŴt +

∫ T

0

∫
U

Lt(z) π̂(dt dz) +

∫ T

0

∫
Λ

Rt(b) θ̂(dt db), P̂-a.s. (5.5)

Proof. We begin noting that, when Ŵ is a finite-dimensional Brownian motion, repre-
sentation (5.5) for ξ can be easily proved using for instance Lemma 2.3 in [21]. As a

matter of fact, let F̂x̂0 = (F̂ x̂0
t )t≥0, F̂Ŵ0 = (F̂Ŵ0

t )t≥0, F̂π̂0 = (F̂ π̂0
t )t≥0, F̂θ̂0 = (F̂ θ̂0t )t≥0

be the P̂-completion of the filtration generated respectively by x̂0, Ŵ , π̂, θ̂. When

ξ = 1Ex̂0
1E

Ŵ0
1Eπ̂0

1E
θ̂0

, with Ex̂0
∈ F̂ x̂0

T , EŴ0
∈ F̂Ŵ0

T , Eπ̂0
∈ F̂ π̂0

T , Eθ̂0 ∈ F̂
θ̂0
T , then rep-

resentation (5.5) for ξ follows easily by Lemma 2.3 in [21]. Since the linear span of

the random variables of the form 1Ex̂0
1E

Ŵ0
1Eπ̂0

1E
θ̂0

is dense in L2(Ω̂, F̂ x̂0,Ŵ ,π̂,θ̂
T , P̂), we

deduce the validity of (5.5) for a general ξ ∈ L2(Ω̂, F̂ x̂0,Ŵ ,π̂,θ̂
T , P̂).

In the infinite-dimensional case, let (ek)k≥1 be an orthonormal basis of Ξ and define

Ŵ
(k)
t = 〈Ŵt, ek〉Ξ, for t ≥ 0. The processes W (k) are independent standard real Brownian

motions. For any positive integer n, let F̂(n) = (F̂ (n)
t )t≥0 denote the P̂-completion of

the filtration generated by x̂0, Ŵ (1), . . . , Ŵ (n), π̂, θ̂. Notice that F̂(n) satisfies the usual
conditions. Denote ξ(n) = Ê[ξ|F̂ (n)

T ]. By the previously mentioned finite-dimensional
version of representation (5.5), we have a martingale representation for ξ(n). It is then
easy to see that, letting n→ +∞ in such a martingale representation, (5.5) follows.

Proposition 5.4. Under assumptions (A)-(AR), for every integer n ≥ 1 there exists
a unique solution (Y n, Zn, Ln, Rn) ∈ S2 × L2(Ŵ ) × L2(π̂) × L2(θ̂) to equation (5.4). In
addition, the following estimate holds:

‖Zn‖2
L2(Ŵ )

+ ‖Ln‖2
L2(π̂)

+ ‖Rn‖2
L2(θ̂)

+ ‖Kn‖2
S2
≤ Ĉ

(
‖Y n‖2

S2
+ Ê

[ ∫ T

0

|f(X̂, Ît)|2dt
])
, (5.6)

for some constant Ĉ ≥ 0, depending only on T and on the constant L in assumption
(A)-(vi), independent of n.

Proof. The existence and uniqueness result can be proved as in the finite-dimensional
case dim Ξ <∞, see Lemma 2.4 in [21]. We simply recall that, as usual, it is based on a
fixed point argument and on the martingale representation (concerning this latter result,
since we did not find a reference for it suitable for our setting, we proved it in Lemma
5.3).

Similarly, estimate (5.6) can be proved proceeding along the same lines as in the
finite-dimensional case dim Ξ < ∞, for which we refer to Lemma 2.3 in [15]; we just
recall that its proof is based on the application of Itô’s formula to |Y n|2, as well as on
Gronwall’s lemma and the Burkholder-Davis-Gundy inequality.

For every integer n ≥ 1, we provide the following representation of Y n in terms of a
suitable penalized randomized control problem. To this end, we define V̂n as the subset
of V̂ of all maps ν̂ bounded from above by n.
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We recall that, for every ν̂ ∈ V̂, Êν̂ denotes the expectation with respect to the

probability measure on (Ω̂, F̂ x̂0,Ŵ ,π̂,θ̂
T ) given by dP̂ν̂ = κ̂ν̂T dP̂, where (κ̂ν̂t )t∈[0,T ] denotes

the Doléans-Dade exponential defined in (4.7).

Lemma 5.5. Under assumptions (A)-(AR), for every integer n ≥ 1 the following equali-
ties hold:

Y nt = ess sup
ν̂∈V̂n

Êν̂
[ ∫ T

t

f(X̂, Îs) ds+ g(X̂)

∣∣∣∣F̂ x̂0,Ŵ ,π̂,θ̂
t

]
, P̂-a.s., 0 ≤ t ≤ T (5.7)

and

Ê[Y n0 ] = sup
ν̂∈V̂n

Êν̂
[ ∫ T

0

f(X̂, Îs) ds+ g(X̂)

]
, (5.8)

with Ê[Y n0 ] = Y n0 , P̂-a.s., when x̂0 is deterministic. In addition, we have:

• for every 0 ≤ t ≤ T , the sequence (Y nt )n is non-decreasing;

• there exists a constant C̄ ≥ 0, depending only on T , p̄, and on the constant L in
assumption (A)-(vi), independent of n, such that

sup
s∈[0, T ]

|Y ns | ≤ C̄
(

1 + sup
s∈[0, T ]

|X̂s|p̄
)
, P̂-a.s. (5.9)

Proof. Proof of formulae (5.7) and (5.8). We report the proof of formula (5.7), as (5.8)
can be proved proceeding along the same lines (simply replacing all the P̂ν̂ -conditional
expectations with normal P̂ν̂ -expectations, and also noting that P̂ν̂ coincides with P̂ on

F̂ x̂0,Ŵ ,π̂,θ̂
0 , which is the P̂-completion of the σ-algebra generated by x̂0). Fix an integer

n ≥ 1 and let (Y n, Zn, Ln, Rn) be the solution to (5.4), whose existence follows from
Proposition 5.4. As consequence of the Girsanov Theorem, the two following processes∫ t

0

Zns dŴs,

∫ t

0

∫
U

Lns (z)
(
π̂(ds dz)− λπ(dz)ds

)
,

are P̂ν̂ -martingales (see e.g. Theorem 15.3.10 in [5] or Theorem 12.31 in [14]). Moreover

Êν̂
[ ∫ T

t

∫
Λ

Rns (b) θ̂(ds db)

∣∣∣∣F̂ x̂0,Ŵ ,π̂,θ̂
t

]
= Êν̂

[ ∫ T

t

∫
Λ

Rns (b) ν̂s(b)λ0(db)ds

∣∣∣∣F̂ x̂0,Ŵ ,π̂,θ̂
t

]
.

Therefore, taking the P̂ν̂ -conditional expectation given F̂ x̂0,Ŵ ,π̂,θ̂
t in (5.4), we obtain

Y nt = Êν̂
[
g(X̂T ) +

∫ T

t

f(X̂s, Îs) ds

∣∣∣∣F̂ x̂0,Ŵ ,π̂,θ̂
t

]
(5.10)

+ Êν̂
[ ∫ T

t

∫
Λ

[n(Rns (b))+ − ν̂s(b)Rns (b)]λ0(db)ds

∣∣∣∣F̂ x̂0,Ŵ ,π̂,θ̂
t

]
, P̂-a.s., 0 ≤ t ≤ T.

Firstly, we notice that nu+ − νu ≥ 0 for all u ∈ R, ν ∈ (0, n], so that (5.10) gives

Y nt ≥ ess sup
ν̂∈V̂n

Êν̂
[
g(X̂T ) +

∫ T

t

f(X̂s, Îs) ds

∣∣∣∣F̂ x̂0,Ŵ ,π̂,θ̂
t

]
P̂-a.s., 0 ≤ t ≤ T. (5.11)

On the other hand, since Rn ∈ L2(θ̂), by Lebesgue’s dominated convergence theorem for
conditional expectation, we obtain

lim
N→∞

Ê

[ ∫ T

t

∫
Λ

|Rns (b)|2 1{Rns (b)≤−N} λ0(db)ds

∣∣∣∣F̂ x̂0,Ŵ ,π̂,θ̂
t

]
= 0.

EJP 24 (2019), paper 81.
Page 20/37

http://www.imstat.org/ejp/

https://doi.org/10.1214/19-EJP333
http://www.imstat.org/ejp/


BSDEs and stochastic control problems of infinite-dimensional jump-diffusions

So, in particular, for every n ≥ 1 there exists a positive integer Nn such that

Ê

[ ∫ T

t

∫
Λ

|Rns (b)|2 1{Rns (b)≤−Nn} λ0(db)ds

]
≤ e−(n−1)λ0(Λ)(T−t). (5.12)

Now, let us define

ν̂n,εs (b) := n1{Rns (b)≥0} + ε1{−1<Rns (b)<0} − εRns (b)−11{−Nn<Rns (b)≤−1} + ε1{Rns (b)≤−Nn}.

It is easy to see that ν̂n,ε ∈ V̂n. Moreover, we have

Êν̂
n,ε

[ ∫ T

t

∫
Λ

[n(Rns (b))+ − ν̂n,εs (b)Rns (b)]λ0(db)ds

∣∣∣∣F̂ x̂0,Ŵ ,π̂,θ̂
t

]
≤ ε

√
(T − t)λ0(Λ)

{√
(T − t)λ0(Λ) (5.13)

+

√
Ê

[∣∣∣ κ̂ν̂n,εT

κ̂ν̂
n,ε

t

∣∣∣2∣∣∣∣F̂ x̂0,Ŵ ,π̂,θ̂
t

]√
Ê

[ ∫ T

t

∫
Λ

|Rns (b)|2 1{Rns (b)≤−Nn} λ0(db)ds

∣∣∣∣F̂ x̂0,Ŵ ,π̂,θ̂
t

]}
.

Recalling that, for every ν̂ ∈ V̂, it holds that |κ̂ν̂s |2 = κ̂ν̂
2

s e
∫ s
0

∫
Λ

(ν̂r(b)−1)λ0(db)dr, s ∈ [0, T ]

(see e.g. the proof of Lemma 4.1 in [15]), we obtain

Ê

[∣∣∣ κ̂ν̂n,εT

κ̂ν̂
n,ε

t

∣∣∣2∣∣∣∣F̂ x̂0,Ŵ ,π̂,θ̂
t

]
= Ê

[
κ̂
|ν̂n,ε|2
T

κ̂
|ν̂n,ε|2
t

e
∫ T
t

∫
Λ

(ν̂n,εr (b)−1)λ0(db)dr

∣∣∣∣F̂ x̂0,Ŵ ,π̂,θ̂
t

]
(5.14)

≤ Ê

[
κ̂
|ν̂n,ε|2
T

κ̂
|ν̂n,ε|2
t

e(n−1)λ0(Λ)(T−t)
∣∣∣∣F̂ x̂0,Ŵ ,π̂,θ̂
t

]
= e(n−1)λ0(Λ)(T−t),

where the last equality follows from the fact that, for every ν̂ ∈ V̂, we have ν̂2 ∈ V̂, so
that κ̂ν̂

2

is a martingale. Plugging (5.12) and (5.14) into (5.13), we end up with

Êν̂
n,ε

[ ∫ T

t

∫
Λ

[n(Rns (b))+ − ν̂n,εs (b)Rns (b)]λ0(db)ds

∣∣∣∣F̂ x̂0,Ŵ ,π̂,θ̂
t

]
(5.15)

≤ ε
√

(T − t)λ0(Λ)
{√

(T − t)λ0(Λ) + 1
}

= ε C̃,

with C̃ :=
√

(T − t)λ0(Λ){
√

(T − t)λ0(Λ) + 1}. Plugging (5.15) into (5.10) we get

Y nt ≤ Êν̂
n,ε

[
g(X̂T ) +

∫ T

t

f(X̂s, Îs) ds

∣∣∣∣F̂ x̂0,Ŵ ,π̂,θ̂
t

]
+ ε C̃

≤ ess sup
ν̂∈V̂n

Êν̂
[
g(X̂T ) +

∫ T

t

f(X̂s, Îs) ds

∣∣∣∣F̂ x̂0,Ŵ ,π̂,θ̂
t

]
+ ε C̃, P̂-a.s., 0 ≤ t ≤ T.

From the arbitrariness of ε, we find the reverse inequality of (5.11), from which (5.7)
follows.

Proof of the monotonicity of (Y n)n. By definition V̂n ⊂ V̂n+1. Then inequality Y nt ≤ Y n+1
t ,

P̂-a.s. for all t ∈ [0, T ], follows directly from (5.7).

Proof of formula (5.9). In the sequel we denote by C̄ a non-negative constant, depending
only on T , p̄, and on the constant L in assumption (A)-(vi), independent of n, which may
change from line to line.

Recalling the polynomial growth condition (2.1) on f and g in assumption (A)-(vi), it
follows from formula (5.7) that

|Y nt | ≤ C̄ ess sup
ν̂∈V̂n

Êν̂
[
1 + sup

s∈[0,T ]

|X̂s|p̄
∣∣∣F̂ x̂0,Ŵ ,π̂,θ̂
t

]
, P̂-a.s., 0 ≤ t ≤ T.

EJP 24 (2019), paper 81.
Page 21/37

http://www.imstat.org/ejp/

https://doi.org/10.1214/19-EJP333
http://www.imstat.org/ejp/


BSDEs and stochastic control problems of infinite-dimensional jump-diffusions

Finally, by estimate (4.5), together with the fact that Y n is a càdlàg process, we see that
(5.9) follows.

We can now prove the main result of this section.

Theorem 5.6. Under assumptions (A)-(AR), there exists a unique minimal solution
(Y,Z, L,R,K) ∈ S2 × L2(Ŵ )× L2(π̂)× L2(θ̂)×K2 to (5.1)-(5.2), satisfying

Yt = ess sup
ν̂∈V̂

Êν̂
[ ∫ T

t

fs(X̂, Îs) ds+ g(X̂)

∣∣∣∣F̂ x̂0,Ŵ ,π̂,θ̂
t

]
, P̂-a.s., 0 ≤ t ≤ T (5.16)

and

Ê[Y0] = sup
ν̂∈V̂

Êν̂
[ ∫ T

0

fs(X̂, Îs) ds+ g(X̂)

]
= V̂ R0 , (5.17)

with Ê[Y0] = Y0, P̂-a.s., when x̂0 is deterministic. In addition, we have:

(i) for every 0 ≤ t ≤ T , the sequence (Y nt )n increasingly converges to Yt; moreover,
Y n → Y in L2(0, T );

(ii) the following estimate holds:

sup
s∈[0, T ]

|Ys| ≤ C̄
(

1 + sup
s∈[0, T ]

|X̂s|p̄
)
, P̂-a.s., (5.18)

with the same constant C̄ as in (5.9);

(iii) the sequence (Zn, Ln, Rn)n weakly converges to (Z,L,R) in L2(Ŵ )×L2(π̂)×L2(θ̂);

(iv) for every 0 ≤ t ≤ T , the sequence (Kn
t )n weakly converges to Kt in

L2(Ω̂, F̂ x̂0,Ŵ ,π̂,θ̂
t , P̂).

Finally, the so-called randomized dynamic programming principle holds: for every
t ∈ [0, T ] and any F̂x̂0,Ŵ ,π̂,θ̂-stopping time τ̂ taking values in [t, T ], we have

Yt = ess sup
ν̂∈V̂

Êν̂
[ ∫ τ̂

t

fs(X̂, Îs) ds+ Yτ̂

∣∣∣∣F̂ x̂0,Ŵ ,π̂,θ̂
t

]
, P̂-a.s. (5.19)

Proof. Construction of (Y,Z, L,R,K) in S2×L2(Ŵ )×L2(π̂)×L2(θ̂)×K2 solution to (5.1).
By Lemma 5.5 we know that, for every 0 ≤ t ≤ T , the sequence (Y nt )n is non-decreasing.
Since Y n is càdlàg, it follows that there exists a P̂-null set N̂ such that, for every integer
n ≥ 1,

Y nt (ω̂) ≤ Y n+1
t (ω̂), 0 ≤ t ≤ T, ω̂ /∈ N̂ .

This property, together with estimate (5.9), shows that there exists a measurable
F̂x̂0,Ŵ ,π̂,θ̂-adapted process Y = (Yt)t≥0 such that Y nt (ω̂) increasingly converges to Yt(ω̂),
0 ≤ t ≤ T , ω̂ /∈ N̂ . Moreover, estimate (5.18) holds, from which we also deduce that
Y n → Y in L2(0, T ). In addition, noting that V̂n ⊂ V̂n+1 and ∪nV̂n = V̂, letting n→∞ in
equalities (5.7) and (5.8), we obtain formulae (5.16) and (5.17), respectively.

By estimate (5.6), we see that the sequence (Zn, Ln, Rn)n is bounded in the Hilbert
space L2(Ŵ )×L2(π̂)×L2(θ̂). So, in particular, (Zn, Ln, Rn)n admits a weakly convergent
subsequence (Znk , Lnk , Rnk)k going towards some (Z,L,R) ∈ L2(Ŵ ) × L2(π̂) × L2(θ̂).

Then, for any F̂x̂0,Ŵ ,π̂,θ̂-stopping time τ̂ taking values in [0, T ], we obtain∫ τ̂

0

Znks dŴs ⇀

∫ τ̂

0

Zs dŴs,

∫ τ̂

0

∫
Λ

Rnks (b) θ̂(ds db) ⇀

∫ τ̂

0

∫
Λ

Rs(b) θ̂(ds db),∫ τ̂

0

∫
U

Lnks (z) (π̂(ds dz)− λπ(dz)ds) ⇀

∫ τ̂

0

∫
U

Ls(z) (π̂(ds dz)− λπ(dz)ds).
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By equation (5.4), we have

Kn
τ̂ = Y nτ̂ − Y n0 − g(X̂)−

∫ τ̂

0

fs(X̂, Îs) ds+

∫ τ̂

0

∫
Λ

Rns (b) θ̂(ds db)

+

∫ τ̂

0

Zns dŴs +

∫ τ̂

0

∫
U

Lns (z) (π̂(ds dz)− λπ(dz)ds).

Noting that Y nτ̂ → Yτ̂ strongly in L2(Ω̂, F̂ x̂0,Ŵ ,π̂,θ̂
τ̂ , P̂), we get

Knk
τ̂ ⇀ Kτ̂ ,

where

Kt := Yt − Y0 − g(X̂)−
∫ t

0

fs(X̂, Îs) ds+

∫ t

0

∫
Λ

Rs(b) θ̂(ds db)

+

∫ t

0

Zs dŴs +

∫ t

0

∫
U

Ls(z) (π̂(ds dz)− λπ(dz)ds), 0 ≤ t ≤ T.

Since Knk
T ⇀ KT , from the lower semicontinuity of the norm with respect to the weak

topology on L2(Ω̂, F̂ x̂0,Ŵ ,π̂,θ̂
T , P̂), we deduce that Ê|KT |2 < ∞. It is also easy to see

that Knk weakly converges to K in L2(0, T ). Since the set of F̂x̂0,Ŵ ,π̂,θ̂-predictable
processes is convex and strongly closed in L2(0, T ), it is also weakly closed, so that K is

F̂x̂0,Ŵ ,π̂,θ̂-predictable.
Now, given any F̂x̂0,Ŵ ,π̂,θ̂-stopping times τ̂ and τ̂ ′, with 0 ≤ τ̂ ≤ τ̂ ′ ≤ T , since

Kn
τ̂ ≤ Kn

τ̂ ′ , P̂-a.s., we deduce that Kτ̂ ≤ Kτ̂ ′ , P̂-a.s.. This implies that K is a non-
decreasing process. As a matter fact, K is non-decreasing if and only if the two processes
K and sup0≤s≤·Ks are P̂-indistinguishable. Since K is predictable, we notice that
sup0≤s≤·Ks is also predictable (by the proof of item (a) of Theorem IV.33 in [8] we know
that sup0≤s<·Ks is progressively measurable and left-continuous, hence it is predictable;
since K is predictable and sup0≤s≤·Ks = K· ∨ sup0≤s<·Ks, we deduce that sup0≤s≤·Ks

is predictable). Let

τ̂ = inf
{
t ≥ 0: Kt < sup

0≤s≤t
Ks

}
, τ̂ ′ = inf

{
t ≥ τ̂ : Kt = sup

0≤s≤t
Ks

}
,

with inf ∅ = ∞. The claim follows if we prove that P̂(τ̂ < ∞) = 0. We proceed by
contradiction, assuming that E := {τ̂ <∞} is such that P̂(E) > 0. We begin noting that
τ̂ < τ̂ ′ on E. Now, for every ω̂ ∈ E and any t satisfying τ̂(ω̂) < t < τ̂ ′(ω̂), we obtain

Kt(ω̂) < sup
0≤s≤t

Ks(ω̂) = sup
0≤s≤τ̂(ω̂)

Ks(ω̂). (5.20)

Since K and sup0≤s≤·Ks are predictable, τ̂ (resp. τ̂ ′) is a predictable time, so, in
particular, there exists a sequence of stopping times τ̂m ↑ τ̂ , with τ̂m < τ̂m+1 < τ̂

whenever τ̂ 6= 0 (resp. τ̂ ′m ↑ τ̂ ′, with τ̂ ′m < τ̂ ′m+1 < τ̂ ′ whenever τ̂ ′ 6= 0). It is then
easy to prove (using that τ̂ < τ̂ ′ on E and τ̂ ′ is announceable) the existence of a
stopping time τ̄ satisfying τ̂ < τ̄ < τ̂ ′ on E. Moreover, using that τ̂ is announceable,
we obtain Kτ̂ = sup0≤s≤τ̂ Ks, arguing as follows. Let F := {Kτ̂ < sup0≤s≤τ̂ Ks} ∩ E.
On F it holds that sup0≤s≤τ̂ Ks = sup0≤s<τ̂ Ks. Since τ̂m ↑ τ̂ and the stochastic process
sup0≤s<·Ks is left-continuous, we have sup0≤s<τ̂m Ks ↑ sup0≤s<τ̂ Ks. As τ̂m < τ̂m+1

on E, it follows that sup0≤s<τ̂m Ks ≤ sup0≤s≤τ̂m Ks ≤ sup0≤s<τ̂m+1
Ks on E, therefore

Kτ̂m = sup0≤s≤τ̂m Ks ↑ sup0≤s<τ̂ Ks on E. Recalling that sup0≤s<τ̂ Ks > Kτ̂ on F , we

get a contradiction with Kτ̂m ≤ Kτ̂ , unless F is a P̂-null set. Finally, from (5.20) with
t = τ̄(ω̂), we obtain

Kτ̄(ω̂) < Kτ̂(ω̂), for every ω̂ ∈ E\F,
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which is in contradiction with Kτ̄ ≥ Kτ̂ , unless E is a P̂-null set. This shows that
P̂(τ̂ <∞) = P̂(E) = 0 and proves that K is a non-decreasing process. Finally, by Lemma
2.2 in [18] it follows that both Y and K are càdlàg, so, in particular, they belong to
S2. We conclude that (Y, Z, L,R,K) ∈ S2 × L2(Ŵ )× L2(π̂)× L2(θ̂)×K2 is a solution to
equation (5.1).

Proceeding along the same lines as in the proof of Lemma 5.2, we deduce that given
Y there exists a unique quadruple (Z,L,R,K) in L2(Ŵ )× L2(π̂)× L2(θ̂)×K2 satisfying
equation (5.1). It follows that the entire sequence (Zn, Ln, Rn)n weakly converges to
(Z,L,R) in L2(Ŵ )× L2(π̂)× L2(θ̂), so that item (iii) holds. Similarly, item (iv) holds.

Jump constraint (5.2). Let Φ: L2(θ̂)→ R be given by

Φ(R̃) = Ê

[ ∫ T

0

∫
Λ

(R̃t(a))+ λ0(db)dt

]2

, ∀ R̃ ∈ L2(θ̂).

Since Φ is convex and strongly continuous, it is also weakly lower-semicontinuous,
therefore

Φ(R) ≤ lim inf
n→∞

Φ(Rn) = lim inf
n→∞

Ê|Kn
T |2

n2
= 0,

where the last equality follows from estimates (5.6) and (5.9). This implies that Φ(R) = 0,
that is

Ê

[ ∫ T

0

∫
Λ

(Rt(a))+λ0(db)dt

]2

= 0,

which means that the jump constraint (5.2) is satisfied. In conclusion, (Y,Z, L,R,K) is a
solution to (5.1)-(5.2).

Proof of the minimality of (Y,Z, L,R,K). The minimality follows from Y = limn Yn. In
fact, let (Ỹ , Z̃, L̃, R̃, K̃) ∈ S2 × L2(W )× L2(π̃)× L2(θ̃)×K2 be another solution to (5.1)-
(5.2). Proceeding as in the proof of formula (5.7) (see the beginning of the proof of
Lemma 5.5), given any t ∈ [0, T ] and ν̂ ∈ V̂, taking the P̂ν̂ -conditional expectation with

respect to F̂ x̂0,Ŵ ,π̂,θ̂
t in (5.1), we obtain, P̂-a.s.,

Ỹt = Êν̂
[
g(X̂T ) +

∫ T

t

fs(X̂, Îs) ds

∣∣∣∣F̂ x̂0,Ŵ ,π̂,θ̂
t

]
+ Êν̂

[
K̃T − K̃t

∣∣F̂ x̂0,Ŵ ,π̂,θ̂
t

]
− Êν̂

[ ∫ T

t

∫
Λ

ν̂s(b)Rs(b)λ0(db)ds

∣∣∣∣F̂ x̂0,Ŵ ,π̂,θ̂
t

]
≥ Êν̂

[
g(X̂T ) +

∫ T

t

fs(X̂, Îs) ds

∣∣∣∣F̂ x̂0,Ŵ ,π̂,θ̂
t

]
.

From the arbitrariness of ν̂, we get

Ỹt ≥ ess sup
ν̂∈V̂

Êν̂
[
g(X̂T ) +

∫ T

t

fs(X̂, Îs) ds

∣∣∣∣F̂ x̂0,Ŵ ,π̂,θ̂
t

]
P̂-a.s., 0 ≤ t ≤ T.

By formula (5.7), recalling that V̂n ⊂ V̂, we conclude that Y nt ≤ Ỹt, 0 ≤ t ≤ T , P̂-a.s..
Letting n → ∞, we obtain Yt ≤ Ỹt, 0 ≤ t ≤ T , P-a.s., which proves the minimality of
(Y,Z, L,R,K). Finally, by Proposition 5.2 we know that (Y,Z, L,R,K) is unique.

Proof of the randomized dynamic programming principle (5.19). Fix t ∈ [0, T ] and let τ̂

be a F̂x̂0,Ŵ ,π̂,θ̂-stopping time taking values in [t, T ]. Given any integer n ≥ 1, consider the
penalized equation (5.4) between 0 and τ̂ with terminal condition Y nτ̂ . Then, proceeding
along the same lines as in the proof of formula (5.7), we obtain

Y nt = ess sup
ν̂∈V̂n

Êν̂
[ ∫ τ̂

t

fs(X̂, Îs) ds+ Y nτ̂

∣∣∣∣F̂ x̂0,Ŵ ,π̂,θ̂
t

]
, P̂-a.s.
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Recalling that V̂n ⊂ V̂ and Y n ≤ Y , we find Y nt ≤ ess sup
ν̂∈V̂

Êν̂ [
∫ τ̂
t
fs(X̂, Îs) ds+Yτ̂ |F̂ x̂0,Ŵ ,π̂,θ̂

t ].

Letting n→∞, we conclude that

Yt ≤ ess sup
ν̂∈V̂

Êν̂
[ ∫ τ̂

t

fs(X̂, Îs) ds+ Yτ̂

∣∣∣∣F̂ x̂0,Ŵ ,π̂,θ̂
t

]
, P̂-a.s.

In order to prove the reverse inequality, take a positive integer m, then, for every n ≥ m,

Yt ≥ ess sup
ν̂∈V̂n

Êν̂
[ ∫ τ̂

t

fs(X̂, Îs) ds+ Y nτ̂

∣∣∣∣F̂ x̂0,Ŵ ,π̂,θ̂
t

]
≥ ess sup

ν̂∈V̂n
Êν̂
[ ∫ τ̂

t

fs(X̂, Îs) ds+ Y mτ̂

∣∣∣∣F̂ x̂0,Ŵ ,π̂,θ̂
t

]
,

where we have used that Yt ≥ Y nt and Y nτ̂ ≥ Y mτ̂ . From the arbitrariness of n, we end up

with Yt ≥ Êν̂ [
∫ τ̂
t
fs(X̂, Îs) ds + Y mτ̂ |F̂

x̂0,Ŵ ,π̂,θ̂
t ], for any ν̂ ∈ V̂ and m ≥ 1. Letting m → ∞

and taking the essential supremum over V̂, we see that the claim follows.

6 HJB equation in Hilbert spaces: the Markovian case

In the present section, we replace assumptions (A) by the set of assumptions (AM)
reported below. Before stating (AM), we notice that in this section, A still denotes a linear
operator from D(A) ⊂ H into H, while the coefficients b, σ, γ, f , g are non-path-depedent,
namely b : [0, T ]×H × Λ→ H, σ : [0, T ]×H × Λ→ L(Ξ;H), γ : [0, T ]×H × Λ× U → H,
f : [0, T ] × H × Λ → R, g : H → R. In what follows, we shall impose the following
assumptions on A, b, σ, γ, f , g.

(AM)

(i) A is a linear, densely defined, maximal dissipative operator in H. In particular, A
is the generator of a strongly continuous semigroup {etA, t ≥ 0} of contractions.
Moreover, there exists (see e.g. Theorem 3.11 in [9]) an operator B : H → H, which
is linear, bounded, strictly positive, self-adjoint, with A∗B bounded on H, such that
the weak B-condition for A holds

〈(−A∗B + c0B)x, x〉 ≥ 0, for all x ∈ H,

for some constant c0 ≥ 0.

We define on H the norm | · |−1, defined as |x|−1 :=
∣∣B1/2x

∣∣, for every x ∈ H. In
addition, we define the space H−1 to be the completion of H under the norm | · |−1.
H−1 is a Hilbert space equipped with the scalar product

〈x, y〉−1 :=
〈
B1/2x,B1/2y

〉
.

(ii) There exists a Borel measurable function ρ : U → R, bounded on bounded subsets
of U , such that

inf
|z|U>R

ρ(z) > 0, for every R > 0 and

∫
U

|ρ(z)|2λπ(dz) < ∞.

(iii) The maps b, γ, f , g are Borel measurable. For every v ∈ H, the map σ(·, ·, ·)v : [0, T ]×
H × Λ→ H is Borel measurable.
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(iv) The map g is continuous on H with respect to the supremum norm. For every
t ∈ [0, T ], the maps b(t, ·, ·) and f(t, ·, ·) are continuous on H × Λ. For every (t, z) ∈
[0, T ]× U , the map γ(t, ·, ·, z) is continuous on H × Λ. For every t ∈ [0, T ] and any
s ∈ (0, T ], we have esAσ(t, x, a) ∈ L2(Ξ;H), for all (x, a) ∈ H × Λ, and the map
esAσ(t, ·, ·) : H × Λ→ L2(Ξ;H) is continuous.

(v) For all t ∈ [0, T ], s ∈ (0, T ], x, x′ ∈ H, a ∈ Λ, z ∈ U ,

|b(t, x, a)− b(t, x′, a)|+ |esAσ(t, x, a)− esAσ(t, x′, a)|L2(Ξ;H) ≤ L|x− x′|−1,

|γ(t, x, a, z)− γ(t, x′, a, z)| ≤ Lρ(z)|x− x′|−1,

|b(t, 0, a)|+ |σ(t, 0, a)|L2(Ξ;H) ≤ L,

|γ(t, 0, a, z)| ≤ Lρ(z),

|f(t, x, a)− f(t, x′, a)|+ |g(x)− g(x′)| ≤ ω(|x− x′|−1),

|f(t, 0, a)| ≤ L,

for some constant L ≥ 0 and some modulus of continuity ω, i.e. a continuous, non-
decreasing, subadditive map ω : [0,∞) → [0,∞) satisfying ω(0) = 0 and ω(r) > 0,
for any r > 0.

Stochastic optimal control problem. We now formulate the stochastic optimal con-
trol problem in such a setting. Since the formulation can be done proceeding along the
same lines as in subsection 3.1, we focus on the main steps. We consider a complete prob-
ability space (Ω,F ,P) on which are defined a cylindrical Brownian motion W = (Wt)t≥0,
with values in Ξ, and an independent Poisson random measure π(dt dz) on [0, ∞) × U
with compensator λπ(dz) dt. For every t ≥ 0, we denote by Ft,W,π = (F t,W,πs )s≥t the
P-completion of the filtration generated by (Ws −Wt)s≥t and the restriction of π(dt dz)

to [t,∞)× U .
For every t ∈ [0, T ], an admissible control process at time t will be any Ft,W,π-

predictable process α : [t, T ] × Ω → Λ. For every t ∈ [0, T ], the set of all admissible
control processes at time t is denoted by At. For every (t, x) ∈ [0, T ]×H and any α ∈ At,
the controlled equation has the form

dXs = AXs ds+ b(s,Xs, αs) ds+ σ(s,Xs, αs) dWs

+

∫
U\{0}

γ(s,Xs, αs, z)
(
π(ds dz)− λπ(dz) ds

)
, t ≤ s ≤ T,

Xt = x.

(6.1)

We have the following result.

Proposition 6.1. Under assumption (AM), for every (t, x) ∈ [0, T ]×H and any α ∈ At,
there exists a unique mild solution Xt,x,α = (Xt,x,α

s )s∈[t,T ] to equation (6.1). Moreover,
for every p ≥ 1,

E
[

sup
s∈[t,T ]

|Xt,x,α
s |p

]
≤ Cp

(
1 + |x|p

)
, (6.2)

for some positive constant Cp, independent of t, x, α.

Proof. The proof can be done proceeding along the same lines as in the proof of Proposi-
tion 3.1.

The controller aims at maximizing over all α ∈ At the gain functional

J(t, x, α) = E

[ ∫ T

t

f(s,Xt,x,α
s , αs) ds+ g(Xt,x,α

T )

]
.
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Finally, the value function of the stochastic control problem is given by

v(t, x) = sup
α∈At

J(t, x, α), (t, x) ∈ [0, T ]×H. (6.3)

Lemma 6.2. Let assumption (AM) hold. There exist a modulus of continuity ωv and a
constant C ≥ 0 such that

|J(t, x, α)− J(t, x′, α)| ≤ ωv(|x− x′|−1), (6.4)

|J(t, x, α)| ≤ C
(
1 + |x|−1

)
, (6.5)

for all t ∈ [0, T ], x, x′ ∈ H, α ∈ At. In particular,

|v(t, x)− v(t, x′)| ≤ ωv(|x− x′|−1), (6.6)

|v(t, x)| ≤ C
(
1 + |x|−1

)
,

for all t ∈ [0, T ], x, x′ ∈ H.

Proof. We begin noting that, proceeding along the same lines as in the proof of estimate
(3.12) of Theorem 3.4 in [20], we can prove that the following estimate holds:

sup
t≤s≤T

E
[
|Xt,x,α

s −Xt,x′,α
s |2−1

]
≤ C̄ |x− x′|−1, (6.7)

for some constant C̄ ≥ 0, independent of t, x, x′, α. Then, (6.4) follows directly from
estimate (6.7) and the assumptions on f and g in (AM)-(v). On the other hand, (6.5)
follows from estimate (6.2), using again the assumptions on f and g in (AM)-(v).

Randomized setting. We now consider, following Section 4, the randomized setting.
We focus on the main steps. We consider a complete probability space (Ω̂, F̂ , P̂) on
which are defined a cylindrical Brownian motion Ŵ = (Ŵt)t≥0 with values in Ξ, a
Poisson random measure π̂(dt dz) on [0, ∞) × U with compensator λπ(dz) dt, and a
Poisson random measure θ̂(dt da) on [0, ∞)× Λ with compensator λ0(da) dt (satisfying

assumption (AR)-(i)). For every t ≥ 0, we denote by F̂t,Ŵ ,π̂,θ̂ = (F̂ t,Ŵ ,π̂,θ̂
s )s≥t the P̂-

completion of the filtration generated by (Ŵs − Ŵt)s≥t, the restriction of π̂(dt dz) to

[t,∞)× U , the restriction of θ̂(dt da) to [t,∞)× Λ. Finally, we denote by P(F̂t,Ŵ ,π̂,θ̂) the

predictable σ-algebra on [t, T ]× Ω̂ associated with F̂t,Ŵ ,π̂,θ̂.

For every t ∈ [0, T ], we denote by V̂t the set of all P(F̂t,Ŵ ,π̂,θ̂) ⊗ B(Λ)-measurable
functions ν̂ : [t, T ]× Ω̂× Λ→ (0,∞) which are bounded from above and bounded away
from zero. Given ν̂ ∈ V̂t, as in Section 4 we consider the corresponding Doléans-Dade ex-
ponential κ̂t,ν̂ = (κ̂t,ν̂s )s∈[t,T ] defined as in (4.7) and we introduce the probability measure

P̂t,ν̂ on (Ω̂, F̂ t,Ŵ ,π̂,θ̂
T ) as dP̂t,ν̂ = κ̂t,ν̂T dP̂. Finally, we denote by Êt,ν̂ the expectation with

respect to P̂t,ν̂ .
For every t ∈ [0, T ] and a ∈ Λ, we denote by Ît,a = (Ît,as )s∈[t,T ] the stochastic process

taking values in Λ defined as (notice that, when Λ is a subset of a vector space, we can
write (6.8) also as Ît,as = a+

∫ s
t

∫
Λ

(b− Ît,ar−) θ̂(dr db), s ∈ [t, T ])

Ît,as =
∑
n≥1

a1[t,T̂n)(s) +
∑
n≥1

t<T̂n

η̂n 1[T̂n,T̂n+1)(s), for all t ≤ s ≤ T, (6.8)

where we recall that (T̂n, η̂n)n≥1 is the marked point process associated with the random
measure θ̂, in particular we have θ̂(dt da) =

∑
n≥1 δ(T̂n,η̂n)(dt da).
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Now, for every (t, x, a) ∈ [0, T ]×H × Λ, we consider the following equation:
dX̂s = AX̂s ds+ b(s, X̂s, Îs) ds+ σ(s, X̂s, Îs) dŴs

+

∫
U\{0}

γ(s, X̂s, Îs−, z)
(
π̂(ds dz)− λπ(dz) ds

)
, t ≤ s ≤ T,

X̂t = x.

(6.9)

We have the following result.

Proposition 6.3. Under assumptions (AM) and (AR)-(i), for every (t, x, a) ∈ [0, T ]×H×Λ,
there exists a unique mild solution X̂t,x,a = (X̂t,x,a

s )s∈[t,T ] to equation (6.9), such that,
for every p ≥ 1,

Ê
[

sup
s∈[t,T ]

|X̂t,x,a
s |p

]
≤ Cp

(
1 + |x|p

)
, (6.10)

for some positive constant Cp, independent of t, x, a.

Proof. The proof can be done proceeding along the same lines as in the proof of Proposi-
tion 3.2.

BSDE with non-positive jumps. We introduce the following additional notations.

• S2(t, T ) denotes the set of càdlàg F̂t,Ŵ ,π̂,θ̂-adapted processes Y : [t, T ] × Ω̂ → R

satisfying

‖Y ‖2
S2(t,T )

:= Ê
[

sup
t≤s≤T

|Ys|2
]
< ∞.

• Lp(Ŵ ; t, T ), p ≥ 1, denotes the set of P(F̂t,Ŵ ,π̂,θ̂)-measurable processes Z : [t, T ]×
Ω̂→ Ξ satisfying

‖Z‖p
Lp(Ŵ )

:= Ê

[(∫ T

t

|Zs|2Ξ ds
) p

2
]
< ∞.

• Lp(π̂; t, T ), p ≥ 1, denotes the set of P(F̂t,Ŵ ,π̂,θ̂)⊗B(U)-measurable maps L : [t, T ]×
Ω̂× U → R satisfying

‖L‖p
Lp(π̂)

:= Ê

[(∫ T

t

∫
U

|Ls(z)|2 λπ(dz) ds

) p
2
]
< ∞.

• Lp(θ̂; t, T ), p ≥ 1, denotes the set of P(F̂t,Ŵ ,π̂,θ̂)⊗B(Λ)-measurable maps R : [t, T ]×
Ω̂× Λ→ R satisfying

‖R‖p
Lp(θ̂)

:= Ê

[(∫ T

t

∫
Λ

|Rs(b)|2 λ0(db) ds

) p
2
]
< ∞.

• K2(t, T ) denotes the set of non-decreasing P(F̂t,Ŵ ,π̂,θ̂)-measurable processes K ∈
S2(t, T ) satisfying Kt = 0.

For every (t, x, a) ∈ [0, T ]×H × Λ, we introduce the following backward stochastic
differential equation with non-positive jumps:

Ys = g(X̂t,x,a
T ) +

∫ T

s

f(r, X̂t,x,a
r , Ît,ar )dr +KT −Ks −

∫ T

s

∫
Λ

Rr(b)θ̂(dr, db) (6.11)

−
∫ T

s

ZrdŴr −
∫ T

s

∫
U\{0}

Lr(z) (π̂(dr dz)− λπ(dz) dr), t ≤ s ≤ T, P̂-a.s.

Rs(b) ≤ 0, ds⊗ dP̂⊗ λ0(db)-a.e. on [t, T ]× Ω̂× Λ. (6.12)
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Definition 6.4. Given (t, x, a) ∈ [0, T ]×H × Λ, a minimal solution to equation (6.11)-
(6.12) is a quintuple (Y, Z, L,R,K) ∈ S2(t, T ) × L2(Ŵ ; t, T ) × L2(π̂; t, T ) × L2(θ̂; t, T ) ×
K2(t, T ) satisfying (6.11)-(6.12) such that for any other quintuple (Ỹ , Z̃, L̃, R̃, K̃) ∈
S2(t, T ) ×L2(Ŵ ; t, T )×L2(π̂; t, T )×L2(θ̂; t, T )×K2(t, T ) satisfying (6.11)-(6.12), we have

Ys ≤ Ỹs, t ≤ s ≤ T, P̂-a.s.

We can now state the two main results of this section: the first result is the probabilis-
tic representation formula (or non-linear Feynman-Kac formula) for the value function v
defined in (6.3); the second result is the so-called randomized dynamic programming
principle for v.

Theorem 6.5. Under assumptions (AM) and (AR)-(i), for every (t, x, a) ∈ [0, T ]×H × Λ

there exists a unique minimal solution (Y t,x,a, Zt,x,a, Lt,x,a, Rt,x,a,Kt,x,a) ∈ S2(t, T ) ×
L2(Ŵ ; t, T )× L2(π̂; t, T )× L2(θ̂; t, T )×K2(t, T ) to (6.11)-(6.12), satisfying

v(s, X̂t,x,a
s ) = Y t,x,as , P̂-a.s., t ≤ s ≤ T (6.13)

and, in particular,

v(t, x) = Ê[Y t,x,at ], (6.14)

with Ê[Y t,x,at ] = Y t,x,at , P̂-a.s..

Proof. We firstly define the value function of the so-called randomized stochastic optimal
control problem:

v̂R(t, x, a) = sup
ν̂∈V̂t

Êν̂
[ ∫ T

t

f(s, X̂t,x,a
s , Ît,as ) ds+ g(Xt,x,a

T )

]
, (t, x, a) ∈ [0, T ]×H × Λ.

Now, we apply Theorems 4.7 and 5.6 to our original and randomized control problems.
To this end, notice that the control problems in Theorems 4.7 and 5.6 are formulated on
the time interval [0, T ], while our control problems are formulated on the time interval
[t, T ]. Then, taking into account of this time change, we can apply Theorems 4.7 and 5.6
interpreting, for what concerns our original stochastic control problem, t, x, (Ws−Wt)s≥t,
the restriction of π to [t,∞)×U , At, (Xt,x,α

s )s∈[t,T ], v(t, x) as follows: 0, x0, (Wt)t≥0, π on
[0,∞)× U , A, (Xx0,α

s )s∈[t,T ], V0 in subsection 3.1; similarly, concerning our randomized

stochastic control problem, we have that t, x, a, (Ŵs − Ŵt)s≥t, the restriction of π̂
to [t,∞) × U , the restriction of θ̂ to [t,∞) × Λ, Vt, (X̂t,x,a

s )s∈[t,T ], (Ît,as )s∈[t,T ] v̂
R(t, x, a)

correspond to 0, x0, a0, (Ŵt)t≥0, π̂ on [0,∞)×U , θ̂ on [0,∞)×Λ, V, (X̂t)t∈[0,T ], (Ît)t∈[0,T ],

V̂ R0 in Section 4. Then, by Theorem 4.7 we deduce that

v(t, x) = v̂R(t, x, a), ∀ (t, x, a) ∈ [0, T ]×H × Λ.

In addition, by Theorem 5.6 we deduce that there exists a unique minimal solution
(Y t,x,a, Zt,x,a, Lt,x,a, Rt,x,a,Kt,x,a) ∈ S2(t, T ) × L2(Ŵ ; t, T ) × L2(π̂; t, T ) × L2(θ̂; t, T ) ×
K2(t, T ) to (6.11)-(6.12), satisfying (6.14), so, in particular,

v(t, x) = Y t,x,at , P̂-a.s.

for all (t, x, a) ∈ [0, T ]×H × Λ. It remains to prove (6.13). To this end, we begin noting
that, for every (t, x, a) ∈ [0, T ] × H × Λ, the flow property holds: for every s ∈ [t, T ]

we have (X̂
s,X̂t,x,as ,Ît,as
r , Î

s,Ît,as
r ) = (X̂t,x,a

r , Ît,ar ), P̂-a.s., for any r ∈ [s, T ]. Indeed, the flow
property for Ît,a follows directly from its definition in (6.8), while the flow property
for X̂t,x,a is a consequence of the uniqueness of the solution to equation (6.9). Let us
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now consider the penalized backward stochastic differential equation associated with
(6.11)-(6.12):

Y ns = g(X̂t,x,a
T ) +

∫ T

s

f(r, X̂t,x,a
r , Ît,ar )dr + n

∫ T

s

∫
Λ

(
Rnr (b)

)
+
λθ(db)dr (6.15)

−
∫ T

s

Znr dŴr −
∫ T

s

∫
Λ

Rnr (b)θ̂(dr, db)−
∫ T

s

∫
U\{0}

Lnr (z) (π̂(dr dz)− λπ(dz) dr),

for all t ≤ s ≤ T , P̂-a.s.. For every (t, x, a) ∈ [0, T ]×H × Λ, we deduce from Proposition
5.4 the existence of a unique solution (Y n,t,x,a, Zn,t,x,a, Ln,t,x,a, Rn,t,x,a) ∈ S2(t, T ) ×
L2(Ŵ ; t, T )×L2(π̂; t, T )×L2(θ̂; t, T ) to (6.15). Then, we define the deterministic function
vn : [0, T ] × H × Λ → R as (notice that Ê[Y n,t,x,at ] = Y n,t,x,at , P̂-a.s., since the random

variable Y n,t,x,at is F̂ t,Ŵ ,π̂,θ̂
t -measurable)

v̂n(t, x, a) := Ê[Y n,t,x,at ], (t, x, a) ∈ [0, T ]×H × Λ. (6.16)

Now, using the flow property and the uniqueness of the solution for the backward stochas-

tic differential equation (6.15), we find: for every s ∈ [t, T ], we have Y
n,s,X̂t,x,as ,Ît,as
r =

Y n,t,x,ar , P̂-a.s., for any r ∈ [s, T ]. This implies, from (6.16), that

v̂n(s, X̂t,x,a
s ) = Y n,t,x,as , P̂-a.s., t ≤ s ≤ T. (6.17)

Finally, by item (i) in Theorem 5.6 we have that Y n,t,x,at converges P̂-a.s. to Y t,x,at , which
implies that v̂n converges pointwise to v̂R. So, in particular, letting n→∞ in equality
(6.17), we see that (6.13) holds.

Theorem 6.6. Let assumptions (AM) and (AR)-(i) hold.

1) For every R > 0, there exists a modulus of continuity ωR such that

|v(t, x)− v(t′, x)| ≤ ωR(|t− t′|),

for all t, t′ ∈ [0, T ], |x| ≤ R.

2) The randomized dynamic programming principle holds: for every t ∈ [0, T ] and any

F̂t,Ŵ ,π̂,θ̂-stopping time τ̂ taking values in [t, T ], we have

v(t, x) = sup
ν̂∈V̂t

Êt,ν̂
[ ∫ τ̂

t

f(s, X̂t,x,a
s , Ît,as ) ds+ v(τ̂ , X̂t,x,a

τ̂ )

]
. (6.18)

Proof. We firstly prove a preliminary result, namely the randomized dynamic program-
ming principle for deterministic times: for every t ∈ [0, T ] and any t′ ∈ [t, T ],

v(t, x) = sup
ν̂∈V̂t

Êt,ν̂
[ ∫ t′

t

f(s, X̂t,x,a
s , Ît,as ) ds+ v(t′, X̂t,x,a

t′ )

]
. (6.19)

Following the same arguments as in the proof of Theorem 6.6, we see that we can
apply Theorem 5.6 to our backward stochastic differential equation (6.11)-(6.12). So, in
particular, by (5.19) we have: for every t ∈ [0, T ] and any F̂t,Ŵ ,π̂,θ̂-stopping time τ̂ taking
values in [t, T ],

Y t,x,at = sup
ν̂∈V̂t

Êt,ν̂
[ ∫ τ̂

t

f(s, X̂t,x,a
s , Ît,as ) ds+ Y t,x,aτ̂

]
. (6.20)

Now, by (6.20) with τ̂ = t′, together with (6.13), we see that (6.18) follows.
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Proof of 1). We proceed as in the proof of Lemma 4.3 in [20]. More precisely, fix R > 0,
0 ≤ t < t′ ≤ T , and |x| ≤ R. Then, by (6.19) we have

|v(t, x)− v(t′, x)| ≤ sup
ν̂∈V̂t

Êt,ν̂
[ ∫ t′

t

∣∣f(s, X̂t,x,a
s , Ît,as )

∣∣ ds+
∣∣v(t′, X̂t,x,a

t′ )− v(t′, x)
∣∣]. (6.21)

Now, notice that proceeding along the same lines as in the proof of estimate (3.13) of
Theorem 3.4 in [20], we can prove that the following estimate holds:

Ê
[

sup
t≤s≤t′

∣∣X̂t,x,a
s − x

∣∣2] ≤ ωx(t′ − t), (6.22)

for some modulus ωx. Then, using the assumptions on f in (AM)-(v), estimates (6.10)
and (6.22), inequality (6.6), and estimate (D.1) in [9], we obtain from (6.21):

|v(t, x)− v(t′, x)| ≤ C̃ (t′ − t) (1 + |x|) + sup
ν̂∈V̂t

Êt,ν̂
[
ωv
(∣∣X̂t,x,a

t′ − x
∣∣
−1

)]
≤ ωR(|t− t′|),

for some constant C̃ ≥ 0 and some modulus ωR.

Proof of 2). From item 1) and inequality (6.6), it follows that v is continuous on
[0, T ] × H (taking on H the usual norm | · |). As a consequence, the stochastic pro-
cess (v(s, X̂t,x,a

s ))s∈[t,T ] has càdlàg paths. Since (Y t,x,as )s∈[t,T ] also has càdlàg paths,

we see that the two stochastic processes (v(s, X̂t,x,a
s ))s∈[t,T ] and (Y t,x,as )s∈[t,T ] are P̂-

indistinguishable, since by (6.13) are one the modification of the other. In other words,
it holds that

v(s, X̂t,x,a
s ) = Y t,x,as , t ≤ s ≤ T, P̂-a.s. (6.23)

In particular, given any F̂t,Ŵ ,π̂,θ̂-stopping time τ̂ taking values in [t, T ], we deduce from
(6.23) that

v(τ̂ , X̂t,x,a
τ̂ ) = Y t,x,aτ̂ , P̂-a.s.

Then, by (6.20) we see that (6.18) holds.

6.1 Viscosity property of the value function v

We now exploit the randomized dynamic programming principle (6.18) in order to
prove that the value function v in (6.3) is a viscosity solution to the following Hamilton-
Jacobi-Bellman equation on [0, T ]×H:

vt + 〈Ax,Dxv〉
+ supa∈Λ

{
1
2Tr
(
σ(t, x, a)σ∗(t, x, a)D2

xv
)

+ 〈b(t, x, a), Dxv〉+ f(t, x, a)

+
∫
U\{0}(v(t, x+ γ(t, x, a, z))− v(t, x)−Dxv(t, x)γ(t, x, a, z))λπ(dz)

}
= 0,

v(T, x) = g(x).

(6.24)

We adopt the definition of viscosity solution given in [20], Definition 5.2, which
requires the following notions.

Definition 6.7. Let u : (0, T )×H → R.

We say that u is B-upper semicontinuous if, for all (t, x) ∈ (0, T )×H,

lim sup
m→+∞

(tm,xm)∈(0,T )×H

u(tm, xm) ≤ u(t, x)

whenever tm → t, xm ⇀ x, Bxm → Bx.
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We say that u is B-lower semicontinuous if, for all (t, x) ∈ (0, T )×H,

lim inf
m→+∞

(tm,xm)∈(0,T )×H

u(tm, xm) ≥ u(t, x)

whenever tm → t, xm ⇀ x, Bxm → Bx.

We say that u is B-continuous if it is both B-upper semicontinuous and B-lower semi-
continuous.

Definition 6.8. A function ψ : (0, T ) × H → R is a test function if ψ(t, x) = ϕ(t, x) +

δ(t, x)h(|x|), where:

(i) ϕt, Dxϕ, D2
xϕ, A∗Dxϕ, δt, Dxδ, D2

xδ, A
∗Dxδ are uniformly continuous on (ε, T −

ε) × H, for every ε > 0; in addition, ϕ is B-lower semicontinuous; finally, δ ≥ 0,
bounded, and B-continuous.

(ii) h is even, h′ and h′′ are uniformly continuous on R, h′(r) ≥ 0 for every r > 0.

Remark 6.9. Notice that a test function ψ satisfies the following property: for every
ε > 0, there exists a constant Cε ≥ 0 such that |ψ(t, x)| ≤ Cε(1 + |x|2) on (ε, T − ε)×H.

Definition 6.10. (i) A B-upper semicontinuous function u : (0, T )×H → R is a viscosity
supersolution of (6.24) if whenever

(u− ψ)(t, x) = min
(0,T )×H

(u− ψ)

for (t, x) ∈ (0, T )×H and ψ(s, y) = ϕ(s, y) + δ(s, y)h(|y|) a test function, then

ψt(t, x)− 〈x,A∗Dxϕ(t, x) + h(|x|)A∗Dxδ(t, x)〉

+ sup
a∈Λ

(
1

2
Tr
(
σ(t, x, a)σ∗(t, x, a)D2

xψ(t, x)
)

+ 〈b(t, x, a), Dxψ(t, x)〉+ f(t, x, a)

+

∫
U\{0}

(ψ(t, x)(t, x+ γ(t, x, a, z))− ψ(t, x)(t, x)−Dxψ(t, x)(t, x)γ(t, x, a, z))λπ(dz)

)
≤ 0.

(ii) A B-lower semicontinuous function u : (0, T )×H → R is a viscosity subsolution of
(6.24) if whenever

(u+ ψ)(t, x) = max
(0,T )×H

(u+ ψ)

for (t, x) ∈ (0, T )×H and ψ(s, y) = ϕ(s, y) + δ(s, y)h(|y|) a test function, then

− ψt(t, x) + 〈x,A∗Dxϕ(t, x) + h(|x|)A∗Dxδ(t, x)〉

+ sup
a∈Λ

(
− 1

2
Tr
(
σ(t, x, a)σ∗(x, a)D2

xψ(t, x)
)
− 〈b(t, x, a), Dxψ(t, x)〉+ f(t, x, a)

−
∫
U\{0}

(ψ(t, x)(t, x+ γ(t, x, a, z))− ψ(t, x)(t, x)−Dxψ(t, x)(t, x)γ(t, x, a, z))λπ(dz)

)
≥ 0.

(iii) A function u : (0, T )×H → R is a viscosity solution of (6.24) if it is both a viscosity
subsolution and a viscosity supersolution of (6.24).

In order to prove that v is a viscosity solution to equation (6.24) we will need the
following technical result.

Lemma 6.11. Let assumption (AM) hold. Let ψ = ϕ + δh(| · |) be a test function. Fix

t, t′ ∈ (0, T ), with t < t′, and let τ̂ be a F̂t,Ŵ ,π̂,θ̂-stopping time taking values in [t, t′]. Then,

EJP 24 (2019), paper 81.
Page 32/37

http://www.imstat.org/ejp/

https://doi.org/10.1214/19-EJP333
http://www.imstat.org/ejp/


BSDEs and stochastic control problems of infinite-dimensional jump-diffusions

for any (x, a) ∈ H × Λ, ν̂ ∈ V̂t,

Êt,ν̂
[
ψ(τ̂ , X̂t,x,a

τ̂ )
]
≥ ψ(t, x) + Êt,ν̂

[ ∫ τ̂

t

ψt(r, X̂
t,x,a
r )dr

−
∫ τ̂

t

〈X̂t,x,a
r , A∗Dxψ(r, X̂t,x,a

r ) + h(|X̂t,x,a
r |)A∗Dxδ(r, X̂

t,x,a
r )〉dr

+
1

2

∫ τ̂

t

Tr
[
σ(r, X̂t,x,a

r , Ît,ar )σ∗(r, X̂t,x,a
r , Ît,ar )D2

xψ(r, X̂t,x,a
r )

]
dr

+

∫ τ̂

t

〈b(r, X̂t,x,a
r , Ît,ar ), Dxψ(r, X̂t,x,a

r )〉dr +

∫ τ̂

t

∫
U\{0}

(
ψ
(
r, X̂t,x,a

r + γ(r, X̂t,x,a
r , Ît,ar , z)

)
− ψ(r, X̂t,x,a

r )−Dxψ(r, X̂t,x,a
r )γ(r, X̂t,x,a

r , Ît,ar , z)
)
λπ(dz)dr

]
. (6.25)

Proof. The proof can be done proceeding along the same lines as in the proof of Lemma
5.3 in [20], the only difference being the presence of the pure jump process Ît,a. For this
reason, here we just give an outline. The proof consists in approximating the process
X̂t,x,a by means of a sequence of more regular processes X̂n,t,x,a, which are obtained
replacing the operator A in equation (6.9) by its Yosida approximations (An)n. It is well-
known, see e.g. Theorem 27.2 in [17], that ψ(·, X̂n,t,x,a

· ) satisfies an Itô formula. Then,
using convergence results of X̂n,t,x,a towards X̂t,x,a, which can be found for instance in
Proposition 1.115 of [9], and taking the expectation under P̂t,ν̂ , we deduce (6.25) using

that 〈−AX̂t,x,a
r , δ(r, X̂t,x,a

r )
h′(|X̂t,x,ar |)
|X̂t,x,ar | X̂t,x,a

r 〉 ≥ 0.

Proposition 6.12. Let assumptions (AM) and (AR)-(i) hold. The value function v defined
in (6.3) is a viscosity solution to equation (6.24).

Proof. We split the proof into two steps.
Proof of the viscosity subsolution property of v. Let (t, x, a) ∈ (0, T ) × H × Λ and let
ψ(s, y) = ϕ(s, y)+δ(s, y)h(|y|) be a test function such that (v+ψ)(t, x) = max(0,T )×H(v+ψ).
We shall prove that

− ψt(t, x) + 〈x,A∗Dxψ(t, x)〉+ h(|x|)A∗Dδ(t, x)

+ sup
a∈Λ

{
− 1

2
Tr
(
σ(t, x, a)σ∗(t, x, a)D2

xψ(t, x)
)
− 〈b(t, x, a), Dxψ(t, x)〉+ f(t, x, a)

−
∫
U\{0}

(
ψ(t, x+ γ(t, x, a, z))− ψ(t, x)−Dxψ(t, x)γ(t, x, a, z)

)
λπ(dz)

}
≥ 0.

We assume, without loss of generality, that

v(t, x) + ψ(t, x) = 0, (6.26)

so, in particular,
v(s, y) + ψ(s, y) ≤ 0, ∀ (s, y) ∈ (0, T )×H. (6.27)

For any η > 0, we define β(η) := sup(s,y)∈∂B(t,x;η)(v + ψ)(s, y), where

B(t, x; η) =
{

(s, y) ∈ (0, T )×H : max{|x− y|, |t− s|} < η
}
,

∂B(t, x; η) =
{

(s, y) ∈ (0, T )×H : max{|x− y|, |t− s|} = η
}
.

Notice that β(η) < 0, for any η > 0. Let us proceed by contradiction, assuming that

− ψt(t, x) + 〈x,A∗Dxψ(t, x)〉+ h(|x|)A∗Dδ(t, x)

+ sup
a∈Λ

{
− 1

2
Tr
(
σ(t, x, a)σ∗(t, x, a)D2

xψ(t, x)
)
− 〈b(t, x, a), Dxψ(t, x)〉+ f(t, x, a)

−
∫
U\{0}

(
ψ(t, x+ γ(t, x, a, z))− ψ(t, x)−Dxψ(t, x)γ(t, x, a, z)

)
λπ(dz)

}
< 0.
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Using the Lipschitz property of b, σ, γ, and the uniform continuity of f , when on H we
consider the standard topology induced by the norm | · | (notice that b, σ, f satisfy the
mentioned properties when on (H, | · |−1), and hence they satisfy the same properties on
(H, | · |)), and using also the uniform continuity of ψt, A∗Dxψ, Dxψ, and D2

xψ, we have
that, given η ∈ (0, 2(T − t)), there exists ε ∈ (0, −β(η)/(T − t)], with ε < T , such that

− ψt(s, y) + 〈y,A∗Dxψ(s, y)〉+ h(|y|)A∗Dδ(s, y)

+ sup
a∈Λ

{
− 1

2
Tr
(
σ(s, y, a)σ∗(s, y, a)D2

xψ(s, y)
)
− 〈b(s, y, a), Dxψ(s, y)〉+ f(s, y, a) (6.28)

−
∫
U\{0}

(
ψ(s, y + γ(s, y, a, z))− ψ(s, y)−Dxψ(s, y)γ(s, y, a, z)

)
λπ(dz)

}
≤ −ε,

for any (s, y) ∈ (0, T )×H with |s− t|, |y − x| ≤ η. Define

τ̂ := inf
{
s ∈ [t, T ] : (s, X̂t,x,a

s ) /∈ B(t, x; η/2)
}
, θ̂ := τ̂ ∧ T,

where inf ∅ =∞. Since the stochastic process (X̂t,x,a
s )s∈[t,T ] is càdlàg, it is in particular

right-continuous at time t. As a consequence, θ̂ > t, P̂-a.s..
For every ε > 0, by the randomized dynamic programming principle (6.18), it follows

that there exists ν̂ε ∈ V̂t such that

v(t, x) ≤ Êt,ν̂
ε

[ ∫ θ̂

t

f(r, X̂t,x,a
r , Ît,ar ) dr + v(θ̂, X̂t,x,a

θ̂
)

]
+
ε

2
(T − t),

which in turn yields, by (6.26)-(6.27),

−ψ(t, x) ≤ Êt,ν̂
ε

[ ∫ θ̂

t

f(r, X̂t,x,a
r , Ît,ar ) dr − ψ(θ̂, X̂t,x,a

θ̂
) + β(δ)1{τ̂≤T}

]
+
ε

2
(T − t).

By applying Lemma 6.11, the previous inequality yields

−ε
2

(T − t) ≤ Êt,ν̂
ε

[ ∫ θ̂

t

〈X̂t,x,a
r , A∗Dxψ(r, X̂t,x,a

r ) + h(|X̂t,x,a
r |)A∗Dxδ(r, X̂

t,x,a
r )〉dr

]
+ Êt,ν̂

ε

[ ∫ θ̂

t

(
− ψt(r, X̂t,x,a

r )− 〈b(r, X̂t,x,a
r , Ît,ar ), Dxψ(r, X̂t,x,a

r )〉

− 1

2
Tr
[
σ(r, X̂t,x,a

r , Ît,ar )σ∗(r, X̂t,x,a
r , Ît,ar )D2

xψ(r, X̂t,x,a
r )

]
+ f(r, X̂t,x,a

r , Ît,ar )

+ β(δ) P̂t,ν̂
ε

(τ̂ ≤ T )−
∫
U\{0}

(
ψ(r, X̂t,x,a

r + γ(r, X̂t,x,a
r , Ît,ar , z)

− ψ(r, X̂t,x,a
r )−Dxψ(r, X̂t,x,a

r )γ(r, X̂t,x,a
r , Ît,ar , z)

)
λπ(dz)

)
dr

]
≤ −ε (T − t) P̂t,ν̂

ε

(τ̂ ≤ T )− ε Êt,ν̂
ε

[θ̂ − t] ≤ −ε (T − t),

where we have used (6.28) and the fact that τ̂ ≤ η
2 ≤ T . This yields a contradiction and

concludes the proof.
Proof of the viscosity supersolution property of v. Let (t, x, a) ∈ (0, T )×H × Λ and let
ψ(s, y) = ϕ(s, y)+δ(s, y)h(|y|) be a test function such that (v−ψ)(t, x) = min(0,T )×H(v−ψ).
We shall prove that

ψt(t, x)− 〈x,A∗Dxϕ(t, x) + h(|x|)A∗Dxδ(t, x)〉

+ sup
a∈Λ

(
1

2
Tr
(
σ(t, x, a)σ∗(t, x, a)D2

xψ(t, x)
)

+ 〈b(t, x, a), Dxψ(t, x)〉+ f(t, x, a)

+

∫
U\{0}

(ψ(t, x)(t, x+ γ(t, x, a, z))− ψ(t, x)(t, x)−Dxψ(t, x)(t, x)γ(t, x, a, z))λπ(dz)

)
≤ 0.
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We assume that
v(t, x)− ψ(t, x) = 0, (6.29)

so, in particular,
v(s, y)− ψ(s, y) ≥ 0, ∀ (s, y) ∈ (0, T )×H. (6.30)

Let h > 0, η > 0, and set

τ̂ := inf
{
s ∈ [t, T ] : |X̂t,x,a

s − x| > η
}
, θ̂ := τ̂ ∧ (t+ h) ∧ T̂1,

where we recall that (T̂n, η̂n)n≥1 is the marked point process associated with the random
measure θ̂ (in particular we have θ̂(dt da) =

∑
n≥1 δ(T̂n,η̂n)(dt da)). So, in particular, T̂1 is

the first jump time of the stochastic process Ît,a defined in (6.8).
By the randomized dynamic programming principle (6.18), we have

v(t, x) ≥ Êt,ν̂
[ ∫ θ̂

t

f(r, X̂t,x,a
r , Ît,ar ) dr + v(θ̂, X̂t,x,a

θ̂
)

]
, ∀ ν̂ ∈ V̂t,

which in turn yields, by (6.29)-(6.30),

ψ(t, x) ≥ Êt,ν̂
[ ∫ θ̂

t

f(r, X̂t,x,a
r , Ît,ar ) dr + ψ(θ̂, X̂t,x,a

θ̂
)

]
, ∀ ν̂ ∈ V̂t.

We take ν̂ = 1, so that in the above inequality Êt,ν̂ coincides with the expectation Ê
under P̂. Applying Lemma 6.11, we obtain

0≥ Ê
[

1

h

∫ θ̂

t

ψt(r, X̂
t,x,a
r )dr− 1

h

∫ θ̂

t

〈X̂t,x,a
r , A∗Dxψ(r, X̂t,x,a

r )+h(|X̂t,x,a
r |)A∗Dxδ(r, X̂

t,x,a
r )〉dr

+
1

h

∫ θ̂

t

f(r, X̂t,x,a
r , Ît,ar ) dr +

1

2

∫ θ̂

t

Tr
[
σ(r, X̂t,x,a

r , Ît,ar )σ∗(r, X̂t,x,a
r , Ît,ar )D2

xψ(r, X̂t,x,a
r )

]
dr

+
1

h

∫ θ̂

t

〈b(r, X̂t,x,a
r , Ît,ar ), Dxψ(r, X̂t,x,a

r )〉dr+
1

h

∫ θ̂

t

∫
U\{0}

(
ψ(r, X̂t,x,a

r + γ(r, X̂t,x,a
r , Ît,ar , z))

− ψ(r, X̂t,x,a
r )−Dxψ(r, X̂t,x,a

r )γ(r, X̂t,x,a
r , Ît,ar , z)

)
λπ(dz)dr

]
. (6.31)

Now we notice that, P̂-a.s., Ît,ar = a and X̂t,x,a is right-continuous at t (indeed, it is
a càdlàg process). Thus, by the mean value theorem, the random variable inside the
expectation Ê in (6.31) converges P̂-a.s. to

ψt(t, x)− 〈x, A∗Dxψ(t, x) + h(|x|)A∗Dxδ(t, x)〉

+ 〈b(t, x, a), Dxψ(t, x)〉+
1

2
Tr
[
σ(t, x, a)σ∗(t, x, a)D2

xψ(t, x)
]

+ f(t, x, a)

+

∫
U\{0}

(
ψ(t, x+ γ(t, x, a, z))− ψ(t, x) + γ(t, x, a, z)

)
Dxψ(t, x)λπ(dz)

when h goes to zero. Then, by the Lebesgue dominated convergence theorem, we obtain
from (6.31)

ψt(t, x)− 〈x, A∗Dxψ(t, x) + h(|x|)A∗Dxδ(t, x)〉

+ 〈b(t, x, a), Dxψ(t, x)〉+
1

2
Tr
[
σ(t, x, a)σ∗(t, x, a)D2

xψ(t, x)
]

+ f(t, x, a)

+

∫
U\{0}

(
ψ(t, x+ γ(t, x, a, z))− ψ(t, x) + γ(t, x, a, z)

)
Dxψ(t, x)λπ(dz) ≤ 0.

The claim follows from the arbitrariness of a ∈ Λ.
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Remark 6.13. Concerning the uniqueness of viscosity solutions to the Hamilton-Jacobi-
Bellman equation (6.24), a positive result follows from the comparison principle in [19],
Theorem 6.2, under the additional assumptions that f and g are bounded and Λ is
compact, from which we deduce that the value function v in (6.3) is the unique viscosity
solution in the class of bounded and uniformly continuous solutions on [0, T ]×H−1.
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