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Abstract

We substantially refine asymptotic logarithmic upper bounds produced by Svante
Janson (2015) on the right tail of the limiting QuickSort distribution function F and
by Fill and Hung (2018) on the right tails of the corresponding density f and of the
absolute derivatives of f of each order. For example, we establish an upper bound on
log[1− F (x)] that matches conjectured asymptotics of Knessl and Szpankowski (1999)
through terms of order (log x)2; the corresponding order for the Janson (2015) bound
is the lead order, x log x.

Using the refined asymptotic bounds on F , we derive right-tail large deviation (LD)
results for the distribution of the number of comparisons required by QuickSort that
substantially sharpen the two-sided LD results of McDiarmid and Hayward (1996).
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1 Introduction

To set the stage, and for the reader’s convenience, we repeat here relevant portions
of Section 1 of Fill and Hung [2]. Let Xn denote the (random) number of comparisons
when sorting n distinct numbers using the algorithm QuickSort. Clearly X0 = 0, and for
n ≥ 1 we have the recurrence relation

Xn
L
= XUn−1 +X∗n−Un

+ n− 1,

where
L
= denotes equality in law (i.e., in distribution); Xk

L
= X∗k ; the random variable

Un is uniformly distributed on {1, . . . , n}; and Un, X0, . . . , Xn−1, X∗0 , . . . , X
∗
n−1 are all
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Improved QuickSort right-tail upper bounds

independent. It is well known that

µn := EXn = 2 (n+ 1)Hn − 4n,

where Hn is the nth harmonic number Hn :=
∑n
k=1 k

−1 and (from a simple exact

expression) that VarXn = (1 + o(1))(7− 2π2

3 )n2. To study distributional asymptotics, we
first center and scale Xn as follows:

Zn =
Xn − µn

n
. (1.1)

Using the Wasserstein d2-metric, Rösler [12] proved that Zn converges to Z weakly as
n→∞. Using a martingale argument, Régnier [11] proved that the slightly renormalized
n
n+1Zn converges to Z in Lp for every finite p, and thus in distribution; equivalently, the
same conclusions hold for Zn. The random variable Z has everywhere finite moment
generating function with EZ = 0 and VarZ = 7 −

(
2π2/3

)
. Moreover, Z satisfies the

distributional identity

Z
L
= UZ + (1− U)Z∗ + g(U). (1.2)

On the right, Z∗
L
= Z; U is uniformly distributed on (0, 1); U,Z,Z∗ are independent; and

g(u) := 2u lnu+ 2(1− u) ln(1− u) + 1.

Further, the distributional identity together with the condition that EZ (exists and)
vanishes characterizes the limiting QuickSort distribution; this was first shown by
Rösler [12] under the additional condition that VarZ <∞, and later in full by Fill and
Janson [4].

Fill and Janson [5] derived basic properties of the limiting QuickSort distribution
L(Z). In particular, they proved that L(Z) has a (unique) continuous density f which is
everywhere positive and infinitely differentiable.

Janson [7] studied logarithmic asymptotics in both tails for the corresponding distri-
bution function F , and Fill and Hung [2] did the same for f and each of its derivatives.
For right tails, all these results can be summarized in the following theorem. We let
F (x) := 1− F (x), and for a function h : R→ R we write

‖h‖x := sup
t≥x
|h(t)|. (1.3)

Theorem 1.1 ([7], Thm. 1.1; [2], Thms. 1.1–1.2).
(a) As x→∞, the limiting QuickSort density function f satisfies

exp[−x lnx− x ln lnx+O(x)] ≤ f(x) ≤ exp[−x lnx+O(x)]. (1.4)

(b) Given an integer k ≥ 0, as x → ∞ the kth derivative of the limiting QuickSort
distribution function F satisfies

exp[−x lnx− (k ∨ 1)x ln lnx+O(x)] ≤ ‖F (k)‖x ≤ exp[−x lnx+O(x)]. (1.5)

As discussed in [7, Section 1] and in [2, Remark 1.3(b)], non-rigorous arguments of
Knessl and Szpankowski [8] suggest very refined asymptotics, which to three logarithmic
terms assert that for each k ≥ 0 we have

F
(k)

(x) = exp[−x lnx− x ln lnx+ (1 + ln 2)x+ o(x)] (1.6)

as x→∞ (and hence that the same asymptotics hold for ‖F (k)‖x). Note that for k = 0, 1

these expansions match the lower bounds on f and F in Theorem 1.1 to two logarithmic
terms.
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In an earlier extended-abstract version [3] of this paper, we refined the upper bounds
of Theorem 1.1 to match (1.6), and we were also able to improve the lower bound in (1.5)
to match (1.6) to two terms. Here is the main theorem of [3]:

Theorem 1.2 ([3], Thm. 1.2). (a) As x→∞, the limiting QuickSort density function f
satisfies

exp[−x lnx− x ln lnx+O(x)] ≤ f(x) (1.7)

≤ exp[−x lnx− x ln lnx+ (1 + ln 2)x+ o(x)]. (1.8)

(b) Given an integer k ≥ 0, as x → ∞ the kth derivative of the limiting QuickSort
distribution function F satisfies

exp[−x lnx− x ln lnx+O(x)] ≤ ‖F (k)‖x (1.9)

≤ exp[−x lnx− x ln lnx+ (1 + ln 2)x+ o(x)]. (1.10)

In this paper we substantially refine the upper bound

F (x) ≤ exp[−x lnx− x ln lnx+ (1 + ln 2)x+ o(x)] (1.11)

of Theorem 1.2(b) with k = 0; we also improve the upper bounds for k ≥ 1, though not
as dramatically.

Let

J(t) :=

∫ t

s=1

2es

s
ds, t ≥ 1. (1.12)

It is elementary using integration by parts that J(t) has the (divergent) asymptotic
expansion

J(t) ∼ 2t−1et
∞∑
j=0

j! t−j . (1.13)

Here is the main theorem of this paper:

Theorem 1.3. For x ≥ 2e, let w ≡ w(x) denote the unique real solution satisfying w ≥ 1

to

x = 2w−1ew.

(a) As x→∞, the limiting QuickSort distribution function F satisfies

F (x) ≤ exp[−xw + J(w)− w2 +O(log x)]

= exp[−2ew + J(w)− w2 +O(w)].

(b) Given an integer k ≥ 1, as x → ∞ the kth derivative of the limiting QuickSort
distribution function F satisfies

‖F (k)‖x ≤ exp[−xw + J(w) +O(
√
x log x)]. (1.14)

Remark 1.4. (a) We aid the reader in gauging the approximate sizes of the various
terms in the bounds appearing in Theorem 1.3. It is routine to check that, as noted by
Knessl and Szpankowski [8, eq. (20)],

w = ln(x/2) + ln ln(x/2) + (1 + o(1))
ln ln(x/2)

ln(x/2)
(1.15)

as x→∞. Thus, by (1.13), we have the asymptotic equivalence

J(w) ∼ 2w−1ew = x. (1.16)
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From (1.15)–(1.16) it’s easy to see that Theorem 1.3 does indeed strengthen the upper
bounds in Theorem 1.2. Inclusion of the term J(w) in the bounds of Theorem 1.3 enables
us effectively to bypass the entire infinite asymptotic expansion (1.13).

(b) Using non-rigorous methods, Knessl and Szpankowski [8, see esp. their eq. (18)]
derive the following exact asymptotics for F (x) as x→∞:

F (x) = exp
[
−xw + J(w)− w2 − (α+ 1

2 )w − 3
2 lnw + C − ln(2

√
π) + o(1)

]
(1.17)

for some (unspecified) constant C, with α := 2 ln 2 + 2γ − 1, where γ denotes the Euler–
Mascheroni constant. Hence the bound of Theorem 1.3(a) on lnF (x) matches the
conjectured asymptotics to within an additive term O(w) = O(log x).

(c) In their notation, the non-rigorously derived eq. (88) of [8] should read

P (y) ∼ C∗√
2π

1
√
y w∗

√
1− (1/w∗)

exp

[
−yw∗ +

∫ w∗

1

2eu

u
du− w2

∗ − αw∗
]
,

recalling α = 2γ + 2 ln 2 − 1. Ignoring the factor
√

1− (1/w∗) which ∼ 1, this result in
our notation is

f(x) ∼ (2π × 2w−1ew)−1/2e−xwψ(w)

∼ (2πx)−1/2 exp[−xw + J(w)− w2 − αw − lnw + C], (1.18)

where ψ is the moment generating function corresponding to f and C is the same
constant as at (1.17). [They derive their (88) by the “standard saddle point approximation”
from the moment generating function expansion (2.4) recalled in Remark 2.2 below, and
they derive (1.17) by integrating (1.18).] Hence the bound of Theorem 1.3(b) on ln f(x)

matches the conjectured asymptotics (1.18) to within an additive term O(
√
x log x).

We prove Theorem 1.3 in Section 2. In Section 3 we use our refined asymptotic
bounds on F to derive right-tail large deviation results for the distribution of the number
of comparisons required by QuickSort that sharpen somewhat the two-sided large-
deviation results of McDiarmid and Hayward [9].

We conclude this section by repeating from [3] an open problem concerning left -tail
behavior.

Open Problem. With F (x) := F (−x) can the lower bounds as x→∞ in the left-tail
results

exp
[
−eΓx+ln ln x+O(1)

]
≤ f(−x) ≤ exp

[
−eΓx+O(1)

]
, (1.19)

exp
[
−eΓx+ln ln x+O(1)

]
≤ ‖F (k)‖x ≤ exp

[
−eΓx+O(1)

]
(1.20)

of [7] and [2] be improved to match the asymptotics

F (k)(x) = exp
[
−eΓx+O(1)

]
suggested by Knessl and Szpankowski [8] (and known rigorously [7, 2] for upper bounds),
where Γ := (2− 1

ln 2 )−1?

2 Proof of the main Theorem 1.3

In Section 2.1 we bound the moment generating function (mgf) ψ of Z. In Section 2.2
we prove Theorem 1.3(a) by combining the Chernoff bound

F (x) = P(Z ≥ x) ≤ e−txψ(t),

for judicious choice of t ≡ t(x) > 0, with our bound on ψ. In Section 2.3 we prove
Theorem 1.3(b).
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2.1 A bound on the moment generating function of Z

Let ψ denote the mgf of Z. It was shown by Rösler [12] that ψ is everywhere finite.
In this subsection we establish a bound on ψ(t) which (for large t) improves on that of [3,
Lemma 2.1], which asserts that for every ε > 0 there exists a ≡ a(ε) ≥ 0 such that the
mgf ψ of Z satisfies

ψ(t) ≤ exp[(2 + ε)t−1et + at] (2.1)

for every t > 0. The bound (2.1) in turn improved the one obtained in the proof of [7,
Lemma 6.1], namely, that there exists a ≥ 0 such that

ψ(t) ≤ exp(et + at) for every t ≥ 0. (2.2)

Recalling the definition (1.12) of J(t), we next state our bound on ψ(t) which, accord-
ing to (1.13), does indeed improve on (2.1) for large t.

Proposition 2.1. There exists a constant a ≥ 0 such that the moment generating
function ψ of Z satisfies

ψ(t) ≤ exp[J(t)− t2 + at] (2.3)

for every t ≥ 1.

We postpone the proof of Proposition 2.1 for a preliminary remark.

Remark 2.2. Using non-rigorous methods, Knessl and Szpankowski [8] derive that as
t→∞ the mgf ψ satisfies

ψ(t) = exp[J(t)− t2 − αt− ln t+ C + o(1)] (2.4)

as t → ∞ for the same (unspecified) constant C as at (1.17), with α = 2 ln 2 + 2γ − 1;
see their equation (71) (we have corrected a misplaced-right-parenthesis typo). If (2.4)
is true, then our bound on lnψ(t) agrees with the truth to within O(t), whereas the
bound (2.1) (for fixed ε) exceeds the true value by (1 + o(1))εt−1et. Thus our bound (2.3)
comes substantially closer to the apparent truth than does (2.1).

The proof of Proposition 2.1 will require the following lemma. Recall from Remark 2.2
that α = 2 ln 2 + 2γ − 1, and define

ψ̂(t) :=

{
(1− e−t/2) exp[J(t)− t2 − αt− ln t] if t > 1

1 otherwise.

Lemma 2.3. For all sufficiently large t we have the strict inequality

2

∫ 1/2

u=0

ψ̂(ut)ψ̂((1− u)t) exp[tg(u)] du < ψ̂(t).

Proof. Call the left side of this inequality λ(t). To handle λ(t), we begin by changing the
variable of integration from u to η, where u = 1

2e
−tη:

λ(t) = e−t
∫ et

η=0

ψ̂

(
1

2
te−tη

)
ψ̂

(
t− 1

2
te−tη

)
exp

[
tg

(
1

2
e−tη

)]
dη

=

∫ et

η=0

ψ̂

(
1

2
te−tη

)
ψ̂

(
t− 1

2
te−tη

)
exp

[
2tφ

(
1

2
e−tη

)]
dη

with φ(u) := u lnu+ (1− u) ln(1− u) ≤ 0.

We next show that the contribution to
∫ et
η=0

here from
∫ et
η=et/10

is effectively quite
negligible. To see this, we consider the integrand in two cases. Before breaking into
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cases, observe that the second argument for ψ̂ is at least t/2, which exceeds 1 if (as
we may suppose) t > 2. For the first case, suppose that the first argument for ψ̂ also
exceeds 1. In this case we need to treat the sum of the J -values at these arguments. But,
using the increasingness of 2s−1es for s ≥ 1, we see that if a, b ≥ 1 and a+ b = t, then

J(a) + J(b) =

∫ a

s=1

2s−1es ds+

∫ b

s=1

2s−1es ds

≤
∫ a

s=1

2s−1es ds+

∫ a+b−1

s=a

2s−1es ds = J(t− 1)

and therefore

J(a) + J(b)− J(t) ≤ −[J(t)− J(t− 1)] = −
∫ t

s=t−1

2s−1es ds

≤ −2(t− 1)−1et−1 = −(1 + o(1)) 2e−1 t−1et.

For the second case, suppose that the first argument for ψ̂ does not exceed 1. In this
case we need to treat J(t− 1

2 te
−tη) ≤ J(t− 1

2 te
−9t/10). In this case, observe that

J(t− 1
2 te
−9t/10)− J(t) ≤ ( 1

2 te
−9t/10) · −2(t− 1

2 te
−9t/10)−1 exp[t− 1

2 te
−9t/10]

= −(1 + o(1))et/10.

The minor contribution
∫ et
η=et/10

is thus bounded between 0 and

(et − et/10)× exp[J(t)− (1 + o(1))et/10 +O(t2)]× 1

= exp[J(t)− (1 + o(1))et/10 +O(t2)]

= exp[−(1 + o(1))et/10]ψ̂(t).

For the major contribution
∫ et/10
η=0

, we can use simple expansions for the first and third

factors in the integrand, because 0 ≤ 1
2 te
−tη ≤ 1

2 te
−9t/10 = o(1):

ψ̂
(

1
2 te
−tη
)

= 1,

φ
(

1
2e
−tη
)

= 1
2e
−tη(−t+ ln η − ln 2)− 1

2e
−tη +O(e−2tη2).

We also use an expansion for J(t− 1
2 te
−tη) appearing in the second factor in the integrand:

J(t− 1
2 te
−tη)− J(t) = − 1

2 te
−tηJ ′(t) + 1

8 t
2e−2tη2J ′′(t) +O(t2e−2tη3)

= −η + 1
4 (t− 1)e−tη2 +O(t2e−2tη3).

Thus, abbreviating t− 1
2 te
−tη as t1 ≡ t1(t, η), the major contribution to λ(t) equals

exp[J(t)]I(t),

where I(t) is the integral

I(t) :=

∫ et/10

η=0

e−η(1− e−t1/2) exp
[

1
4 (t− 1)e−tη2 +O(t2e−2tη3)

+ te−tη(−t+ ln η − ln 2)− te−tη +O(te−2tη2)− t21 − αt1 − ln t1
]
dη.

We now use the following additional expansions:

t21 = t2 − t2e−tη +O(t2e−2tη2),

ln t1 = ln(t− 1
2 te
−tη) = ln t− 1

2e
−tη +O(e−2tη2),

e−t1/2 = e−t/2[1 + 1
4 te
−tη +O(t2e−2tη2)].
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Further we can expand the factor exp[·] appearing in I(t) as 1 + ·+O(·2), because · = o(1)

uniformly throughout the range of integration.
Calculus now gives

I(t) = (1− e−t/2) exp[−t2 − αt− ln t]

×
[
O(t4e−2t) +

∫ ∞
η=0

e−η(1− 1
4 te
−3t/2η + 1

4 (t− 1)e−tη2

+ te−tη(−t+ ln η − ln 2)− te−tη + t2e−tη + 1
2αte

−tη + 1
2e
−tη) dη

]
= (1− e−t/2) exp[−t2 − αt− ln t]× [1− 1

4 te
−3t/2 +O(t4e−2t)].

We conclude for sufficiently large t that

λ(t) = ψ̂(t)[1− 1
4 te
−3t/2 +O(t4e−2t)] < ψ̂(t).

Remark 2.4. If we change the factor (1− e−t/2) in the definition of ψ̂ to (1 + e−t/2), then
a similar proof shows that the reverse strict inequality holds in Lemma 2.3. In fact, the
proof becomes a bit simpler, since the minor contribution can simply be bounded below
by 0.

Proof of Proposition 2.1. We carry out the proof by showing that there exists a′ ≥ 0 such
that

ψ(t) ≤ ea
′tψ̂(t) (2.5)

for every t > 0.
To begin, we compare asymptotics of ψ(t) and ψ̂(t) as t → 0. Because Z has zero

mean and finite variance, we have ψ(t) = 1 +O(t2). On the other hand, ψ̂(t) = 1 for all
0 < t ≤ 1. We can thus choose t1 > 0 and a′′ > 0 such that (2.5) holds for t ∈ [0, t1] and
any a′ ≥ a′′.

Let t2 > 1 be such that the strict inequality in Lemma 2.3 holds for all t ≥ t2, and
choose a′ ≥ a′′ so that (2.5) holds for t ∈ [t1, t2]. Assuming for the sake of contradiction
that (2.5) fails for some t > 0, let T := inf{t > 0 : (2.5) fails}. Then T ≥ t2, and continuity
gives

ψ(T ) = ea
′T ψ̂(T ).

Further, if 0 < u < 1, then (2.5) holds for t = uT and t = (1− u)T , and thus, using our
standard integral equation for ψ, we have

ψ(T ) ≤ ea
′T × 2

∫ 1/2

u=0

ψ̂(uT )ψ̂((1− u)T ) exp[tg(u)] du,

which is strictly smaller than ea
′T ψ̂(T ) by applying Lemma 2.3 with t = T ≥ t2. The

resulting strict inequality ψ(T ) < ea
′T ψ̂(T ) contradicts the definition of T . Hence (2.5)

holds for all t ≥ 0.

Remark 2.5. Using Remark 2.4 just as Lemma 2.3 is used in the proof of Proposition 2.1,
we have the following reverse of Proposition 2.1: There exists a constant a ≥ 0 such that
the mgf ψ of Z satisfies

ψ(t) ≥ exp[J(t)− t2 − at] (2.6)

for every t ≥ 1.

Remark 2.6. (a) Unfortunately, due to the need to handle small values of t in the proofs
of Proposition 2.1 and Remark 2.5, we sacrifice the information in the linear term of
lnψ(t) that Remark 2.2 and Lemma 2.3 strongly suggest. Thus any further progress on
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asymptotic determination of ψ would have to employ a technique different from the one
used to derive (2.2), (2.1), and (2.3).

(b) The extent to which we are able to make rigorous the claim (2.4) and thereby, in
particular, identify the linear term in lnψ(t) is the following. If

ψ(t) = exp[J(t) +K(t)]

where we assume K ′(t) = O(tb1) and K ′′(t) = O(tb2) for some b1 and b2 [just as we now
know rigorously that K(t) ∼ −t2 = O(t2)], then we must have

K(t) = −t2 − αt− ln t+ C +O(tbe−t)

for some constant C, where b := max{4, 2 + 2b1, 2 + b2}. (Aside: It is natural to assume
further that b1 = 1 and b2 = 0, in which case b = 4.) The proof of this assertion is quite
similar to the proof of Lemma 2.3 and is omitted.

2.2 Proof of improved asymptotic upper bound on F

Proof of Theorem 1.3(a). Choose t = w, apply the Chernoff bound

F (x) = P(Z ≥ x) ≤ e−txψ(t),

and utilize Proposition 2.1 to establish Theorem 1.3(a).

Remark 2.7. (a) For large x, the optimal choice of t for the Chernoff bound combined
with (2.3) is not t = w, but rather the larger w̃ ≡ w̃(x) of the two positive real solutions
to

x = 2(w̃−1ew̃ − w̃) + a.

But the resulting improvement in the bound on lnF (x) not only is subsumed by the error
bound O(log x) but in fact is asymptotically equivalent to 2x−1(log x)2 = o(1) and so is
negligible even as concerns estimating F (x) to within a factor 1 + o(1).

Here is a proof. Use of t = w vs. t = w̃ gives the larger expression

−xw + J(w)− w2 + aw

vs.
−xw̃ + J(w̃)− w̃2 + aw̃;

the increase is

∆ ≡ ∆(x) := x(w̃ − w)− [J(w̃)− J(w)] + (w̃2 − w2)− a(w̃ − w).

Using Taylor’s theorem, we write

J(w̃)− J(w) = 2w−1ew(w̃ − w) + t−1et(1− t−1)(w̃ − w)2

= x(w̃ − w) + (1 + o(1)) 1
2x(w̃ − w)2

where t belongs to (w, w̃), and we also note

w̃2 − w2 = 2(w̃ − w)(w̃ + w) ∼ 2(w̃ − w) lnx.

Thus
∆ = −(1 + o(1)) 1

2x(w̃ − w)2 + (1 + o(1))2(w̃ − w) lnx.

It remains to estimate w̃ − w. We have

1 =
x

x
=

2(w̃−1ew̃ − w̃) + a

2w−1ew
=
w

w̃
ew̃−w − 2w̃ − a

x
.
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Write this as
w

w̃
ew̃−w = 1 +

2w̃ − a
x

and take logs. Note

ln
(w
w̃
ew̃−w

)
= − ln

(
1 +

w̃ − w
w

)
+ w̃ − w ∼ w̃ − w

and

ln

(
1 +

2w̃ − a
x

)
∼ 2 lnx

x
.

Thus
w̃ − w ∼ 2x−1 lnx.

It now follows that

∆ = −(1 + o(1))2x−1(lnx)2 + (1 + o(1))4x−1(lnx)2 ∼ 2x−1(lnx)2,

as claimed.
(b) If we grant the truth of (2.4), the following upper bound on F (x) resulting from

use of a Chernoff inequality with t = w together with (2.4) still does not completely
match (1.17):

F (x) ≤ exp[−xw + J(w)− w2 − αw − lnw + C + o(1)]

= 2
√
π w1/2ew/2 × RHS(1.17) ∼ (2πx)1/2 × RHS(1.17).

Further, use of the exactly optimal t [ignoring the o(1) remainder term in (2.4)] gives a
bound that is still asymptotically (2πx)1/2 ×RHS(1.17). Thus if the asymptotic inequality
F (x) ≤ RHS(1.17) is ever to be established rigorously, it would have to involve some
technique (such as a rigorization of the saddle-point arguments used in [8]) we have not
used; Chernoff bounds are insufficient.

2.3 Proof of improved asymptotic upper bounds on absolute values of deriva-
tives of F

Using the improved right-tail upper bound of the distribution function in Theo-
rem 1.3(a), we are now able to establish Theorem 1.3(b).

Proof of Theorem 1.3(b). The bound (1.14) holds for k = 0 because it is cruder than
the bound of Theorem 1.3(a). The bound (1.14) for general values of k then follows
inductively using Proposition 6.1 of [2], according to which

lim sup
x→∞

r(x)−1
(

ln ‖F (k+1)‖x − ln ‖F (k)‖x
)
≤ 0

provided r(x) = ω(
√
x log x) as x→∞.

3 Large deviations for QuickSort

With some improvements, this section repeats Section 3 of [3].
McDiarmid and Hayward [9] study large deviations for the variant of QuickSort in

which the pivot (that is, the initial partitioning key) is chosen as the median of 2t + 1

keys chosen uniformly at random without replacement from among all the keys. The
case t = 0 is the classical QuickSort algorithm of our ongoing limited focus in this paper.
Restated equivalently in terms of the random variable Zn in (1.1) (as straightforward
calculation reveals), the following is their main theorem for classical QuickSort.
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Theorem 3.1 ([9]). Let xn satisfy

µn
n lnn

< xn ≤
µn
n
. (3.1)

Then as n→∞ we have

P(|Zn| > xn) = exp{−xn[lnxn +O(log log log n)]}. (3.2)

Observe that (3.1) is roughly equivalent to the condition that xn lie between 2 and
2 lnn, and rather trivially the range can be extended to 1 < xn ≤ µn/n. But notice also
that if xn = (ln lnn)cn with cn nondecreasing (say), then (3.2) provides a nontrivial upper
bound on P(|Zn| > xn) if and only if cn →∞.

McDiarmid and Hayward require a fairly involved proof utilizing primarily the method
of bounded differences pioneered by McDiarmid [10] to establish the ≤ half of (3.2).
The ≥ half is proven by establishing (by means of another substantial argument) the
right-tail lower bound

P(Zn > xn) ≥ exp{−xn[lnxn +O(log log log n)]}, (3.3)

again assuming (3.1) (see [9, Lemma 2.9]). It follows from (3.2)–(3.3) that we have the
right-tail large deviation result that

P(Zn > xn) = exp{−xn[lnxn +O(log log log n)]}. (3.4)

The main point of this section [see Theorem 3.3(b)–(d)] is to note that (3.4) can be
refined, for deviations not allowed to be quite as large as those permitted by Theo-
rem 3.1, rather effortlessly by combining our upper bound [Theorem 1.3(a)] and lower
bound [Theorem 1.2(b), with k = 0] on the right tail of F with the following bound on
Kolmogorov–Smirnov distance between the distributions of Zn and Z (see [6, Section 5]):

Lemma 3.2 ([6]). We have

sup
x
|P(Zn > x)− P(Z > x)| ≤ exp

[
− 1

2 lnn+O
(

(log n)1/2
)]
.

We state next our right-tail large-deviations theorem for QuickSort. With the addi-
tional indicated restriction on the growth of xn (which allows for xn nearly as large as
1
2

lnn
ln lnn ), parts (b)–(c) strictly refine (3.3) and the asymptotic upper bound on P(Zn > xn)

implied by (3.4). The left-hand endpoint of the interval In in Theorem 3.3 is chosen as
c > 1 simply to ensure that sup{− ln lnx : x ∈ In} <∞.

Theorem 3.3. Let (ωn) be any sequence diverging to +∞ as n→∞ and let c > 1. For
integer n ≥ 3, consider the interval In :=

[
c, 1

2
lnn

ln lnn

(
1− ωn

ln lnn

)]
.

(a) Uniformly for x ∈ In we have

P(Zn > x) = (1 + o(1))P(Z > x) as n→∞. (3.5)

(b) If xn ∈ In for all large n, then

P(Zn > xn) ≥ exp[−xn lnxn − xn ln lnxn +O(xn)]. (3.6)

(c) If xn ∈ In for all large n and xn →∞, then

P(Zn > xn) ≤ exp[−xnwn + J(wn)− w2
n +O(log xn)] (3.7)

= exp[−xn lnxn − xn ln lnxn + (1 + ln 2)xn + o(xn)], (3.8)

where wn is the larger of the two real solutions to xn = 2w−1
n ewn .

(d) If xn ∈ In for all large n, then

P(Zn > xn) = exp[−xn lnxn − xn ln lnxn +O(xn)]. (3.9)
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Proof. Parts (b)–(c) follow immediately from part (a) and Theorem 1.3(a), and part (d) by
combining parts (b)–(c). So we need only prove part (a), for which by Lemma 3.2 it is
sufficient to prove that

exp
[
− 1

2 lnn+O
(

(log n)1/2
)]
≤ o(P(Z > xn))

with xn ≡ 1
2

lnn
ln lnn

(
1− ωn

ln lnn

)
; this assertion decreases in strength as the choice of ωn is

increased, so we may assume that ωn = o(log log n). Since, by Theorem 1.2(b), we have

P(Z > xn) ≥ exp[−xn lnxn − xn ln lnxn +O(xn)],

it suffices to show that for any constant C <∞ we have

− 1
2 lnn+ C(lnn)1/2 + xn lnxn + xn ln lnxn + Cxn → −∞.

But, writing L for ln and Lk for the kth iterate of L, and abbreviating αn := 1− ωn

L2 n
, this

follows from the observation that, for n large,

xn(Lxn + L2 xn + C)

=
1

2

Ln

L2 n
αn[(L2 n− L3 n− L 2 + Lαn) + L(L2 n− L3 n− L 2 + Lαn) + C]

=
1

2

Ln

L2 n
αn

[
L2 n+ C − L 2 + Lαn + L

(
1− L3 n+ L 2− Lαn

L2 n

)]
=

1

2

Ln

L2 n
αn

[
L2 n+ C − L 2 + Lαn − (1 + o(1))

L3 n

L2 n

]
=

1

2

Ln

L2 n
αn [L2 n+ C − L 2 + o(1)]

=

(
1

2
Ln

)
αn

[
1 +

C − L 2 + o(1)

L2 n

]
=

1

2
Ln− (1 + o(1))ωn

Ln

2 L2 n
.

For completeness we next present a left-tail analogue of Theorem 3.3 [but, for brevity,
only parts (b)–(c) thereof]. Theorem 3.4 follows in similar fashion using the case k = 0

of (1.20) in place of Theorem 1.2(b). No such left-tail large-deviation result is found
in [9]. Recall Γ := (2− 1

ln 2 )−1 and the notation Lk used in the proof of Theorem 3.3.

Theorem 3.4. If 1 < xn ≤ Γ−1(L2 n− L4 n− ωn) with ωn →∞, then

exp
[
−eΓxn+L2 xn+O(1)

]
≤ P(Zn ≤ −xn) ≤

[
−eΓxn+O(1)

]
.

Remark 3.5. The upper bound in Theorem 3.4 requires only the weaker restriction

−M ≤ xn ≤ Γ−1(L2 n− ωn)

with M <∞ and ωn →∞.

Remark 3.6. If we let N := n+ 1 and study the slight modification Ẑn := (Xn−µn)/N =

[n/(n+ 1)]Zn instead of (1.1), then large deviation upper bounds based on tail estimates
of the limiting F have broader applicability and are easier to derive, too. The reason is
that (i) both Theorem 1.3(a) and the upper bound for k = 0 in (1.20) have been derived
by establishing an upper bound on the limiting mgf ψ and using a Chernoff bound, and
(ii) according to [6, Theorem 7.1], ψ majorizes the moment generating function ψ̂n of Ẑn
for every n. It follows immediately (with w defined in the now-familiar way in terms of x)
that P(Ẑn > x) (respectively, P(Ẑn ≤ −x)) is bounded above uniformly in n by

exp[−xw + J(w)− w2 +O(log x)] (3.10)

= exp[−x lnx− x ln lnx+ (1 + ln 2)x+ o(x)] (3.11)
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(resp., by exp
[
−eγx+O(1)

]
) as x→∞; there is no restriction at all on how large x can be

in terms of n.
Here are examples of very large values of x for which the tail probabilities are nonzero

and the aforementioned bounds still match logarithmic asymptotics to lead order of
magnitude, albeit not to lead-order term. Let lg denote binary log. The largest possible
value of Xn is

(
n
2

)
(corresponding to any binary search tree which is a path), which

occurs with probability 2n−1/n!. The smallest possible value (supposing, for simplicity,
that n = 2k − 1 for integer k) is (k − 2)2k + 2 = N(lgN − 2) + 2 (corresponding to the
perfect tree, in the terminology of [1, Section 3]); according to [1, Proposition 4.1], this
value occurs with probability exp[−s(1)N + s(N + 1)], where

s(ν) :=

∞∑
j=1

2−j ln(2jν − 1).

Correspondingly, the largest possible value of Ẑn is

λn := n(n+7)
2(n+1) − 2Hn = (1 + o(1)) 1

2N,

and the smallest is −σn, with

σn := −2HN − lgN − 2 = (2− 1
ln 2 ) lnN +O(1).

The bound (3.11) on P(Ẑn > λn) is in fact also (by the same proof) a bound on the
larger probability P(Ẑn ≥ λn), and equals

exp
{
− 1

2N [lnN + ln lnN − (2 ln 2 + 1) + o(1)]
}
,

whereas (using Stirling’s formula) the truth is

P(Ẑn ≥ λn) = exp[−N lnN + (1 + ln 2)N +O(logN)].

The bound on P(Ẑn ≤ −σn) equals

exp
[
−elnN+O(1)

]
= exp[−Ω(N)],

whereas (by [1, Proposition 4.1 and Table 1]) the truth is

P(Ẑn ≤ −σn) = exp[−s(1)N +O(logN)]

and (rounded to seven decimal places) s(1) = 0.9457553.
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