
E l e c t r o n i
c

J
o

u
r n a l

o
f

P
r

o b a b i l i t y

Electron. J. Probab. 24 (2019), no. 74, 1–37.
ISSN: 1083-6489 https://doi.org/10.1214/19-EJP328

Scaling limit of ballistic self-avoiding walk interacting
with spatial random permutations*

Volker Betz† Lorenzo Taggi‡

Abstract

We consider nearest neighbour spatial random permutations on Zd. In this case, the
energy of the system is proportional to the sum of all cycle lengths, and the system
can be interpreted as an ensemble of edge-weighted, mutually self-avoiding loops. The
constant of proportionality, α, is the order parameter of the model. Our first result
is that in a parameter regime of edge weights where it is known that a single self-
avoiding loop is weakly space filling, long cycles of spatial random permutations are
still exponentially unlikely. For our second result, we embed a self-avoiding walk into
a background of spatial random permutations, and condition it to cover a macroscopic
distance. For large values of α (where long cycles are very unlikely) we show that
this walk collapses to a straight line in the scaling limit, and give bounds on the
fluctuations that are almost sufficient for diffusive scaling. For proving our results,
we develop the concepts of spatial strong Markov property and iterative sampling for
spatial random permutations, which may be of independent interest. Among other
things, we use them to show exponential decay of correlations for large values of α in
great generality.
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1 Introduction

Self-avoiding random walks are by now a classical topic of modern probability theory,
although many questions still remain to be answered; we refer to the classic book [34]
and the more recent survey [38]. A variant of self-avoiding walks are self-avoiding
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polygons (see e.g. [26]), where the last step of the self-avoiding walk has to come back
to the point of origin.

Spatial random permutations, on the other hand, are a relatively recent concept.
They were originally introduced due to their relevance for the theory of Bose-Einstein
condensation [5, 7, 41], but are of independent mathematical interest. The purpose
of the present paper is to view spatial random permutations as systems of mutually
self-avoiding polygons and compare the behaviour of a selected cycle of a spatial random
permutation to the one of a self-avoiding walk or polygon. Put differently, a selected cycle
of a spatial random permutation can be viewed as a self-avoiding polygon embedded into
a background of other self-avoiding polygons, and we are interested in the effect that
this embedding has. For this purpose, we restrict to nearest neighbour spatial random
permutations, as they are most closely related to self-avoiding walks. For a finite subset
Λn of Zd, the model is defined on the space SΛ consisting of all bijective maps π on Λ

with the property that |π(x)− x| ∈ {0, 1}. The probability measure (with order parameter
α) is given by assigning the element π ∈ SΛ the energy H(π) :=

∑
x∈Λ |π(x)− x|, and the

probability

PΛ({π}) =
1

Z(Λ)
e−αH(π) ,

where Z(Λ) is the partition function (normalising constant).
The most important questions in spatial random permutations concern the length

of their cycles, in particular the existence of macroscopic cycles. It is known [5] that,
when α is large enough, the probability that the origin is in a cycle of length larger
than k decays exponentially with k, uniformly in the volume Λ. It is expected that for
dimensions d = 3 and higher, there exists a critical value αc of the order parameter so
that for α < αc, the cycle containing the origin (or any selected point) is of macroscopic
length with positive probability. In d = 2, on the other hand, only a Kosterlitz-Thouless
phase transition is expected, meaning that the probability of the cycle being larger than k
decays exponentially if α > αc but algebraically otherwise. While there is good numerical
evidence for the existence of long cycles in d ≥ 3 [21, 24] and the Kosterlitz-Thouless
transition [2] in d = 2, actually proving any positive statement about the existence of
long cycles is the great unsolved problem of the theory of spatial random permutations.
The only case where such a statement is known is for an annealed version of the model
(with a slightly different energy) [4, 6]. The argument there relies on explicit calculations
using Fourier transforms; all attempts to get away from this exactly solvable situation
have so far failed. In [7] a non-rigorous argument is made that the study of models
of non-spatial permutations with cycle weights may be useful, and such models have
received some attention recently [3, 8, 13, 14].

In the context of self-avoiding walks, the concept of a phase transition from short
to long loops is present in the following results. Consider a single step-weighted self-
avoiding walk, i.e. fix a sequence of growing subsets Λn (e.g. cubes) of Zd, for each n
two points a and z at opposite ends of Λn, and consider the set of all self-avoiding walks
starting in a and ending in z. Let α ∈ R, and assign to each such self-avoiding walk X
the weight exp(−α|X|), where |X| is the number of steps that X takes. Write µ′ for the
connective constant of the d-dimensional cubic lattice, which is defined in (2.4). When
α > logµ′, it is known that the shape of X converges to a straight line as n→∞, when
scaled by 1/n. Actually, when scaled by 1/n in the direction of a− z and by n−1/2 in the
directions perpendicular to this vector, X converges to a Brownian Bridge. These results
are implicit in the works [12, 30] and have been worked out by Y. Kovchegov in his thesis
[32].

For α < logµ′, on the other hand, the results are entirely different. As Duminil-Copin,
Kozma and Yadin have recently shown [15], in this case the rescaled self-avoiding walk
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Figure 1: Representation of a bijection with a forced open cycle between a and z, when
Λ ⊂ Z2 is a box with cylinder boundary conditions. If π(x) = x, then a circle is drawn at
x, while if π(x) is a neighbour of x, then an arrow is directed from x to π(x).

becomes weakly space filling, meaning that it will only leave holes of logarithmic size
in the graph. Their results also hold for the self-avoiding loop, i.e. in the case where a
and z are chosen to be the same site. Note that for α > logµ′, the self-avoiding loop will
converge to a point in the scaling limit.

It is therefore a natural question what happens when the self-avoiding loop is em-
bedded into a background of other self-avoiding loops, i.e. in the case of spatial random
permutations. The proof of the existence of weakly space filling cycles would be particu-
larly interesting, as this would imply that the expected length of the cycle is infinite, and
thus a phase transition. Unfortunately, this is not what we can show. Instead, we give a
somewhat negative result: we show that if there is a regime of space filling cycles, it
must start at lower α than for the case of the self-avoiding polygon. More precisely, let µ
be the cyclic connective constant of that graph, which is defined in (2.3), and let G be
a finite sub-graph. We identify in Theorem 2.2 an α0 < logµ so that for all α > α0, and
uniformly in the size of G, the length of a cycle through a given point has exponential
tails. Thus in the interval (α0, logµ) the single self-avoiding loop is weakly space filling
while the self-avoiding loop embedded into an ensemble of other such loops is very short.

For our second result, we restrict to the case where Λn = [0, n]× [−n/2, n/2)d−1 and
impose periodic boundary conditions on all except the first coordinate. We embed into
the spatial random permutation a self-avoiding path starting in 0 and conditioned to
end in a point z on the opposite side of Λ, see Figure 1. In this situation, we (almost)
recover the results of [32], i.e. we show that for sufficiently large α, the self-avoiding
walk starting in 0 collapses to a straight line in the scaling limit, as n → ∞. Unlike in
the case of the single self-avoiding walk, we do not have a good quantitative estimate
on the threshold above which this behaviour holds, and we cannot quite control the
fluctuations well enough to prove the convergence to a Brownian bridge. The reason is
that the background of cycles introduces additional correlations that are very hard to
control. This can be explained well by investigating the strategy of proof for the case of
the self-avoiding walk, and discussing where it fails in our case.

The basic idea in the case of the self-avoiding walk (which we indeed adapt and
extend) is to introduce regeneration points. The walk is forced to connect 0 to the other
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side of the box; let us assume that it is the other side with respect to the first coordinate.
A regeneration point is a point where the ’past’ of the walk is entirely to the left (has
smaller first coordinate) of that point, while the ’future’ is entirely to the right. It is easy
to see that if there are no regeneration points in an area of a given (horizontal) width
w, then the self-avoiding path has to have at least 3w steps taking place in this area.
Since every step that the walk takes introduces an additional factor of e−α to its weight,
and since α is large, it is possible to show that there must be many regeneration points,
more precisely that the probability to not find any regeneration point in a vertical strip
of width K steps decays exponentially in K, and this estimate holds uniformly in the size
of the box Λn. On the other hand, regeneration points provide fresh starts for the walk
(hence the name): when conditioned to start at a regeneration point, the resulting model
is again a self-avoiding walk. The regeneration points themselves thus form random
walk with iid steps, and by the exponential bound discussed above we have excellent
control on the step size of that process. All scaling results now follow from standard
limit theorems for random walks.

This argument breaks down at several places when going to spatial random permu-
tations. First of all, the energy of the system is an extensive quantity for all values of
α, i.e. it grows proportional to the volume. Since the energy of the embedded random
walk only grows proportional to its length, in the case where it collapses to a straight
line its energy will be a subdominant compared to energy provided by the environment.
Therefore, it will be much harder to argue that a broad vertical strip with no regeneration
points is unlikely just because the walk would need to take many steps. Secondly, even
if we do have a regeneration point, just considering the area to the right of it will not
decouple the past from the future. The reason is that with probability one (in the limit
n→∞) a short cycle from the background will cross the vertical hyperplane containing
the regeneration point, and introduce correlations.

We solve both problems by developing a method for estimating the decay of correla-
tions for spatial random permutations. Since we expect this method to be of independent
interest, and since it does not complicate matters much, we develop it for general graphs.
The method is based on a strong version of the spatial Markov property, and on iterative
sampling, and is strong enough to provide uniform mixing estimates in a rather general
context. We then extend the concept of regeneration points and introduce (random)
regeneration surfaces, that serve the same purpose as the (deterministic) hyperplanes
that separate regions in the self-avoiding walk case. While our estimates are strong
enough to give us the correct scaling limit, they are (just) not strong enough to get
down to diffusive scaling. The main reason is that we can only show that consecutive
regeneration points (and surfaces) have a distance of order log n with high probability,
not a finite one as in the case of the self-avoiding walk.

If compared to cluster expansion ([23, 28, 29]), which is an alternative method for
obtaining uniform mixing estimates in the perturbative regime, our iterative sampling
technique has the advantage of being very simple, purely-probabilistic and non-entirely
perturbative (more precisely, without the additional assumption (2.9) below, our uniform
mixing estimate, Theorem 2.3, would just be a consequence of “exponentially small
loops” and would thus be fully nonperturbative!). Nonperturbative results have been
obtained for several models, for example for the Ising model [10], Bernoulli Percolation
[11], self-avoiding walks [12, 30], and random cluster model [9], and in all these models
they rely on the use of correlation inequalities of some kind. No correlation inequalities
are known in spatial random permutations, and indeed we expect that finding such
inequalities would have a significant impact on the subject area.

The significance of the model of spatial random permutations with a forced cycle
goes far beyond the situation that we describe here. In [41] it is shown that (in a suitable
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variant of spatial random permutations) the ratio of the partition functions of a system
with a forced cycle and one without can be used to detect Bose-Einstein condensation: if
this ratio stays positive uniformly in the volume and the spatial separation of the two
endpoints of the forced cycle, this is equivalent to the presence of off-diagonal long range
order [36], which itself is equivalent to Bose-Einstein condensation. Some progress
has been made in understanding related models, e.g. the Heisenberg model and its
connection to ensembles of mutually self- avoiding walks [40], or the random stirring
models introduced by Harris [27] and further analysed in [1, 37, 31]. The big question
about the existence of long loops, however, remains open.

On the probability side, our model is closely related to the connection is to the loop
O(n) model, which has been introduced in [18]. In this model a loop configuration ω is an
undirected spanning subgraph of a graph G such that every vertex of this subgraph has
degree zero or two. The weight of a loop configuration is proportional to e−αo(ω) nL(ω),
where o(ω) is the number of edges in ω, L(ω) is the number of loops and n is a positive
real. The case n = 0 corresponds formally to self-avoiding walk if one forces a path in
the system in addition to the loops. If viewed as an ensemble of cycles, spatial random
permutations are intimately related to the loop O(n) model with n = 2, since each cycle
of the permutation admits two possible orientations. The two models would be equivalent
if in spatial random permutations cycles of length two were forbidden. On the hexagonal
lattice, the loop O(n) model has been conjectured to undergo a Kosterlitz-Thouless phase

transition at the critical threshold log
(√

2 +
√

2− n
)

when n ≤ 2 [33]. This is compatible
with our general finding that on every vertex-transitive graph the critical threshold of
spatial random permutations, which corresponds more or less to the n = 2 case, is
strictly less than the critical threshold for the self-avoiding walk, corresponding to the
n = 0 case. Furthermore, it has been conjectured that only short cycles are observed at
all values of α when n > 2. This has been rigorously proved only for n large enough in
the article of Duminil-Copin, Peled, Samotij, and Spinka in [17], who also provide details
on the structure of the typical configurations and provide evidence for the occurrence of
a phase transition. Exploring the properties of the model at low values of n is of great
interest and recently some progress has been made [16, 22, 39]. Most of the proofs that
we present in this paper, can be reproduced for the loop O(n) model for all values of n
and α large enough, without the restriction of considering the hexagonal lattice (see
Remark 3.2 below for further comments on this).

Our paper is organized as follows. We give precise definitions and state our results in
Section 2. In Section 3 we prove our result on non-existence of long cycles, and provide
various estimates on the partition functions over different domains which we will need
later. In Section 4 we discuss the spatial Markov property and iterative sampling, and
derive our results about exponential decay of correlations. In Section 5, we give the
proof of our main result, Theorem 2.4, using the results of the previous sections.

2 Definitions and main results

We consider a finite simple graph G = (V,E). A permutation on G is a bijective map
π : V → V so that for all x ∈ V , either π(x) = x or {x, π(x)} ∈ E. We write SV for the set
of all permutations on G, omitting the dependence on the edge set in the notation. Also,
when U ⊂ V , we write SU for the set of permutations on the subgraph (U,EU ) generated
by U , i.e. where EU := {(x, y) ∈ E : x ∈ U, y ∈ U}).

For a given π ∈ SV , we define its energy by

HV (π) =
∑
x∈V

1{π(x) 6= x}, (2.1)

where the indicator above is 1 if π(x) 6= x and 0 if π(x) = x. The probability of π ∈ SV is
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defined as,

PV (π) =
exp

(
− αHV (π)

)
Z(V )

. (2.2)

Above, α ∈ R controls the preference of random permutations to have fixed points, and
Z(V ) is called partition function.

Remark 2.1. The expression (2.1) is less general than it could be. By replacing the
indicator function in that formula with edge weights d : E → E, {x, y} 7→ d(x, y), we can
generalize the definition of random permutations on graphs sufficiently so that classical
cases including the quadratic jump penalization (see e.g. [2, 5]) are covered. While some
of our results below (most notably the iterative sampling procedure) can be adapted
to hold for this general situation, our main results compare the behavior of random
permutations to the behavior of self-avoiding paths. Therefore, we prefer to stick with
the narrower definition (2.1).

The most interesting objects in spatial random permutations are their cycles. For
π ∈ SV and z ∈ V , the cycle of π containing z is the directed graph on

{ πi(z) ∈ V : i ∈ N }

with edge set
{ (πi(z), πi+1(z)) ∈ E : i ∈ N }.

We will denote it by γz(π). We will regularly abuse the notation and use the symbol
γz(π) also to denote the vertex set of the cycle, viewed as a subset of V . We denote
the total number of edges of γz(π) by ‖γz‖ and we refer to it as length of γz. In the
special case where π(z) = z, γz(π) has vertex set {z} and empty edge set, therefore
length 0. It is known [5] that there exists some α0 > 0 so that for all α > α0, long
cycles are exponentially unlikely. The first result of the present paper is to sharpen this
statement by providing some information about the value of α0. To state it, let us recall
the definitions of connective constant and cyclic connective constant.

A self-avoiding path in a graph G is a finite directed subgraph (U,E′) of G such that
there is an enumeration (x1, x2, . . . xn) of U with the property that

E′ = {(xi, xi+1) : 1 ≤ i ≤ n− 1}.

A cycle in G is a finite directed subgraph (U,E′) of G such that there is an enumeration
(x1, x2, . . . xn) of U with the property that

E′ = {(xi, xi+1) : 1 ≤ i ≤ n− 1} ∪ { (xn, x1) }.

Note that by considering the graph (U,E′) as directed, we give γ an orientation. For an
infinite, vertex transitive graph (Zd with the nearest neighbor edge structure being the
most important example), we single out a vertex 0 ∈ V and call it the origin. We write
SAWn (respectively SAPn) for the set of all self-avoiding paths (respectively cycles)
starting from 0, with n edges. Thus, we have that SAW0 = SAP0 = {0}. Then the limits

µG = lim sup
n→∞

n
√
|SAPn|, (2.3)

and
µ′G = lim

n→∞
n
√
|SAWn| (2.4)

exist. For (2.4) this follows from a sub-additivity argument [25], while for (2.3) it follows
from the fact that |SAPn| ≤ |SAWn|. The latter also immediately shows µG ≤ µ′G for all
vertex-transitive graphs G. Hammersley [26] proved the remarkable fact that

µ′Zd = µZd .

We are now ready to state our first main result.
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Theorem 2.2. Let G be any infinite vertex-transitive graph of bounded degree. Let α0

be the unique solution of the equation

α+ 1
2 log(1 + exp(−2α)) = logµG. (2.5)

Then for all α > α0 there exist constants C0(α), c0(α) > 0 such that for any finite
subgraph of G generated by U ⊂ V , for all z ∈ U , and for all ` ∈ N,

PU (‖γz‖ > `) ≤ C0(α) exp
(
− c0(α) `

)
. (2.6)

Moreover, we can choose C0(α) and c0(α) so that limα→∞ c0(α)/α = 1 and
lim supα→∞ C0(α) <∞.

It is interesting to compare the above result with the findings of Duminil-Copin,
Kozma and Yadin [15], who study self-avoiding walks on Zd with an energy proportional
to their length. To connect to the present paper, it is best to view them as random
permutations conditional on not having any cycles except the one through the origin.
In [15] it is shown that when α < logµ′

Zd
, the resulting self-avoiding cycle is weakly

space filling, in particular its expected length is infinite. Theorem 2.2 shows that without
the conditioning on having just one cycle, the situation is drastically different: since
µ′
Zd

= µZd and since the solution α0 of (2.5) is strictly smaller than logµZd , in the interval
(α0, logµZd) the lonely self-avoiding cycle has infinite expected length (as the relevant
subgraph becomes large), while the length of the cycle through the origin in ordinary
spatial random permutations has exponential tails.

Our second main result states that correlations decay exponentially fast or, more
precisely, that the effect of removing a finite set of sites from the graph vanishes
exponentially fast with the graph distance from that set. Let ξ be a random variable
on the positive integers. We say that our random permutation model has cycle length
bounded by ξ in a finite or infinite graph (V,E) if, uniformly in all finite sub-volumes
U ⊂ V and all points x ∈ U , the length of the cycle γx containing x is stochastically
dominated by ξ. In other words, for all ` ≥ 1 we assume that

sup
U⊂V
|U |<∞

sup
x∈U

PU ( |γx| ≥ `) ≤ P (ξ ≥ `). (2.7)

Moreover, let B ⊂ V be a finite set. We define the sigma algebra

FB = σ
(
{π : π(x) = y, π−1(x) = z} : x ∈ B, y, z ∈ V

)
. (2.8)

Put differently, the value f(π) of an FB-measurable function is determined by the set of
values π(x) and π−1(x), x ∈ B. For a set U ⊂ V , let EU be the expectation with respect
to the measure PU .

Theorem 2.3. Let G = (V,E) be a finite graph, consider two subsets B ⊂ U ⊂ V .
Assume that a random permutation on (V,E) has cycle length bounded by a random
variable ξ which admits exponential moments and such that its expectation satisfies

E(ξ) < 2. (2.9)

There exist two positive constants C, κ <∞, which depend only on ξ, such that, for any
FB-measurable function f , we have

|EV (f)− EU (f)| ≤ 2C‖f‖∞
∑

x∈V \U

e−κd(x,B) . (2.10)

Above, d is the graph distance on G.

EJP 24 (2019), paper 74.
Page 7/37

http://www.imstat.org/ejp/

https://doi.org/10.1214/19-EJP328
http://www.imstat.org/ejp/


Scaling limit of ballistic self-avoiding walk interacting with spatial random permutations

For our third main result, we restrict our attention to cylindrical subgraphs of Zd.
For n ∈ N, let

Λn := [0, n]× (−n/2, n/2]d−1 ∩Zd.

Elements of Λn will be written in the form x = (x̄, x̂) with x̄ ∈ Z and x̂ ∈ Zd−1. We impose
cylindrical boundary conditions on [−n/2, n/2) ∩Zd−1 (but not on [0, n] ∩Z), and edges
are then between nearest neighbours in Λn. We will denote the resulting graph with the
same symbol Λn if no confusion can arise. For a subset A ⊂ Λn, we will also write A for
the subgraph of Λn induced by A, i.e, the graph that retains all of the edges where both
endpoints lie in A. For a, z ∈ A, we define Sa→zA as the set of maps π : A→ A with the
properties

(i): π is a bijection from A \ {z} to A \ {a}.

(ii): π(z) = z

(iii): |π(x)− x| ≤ 1 for all x ∈ A.

It is easy to see that Sa→zA = ∅ if the vertex a is disconnected from z in the graph
A, and that z = limn→∞ πn(a) otherwise. For given π ∈ Sa→zA , we will always write
γ(π) = Orbπ({a}). We have π(A) = A \ {a}, and γ(π) is the trace of a self-avoiding walk
starting at a and ending at z that is embedded in π. Thus the probability measure Pa→zA

defined through

Pa→zA ({π}) =
1

Za→z(A)
exp

(
−α

∑
x∈A
|π(x)− x|

)
, (π ∈ Sa→zA ), (2.11)

describes a step-weighted self-avoiding walk interacting with a background of spatial
random permutations. We also define

`j := {x ∈ Λn : x̄ = j}, and Sa→`nA :=
⋃
z∈`n

Sa→zA∪{z}.

The probability measure on Sa→`nA will be (2.11), except that the normalisation is now
given by Za→`n(A) =

∑
z:z̄=n Z

a→z(A). We can now state the main result of this paper.

Theorem 2.4. There exists α0 > 0, D <∞ and N ∈ N so that for all M > 0,

sup
n≥N,α>α0

P0→`n
Λn

(
max{|ŷ| : y ∈ γ} > M

√
n log n

)
< D/M.

Thus for large α, the self-avoiding walk embedded into π converges to a straight
horizontal line, and the vertical aberration can be proved to be just a bit larger than√
n. Indeed, we expect that the true vertical aberration is exactly of the order

√
n and

that γ converges to a Brownian motion under diffusive scaling. This is known in the
case of a self-avoiding walk in the infinite space without a background of spatial random
permutations [32]. In our situation, the strong correlations prevent us from getting a
presumably sharp upper bound on the fluctuations, and indeed also prevent a useful
lower bound. We will comment on the places where we lose the necessary accuracy for
diffusive behaviour at the end of the proof of Theorem 2.4.

3 Cycle length and partition function

In this section we prove Theorem 2.2 and provide further estimates comparing
partition functions for different subsets of V . Our Theorem 2.2 treats only the case of
vertex transitive graphs since we want quantitative estimates involving the connective
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constant; but it is not difficult to modify our proof so that one can treat general graphs,
including those with edge weights. In the latter case, some modifications will be
necessary, as the graph distance is no longer a good quantity to measure the distance
between sets. We do not pursue this any further in the present paper.

Recall that for a self-avoiding path or cycle γ, ‖γ‖ denotes the number of its edges
and that |γ| denotes the number of its vertices. Our first comparison is

Proposition 3.1. For any finite simple graph G = (V,E), for any self-avoiding path or
cycle γ ⊂ G, we have that

Z(V \ γ)

Z(V )
≤
(

1

1 + e−2α

) ‖γ‖
2

. (3.1)

Proof. Let γ ⊂ V be a self-avoiding path or a cycle. Let us denote by {x0, x1, . . . , x|γ|−1}
the sequence of sites of γ, ordered such that (xi, xi+1) is an edge of γ. We let M be the
largest even number such that M ≤ |γ|. We claim that

Z(γ) ≥ (1 + e−2α)
M
2 , (3.2)

where we recall our abuse of notation: γ denotes the sites occupied by the cycle γ,
and Z(γ) is the partition function of the subgraph generated by those sites. To see
(3.2), we partition γ into pairs (x0, x1), (x2, x3), . . ., (xM−2, xM−1). Let γ̂ be the graph
obtained from γ by keeping only edges connecting vertices of the pair (xi, xi+1), for
even i ∈ [0,M − 1], and removing all the other edges. Clearly, Z(γ) ≥ Z(γ̂), since γ̂ is
a subgraph of γ. Since the graph γ̂ is composed of M

2 disjoint subgraphs containing
two vertices connected by an edge each and since the contribution of each of these
subgraphs is (1 + e−2α), (3.2) follows.

Now note that, by Proposition 4.1 (i),

Z(V ) ≥ Z(A)Z(V \A). (3.3)

Note also that if γ is a cycle, then |γ| = ‖γ‖ is even and we can set M = ‖γ‖, while if γ is
a self-avoiding path, then M ≥ |γ| − 1 = ‖γ‖. Thus, we have that if γ is a self-avoiding
path or a cycle, then

Z(V \ γ)

Z(V )
≤ 1

Z(γ)
≤
(

1

1 + e−2α

) ‖γ‖
2

.

The estimate of Proposition 3.1 is logarithmically sharp if the cycle γ is “stretched
out” in the sense that the subgraph generated by the sites of γ contains no further edges
beyond those of γ. If γ is “curly”, meaning that many points in the relevant subgraph
are connected by more than two edges, one could use these edges in order to get better
lower bounds on Z(A) and thus better upper bounds on the ratio Z(V \ γ)/Z(V ). The
associated combinatorics do not look easy even in the case of V ⊂ Z2, though.

We are now ready to prove our first main theorem.

Proof of Theorem 2.2. Let G be an infinite vertex-transitive simple graph of bounded
degree, let U be a finite subset of V . For π ∈ SU , x ∈ U , and a cycle γ̃ ⊂ U , we have

PU (γx = γ̃) = e−α‖γ̃‖
Z(U \ γ̃)

Z(U)
, (3.4)

Let µG be the cyclic connective constant of G. The definition of cyclic connective constant
(2.3) implies that for every δ > 0 there exists Cδ > 0 such that for any n ∈ N,

|SAPn| ≤ Cδ (µG + δ)n.
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Scaling limit of ballistic self-avoiding walk interacting with spatial random permutations

By vertex transitivity, the same bound holds for SAPn(x), the set of self-avoiding cycles
of length n starting in x. By Proposition 3.1, we then have that for all ` ∈ N+,

PU (‖γx‖ ≥ `) =

∞∑
n=`

∑
γ̃∈SAPn(x)∩U

exp
(
− αn

)Z(U \ γ̃)

Z(U)
(3.5)

≤ Cδ

∞∑
n=`

exp

(
− n

(
α+

1

2
log
(

1 + e−2α
)
− log

(
µG + δ

) ))
(3.6)

Recall that α0 is defined as the unique solution of (2.5) and that therefore it satisfies
0 < α0 < log(µG). For each α > α0, we can find δ(α,G) > 0 small enough such that

c0(α) := α+
1

2
log
(
1 + e−2α

)
− log

(
µG + δ(α,G)

)
> 0. (3.7)

Thus

PU (‖γx‖ ≥ `) ≤
Cδ(α,G)

1− e−c0(α)
e−` c0(α) .

It is not difficult to see that for all large enough α, we can choose δ(α,G) = 1, and that
then limα→∞ c0(α)/α = 1. This concludes the proof of the theorem.

Remark 3.2. Proposition 3.1 is the only point of this paper where the existence of
cycles of length 2 is necessary. For the loop O(2) model [17], corresponding to random
permutations without cycles of length 2, the exponential bound (2.6) of Theorem 2.2
would still hold true, but only for α > logµ. Exponential decay of cycle length for the
loop O(n) model has been proved in the paper [17] for any value of α when n is large.

The next proposition uses similar ideas as in the previous proof in order to give a
complementary bound to the one of Proposition 3.1.

Proposition 3.3. Let G be an infinite vertex-transitive simple graph, let α0 be the unique
solution of equation (2.5). For any α > α0 there exists c1(α) > 0 such that for any finite
U ⊂ V , and for all A ⊂ U ,

Z(U \A)

Z(U)
≥ c1(α)|A|. (3.8)

Moreover c1(α) can be chosen such that lim
α→∞

c1(α) = 1.

Proof. Fix x ∈ U . Using the notation as in the proof of Proposition 3.1, we get

Z(U) =

∞∑
n=0

∑
γ̃∈SAPn(x):

γ̃⊂U

∑
π∈SU :
γx(π)=γ̃

e−αHU (π) = Z(U \ {x})
∞∑
n=0

∑
γ̃∈SAPn(x):

γ̃⊂U

e−α‖γ̃‖
Z(U \ γ̃)

Z(U \ {x})

With γ̃ ∈ SAPn(x) such that γ̃ ⊂ U for n ≥ 2, we apply Proposition 3.1 to the self-avoiding
path γ̃ \ {x} (of length n− 2), and the graph U \ {x}, giving

Z(U \ γ̃)

Z(U \ {x})
≤ (1 + e−2α )−(n−2)/2 for all γ̃ ∈ SAPn(x), n ≥ 2.

Thus,
Z(U)

Z(U \ {x})
≤ 1 + (1 + e−2α )

∞∑
n=2

|SAPn| e−nα (1 + e−2α )−n/2

≤ 1 +
(1 + e−2α )Cδ(α,G)

1− e−c0(α)
e−2c0(α) .
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Above, the constants are the same as in Theorem 2.2. By our knowledge of Cδ(α,G) and
c0(α), clearly the right hand side of the above equation converges to one as α → ∞.
Thus we have shown the claim for A = {x}, with

c1(α) =
(

1 +
(1 + e−2α )Cδ(α,G)

1− e−c0(α)
e−2c0(α)

)−1

. (3.9)

For general A, the claim follows from the telescopic product

Z (U \A)

Z(U)
=

Z(U \A)

Z
(
U \ (A \ {x1})

) Z(
(
U \ (A \ {x1})

)
Z
(
U \ (A \ {x1, x2})

) . . . Z(U \ {x|A|})
Z(U)

≥ c1(α)|A|.

4 Iterative sampling and the spatial Markov property

Spatial random permutations have a fundamental spatial Markov property, which we
will first discuss in a relatively simple form. Then we introduce a sort of strong Markov
property, we present iterative sampling, which is a basic new technique that enables
many of our proofs, and finally we prove Theorem 2.3, which is stated in an equivalent
form as Theorem 2.3.

Let G = (V,E) be a finite graph. Recall the definition of sigma algebra (2.8). For
π ∈ SV , we let

Inv(π) := {A ⊂ V : π(A) = A}

be the family of π-invariant sets. The Markov property, statement (iii) in the theorem
below, says that conditional on A ∈ Inv, an FA measurable random variable and an
FAc -measurable random variable are independent. In order to state it correctly, let us
recall that PA denotes the probability measure (2.2) on the subgraph generated by A,
and write EA for the corresponding expectation. For π ∈ SA we write π ⊕ id for the
permutation in SV that is obtained by setting π(x) = x for all x /∈ A.

Proposition 4.1 (Spatial Markov property). Let A ⊂ V , A 6= ∅. Then,

(i): PV (A ∈ Inv) = Z(A)Z(Ac)/Z(V ).

(ii): For FA-measurable f , we have EV (f |A ∈ Inv) = EA(f(.⊕ id)).

(iii): For FA-measurable f and FAc -measurable g, we have

EV (f g|A ∈ Inv) = EV (f |A ∈ Inv)EV (g|A ∈ Inv) = EA(f(.⊕ id))EAc(g(.⊕ id)).

(iv): For FA-measurable f and B ∈ FAc , we have

EV (f |A ∈ Inv,B) = EA(f). (4.1)

Proof. By the additivity of HV , we have for FA-measurable f and FAc -measurable g that∑
π∈SV :π(A)=A

f(π)g(π) e−αHV (π) =
∑
π∈SA

f(π ⊕ id) e−αHA(π)
∑
π̃∈SAc

g(π̃ ⊕ id) e−αHAc (π̃) .

(4.2)
Inserting f = 1 and g = 1 into (4.2) and dividing by Z(V ) gives (i). Setting g = 1 in (4.2)
and dividing by Z(V ) and using (i) gives EV (f1{A ∈ Inv}) = EA(f)P(A ∈ Inv), and thus
(ii). For (iii), note that dividing (4.2) by Z(A)Z(Ac) gives EV (f g|A ∈ Inv) on the left hand
side by using (i), while on the right hand side it gives EA(f(.⊕ id))EAc(g(.⊕ id)). The
remaining equality follows from (ii). For (iv), it suffices to use the equality EV (f |A ∈
Inv,B) = EV (f1{B}|A ∈ Inv)/PV (B|A ∈ Inv), the fact that A ∈ Inv is equivalent to
Ac ∈ Inv, and (iii).
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Scaling limit of ballistic self-avoiding walk interacting with spatial random permutations

Following ideas from the theory of Markov chains, we can also formulate a strong
Markov property for random permutations. A set-valued random variable Q : SV → P(V )

will be called an admissible random invariant set if Q(π) ∈ Inv(π) for all π ∈ SV , and
if the event {Q = A} is FA-measurable for all A ⊂ V . Moreover, we define the sigma
algebra

FQ = {R ∈ P(SV ) : R ∩ {Q = A} ∈ FA for all A ⊂ V }.

We then have

Proposition 4.2 (Strong Markov property). Let Q be an admissible random invariant set.
For B ⊂ V and FB-measurable f : SV → R we have

EV (f |FQ)1{Q∩B = ∅} = EV (f 1{Q∩B = ∅}|FQ) = EQc
(
f(.⊕ id)

)
1{Q∩B = ∅}. (4.3)

Proof. Since Q is admissible, it is FQ-measurable, and so the right hand side above is
also FQ-measurable. Moreover, for a FQ-measurable random variable g, we have

EV

(
EQc(f(.⊕ id)

)
1{Q ∩B = ∅}g

)
=

∑
A:A∩B=∅

EV

(
EAc(f(.⊕ id))1{Q = A}g

)
=

∑
A:A∩B=∅

EAc
(
f(.⊕ id)

)
EV

(
1{Q = A}g

∣∣∣A ∈ Inv
)
P(A ∈ Inv)

=
∑

A:A∩B=∅

EAc
(
f(.⊕ id)

)
EA

(
1{Q = A}g(.⊕ id)

)
P(A ∈ Inv)

=
∑

A:A∩B=∅

EV

(
fg1{Q = A}

)
= EV

(
fg1{Q ∩B = ∅}

)
.

Above, in the first equality we sum over the realizations of Q, which are denoted by
A, the second equality is true since Q = A implies A ∈ Inv and the third equality
holds by Proposition 4.1 (ii) and the fact that 1{Q = A}g is FA-measurable for each
FQ-measurable g. The fourth equality is due to Proposition 4.1 (iii), which is applicable
since f is FB-measurable and thus in particular FAc -measurable as A ∩B = ∅. Since the
previous identities hold for any FQ-measurable random variable g, we obtain the second
identity in (4.3). Since the indicator 1{Q ∩B = ∅} is FQ-measurable, the first identity in
(4.3) holds. The claim is thus shown.

We demonstrate the usefulness of the strong Markov property by applying it to the
question of decay of dependence on the boundary conditions of spatial permutations. Let
G = (V,E) be a (large) graph, think of V = Zd ∩ [−N,N ]d with the nearest neighbour
edge structure. Let B ⊂ U ⊂ V , where we think of U as being large and differing from V

only “near the boundary”, and of B as being “near the center” of V . We are interested in
the difference between EV (f) and EU (f) in cases where the graph distance between U c

and B becomes large and f is FB-measurable. In other words, we are interested in how
much the precise shape of the graph at the boundary influences the expectation of local
random variables. This is a classical question in any theory related to Gibbs measures.
Our answer to this question is the crude, but useful estimate that is provided in the next
proposition.

Let G̃ be the disjoint union of two copies of G. Let Ṽ = V1∪V2 be its vertex set, where
V1 and V2 are disjoint copies of V . Let φ : Ṽ → Ṽ be the natural symmetry on Ṽ , i.e. the
map such that each x ∈ V1 is mapped to the vertex in V2 that corresponds to x when
V1 and V2 are identified with V . For π̃ ∈ SṼ , let QA(π̃) be the minimal π̃-invariant set
that contains A and is compatible with φ. The latter means that φ(QA) = QA. Since the
intersection of two π̃-invariant, φ-compatible sets containing A retains these properties,
and since Ṽ has them, it is clear that such a minimal set exists.
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Proposition 4.3. Under the assumptions made above,

|EU (f)− EV (f)| ≤ 2‖f‖∞PṼ
(
QA ∩B 6= ∅

∣∣ π̃|A = id
)
. (4.4)

Proof. As before, the superscript ˜ will refer to objects that are defined in G̃, the disjoint
union of two copies of G. Any graph permutation π̃ on Ṽ can be written as π1 ⊕ π2

with πi a permutation on Vi. For a FB-measurable random variable f on SV , we define
f1(π̃) = f(π1) and f2(π̃) = f(π2). We also define A = V1 \ U1, where U1 is U regarded as
a subset of V1. In particular, A ∩ V2 = ∅. Then

EU (f) = EṼ (f1 | {π̃|A = id}), (4.5)

and
EV (f) = EṼ (f2) = EṼ (f2 | {π̃|A = id}).

From the definition QA(π̃) we have that QA(π̃) = D if and only if
(i): D ⊃ A, D is π̃-invariant and φ-compatible;
(ii): Every strict subset of D fails to have at least one of the three properties.
So {QA = D} is FD-measurable, and therefore QA is an admissible random invariant set.
Now (4.5) gives,

EṼ (1{π̃|A = id})EU (f) = EṼ (f11{π̃|A = id}) =

EṼ
(
f11{π̃|A = id}1{QA ∩B = ∅}

)
+ EṼ

(
f11{π̃|A = id}1{QA ∩B 6= ∅}

)
, (4.6)

where B is regarded as a subset of V1. The first term of the right hand side is equal to

|EṼ
(
EṼ (f11{π̃|A = id}1{QA ∩B = ∅}

∣∣∣FQA)
)

= EṼ

(
EQc

(
f1(.⊕ id)

)
1{π̃|A = id}1{QA ∩B = ∅}

)
, (4.7)

since 1{π̃|A = id} and 1{QA ∩ B = ∅} are both FQA -measurable, and thus Proposition
4.2 applies. But by the symmetry of QA, we have EQA(f1) = EQA(f2). Thus we can do
the same calculation with f2 instead of f1, and subtract the results. If in addition we
divide by EṼ (1{π̃|A = id}) we arrive at

EU (f)− EV (f) = EṼ

(
(f1 − f2)1{QA ∩B 6= ∅}

∣∣∣{π̃|A = id}
)
, (4.8)

which implies (4.4) and concludes the proof of the proposition.

When we want to compare two different subsets U1 and U2 of V , we could slightly
adapt the definition of A above to get a similar estimate. In most cases, simply using the
triangle inequality on (4.4) is enough.

In order to estimate the right-hand side of (4.4), we now need a tool to show the
existence of invariant subsets with certain prescribed symmetries, and containing certain
prescribed subsets of V . This tool is iterative sampling. Iterative sampling is a procedure
to build a PV -distributed random variable step by step, reminiscent of the way that
the full path of a Markov chain can be sampled step by step. In words, what we do
is the following: we first sample a random permutation from PV , but keep only the
cycles intersecting a (possibly random) set K1. The only restriction is that K1 may
not depend on the permutation we just sampled, it has to be chosen independently.
We end up with a set D1 where we have kept the cycles, and a set B1 where we have
discarded them, where D1 and B1 are disjoint and their union is V . We then resample
the permutation, independently, inside the subgraph generated by B1. Again, we only
keep the cycles intersecting some set K2 that may depend on what has happened before
and some external randomness, but not on the permutation inside B1. We carry on until
we exhaust V . Formally, the definition is as follows.
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Definition 4.4. A sampling strategy for spatial random permutations on a finite graph
G = (V,E) consists of two families of random variables (σA)A⊂V and (KA)A⊂V such that

(i): for all A, σA is a PA-distributed random variable, in particular has values in SA.
(σA)A⊂V is a family of independent random variables.

(ii): KA takes values in the power set P(A) for all A, and P(KA = ∅) = 0 when A 6= ∅.

(iii): For each A ⊆ V , the random variable KA is independent of the family (σB)B⊆A.

Note in particular that we require that KA is independent of σA. Given a sampling
strategy, we define a recursive sampling procedure as follows: We set B1 = V , and for
i ≥ 1 we set

πi = σBi , Di = Orπi(KBi), Bi+1 = Bi \Di. (4.9)

Above Orπ(A) = {πj(x) : x ∈ A, j ∈ N} denotes the orbit of A under π. This way we end
up with a sequence (Bi, Di, πi) where Di ∈ Inv(πi), and where the Di form a partition of
V . It follows that the map

π : V → V, π(x) = πi(x) whenever x ∈ Di (4.10)

is a random element of SV .

Lemma 4.5. For any sampling strategy, the distribution of π is PV .

Proof. We prove the lemma by induction on the number of sets Ki. Let us call (KA)A⊆V
an n-step sampling strategy if KA(ω) = A for all ω in the underlying probability space
such that A = Bn+1(ω). Since the event {A = Bn+1} is independent of (σÃ)Ã⊆A, any
sampling strategy can be turned into an n-step sampling strategy, and the union over
the n-step sampling strategies for all n gives all sampling strategies.

For a one-step sampling strategy, we have that KA = A for all A 6= V . Putting
DA(π̄) = Orπ̄(A), we compute

P(π = π̄) =
∑
A⊂V

P(π = π̄,KV = A)

=
∑
A⊂V

P(σV = π̄|DA(π̄), σV \DA(π̄) = π̄|V \DA(π̄),KV = A). (4.11)

For fixed A, all three events in the probability above are independent and moreover

P(σV = π̄|DA(π̄)) =
1

Z(V )
e−αHDA(π̄)(π̄) Z

(
V \DA(π̄)

)
and

P(σV \DA(π̄) = π̄|V \DA(π̄)) =
1

Z
(
V \DA(π̄)

) e−αHV \DA(π̄)(π̄) .

Since HDA(π̄)(π̄) +HV \DA(π̄)(π̄) = HV (π̄), the product of the two terms above does not
depend on A and is equal to PV (π̄), and summing (4.11) over A gives the result in the
case of one-step sampling strategies.

Now assume that the claim holds for all n-step sampling strategies up to some n ∈ N.
Let (σA,KA)A⊂V be an n+ 1-step sampling strategy. For fixed π̄ ∈ SV and K̄ ⊂ V with
P(KV = K̄, σV = π̄) > 0 we define the conditional measure

Pπ̄,K̄ = P(.|KV = K̄, σV = π̄).

We write D̄ = Orπ̄(K̄) and B̄ = V \ D̄, and claim that under the measure Pπ̄,K̄ , the
families (σA)A⊂B̄ and (KA)A⊂B̄ form a sampling strategy for random permutations on
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the graph generated by B̄. To check this claim, note that the event {KV = K̄, σV = π̄} is
independent of the family (σA)A⊂B̄, and thus for all choices of πA ∈ SA,

Pπ̄,K̄(σA = πA ∀A ⊂ B̄) = P(σA = πA ∀A ⊂ B̄). (4.12)

This shows independence of the family (σA)A⊂B̄. Furthermore, for A ⊂ B̄, κ ⊂ A, and
A1, . . . Am ⊆ A, we have

Pπ̄,K̄(KA = κ, σAi = πAi ∀i)

=
P(KA = κ,KV = K̄, σV = π̄, σAi = πi ∀i)

P(KV = K̄, σV = π̄)

= Pπ̄,K̄(KA = κ)

m∏
i=1

P(σAi = πi). (4.13)

Thus using (4.12) from right to left, we see that KA is independent of the family (σÃ)Ã⊂A
under Pπ̄,K̄ , and thus we have indeed a sampling strategy, which in addition clearly is an
m− 1-step sampling strategy. Now,

P(π = π̄) =
∑
K̄⊂V

∑
σ̄∈SV :σ̄|D̄=π̄|D̄

P(π|B̄ = π̄|B̄ ,KV = K̄, σV = σ̄) =

=
∑
K̄⊂V

∑
σ̄∈SV :σ̄|D̄=π̄|D̄

Pπ̄,K̄(π = π̄|B̄)P(KV = K̄, σV = σ̄)

=
∑
K̄⊂V

∑
σ̄∈SV :σ̄|D̄=π̄|D̄

PB̄(π̄)P(KV = K̄) e−αHV (σ̄) 1

Z(V )
.

In the last line we used the induction hypothesis, and the independence of KV and σV .
For fixed K̄, the sum over σ̄ can now be carried out, and the resulting term is

PB̄(π̄)P(KV = K̄) e−αHD̄(π̄) Z(B̄)

Z(V )
= P(KV = K̄)PV (π̄).

The result now follows by summing over K̄.

Let us now come back to the task of constructing invariant sets with prescribed
symmetries. We will be slightly more general than in the discussion leading up to (4.4),
as this generality will be needed further on. Let G = (V,E) be a finite graph. A symmetry
of G is a bijective map φ on V such that for all x, y ∈ V , {φ(x), φ(y)} ∈ E if and only if
(x, y) ∈ E. For a group Φ of symmetries on G and an element π ∈ SV , we say that U ⊂ V
is a Φ-compatible π-invariant set if U is invariant under π as well as under all φ ∈ Φ. We
will use a sampling strategy which is defined as follows. The random variables (σB)B⊂V
are independent and PB-distributed. Moreover, for any given subset A, the maps KB

are defined as follows,

KV = Φ(A), and for B 6= V : KB = B∩Φ(Bc) if B∩Φ(Bc) 6= ∅, and KB = B otherwise,
(4.14)

where Φ(A) :=
⋃
φ∈Φ φ(A) is the symmetrization of A. For any configuration ω we put,

N(ω) = inf{n ∈ N : KBn(ω)(ω) = Bn(ω)}, and Â(ω) = BcN(ω)(ω). (4.15)

Then Â(ω) is a π(ω)-invariant subset, compatible with Φ, and containing A. Recall that,
from Lemma 4.5, π is distributed like PV . We say that U separates A ⊂ V from B ⊂ V
if A ⊂ U and B ∩ U = ∅. Thus, if in addition Â(ω) ∩ B = ∅ for some subset B, we have
found a Φ compatible, π(ω)-invariant subset separating A from B.
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Bjc

Kj

Figure 2: When the group of symmetries Φ contains the identity and the reflection with
respect to the dotted vertical line and Bcj corresponds to the black set in the figure, then
Kj corresponds to the grey set.

Proposition 4.6. For A,B ⊂ V and Â defined as in (4.15), we have

PV (A π-invariant, Φ-compatible subset separating A from B exists) ≥ P(Â ∩B = ∅).

Proof. We start with the full graph (V,E), A ⊂ V , and choose the symmetrization Φ(A) =⋃
φ∈Φ φ(A) of A as our first set of which we want to keep the cycles. We draw a sample σV ,

and look at the cycles intersecting K1 := Φ(A). If none of the cycles of σV intersecting
K1 leaves K1, this means that K1 is already a Φ-compatible, π-invariant subset of V ,
and we are done. Otherwise, we take D1 = Or(K1), and B2 = V \D1. Bc2 is in general
not a Φ-compatible subset of V : given a point x ∈ D1 \K1 ⊂ Bc2, all of its images under
maps φ ∈ Φ might be elements of B2. Since x is an element of Bc2, this means that Bc2
is not Φ-compatible in this case. We define K̃2 = B2 ∩ Φ(Bc2) (see also Figure 2). K̃2 may
still be empty, e.g. if we are lucky enough so that all cycles leaving K1 jointly cover a Φ-
compatible set. In that case, we are done, and Bc2 is the desired set, as it is Φ-compatible,
π-invariant and contains A. Otherwise, we put K2 = K̃2. By the considerations we have
just made, it follows that the cardinality of K2 is bounded by (|Φ| − 1)|D1 \ K1|. This
estimate will be useful later on. We now sample a random permutation σB2

and keep
all the cycles intersecting K2 and arrive to a set D2. Again, if D2 = K2, then V \ K2

is a Φ-compatible, π-invariant subset of V , and we are done. Otherwise, we repeat
the procedure, i.e. we set B3 = B2 \ D2 and K̃3 = B3 ∩ Φ(Bc3). As before, we have
|K3| ≤ (|Φ| − 1)|D2 \K2|. We continue in this way until we exhaust V (in which case we
have found no non-trivial Φ-compatible subset), or until at some point Dj = Kj , in which
case Bcj+1 =

⋃
i≤j Di is a Φ-compatible, π-invariant set containing A.

The previous proposition will only be useful if we have a way to control the probability
that the random set Â intersects B. At this point, we currently have no better tool than
the following very crude estimate: if we write d for the graph distance on G, then

|Â \ Φ(A)| < d(Φ(A), B) implies Â ∩B = ∅. (4.16)

Inequality (4.16) holds true since by construction, from every x ∈ Â a path in G that is
entirely contained in Â leads to Φ(A). Fortunately, this crude estimate will be sufficient
for our purposes. We therefore now consider bounds on the cardinality of Â.

We now introduce the notion of random permutation with bounded cycle length. Even
if so far in this section we considered only finite graphs, we introduce this notion for
graphs that might be finite or infinite. Recall that a random variable X is stochastically
dominated by another random variable Y if P(X ≥ k) ≤ P(Y ≥ k) for all k. Let ξ be a ran-
dom variable on the positive integers and recall the notion of “cycle length bounded by ξ”,
provided before the statement of Theorem 2.3. We use this notion in the next proposition.

EJP 24 (2019), paper 74.
Page 16/37

http://www.imstat.org/ejp/

https://doi.org/10.1214/19-EJP328
http://www.imstat.org/ejp/


Scaling limit of ballistic self-avoiding walk interacting with spatial random permutations

Proposition 4.7. Let ξ be an integer-valued random variable, and assume that a random
permutation has cycle length bounded by ξ on the finite graph (V,E). Let (ξn)n∈N be a
sequence of independent copies of ξ. Then for each A ⊂ V and each ` ∈ N, we have

PV (|Or(A)| ≥ `) ≤ P(

|A|∑
i=1

ξi ≥ `).

Proof. We consider the following sampling strategy: let |A| = n and let x1, . . . , xn be
the elements of A. We sample the cycles intersecting A one by one, in the order of
the xj . In other words, for B ∩ A 6= ∅ we set jB = min{i ≤ n : xi ∈ B}, x(B) = xjB ,
and KB = {x(B)}. When B ∩ A = ∅, we set KB = B. This way, we get a sampling
procedure with sets (Bi)i∈N. Let Li = |γx(Bi)| be the number of vertices in the i − th
cycle that is sampled. When A is exhausted after τ steps, we set Li = 0 for all i > τ .
Note that τ(ω) ≤ n for any ω, where ω denotes the realization in the probability space of
the sampling procedure. The sequence (Li)i∈N of random variables is definitely not a
Markov chain, and usually Li will not even be measurable with respect to the σ-algebra
generated by all the other Lk. However, it has the property that for given B̄ ⊂ V and
given cycle γ̄,

P(Lk+1 > `|Bk = B̄ and γx(B̄) = γ̄) = PB̄\γ̄(|γx(B̄\γ̄)| > `) ≤ P(ξk+1 > `). (4.17)

Since Lk = |γk|, we conclude that when Fk is the σ-algebra generated by L1, . . . , Lk, then

P(Lk+1 > `|Fk)(ω) ≤ P(ξk+1 > `)

for all ω. We have just checked Assumption 2 of our comparison lemma, Lemma 5.7,
which we give in the Appendix as Lemma 5.7. In the notation of that lemma, (M1

j )j≥1 =

(Lj)j≥1, and (M2
j )j≥0 = (ξj)j≥0. It is easy to see that Assumptions 1 and 3 also hold. The

second statement of Lemma 5.7 then implies that for any k ∈ N,

P(

k∑
j=1

Lj ≥ `) ≤ P(

k∑
j=1

ξj ≥ `).

The statement of our proposition now follows when observing that |Or(A)| =
∑|A|
j=1 Lj .

Proposition 4.8. Consider a sampling strategy with the property that there exists
M ∈ N such that under the recursive sampling procedure (4.9), the inequality

|KBi+1 | ≤M |Di \KBi |

holds almost surely in the case Di \KBi 6= ∅, and KBi+1 = Bi+1 otherwise. Let N be

the random number of steps such that KBN = BN , and let Â = BcN be the set sampled
before N (see also (4.15)). Assume further that the random permutation has cycle
length bounded by an integer-valued random variable ξ on (V,E) and let (Zj)j≥0 be a
Galton-Watson process where the offspring is distributed according to M(ξ − 1), and
with initial population M |KV |. Let W be the (possibly infinite) total population of the
Galton-Watson process. Then for each ` ∈ N, we have

PV (|Â| ≥ `) ≤ P(W ≥ M

M + 1
`).

Proof. By definition, Â(ω) =
⋃N(ω)−1
i=1 Di(ω). Moreover, KBi(ω)(ω) ⊂ Di(ω) for all i, thus

for all n,
n⋃
i=1

Di(ω) =

n⋃
i=1

(
Di(ω) \KBi(ω)(ω)

)
∪

n⋃
i=1

KBi(ω)(ω).
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Whenever KBi(ω)(ω) 6= Bi(ω), we have assumed |KBi+1(ω)(ω)| ≤ M |Di(ω) \ KBi(ω)(ω)|.
Therefore we find that for all ω,

|Â(ω)| ≤ (M + 1)

N(ω)−1∑
i=1

|Di(ω) \KBi(ω)(ω)|.

Write qi(ω) = |Di(ω) \KBi(ω)(ω)| for brevity. Then for given sets B̄ and K̄,

P(qj ≥ `|Bj = B̄,KBj = K̄) = PB̄(Or(K̄)− |K̄| ≥ `) ≤ P(

|K̄|∑
i=1

(ξi − 1) ≥ `),

where in the last step we used Proposition 4.7. Let Fj be the sigma-algebra generated
by the (qk)k≤j . Since |KBj(ω)(ω)| ≤M qj−1(ω) for any ω, then we conclude that for any
`,m ∈ N, for any integer j ≥ 1, and for any ω such that qj−1(ω) = m,

P(qj ≥ `|Fj−1)(ω) ≤ P
( Mm∑
i=1

(ξi − 1) ≥ `
)

= P
( Mm∑
i=1

M(ξi − 1) ≥M`
)
≤ P

(
Zj ≥M`

∣∣∣Zj−1 = mM
)
. (4.18)

Now we can again apply our comparison Lemma 5.7. In the notation of that lemma,
(M1

j )j≥0 = (qj)j≥0 and (M2
j )j≥0 = 1

M (Zj)j≥0, which is the Galton-Watson process rescaled
by a constant M . Note that from Lemma 5.8, the Markov chain (M2

j )j≥0 satisfies the
Assumption 1 of our comparison lemma, Lemma 5.7. Note also that from (4.18), we have
that the Assumption 2 of Lemma 5.7 is fulfilled. Furthermore, since 1

M (Zj)j∈N has initial
population 1

MZ0 = q0 = |KV |, we also have that the Assumption 3 of the Lemma 5.7.
Then, the Conclusion (b) of Lemma 5.7 gives that,

P
(N(.)−1∑

i=0

qi ≥ `
)
≤ P

(
W ≥M`

)
.

Thus, we find that

P(|Â| ≥ `) ≤ P
(

(M + 1)

N(.)−1∑
i=0

qi ≥ `
)
≤ P

(
(M + 1)W ≥M`

)
.

The proof is finished.

Galton-Watson processes where the expected offspring per individual is strictly less
than one have exponentially bounded total population. We can use this for

Proposition 4.9. Consider the sampling strategy described before Proposition 4.6.
Assume that the random permutation has cycle length bounded by ξ on the finite graph
(V,E), and that (|Φ| − 1)(E(ξ) − 1) < 1. Then there exist constants C0 > 0 and κ0 > 0,
depending on ξ and |A| but not on V , so that

PV (|Â| ≥ `) ≤ C0 exp(−κ0 `), (4.19)

where Â has been defined in (4.15). In particular,

PV (A π-invariant, Φ-compatible subset separating A from B exits)

≥ 1− C0 e−κ0[ d(Φ(A),B)+|Φ(A)| ] . (4.20)

where d(A,B) is the graph distance between A and B.

EJP 24 (2019), paper 74.
Page 18/37

http://www.imstat.org/ejp/

https://doi.org/10.1214/19-EJP328
http://www.imstat.org/ejp/


Scaling limit of ballistic self-avoiding walk interacting with spatial random permutations

Proof. Observe that our sampling strategy (4.14) fulfils |KBi+1
| ≤ (|Φ| − 1)|Di \ KBi |

almost surely, so Proposition 4.8 can be applied with M = |Φ| − 1. Thus, the first
statement follows from subcriticality of the Galton-Watson process. For the second
statement, we use that by (4.16),

P(Â∩B = ∅) ≥ 1−P
[
|Â \ Φ(A)| ≥ d(Φ(A), B)

]
= 1−P

[
|Â| ≥ d(Φ(A), B) + |Φ(A)|

]
.

We will be interested in cases where the set A itself is large. Then the above estimate
is too weak. Indeed, since the constant C0 there depends on A, we have too little control
on its growth with |A|. We therefore need Theorem 2.3, whose proof is presented below.
Note that Theorem 2.3 states exponential decay of correlations only in the context of
comparing expectation of local function for different boundary conditions. An adaptation
to the existence of Φ-compatible sets is straightforward.

Proof of Theorem 2.3. Let (V,E) be a finite graph, and B ⊂ U ⊂ V . We assume that a
random permutation on (V,E) has cycle length bounded by a random variable ξ with
E(ξ) < 2. We let C > 0 and κ > 0 be two constants such that the total offspring W of a
Galton-Watson process with initial population 1 and offspring distribution ξ − 1 fulfils
P(W > n) ≤ C e−2κn .

Let V1 and V2 be two disjoint copies of V and put Ṽ = V1 ∪ V2, Ṽ0 = U1 ∪ V2 where U1

is U regarded as a subset of V1, and A = Ṽ \ Ṽ0. Let φ be the natural graph isomorphism
taking V1 to V2. For π̃ ∈ SṼ , let QA(π) be the minimal π-invariant, φ-compatible set
containing A. In equation (4.4) we have seen that for B ⊂ U and FB-measurable f ,

|EV (f)− EU (f)| ≤ 2‖f‖∞PṼ
(
QA ∩B 6= ∅

∣∣∣π|A = id
)
. (4.21)

On the right hand side above, we interpret B as a subset of U1 ⊂ V1.
For estimating the right hand side, we first note that when A,A′ ⊂ Ṽ , then

QA∪A′ = QA ∪QA′ .

Indeed, the implication ⊃ holds since A ⊂ B implies QA(π) ⊂ QB(π) for any π. For
the reverse implication, note that QA(π) ∪ QA′(π) is π-invariant and contains A ∪ A′,
and since φ is bijective we also have φ(QA ∪ QA′) = φ(QA) ∪ φ(QA′) = QA ∪ QA′ . So,
QA ∪QA′ ⊃ QA∪A′ by the minimality of the latter set. We conclude

PṼ

(
QA ∩B 6= ∅

∣∣∣π|A = id
)

= PṼ

( ⋃
x∈A
{Q{x} ∩B} 6= ∅

∣∣∣π|A = id
)

≤
∑
x∈A

PṼ

(
Q{x} ∩B 6= ∅

∣∣∣π|A = id
)
. (4.22)

For estimating the latter probabilities, define φ0(y) so that φ0(y) = φ(y) for y ∈ U1 ∪ U2,
and φ0(y) = y if y ∈ U c2 . Here, U2 denotes U regarded as a subset of V2. Let Q0

{x} be

the minimal π-invariant set containing x so that φ0(Q0
{x}(π)) = Q0

{x}(π). First note that

PṼ (π|A = id) = Z(Ṽ0)/Z(Ṽ ), and thus

PṼ

(
Q{x} ∩B 6= ∅

∣∣∣π|A = id
)

= PṼ0
(Q0
{x} ∩B 6= ∅).

The relevant sampling strategy is then given by

KṼ0
= {x}, KB = B ∩ φ0(Bc) if B ∩ φ0(Bc) 6= ∅, KB = B otherwise.
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As before, we let N = inf{j ∈ N : KBj = Bj} and Â = BcN . Then Â(π) is φ0-compatible

and π-invariant, so Q0
{x}(π) ⊂ Â(π) for all π. The sampling strategy fulfils the assump-

tions of Proposition 4.8 with M = 1, and therefore

PṼ0
(Q0
{x} ∩B 6= ∅) ≤ PṼ0

(|Â| ≥ d(x,B) + 1) ≤ C e−κ(d(x,B)+1) .

C and κ are the constants defined in the statement of the proposition. Inserting this
estimate in (4.22) and the result into (4.21) shows the claim.

Consider a vertex transitive graph G = (V,E) that might be finite or infinite. Theorem
2.2 guarantees that there exists α′0 <∞ (which may be significantly larger than the α0

given in that theorem) such that for all α > α′0, the corresponding random permutation
has cycle length bounded by a random variable ξ that has finite exponential moments
and has E(ξ) < 2. Theorem 2.3 then gives a bound on |PV1

(π|A = id)−PV0
(π|A = id)| for

finite subsets A ⊂ V1 ⊂ V0 of V . However, this bound becomes meaningless when A is
allowed to become large, since both of the involved probabilities then become very small.
The following proposition improves the estimate of Theorem 2.3 to the strength that will
be needed in the next section. We formulate it in terms of partition functions.

Proposition 4.10. Let (V,E) be finite or infinite. Consider finite subsets A ⊂ V1 ⊂ V0 of
V . Let α′0 be large enough so that for all α > α′0, the random permutation has cycle length
bounded by a random variable ξ with E( ξ ) < 2. Let C > 0 and κ > 0 be two constants
such that the total offspring W of a Galton-Watson process with initial population 1 and
offspring distribution ξ − 1 fulfils P(W > n) ≤ C e−2κn . Let c1(α) be defined as in (3.9).
Define

D = D(A, V0, V1, α, ξ) = exp
( 2C

c1(α)

∑
x∈A

∑
y∈V0\V1

e−κd(x,y)
)
, (4.23)

where d(x, y) denotes the graph distance between x and y. Then

1

D

Z(V1 \A)

Z(V1)
≤ Z(V0 \A)

Z(V0)
≤ DZ(V1 \A)

Z(V1)
.

Proof. Let us put n = |A|, and write

A = {x1, x2, . . . xn}, and Ai = {xi, xi+1, . . . , xn} ⊂ A

for i ≤ |A|. We set An+1 = ∅. Then, for j = 0, 1,

Z(Vj \A)

Z(Vj)
=

n∏
i=1

Z(Vj \Ai)
Z(Vj \Ai+1)

,

and we have

log
Z(V1 \A)

Z(V1)
=

n∑
i=1

log
Z(V1 \Ai)
Z(V1 \Ai+1)

=

n∑
i=1

log
Z(V0 \Ai)
Z(V0 \Ai+1)

+

n∑
i=1

log
( Z(V1 \Ai)
Z(V1 \Ai+1)

Z(V0 \Ai+1)

Z(V0 \Ai)

)
. (4.24)

The first sum on the right hand side above is equal to log Z(V0\A)
Z(V0) . We use the inequality

log(1 + |x|) ≤ |x| on each term in the final sum above, and find∣∣∣ log
Z(V1 \A)

Z(V1)
− log

Z(V0 \A)

Z(V0)

∣∣∣ ≤ n∑
i=1

∣∣∣ Z(V1 \Ai)
Z(V1 \Ai+1)

− Z(V0 \Ai)
Z(V0 \Ai+1)

∣∣∣ Z(V0 \Ai+1)

Z(V0 \Ai)
.
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Now, by applying Proposition 3.3 with U = V0 \Ai+1 and A = {xi}, we get∣∣∣Z(V0 \Ai+1)

Z(V0 \Ai)

∣∣∣ ≤ 1

c1(α)
.

We now apply Theorem 2.3 with f = 1{π(xi) = xi} and we obtain that,

∣∣∣ Z(V1 \Ai)
Z(V1 \Ai+1)

− Z(V0 \Ai)
Z(V0 \Ai+1)

∣∣∣ = |PV1\Ai+1
(π(xi) = xi)− PV0\Ai+1

(π(xi) = xi)|

≤
∑

y∈V0\V1

2C e−κd(y,xi) . (4.25)

We combine these estimates and obtain∣∣∣ log
Z(V1 \A)

Z(V1)
− log

Z(V0 \A)

Z(V0)

∣∣∣ ≤ 2C

c1(α)

∑
x∈A

∑
y∈V0\V1

e−κd(x,y) .

Exponentiating this inequality gives Z(V1 \A)/Z(V1) ≤ DZ(V0 \A)/Z(V0) and thus the
first claimed inequality. For the second one, notice that the only place where we used
V1 ⊂ V0 is inequality (4.25). That estimate still holds when interchanging the roles of V0

and V1, and when we do this, we get the remaining inequality.

We will only use the following weaker form of the previous proposition.

Corollary 4.11. In the situation of Proposition 4.10, write B = V0 \ V1. We then have

exp
(
− 2C

c1(α)
|A||B| e−κd(A,B)

)Z(V1 \A)

Z(V1)

≤ Z(V0 \A)

Z(V0)
≤ exp

( 2C

c1(α)
|A||B| e−κd(A,B)

)Z(V1 \A)

Z(V1)
. (4.26)

5 Proof of Theorem 2.4

5.1 Definitions and Notation

Recall that for y = (y1, . . . , yd) ∈ Zd, we write ȳ = y1 and ŷ = (y2, . . . , yd). For y ∈ Λn,
we write

Cy := {x ∈ Λn : x̄− ȳ ≥ |x̂− ŷ|} ∪ {x ∈ Λn : x̄ ≥ ȳ + log n}

for the forward cone starting in y that is broadened to full width after a logarithmic
length (see also Figure 3a). A set A ⊂ Λn will be called

weakly y-admissible if {x ∈ Λn : x̄ ≥ ȳ + log n} ⊂ A,
y-admissible if in addition {x ∈ Λn : x̄ ≥ ȳ, x̂ = ŷ} ⊂ A,
and strictly y-admissible if in addition Cy ⊂ A.

We write Awy , Ay and Asy for the set of weakly admissible, admissible and strictly
admissible sets, respectively.

For y, z ∈ Λn, A ∈ Ay and π ∈ Sy→zA recall that γ(π) = Orbπ({y}) denotes the trace of
the self avoiding walk that is embedded in π, starting from y and ending in z. We order
the elements of γ(π) by order of their appearance in Orbπ({y}), i.e. x ≤ y if y ∈ Orbπ({x}).
Together with this order, the set γ(π) uniquely characterises a self-avoiding path from y

to z. Ly→zA denotes the set of all ordered subsets of A such that their order makes them
a self-avoiding nearest neighbour walk in A starting in y and ending in z. We define
Ly→`nA =

⋃
z∈`n L

y,z
A .
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Λn

y Cy

log(n)

(a)

Λn

x

(b) (c)

Figure 3: (a) A forward cone Cy. (b) A pre-regeneration point x. (c) The dark set
represents the regeneration set of π through x, where x is the vertex in the centre of the
figure.

For γ ∈ Ly→`nA , a point x ∈ γ will be called pre-regeneration point of γ if z ∈
Cx for all z ≥ x, and z̄ < x̄ for z < x. In words, the self avoiding path hits the set
`x̄ precisely at x and stays in Cx thereafter (see also Figure 3b). Note that the latter
requirement is more than what is usually required for regeneration points of self-
avoiding walks. We will need it below in order to decouple the future of γ from part of
the background consisting of loops in π.

Let π ∈ Sy→`nA , and let π0 be the element of SA with π0(x) = x whenever x ∈ γ(π), and
π0(x) = π(x) otherwise. A pre-regeneration point x ∈ γ(π) will be called regeneration
point if there exists a subset R ⊂ A with the following four properties:

(R1) R ⊂ {z ∈ A : z̄ ≥ x̄}.

(R2) R is strictly x-admissible.

(R3) R is invariant under reflections leaving {z ∈ A : ẑ = x̂} invariant. In other words,
(z̄, 2x̂− ẑ) ∈ R whenever z ∈ R.

(R4) R is invariant under π0.

If x is a regeneration point of π, the largest set with properties (R1)-(R4) is called
regeneration set of π through x, and is denoted by R(x, π). See also Figure 3c. Since
(R1)-(R4) are invariant under unions of sets, the existence of any regeneration set
implies the existence and uniqueness of R(x, π). By convention, the point 0 ∈ Λn will
be a regeneration point with A(0, π) = Λn for all π, even though 0 might not be a
pre-regeneration point of γ(π). Also, z = max{x : x ∈ γ(π)} is a regeneration point by
convention, with empty regeneration set. The set of all regeneration points of some
π ∈ Sy→`nA is denoted by R(π) and is non-empty by the above conventions. We order its
elements by the order in which they appear in γ.

5.2 The number of regeneration points

In this subsection, we investigate how many regeneration points there are (at least)
in a system of size n. Our first result is an estimate on the number of steps that γ can
take before crossing a certain vertical hyperplane for the last time.
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For L ∈ N and π ∈ Sy→`nA , set

xL(π) := max{x ∈ γ(π) : x̄ = ȳ + L}, and ρL(π) := γ(π) \Orbπ(xL).

xL is the last point at which the hyperplane {z ∈ A : z̄ = ȳ+L} is crossed by γ, and ρL is
the piece of γ that lies before that point. |A| denotes the cardinality of a set A. We define

Lx↗yA :=
{
γ ∈ Lx→yA : γ ∩ `x̄ = {x}

}
, and Lx↗`nA :=

⋃
y∈`n

Lx↗yA

In words, γ ∈ Lx↗yA never visits the hyperplane containing its starting point again after
the first step.

Proposition 5.1. For each δ > 0, there exist N ∈ N, α0 < ∞, c > 0 and C < ∞ such
that for all n > N , α > α0, y ∈ Λn and A,B ∈ Ay with B ⊂ A, we have

sup
{

ecLPy→`nA

(
|ρL| ≥ (1 + δ)L

∣∣ρL ⊂ B) : L ∈ (2 log n, n− ȳ]
}
≤ C.

Proof. We start the proof by showing an a priori estimate on partition functions. We
claim that there exist α0 < ∞ and N ∈ N such that for all α > α0, n > N , L > 2 log n,
y ∈ Λn, A ∈ Ay h ∈ A with h̄ = ȳ + L, and γ ∈ Lh↗`nA , we have

1

2

Z(A)

Z(Λn)
≤ Z(A \ γ)

Z(Λn \ γ)
≤ 2

Z(A)

Z(Λn)
. (5.1)

Indeed, Theorem 2.2 guarantees the existence of α0 > 0 so that for α > α0, the
cycle length distribution of spatial random permutations (in an arbitrary domain) is
stochastically bounded by the distribution of a geometric random variable ξ with success
probability 1− e−α/2 . We can thus choose α0 so large that the total population W of a
Galton-Watson process with offspring distribution (ξ − 1)∨ 0 satisfies P(W > n) ≤ e−2κn

for all n ∈ N, where κ = 2d + 1. The assumptions of Corollary 4.11 are then fulfilled.
Moreover, for any y, A, h and γ as above, we have d(γ,Λn \ A) > log n due to the fact
that γ stays to the right of h. Since clearly |γ||Λn \A| ≤ n2d, we have

|γ||Λn \A| e−κd(γ,Λn\A) ≤ 1
n ,

and thus Corollary 4.11 allows us to choose N large enough so that (5.1) holds for all
n > N , uniformly in y, A, h and γ with the stated properties.

For the next step, let α0, N be as above and α > α0, n > N , y ∈ Λn, A,B ∈ Ay with
B ⊂ A, L ∈ (2 log n, n− ȳ], h ∈ `ȳ+L and ρ ∈ Ly→hA such that ρ ⊂ B. We define

Sh↗`nA\ρ := {π ∈ Sh→`nA\ρ : x̄ > h̄ for all x ∈ γ(π) \ {h}}.

Since ρ ⊂ B, we have

P
y→`n
A (ρL = ρ|ρL ∈ B) = e−α‖ρ‖

1∑
π∈Sh→`nA

1l{ρL(π) ⊂ B} e−αHA\γ(π)

∑
π∈Sh↗`n

A\γ

e−αHA\γ(π)

= e−α‖ρ‖
∑

γ∈Lh↗`nA

e−α‖γ‖ Z(A \ (γ ∪ ρ))
1∑

π∈Sh→`nA
1l{ρL(π) ⊂ B} e−αHA\γ(π)

(5.2)

For estimating the denominator, let ρ0 = {x ∈ A : ȳ ≤ x̄ ≤ ȳ + L, x̂ = ŷ} be the straight
line from y to the hyperplane `h, and let h0 = ρ0 ∩ `h. Since B is admissible, ρ0 ⊂ B, and
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thus ∑
π∈Sh→`nA

1l{ρL(π) ⊂ B} e−αHA\γ(π) ≥
∑

π∈Sy→`nA

1l{ρ(π)

= ρ0} e−αHA(π) = e−αL Zh0→`n(A \ ρ0)

≥ e−αL Zh0↗`n(A \ ρ0)

= e−αL
∑

γ∈Lh0→`n
A

e−α‖γ‖ Z(A \ (ρ0 ∪ γ)).

(5.3)

We now use Proposition 3.3 with c1(α) as in (3.9) as well as (5.1) and find

Z(A \ (ρ0 ∪ γ)) ≥ c|ρ0|
1 Z(A \ γ) ≥ cL1

2

Z(A)Z(Λn \ γ)

Z(Λn)
.

Using the other inequality of (5.1), we also find

Z(A \ (γ ∪ ρ)) ≤ Z(A \ γ) ≤ 2
Z(A)Z(Λn \ γ)

Z(Λn)
.

Using these estimates in (5.2) gives

P
y→`n
A (ρL = ρ|ρL ⊂ B) ≤ 4 e−α(‖ρ‖−L) cL1

∑
γ∈Lh↗`nA

e−α‖γ‖ Z(Λn \ γ)∑
γ∈Lh0↗`n

A

e−α‖γ‖ Z(Λn \ γ)
= 4 e−α(‖ρ‖−L) cL1 .

The last equality is by translation invariance.
Finally, fix δ > 0. Since c1(α) converges to 1 as α → ∞, by making α0 bigger if

necessary we can achieve

P
y→`n
A (ρL = ρ) ≤ e−α(‖ρ‖−(1+δ/2)L)

for all α > α0, all n > N , and uniformly in all suitable A, B, L and ρ. Then, summing
over all ρ (ordered by length) gives

P(|ρL| > (1 + δ)L|ρL ⊂ B) ≤
∞∑

m=(1+δ)L

(2d)m e−α(m−(1+δ/2)L) ‘

= e−L(αδ/2−(1+δ) log(2d))
∞∑
m=0

e−m(α−log(2d)) .

(The crude bound (2d)m on the number of all self-avoiding walks of length m could of
course be improved using the connective constant, but in the present situation we do
not gain any insight from that.) Now by further increasing α0 if necessary, we see that
the claim holds with c = α0δ/2− (1 + δ) log(2d), and C = (1− e−α0+log(2d) )−1.

The next statement, which is purely deterministic, shows that proposition (5.1) is
useful for obtaining lower bounds on the number of pre-regeneration points.

Lemma 5.2. Let L ∈ N, A ⊂ Λn, x, y ∈ A such that ȳ = x̄ + L, and γ ∈ Lx→yA . Assume
that |γ| < (1 + δ)L. Then γ has at least (1− 3δ)L pre-regeneration points.

Proof. We recursively determine sequences of points in γ. We set x0 = x. For i ≥ 1, we
define

yi := min{y ∈ γ : y ≥ xi−1, y is not a pre-regeneration point},
y′i := min{y ∈ γ : y > yi, y /∈ Cyi},
mi := max{x̄ : x ∈ γ, x ≤ y′i},
xi+1 := min{x ∈ γ : x̄ > mi},
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Figure 4: A self-avoiding walk from x to y.

(see also Figure 4). Thus, when following the path γ, we have the following situation: At
each xi, the path crosses the hyperplane `xi for the first time. Thereafter, we only see
regeneration points until we hit yi+1, although of course yi+1 = xi is possible, and at the
point y′i+1 we actually notice that yi+1 was not a pre-regeneration point (see also the
following paragraph!). We then follow γ further until we hit a vertical hyperplane that
we have not seen before y′i+1, and xi+1 is the place where we cross that hyperplane.

The crucial observation is that since xi is the first time a certain hyperplane is crossed,
and since all points between xi and yi are pre-regeneration points, the reason that yi is
not a pre-regeneration point can only be that the path leaves the enhanced forward cone;
the other possibility, namely that some previous part of the path has already crossed the
hyperplane containing yi, is ruled out. This means that indeed y′i is the place where we
notice that yi was not a pre-regeneration point. It also means that between yi and xi+1,
the path stays strictly to the right of `ȳi and strictly to the left of `x̄i+1

. It is easy to see
that in such a situation, at most a third of all the steps of the path can be ’to the right’,
i.e. between vertices z, w with z̄ = w̄+ 1. Since γ takes at least L steps to the right there
are at most δL steps available for the other directions. Thus the union of all pieces of γ
that lie between some yi and the corresponding xi+1 has less than 3δL elements. Since
all of the remaining at least (1− 3δ)L points are regeneration points by construction, the
claim is proved.

The next step is to show that for sufficiently large α, a pre-regeneration point that
is sufficiently remote from the starting point of γ0 is an actual regeneration point with
uniformly positive probability. Recall that R(π) denotes the set of all regeneration points
of π.

Proposition 5.3. There exists α0 < ∞, c > 0 and N ∈ N such that for any n ≥ N ,
α > α0, y ∈ Λn, A ∈ Awy such that y ∈ A, γ0 ∈ Ly→`nA , and any pre-regeneration point
x ∈ γ0 with x̄− ȳ ≥ log n, we have

P
y→`n
A (x ∈ R|γ = γ0) > c.

Proof. Let c̃ < 1. Pick first ν > d− 1 so large that for all n ∈ N,

∞∑
k=1

e−νk |{z ∈ Λn : z̄ = x̄− 1, k − 1 ≤ |ẑ − x̂| < k}| ≤ c̃, (5.4)

and then N so large that
c̃+Nd−1−ν < 1.
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Fix n ≥ N , y ∈ Λn, A ∈ Awy , γ0 ∈ Ly→`nA , and a pre-regeneration point x of γ0 with

x̄ − ȳ ≥ log n. The properties of A and x give {z ∈ Λn : ẑ = x̂} ⊂ A. Given π ∈ Sy→`nA

with γ(π) = γ0, we write R(x, π) for the set of all subsets R of A that satisfy properties
(R1) to (R4) of regeneration sets. Since x is a pre-regeneration point of γ0, we have
Orbπ(x) ⊂ Cx and γ0 \Orbπ(x) ⊂ {z : z̄ < x̄} for all π such that γ(π) = γ0. Since on the
other hand R ⊃ Cx for all R ∈ R(x, π), we have

P
y→`n
A (x ∈ R|γ = γ0) = PA\γ0

(R(x, .) 6= ∅).

Let Φ be the group of reflections in Λn that leave the line {z : ẑ = x̂} invariant.
We want to use Propositions 4.8 and 4.9, but we need to slightly adjust the sampling

strategy leading to equation (4.15). The reason is that the set A, which plays the role of
V in the context of the sampling strategy, is itself not necessarily invariant under Φ. We
thus replace the strategy (4.14) by the strategy where KA = Φ(A) ∩ A, and where for
B ⊂ A

KB =

{
B ∩ Φ(Bc) ∩A if B ∩ Φ(Bc) ∩A 6= ∅
B otherwise

Applying this sampling strategy with starting set `−x := {z ∈ Λn : z̄ < x̄} will produce the
minimal π-invariant subset Q`−x (π) of A such that φ(Q`−x (π)) ∩A ⊂ Q`−x (π) for all φ ∈ Φ.
Since A \ `−x is invariant under Φ, so is A \Q`−x (π), and thus

R(x, π) 6= ∅ iff Q`−x (π) ∩ Cx = ∅,

and in this case R(x, π) = A \ Q`−x (π). On the other hand, it is easily checked that
Propositions 4.8 and 4.9 stay valid for the new sampling strategy. Since Q`−x (π) \ `−x =

(
⋃
z∈Λn:z̄=x̄−1Q{z}(π)) \ `−x and Cx ∩ `−x = ∅, we find

PA\γ0
(Q`−x (π) ∩ Cx 6= ∅) ≤

∑
z:z̄=x̄−1

PA\γ0
(Q{z} ∩ Cx 6= ∅) (5.5)

≤
∑

z:z̄=x̄−1

PA\γ0
(|Q{z}| > min{|ẑ − x̂|, log n}). (5.6)

Theorem 2.2 and Propositions 4.8 and 4.9 guarantee that we can choose α0, indepen-
dently of A, so that for all α > α0, all z with z̄ = x̄− 1 and all k ≥ 1, we have that

PA\γ0
(|Q{z}| > k) ≤ e−νk .

Then by condition (5.4), we find

PA\γ0
(Q`−x (π) ∩ Cx 6= ∅) ≤ c̃+

∑
z:z̄=x̄−1

PA\γ0
(|Q{z}| > log n) ≤ c̃+ nd−1n−ν < 1. (5.7)

Thus the claim holds for c = 1− c̃− nd−1−ν > 0.

We are now ready to give the decisive statement of the first step of the proof, saying
that with high probability, the first regeneration point being more than log n away from
y is not further than a constant times log n away from y. For y ∈ Λn and a strictly
admissible set A, we define the Py→`nA random variable

X1(π) = min{x ∈ R(π) : x̄ ≥ ȳ + log n}

Proposition 5.4. Let p ≥ 1. Then there exist α0 <∞, C <∞ and N ∈ N so that for all
y ∈ Λn, n > N , α > α0, A ∈ Asy, k ≥ 1 we have

P
y→`n
A

(
|X1 − y| > k log n

∣∣∣γ ∈ Cy) ≤ Ck−p.
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Proof. Clearly, it suffices to prove the claim for large k, and the claim trivially holds
whenever n− ȳ ≤ k log n, since the last point of γ is a regeneration point by convention,
and we conditioned on γ ∈ Cy. Let thus k ≥ 2, δ < 1/4, and L = k log n. Recalling the
notation used in Lemma 5.1, we decompose

P
y→`n
A (|X1 − y| > k log n|γ ⊂ Cy) ≤ Py→`nA (|ρL| ≥ (1 + δ)L|ρL ⊂ Cy)+

+ Py→`nA (|X1 − y| > k log n, |ρL| < (1 + δ)L|ρL ⊂ Cy).

(5.8)

Here we used that ρL ⊂ Cy is equivalent to γ ⊂ Cy by the definitions of Cy and ρL and the
fact that L ≥ 2 log n. Since Cy ⊂ Ay, we can apply Proposition 5.1 and find

P
y→`n
A (|ρL| ≥ (1 + δ)L|ρL ⊂ Cy) ≤ C e−ck logn ≤ C e−ck .

uniformly in k, y and A ∈ Ay for all large enough α and n.
It remains to estimate the second term in (5.8). For this, we use the trivial equality

P
y→`n
A (|X1 − y| > k log n, |ρL| < (1 + δ)L|ρL ⊂ Cy)

=

∑
ρ⊂Cy :|ρ|<(1+δ)LP

y→`n
A (|X1 − y| > K log n|ρL = ρ) Py→`nA (ρL = ρ)∑

ρ⊂Cy P
y→`n
A (ρL = ρ)

in order to see that the claim will be shown once we prove that there exists C̃ <∞ such
that uniformly in ε, n and ρ ⊂ A such that |ρ| < (1 + δ)L and such that ρ is the trace of
some self-avoiding walk from y to some element of `ȳ+L, we have

P
y→`n
A (|X1 − y| > k log n|ρL = ρ) ≤ C̃ k−p. (5.9)

Lemma 5.2 tells us that such a ρ must have at least (1 − 3δ)k log n ≥ 1
4k log n pre-

regeneration points. For k > 8, at least (k/4−1) log n ≥ k
8 log n of them satisfy x̄−ȳ ≥ log n.

If any of these is a regeneration point, then X1 is the minimal such point, and thus
|X1 − y| ≤ k log n.

Let therefore ρ be the trace of some self-avoiding walk from y to an element of `ȳ+L,
assume that it has M > log n pre-regeneration points that have horizontal distance larger
than log n from y, and denote these points by (xi)i≤M . By Proposition 5.3, each xi is a
regeneration point with uniformly positive probability. If the events {π : xi ∈ R(π)} would
be independent, this would already conclude the proof, by the argument of independent
trials. Unfortunately, they are not independent, and so we will have to work harder.
(Although we can not prove it, it is actually reasonable to conjecture that the events
{xi /∈ R} are positively correlated since the fact that xi is a pre-regeneration point
but not a regeneration point means that there is some long cycle of π that prevents
the existence of a regeneration surface; such a long cycle may still impact the next
pre-regeneration point as well.)

The solution is to separate pre-regeneration points by invariant sets. Let r1 = x1, and

rj = min{xj : x̄j > r̄j−1 + 2 log n}.

Since we started with at least 1
8k log n pre-regeneration points (xi), and since at most

2 log n of them are between two consecutive ri, we still retain at least k̃ ≥ k/16 points
(ri)i≤k̃. For π ∈ SA\γ , denote again by R(x, π) the set of all subsets of A satisfying
properties (R1) to (R4). With

N (x) := {π ∈ SA\γ : R(x, π) = ∅}, Ni := N (ri),
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for any γ ⊂ A so that ρL(γ) = ρ, we then have

P
y→`n
A (|X1 − y| > K log n|ρL = ρ) = PA\γ

( ⋂
j≥1

N (xj)
)
≤ PA\γ

( k̃⋂
i=1

Ni
)
.

We further define wi := r̄i + log n, and

`−wi := {z ∈ A : z̄ < w̄i}, Qi := Orbπ(`−wi ∩ (A \ γ)), Wi := {z ∈ A : z̄ ≥ w̄i + log n}.

Let m ≤ k̃. We decompose,

PA\γ

( m⋂
i≥1

Ni
)
≤ PA\γ(Qm−1 ∩Wm−1 6= ∅) + PA\γ

(
Qm−1 ∩Wm−1 = ∅,

m⋂
i≥1

Ni
)
.

By the same reasoning that led to the bound on the second term in (5.7), the first term
above is bounded by nd−1−ν , where we can choose ν as large as needed by making α large.
For the second term we use the strong Markov property of SRP. Let f(π) = 1l{π ∈ Nm},
and note that

⋂m−1
i=1 Ni ∈ FQm−1 by the definition of the Qi and the strict admissibility of

regeneration sets. Thus

PA\γ

(
Qm−1 ∩Wm−1 = ∅,

m⋂
i≥1

Ni
)

= EA\γ

(
EA\γ

(
f
∣∣FQm−1

)
1l{Qm−1 ∩Wm−1 = ∅}1l

{m−1⋂
i=1

Ni
})
,

and Proposition 4.2 gives

EA\γ
(
f
∣∣FQm−1

)
1l{Qm−1 ∩Wm−1 = ∅} = PQm−1(Nm)1l{Qm−1 ∩Wm−1 = ∅}

almost surely. By Proposition 5.3 we find PQm−1(π)(Nm) ≤ 1− c uniformly in all allowed
Qm−1(π) (note that by definition, Qm−1(π) is weakly admissible for all π such that
Qm−1(π) ∩Wm−1 = ∅), and thus we conclude

PA\γ

( m⋂
i=1

Ni
)
≤ (1− c)PA\γ

(m−1⋂
i=1

Ni
)

+ nd−1−η,

for all m ≤ k̃. Therefore, by induction,

PA\γ

( k̃⋂
i=1

Ni
)
≤
∞∑
j=0

(1− c)jnd−1−η =
nd−1−η

c
.

It remains to choose α0 so large that for α > α0, we have d − 1 − η < −p. Then for
sufficiently large n0 and all n > n0, we have

P
y→`n
A (|X1 − y| > k log n|γ ⊂ Cy) ≤ C e−ck +

1

c
n−p.

For k ≤ n, this proves the claim of Proposition 5.4; the last step in the proof consist in
observing that for k > n, the required probability is trivially equal to zero when k > d.
Thus Proposition 5.4 is proved.
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5.3 The Markov chain of regeneration pairs

We define for each π ∈ S0→`n
Λn

the following sequence of pairs (xi, Ri) ⊂ Λn ×P(Λn):
We set X0 = 0 and R0 = Λn, and then recursively define

Xi+1(π) =

{
min{x ∈ R(π) : x̄ ≥ X̄i(π) + log n} if X̄i(π) + log n ≤ n,
z otherwise.

In words, we pick a sequence of regeneration points that have mutual horizontal distance
of at least log n; as soon as we find, by this procedure, a regeneration point with horizontal
distance less than log n to `n, we jump to max γ and stay there forever. In addition, we
define Ri(π) = R(Xi(π), π). We refer to the pairs (Xi, Ri) as regeneration pairs. Note
that for i = 1, the definition of X1 coincides with the one given in the previous part of
the proof.

Proposition 5.5. The sequence (Xi, Ri) is a Λn × P(Λn)-valued Markov chain, with
transition matrix

p
(
(x,R), (x′, R′)

)
=


P0→`n

Λn
(X1 = x′, R1 = R′) if (x,R) = (0,Λn),

Px→`nR (y = max γ) if x̄+ log n ≥ n,
Px→`nR

(
X1 = x′, R1 = R′

∣∣γ ⊂ Cx) otherwise.

For the proof of this proposition, we need a variant of the spatial Markov property
that we are now going to state. The proof of Proposition 5.5 is presented afterwards.

For any set A ⊂ V = Λn, we define F̃A to be the σ-algebra over S0→`n
V generated by

the forward evaluations π 7→ π(z) for z ∈ A. Note that in contrast to the situation in
Proposition 4.1, we do not consider inverse images since these may not be defined in
the situation with an open cycle. For any π ∈ S0→`n

V , we define the family of π-almost
invariant sets

Inv0(π) :=
{
A ⊂ V : π(A) ⊂ A}.

By this definition, the open cycle γ can enter an almost-invariant set A but not leave it,
and if A ∩ γ 6= ∅ then the image of A is A without the unique entrance point of γ into A.
The reader should be warned that in the current situation, A ∈ Inv0(π) does not imply
Ac ∈ Inv0(π).

Let A ⊂ V , x ∈ A, a ∈ Ac, and π ∈ Sa→`nV such that A ∈ Inv0(π) and x = min γ(π) ∩A.
Then there exist (unique) π|A ∈ Sx→`nA and π|Ac ∈ Sa→xAc∪{x} such that π|A(z) = π(z)

for all z ∈ A and πAc(z) = π(z) for all z ∈ Ac. In this situation, for ˜FAc -measurable
f : S0→`n

V → R, we use the same symbol to denote the function f : Sa→xAc∪{x} → R with

f(π) = f(πAc). In the same way, we get g(π) = g(πA) for F̃A-measurable g.

Proposition 5.6. Let A ⊂ V , a ∈ Ac, x ∈ A. Then,

(i): Pa→`nV (A ∈ Inv0, x = min γ ∩A) = Za→x(Ac ∪ {x})Zx→`n(A)/Za→z(V ).

(ii): For F̃Ac -measurable f and F̃A-measurable g, we have

Ea→`nV (f |A ∈ Inv0, x = min γ ∩A) = Ea→xAc∪{x}(f)

and

Ea→`nV (g|A ∈ Inv0, x = min γ ∩A) = Ex→`nA (g).

(iii): For F̃Ac -measurable f and F̃A-measurable g, we have

Ea→`nV (f g|A ∈ Inv0, x = min γ ∩A) = Ea→xAc∪{x}(f)Ex→`nA (g).
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(iv): For F̃A-measurable g and Q ∈ F̃Ac , we have

Ea→`nV (g|A ∈ Inv0, x = min γ ∩A,Q) = Ex→`nA (g). (5.10)

Proof. Let HB(π) :=
∑
x∈B |π(x) − x|. Then for all A ⊂ V , all x ∈ A and all π ∈ Sa→`nV

such that A ∈ Inv0(π) and x = min γ ∩A, we have

HV (π) = HAc∪{x}(π|Ac) +HA(π|A).

This holds since π|Ac(x) = x. Consequently, for F̃Ac measurable f and F̃A-measurable g,
we have ∑

π∈Sa→`nV :
A∈Invp(π),x=min γ(π)∩A

f(π)g(π) e−αHV (π)

=
∑

π∈Sa→x
Ac∪{x}

f(π|Ac) e−αHAc∪{x}(πAc )
∑

π̃∈Sx→`nA

g(π̃A) e−αHA(π|A) . (5.11)

The proof now follows the same steps as the proof of Proposition 4.1.

Proof of Proposition 5.5. Fix x1, . . . xk+1 ∈ Λn and subsets Q1, . . . , Qk+1 of Λn which
satisfy the deterministic conditions for regeneration points, in particular for all i ≤ k + 1,

x̄i ≥ x̄i−1 + log n, and Cxi ⊂ Qi ⊂ {z : z̄ ≥ x̄i}. (5.12)

Let us write Ji = {Xi = xi, Ri = Qi} for brevity, and write

C(x, y) = {π : y = min{w ∈ R(π) : w̄ ≥ x̄+ log n}}.

Then

P
0→`n
Λn

(
Xk+1 = xk+1, Rk+1 = Qk+1

∣∣∣ k⋂
i=1

Ji
)

= P0→`n
Λn

(
C(xk, xk+1), Qk+1 = R(xk+1)

∣∣∣ k⋂
i=1

Ji
)

=P0→`n
Λn

(
C(xk, xk+1), R(xk+1) = Qk+1

∣∣∣Orb(xk) ⊂ Cxk , γ \Orb(xk) ⊂ {z : z̄ < x̄k}, Rk = Qk,

k−1⋂
i=1

Ji
)

=
P

0→`n
Λn

(
C(xk, xk+1), R(xk+1) = Qk+1,Orb(xk) ⊂ Cxk

∣∣∣γ \Orb(xk) ⊂ {z : z̄ < x̄k}, Rk = Qk,
⋂k−1

i=1 Ji
)

P
0→`n
Λn

(
Orb(xk) ⊂ Cxk

∣∣∣γ \Orb(xk) ⊂ {z : z̄ < x̄k}, Rk = Qk,
⋂k−1

i=1 Ji
) .

The event C(xk, xk+1) ∪ {Rk+1 = R′,Orb(xk) ⊂ Cxk} is F̃Cxk -measurable, and since

Cxk ⊂ Qk, it is F̃Qk -measurable. On the other hand, the event

Q := {γ \Orb(xk) ⊂ {z : z̄ < x̄k}, Rk = Qk,

k−1⋂
i=1

Ji}

is F̃Qck\{xk}-measurable, and contains the set {Qk ∈ Invxk} ∪ {xk = min γ ∩ Qk}. We
can therefore apply part (iv) of Proposition 5.6 with A = Qk to both numerator and
denominator above, and find

P0→`n
Λn

(
Xk+1 = x′, Rk+1 = Qk+1

∣∣∣ k⋂
i=1

Ji
)

= Pxk→`nQk

(
X1 = xk+1, R1 = Qk+1

∣∣∣γ ⊂ Cxk),
as claimed.
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We finally have all the pieces to conclude the proof of Theorem 2.4. By the symmetry
condition (R3) of regeneration sets, the process (X̂i), while not being a Markov process,
is a Zd−1-valued martingale under P0→`n

Λn
. By Doob’s L2-inequality, we have

E(max
j≤n0

|X̂j |2) ≤ 4E(|X̂n0
|2) = 4

n0∑
j=1

E((|X̂j − X̂j−1|2). (5.13)

Using Proposition 5.4 with p > 2, we find that for suitable αc, C and N ,

E0→`n
Λn

( |Xj −Xj−1|2

(log n)2

∣∣∣Xj = y,R(Xj) = R
)
≤
∫ ∞

1

P
y→`n
R (|X1| ≥ k log n)k dk

≤ C
∫ ∞

1

k1−p dk = C/(p− 2) =: Cp

uniformly in n > N , α > α0 and R ∈ Asy. By integrating over possible y and R we

conclude E(|X̂j − X̂j−1|2) ≤ (log n)2Cp. Since X̄i+1 ≥ X̄i + log n by construction, the
martingale takes at most n/ log n steps before hitting the point limn→∞ πn(0), after which
it does no longer move. This, Chebyshevs inequality and (5.13) give

P(max
i∈N
|X̂i| > M

√
n log n) ≤ 1

M2n log n
E(max

i∈N
|X̂i|2) ≤ 1

M2n log n
4

n

log n
Cp(log n)2 =

4Cp
M2

.

(5.14)
In conclusion, we now know that with high probability none of the special regeneration
points (Xi) is further than

√
n log n away from the line {x̂ = 0}.

In order to control the parts of γ in between the Xi, we first apply Proposition 5.4
with k = n1/4 and p = 8, and find

P0→`n
Λn

(|X̄i+1 − X̄i| > n1/4 log n|Xi = y,Ri = A) ≤ C8n
−2

for all y ∈ Λn and all A ∈ Asy. Since there are at most n/ log n regeneration points, the
union bound then gives (for n large enough)

P0→`n
Λn

(max
i
|X̄i+1 − X̄i| > n1/3) ≤ C8n

−1.

We thus find

P0→`n
Λn

(max
x∈γ
|x̂| > 2M

√
n log n) ≤ 4Cp

M2
+
C8

n
+

+ P0→`n
Λn

(
max
x∈γ
|x̂| > 2M

√
n log n,max

i
|X̄i+1 − X̄i| < n1/3,max

i
|X̂i| < M

√
n log n

)
.

(5.15)

By definition, at a regeneration point γ crosses a certain vertical hyperplane for the
last time. Applying Proposition 5.1 with δ = 1, B = Λn and L = n1/3, we see that the
probability that the piece of γ between Xi and Xi+1 is longer than 2n1/3 is less than

C e−cn
1/3

for each i. On the other hand, a path would need at least 2M
√
n log n steps

to exceed level 2M
√
n log n when starting (and ending) below level M

√
n log n. Thus

the second line in (5.15) is bounded by n e−cn
1/3

. Taking n so large that n > M and
n e−cn

1/3

< 1
M , Theorem 2.4 is proved.

Let us conclude by looking back over the proof and identifying the place where our
estimates are not good enough to provide diffusive scaling. The most basic place where
this happens is Proposition 5.1: here already, we can only prove a bound on the length of
ρL (and thus many regeneration points) when L is of the order of log n. This in turn is due
to the inequality (5.1), which needs the separation of the part of γ to the right of `h̄ from
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the set Λn \A by at least a distance of log n. This is because (5.1) relies on Proposition
4.10, and in this result the sum that leads to the constant D needs to be controlled
by sufficiently large distances between A and V0 \ V1, especially when the number of
points in either of them diverges. The root cause of the problem is that while we do
have exponential decay of correlations, the decay is not uniform in the size of the sets
between which the correlations are measured. See also the discussion in the paragraph
before Proposition 4.10. The latter proposition already goes some way towards solving
this problem, but as it turns out it is not quite enough for obtaining optimal results.

Appendix

Given two finite or countable infinite sequences of non-negative integer-valued
random variables,

(
M i
n

)
n∈I⊂N, i = 1, 2, we say that

(
M2
n

)
n∈I is stochastically larger than(

M1
n

)
n∈I and we write (

M1
n

)
n∈I

d
�
(
M1
n

)
n∈I ,

if for any finite sequence of non-negative integers n0, n1, . . ., nk, we have that,

P1(M1
0 > n0, M

1
1 > n1, . . .M

1
k > nk) ≤ P2(M2

0 > n0, M
2
1 > n1, . . .M

2
k > nk),

where Pi( · ) is the law of the i-th sequence, i = 1, 2. We are now ready to state our
comparison Lemma.

Lemma 5.7 (Comparison Lemma). Let
(
M i
n

)
n∈N, i ∈ {1, 2}, be two non-negative, inte-

ger valued stochastic processes, defined in two different probability spaces, (Σ1,F1, P1)

and (Σ2,F2, P2). Let
(
F in
)
n∈N, i ∈ {1, 2} be their filtrations. Assume that

(
M2
n

)
n∈N is a

Markov chain and let
(
M2,λ
n

)
n∈N be used to denote the Markov chain with initial state

M2
0 distributed according to the probability measure on the non-negative integers λ( · ).

Assume that

• (Ass. 1) The Markov chain is such that,

λ
d
� λ′ =⇒

(
M2,λ
n

)
n∈N

d
�
(
M2,λ′

n

)
n∈N

• (Ass. 2) For all integers `,m, n ≥ 0, and ω ∈ Σ1 such that M1
n(ω) = m,

P1(M1
n+1 > `

∣∣ F1
n)(ω) ≤ P2(M2

n+1 > `|M2
n = m).

• (Ass. 3) For a given initial distribution λ∗( · ),

M1
0

d
�M2,λ∗

0 .

Then, we have that

• (Concl. a) The Markov chain (M2,λ∗

n )n∈N is stochastically larger than (M1
n)n∈N,

(M1
n)n∈N

d
� (M2,λ∗

n )n∈N,

• (Concl. b) For all k ∈ N,
k∑
j=0

M1
j

d
�

k∑
j=0

M2,λ∗

j .
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Proof. Let us denote by P ( · ) = P1( · )× P2( · ) and by E( · ) the expectation of P ( · ). We
start by proving the statement (a) of the lemma. Fix a finite sequence of non-negative
integers, n1, n2, . . ., nk. We replace steps of the process 1 by steps of the process 2 one
by one, showing that the probability of the event 1{M1

k > nk,M
1
k−1 > nk−1, . . .M

1
0 > n0 }

cannot decrease at each replacement. Here is our first replacement,

P1(M1
k > nk,M

1
k−1 > nk−1, . . .M

1
0 > n0) =

E
(
1{M1

k > nk,M
1
k−1 > nk−1, . . .M

1
0 > n0}

)
=

E
(
E(1{M1

k > nk}
∣∣F1

k−1) 1{M1
k−1 > nk−1, . . .M

1
0 > n0}

)
≤

E
(
E(1{M2

1 > nk}
∣∣M2

0 = M1
k−1) 1{M1

k−1 > nk−1, . . .M
1
0 > n0}

)
=

E
(
1{M

2,δ
M1
k−1

1 > nk,M
1
k−1 > nk−1, . . .M

1
0 > n0}

)
, (5.16)

where for the second equality we used the definition of conditional expectation and for
the first inequality we used our second assumption in the statement of the lemma. In

the last equality we denote by M
2,δ

M1
k−1

1 the first step of the Markov chain which starts
at time 0 from the value M1

k−1 (then, the outer expectation integrates over the M1
k−1).

Here is our second replacement,

E
(
1{M

2,δ
M1
k−1

1 > nk,M
1
k−1 > nk−1, . . .M

1
0 > n0}

)
=

E
(
E
(
1{M

2,δ
M1
k−1

1 > nk,M
1
k−1 > nk−1}

∣∣F1
k−2

)
1{M1

k−2 > nk−2, . . .M
1
0 > n0}

)
≤

E
(
E2
(
1{M2

2 > nk,M
2
1 > nk−1}

∣∣M2
0 = M1

k−2

)
1{M1

k−2 > nk−2, . . .M
1
0 > n0}

)
=

E
(
1{M

2,δ
M1
k−2

2 > nk,M
2,δ

M1
k−2

1 > nk−1,M
1
k−2 > nk−2, . . .M

1
0 > n0}

)
. (5.17)

In the expression on the left-hand side of the first inequality, M
2,δ

M1
k−1

1 can be interpreted
as the step n = 1 of the Markov chain which starts from the initial state distributed
according to M1

k−1 conditioned on F1
k−2 (then, the outer expectation integrates over the

F1
k−2). The inequality holds as we replace such an initial state for the Markov chain

by a new state that, by our second assumption, is stochastically larger, namely by M2
1

conditioned on M2
0 = M1

k−2. Then, our first assumption in the statement of the lemma
guarantees that the whole Markov chain (not only the step 1, but also the following
steps) is stochastically larger. After k − 1 iterations we get the first inequality in the
expression below.

P1

(
M1
k > nk,M

1
k−1 > nk−1, . . .M

1
0 > n0

)
≤

E
(
1{M

2,δ
M1

0

k > nk,M
2,δ

M1
0

k−1 > nk−1, . . . ,M
2,δ

M1
0

1 > n2,M
1
0 > n0}

)
≤

E
(
1{M2,λ∗

k > nk,M
2,λ∗

k−1 > nk−1, . . . ,M
2,λ∗

1 > n2,M
2,λ∗

0 > n0}
)
, (5.18)

For the last inequality we used our Assumptions 1 and 3. Indeed, on the left-hand side of
the second inequality we have the Markov chain (M2

n)n∈N starting from initial state M1
0 ,

on the right-hand side we have the same Markov chain starting from initial state M2,λ∗

0 ,
which is stochastically larger than M1

0 by our Assumption 3.
The proof of the part (b) of the lemma goes along the same replacement procedure

as in the part (a). Let use define W i
k =

k∑
n=0

M i
k, i ∈ {1, 2}. We just illustrate our first and
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second replacements below.

P1

(
W 1
k > n

)
= E1

(
1{W 1

k−1 +M1
k > n}

)
= E

(
E1
(
1{M1

k > n−W 1
k−1}

∣∣ F1
k−1,M

1
k−1

) )
≤ E

(
E
(
1{M2

1 > n−W 1
k−1}

∣∣ M2
0 = M1

k−1,F1
k−1

) )
= E

(
1{M

2,δ
M1
k−1

1 +W 1
k−1+ > n}

)
,

(5.19)

where we used our Assumption 2 for the inequality. Here is the second step, where we
use our Assumptions 1 and 2.

E
(
1{M

2,δ
M1
k−1

1 +M1
k−1 +W 1

k−2 > n}
)

= E
(
E
(
1{M

2,δ
M1
k−1

1 +M1
k−1 > n−W 1

k−2}
∣∣F1
k−2,M

1
k−2

) )
= E

(
E
(
1{M

2,δ
M1
k−2

2 +M
2,δ

M1
k−2

1 > n−W 1
k−2}

∣∣F1
k−2,M

1
k−2

) )
≤ E

(
1{M

2,δ
M1
k−2

2 +M
2,δ

M1
k−2

1 +W 1
k−2 > n}

)
.

The proof of the statement (b) of our Comparison Lemma follows by iteration. For the
last step, we use our Assumption 3, the same as for the proof of our statement (a).

The last result that we present in this section is that the simple Galton-Watson process
is a Markov chain satisfying the Assumption 1 on the process (M2

j )j∈N in Lemma 5.7.

Lemma 5.8. If Ξ and Ξ′ are two independent random variables such that Ξ
d
� Ξ′, then

(ZΞ
j )j∈N

d
� (ZΞ′

j )j∈N, where (ZΞ
j )j∈N is a simple Galton-Watson with offspring distribution

ξ.

We are now ready to prove the previous lemma.

Proof of Lemma 5.8. We couple the two Galton-Watson process in the same probability
space. In this probability space we define an infinite array of independent random
variables ξ = (ξj,k)j≥1, k≥1 having the same distribution as ξ. For any m ∈ N and ξ,
we define the deterministic sequence (Zj(m, ξ))j∈N, which represents a Galton-Watson
process starting from initial condition m, where the k-th individual of the j-th generation
generates an offspring of size ξj,k. Let us define the sequence precisely. By definition,
we set Z0 (m, ξ) = m. We label individuals of the first generation according to an
arbitrary order using the integers 1, 2, . . ., m. After having labelled individuals of the
first generation, each individual k generates an offspring of size ξ1,k. We set Z1 (m, ξ) as
the number of individuals of the generation j = 1. We label individuals of the second
generation by using integer numbers increasing one by one, 1, 2, 3, . . ., in such a way
that, for any two individuals A and B, if the label of the parent of A is smaller than the
label of the parent of B, then the label of A is smaller than the label of B. Once labels
are assigned, each individual k of the second generation generates an offspring of size
ξ2,k and variables ξ2,Z1+1, ξ2,Z1+2, . . . remain unused. We set Z2 (m, ξ) as the number of
individuals of the generation j = 2.

At any step j, we assign labels according to such a rule and we use the variables
ξj,k for the children of each individual k. If for some j, Zj(m, ξ) = 0, then by definition
Zj+1(m, ξ) = Zj+2(m, ξ) = . . . = 0. The process can be seen as a tree where each
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individual is connected to its children by a directed edge. By construction, we have that
for any realization of the array ξ, for all j ∈ N,

Zj (m, ξ))j∈N ≤ Zj (m′, ξ))j∈N (5.20)

whenever m′ ≥ m, as the tree corresponding to the Galton-Watson process with initial
condition m is a sub-graph of the tree corresponding to the Galton-Watson process with
initial condition m′.

Let us now fix a k ∈ N and a sequence of non-negative integers n0, n1, . . ., nk. For
any fixed ξ, we let M(ξ, n0, . . . nk) be the smallest m such that

Zj(m, ξ) > nj for all j between 0 and k. (5.21)

From the monotonicity property (5.20), we have that if (5.21) holds for m, then it holds
for all m′ ≥ m. Let then P̃ ( · ) be the law of the array ξ, of Ξ and Ξ′ together. We have
that,

P̃ (Ξ > n0, Z1(Ξ, ξ) > n1, . . . , Zk(Ξ, ξ) > nk) = P̃ (Ξ ≥M(ξ, n0, . . . nk)) =∑
ξ

P̃
(
Ξ ≥M(ξ, n0, . . . nk)

∣∣ ξ) P̃ ( ξ ) ≤
∑
ξ

P̃
(
Ξ′ ≥M(ξ, n0, . . . nk)

∣∣ ξ) P̃ ( ξ ) =

P̃ (Ξ′ ≥M(ξ, n0, . . . nk)) = P̃ (Ξ′ > n0, Z1(Ξ′, ξ) > n1, . . . , Zk(Ξ′, ξ) > nk) , (5.22)

For the first inequality we used that Ξ′ is stochastically larger than Ξ by definition. As
the two processes that we constructed in the space of P̃ ( · ) have the same distribution
as the Galton-Watson processes in the statement of the lemma, the previous inequality
concludes the proof of the claim.
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