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Abstract

We consider confinement properties of families of non-colliding Brownian bridges
above a hard wall, which are subject to geometrically growing self-potentials of tilted
area type. The model is introduced in order to mimic level lines of 2 + 1 discrete
Solid-On-Solid random interfaces above a hard wall.
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1 Brownian polymers under geometric area tilts.

1.1 Introduction

Ensembles of non-intersecting random lines, both in the discrete and continuous
setups, as well as their scaling limits as the linear size of the system grows, play a
significant role in the probabilistic analysis of various problems in random matrices,
interacting particle systems and effective interface models; see e.g. [11, 18, 23, 9, 3, 2,
19, 25, 8, 10] and references therein.

A salient feature of these ensembles is that the unconditional reference distribution
of the individual random lines is assumed to be the same for all the random lines in a
stack. The ensuing exchangeability paves the way for an application of Karlin-McGregor
type formulas, and gives rise to various determinantal structures.

In this paper, we introduce a model consisting of an unbounded number of non-
intersecting Brownian bridges, above a hard wall and subject to geometrically increasing
area tilts.
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Polymers under geometric area tilts

Thus, in our model reference statistics of individual lines depends on their serial
numbers - there is a stronger pressure towards the wall on paths further down the
stack. The main result of the paper is that the ensemble in question does not blow up
as the number of bridges grows to infinity. There is a longer program to attend to: In
subsequent works we shall describe the limiting (infinite) line ensemble and try to derive
appropriate scaling limits from tilted random walks and, eventually, from level lines of
discrete random interfaces. Indeed, the main motivation comes from the study of the
fluctuations of level lines in the random surface separating low-temperature phases in
the solid-on-solid (SOS) approximation of the 3D Ising model. Before describing our
model and main results, let us give more details about the context where the model
naturally arises, we refer to [5, 6, 16, 20], for further information.

1.2 Level lines of SOS interfaces above a hard wall.

Given a large integer L, consider the square box ΛL of side 2L in Z2, centered at the
origin. The (2 + 1)-dimensional SOS Gibbs measure on ΛL with zero boundary conditions
is the distribution µL over integer height functions ϕ : ΛL 7→ Z, such that the probability
of each given configuration ϕ is proportional to

exp

(
−β

∑
x∼y
|ϕ(x)− ϕ(y)|

)
,

where β > 0 denotes the inverse temperature, and the sum extends over all pairs of
neighbouring sites in Z2, with the boundary constraint ϕ(y) = 0 for all y ∈ Z2 \ΛL. When
β is larger than some fixed constant, which we assume throughout this discussion, the
surface ϕ with distribution µL is typically flat around height zero with local upward
and downward fluctuations of depth h with density roughly proportional to e−4βh for all
h ∈ N. If the surface is constrained to stay above a hard wall, that is µL is conditioned
on the event {ϕ(x) ≥ 0, x ∈ ΛL}, then it is well known that the wall pushes the surface
globally to a height

H(L) ∼ 1

4β
logL,

see [4, 5]. This phenomenon, known as entropic repulsion, is heuristically explained
as follows: a global shift of the surface from height h− 1 to height h provides room for
downward fluctuations of depth h, which gives a bulk entropic gain of order |ΛL|e−4βh,
while forcing an energy loss proportional to the size of the boundary |∂ΛL|; the surface
then stabilises when energy and entropy balance out, that is when h equals H(L) ∼
1

4β logL.
In [6] it was shown that at equilibrium, the SOS surface above the wall is character-

ized by a uniquely defined ensemble Γ, consisting of the nested macroscopic contours
(closed loops in the dual lattice, within ΛL)

Γ = {γ1 ⊆ · · · ⊆ γn ⊆ ∂ΛL},

where n = H(L), with the interpretation that γh is the (H(L) − h)-th level line of the
surface, so that ϕ grows from at most H(L)− h to at least H(L)− h+ 1 upon crossing
γh. Moreover, it was shown that the contour ensemble satisfies a law of large numbers,
that is if the box ΛL is rescaled to the square Q = [−1, 1]2, then when L → ∞, the
contours concentrate around a limiting shape consisting of infinitely many nested loops
L1 ⊆ L2 ⊆ · · · ⊆ ∂Q. The loops Lh can be identified via constrained Wulff variational
principles: each single Lh is a rescaled Wulff plaquette such as that already studied in
the context of 2D Ising model [22]. A related low temperature SOS-type model which,
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Polymers under geometric area tilts

Figure 1: Left: sketch of the top four nested limiting lines Lh, h = 1, . . . , 4 within the
square Q = [−1, 1]2. The shaded region contains only macroscopically flat portions of
the lines. Right: fluctuations of the lines on a scale of smaller order obtained by zooming
in the shaded region.

under appropriate rescaling, features a stack of identical Wulff plaquettes was studied
in [13].

In our case nested loops Lh are strictly ordered by inclusion. However, apart from
round pieces in the neighbourhood of the four corners of Q (which are different for
different plaquettes Lh-s), all Lh, h ≥ 1, contain flat pieces, where they coincide with
the boundary of Q; see Figure 1. In particular, there exists u ∈ (0, 1) (with u = u(β)→ 1

as β → ∞) such that the portion Iu = [−u, u] × {−1} ⊂ ∂Q of the bottom side of Q is
contained in all loops L1,L2, . . .

To study fluctuations of the level lines of the surface it is then necessary to zoom in
the shaded region from Figure 1 and understand at what rate the contour ensemble Γ

converges to the flat limit there as L→∞. In this direction, it was shown in [6] that the
maximal distance of the top contour γ1 from the bottom boundary of Q is typically of
order L

1
3 +o(1) and that fluctuations of that order appear on every subinterval of length

L
2
3 +o(1), where o(1) denotes a quantity vanishing as L→∞.

In a first attempt, we may approximate the n paths in the above mentioned region by
n ordered height functions Ψ = {ψ1, . . . , ψn} with free endpoints, where ψi : [−L,L] 7→ N,
ψi(x) ≥ ψi+1(x) ≥ 0 for all x; see Figure 1. As discussed in [6], contour analysis based
on cluster expansion techniques shows that the statistical weight of a configuration Ψ of
such lines is essentially given by

exp

(
−

n∑
i=1

[
βE(ψi) +

aλi

L
A(ψi)

])
. (1.1)

Here E(ψi) =
∑
x |ψi(x+1)−ψi(x)| denotes the energy cost of the i-th path, a = a(β) > 0

and λ = λ(β) > 1 are suitable constants, A(ψi) =
∑
x ψi(x) is the area between the

path ψi and the bottom layer at height zero, while the term aλi quantifies the entropic
repulsion felt by the i-th path, which in these new coordinates becomes an effective
attraction to the bottom. In agreement with their mutual order, the attraction felt by the
i-th path is stronger than the attraction felt by the (i− 1)-th path. It should be remarked
that in the description (1.1) we are completely neglecting some nontrivial interaction
terms between the paths ψi, which account for possible weak attractive and repulsive
potentials along the polymer boundaries (pinning effects); while these terms should be
indeed irrelevant if β is sufficiently large, showing that this is actually the case can be a
challenging problem; see [6, 14].
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1.3 Ferrari-Spohn and Dyson-Ferrari-Spohn diffusions.

The expression (1.1) describes a growing number of ordered random walks above a
wall with geometrically growing area tilts. The case of a single walk n = 1 is an effective
random walk model for the critical pre-wetting problem in the 2D Ising model; see
[22, 24]. This case was recently studied in [15], where it was shown in particular that if
` = L

2
3 , then the rescaled path

x(t) =
1√
`
ψ1(t`) , t ∈ R, (1.2)

as L → ∞ converges weakly to the stationary Ferrari-Spohn diffusion, namely the
reversible diffusion process on R+ with potential given by the logarithm of the Airy
function, which was first introduced in [12]. On the other hand, for fixed n, and for λ = 1,
the ensemble of random lines described by (1.1) has been analysed in [17], where it is
shown that the vector of rescaled trajectories

x(t) =
1√
`

(ψ1(t`), . . . , ψn(t`)) , t ∈ R,

converges weakly to the stationary Dyson-Ferrari-Spohn diffusion, that is the determi-
nantal process on Rn+ corresponding to n non-intersecting Ferrari-Spohn diffusions.

1.4 The model and the result.

The case of n ordered random walks with n growing with L (e.g. n ∝ logL as in the
original setting of SOS level lines) and λ > 1 will be the subject of a separate paper.
At this stage it is even unclear whether, under the Ferari-Spohn scaling (1.2), such
ensemble has a meaningful limit. This is precisely the issue which we explore here.
For simplicity, and in order to stress main quantitative features of the phenomenon
under consideration, we shall consider a continuous analogue of the above model, where
discrete random walk paths are replaced by Brownian motion paths. The corresponding
model then becomes the ensemble of non-intersecting Brownian motions Xi ≥ Xi+1 ≥ 0,
i = 1, . . . , n on [−T, T ], for some T > 0, with free endpoints, deformed by the statistical
weight

exp

(
−

n∑
i=1

aλiA(Xi)

)
(1.3)

where a > 0, λ > 1 and A(Xi) =
∫ T
−T Xi(s)ds.

If n = 1 then taking T →∞ one recovers (without further rescaling) the stationary
Ferrari-Spohn diffusion. Similarly, if n is fixed and λ = 1, then T → ∞ yields the
stationary Dyson-Ferrari-Spohn diffusion. The invariant measure of the latter is given by
Slater determinants associated to the eigenfunctions of Airy differential operator with
Dirichlet boundary condition at the origin. As n→∞ there are various (edge, bulk, . . . )
scaling regimes, which were described on the level of the corresponding determinantal
point processes in [2].

In our case; n growing with T and λ > 1, no scaling is needed and the random line
ensemble described by (1.3) will have a very different limiting behavior, and a very
different weak limit which would, with appropriate modifications related to the nature
of area tilts, fall into the framework of N × R-indexed Brownian-Gibbs ensembles as
developed in [9]. Indeed, it seems natural to conjecture that as n → ∞ and T → ∞
(regardless of the order), the process converges to a unique N×R-indexed random line
ensemble, in particular that for every k ∈ N the top k lines X1, . . . , Xk weakly converge
to a stationary k-dimensional process. For the moment, guessing the precise structure
of the limiting process remains an intriguing question. On the other hand, the route to
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proving convergence per se is, in light of the stability results we derive here, rather clear
- see Remark 1.1 following (1.4) below. This issue will be addressed in a forthcoming
separate paper.

Here we focus on deriving uniform stability properties of the system of paths associ-
ated to (1.3) as n, T →∞. Namely, we prove the following strong confinement statement
about the top path X1 (and hence about the whole stack which is sandwiched between
X1 and the wall): Fix ε > 0 and let [·]+ denote the positive part. Then expectations of
curved maxima

sup
T,n

E

(
max

t∈[−T,T ]

[
X1(t)− |t|ε]+

)
<∞, (1.4)

are uniformly bounded in T and n. See Theorem 3.1 for the precise statement.

Remark 1.1. The bound (1.4) paves the way for importing techniques and ideas devel-
oped in [9], in particular for deriving appropriate adjustments of Proposition 3.5 and of
the tightness arguments employed for the proof of Proposition 3.6 of the latter work.
Indeed, fix k ∈ N and an interval (−a, a) and, for n > k and T > a, consider top k paths
X1, . . . , Xk of the line ensemble of n non-intersecting Brownian motions on [−T, T ] under
geometric area tilts (1.3). But then (1.4) means two things: First of all, by Brownian
scaling and stochastic domination - see Subsections 1.5.1 and 1.5.4 below, the height
of the (k + 1)-st path Xk+1 is, uniformly in n and T , under control in the sense that
it sits below a random integrable shift of the appropriate rescaling of tε. Next, given
a realization of Xk+1, the top paths X1, . . . , Xk could be, by Brownian-Gibbs property,
resampled according to Brownian bridge measures modified by exponential weights
(1.3). But these weights are, by the very same (1.4), also subject to a uniform control.
Resampling with respect to reference Brownian bridge measures (that is with zero area
tilts) is precisely the procedure employed for Airy line ensembles in [9]. As a result many
probabilistic estimates could be, up to uniformly bounded corrections, inherited from
the resampling estimates developed in [9].

We proceed with precise notation for the polymer measures we study here.

1.4.1 Notation for underlying Brownian motion and Brownian bridges.

In the sequel we shall use the same notation for path measures of underlying Brownian
motion and Brownian bridges and for expectations with respect to these path measures.
For S < T and x ∈ R, let PxS,T be the path measure of the Brownian motion X on [S, T ]

which starts at x at time S; X(S) = x. We can record PxS,T as follows:

PxS,T (F (X)) =

∫
Bx,y
S,T (F (X)) dy (1.5)

where Bx,y
S,T the unnormalized path measure of the Brownian bridge X on [S, T ] which

starts at x at time S and ends at y at time T ; X(S) = x, X(T ) = y. In this notation

Bx,y
S,T (1) = 1√

2π(T−S)
e−

(y−x)2
2(T−S) .

For an n-tuple x ∈ Rn, set

P
x
S,T = Px1

S,T ⊗Px2

S,T ⊗ · · · ⊗PxnS,T .

Similarly for n-tuples x, y ∈ Rn, set

B
x,y

S,T = Bx1,y1
S,T ⊗Bx2,y2

S,T ⊗ · · · ⊗Bxn,yn
S,T .

For symmetric intervals S = −T we shall employ a reduced notation P
x
T , B

x,y

T and so on.

EJP 24 (2019), paper 37.
Page 5/21

http://www.imstat.org/ejp/

https://doi.org/10.1214/19-EJP283
http://www.imstat.org/ejp/


Polymers under geometric area tilts

1.4.2 Partition functions and polymer measures with geometric area tilts.

Given a function h, the signed h-area under the trajectory of X is defined as

AhS,T (X) =

∫ T

S

h(t)X(t)dt. (1.6)

We shall drop the superscript if h ≡ 1 and use AS,T (X) accordingly. For n ∈ N define

A+
n = {x ∈ Rn : x1 > · · · > xn > 0}. (1.7)

Polymer measures which we consider in the sequel are always concentrated on the set
Ω+
n,S,T of n-tuples X,

Ω+
n,S,T =

{
X : X(t) ∈ A+

n ∀ t ∈ [S, T ]
}
. (1.8)

Following our convention we shall write Ω+
n,T = Ω+

n,−T,T .
Given n ≥ 1, a > 0 and λ > 1 consider now the partition functions

Z
x,y

n,T (a, λ)
∆
= B

x,y

T

(
1Ω+

n,T
e−

∑n
i=1 aλ

i−1AT (Xi)
)

and

Zn,T (a, λ)
∆
=

∫
A

+
n

∫
A

+
n

Z
x,y

n,T (a, λ)dxdy.

(1.9)

Partition functions Zn,T (a, λ) give rise to polymer measures Pn,T [· |a, λ]. with geo-
metric area tilts ρi ≡ aλi−1. Namely,

Pn,T [F (X) |a, λ]
∆
=

1

Zn,T (a, λ)

∫
A

+
n

∫
A

+
n

B
x,y

T

(
F (X)1Ω+

n,T
e−

∑n
i=1A

ρi
T (Xi)

)
dxdy. (1.10)

1.4.3 Main result.

The main result of this note could be formulated as follows:

Theorem 1.2. Let Pn,T [· |a, λ] be the (one-dimensional) distribution of the position of
the top path X1(0) under Pn,T [· |a, λ]. That is

Pn,T [f(X) |a, λ] = Pn,T [f(X1(0)) |a, λ] ,

for bounded measurable f : R 7→ R. Then for any fixed a > 0 and λ > 1 the family of
one-dimensional distributions {Pn,T [· |a, λ]}n,T is tight. In other words the top path does
not fly away as the number of polymers and the length of their horizontal span grow.

Theorem 1.2 is an immediate consequence of a much stronger confinement statement
for the curved maximum of the whole path - see Theorem 3.1 below.

1.5 Structure of the proof.

The proof is built upon a recursion which relies on the Brownian scaling and on
stochastic domination for (a more general class of) polymers with area tilts:

1.5.1 Brownian scaling.

Consider the following mapping of an n-tuple X of paths on an interval [−λ2/3T, λ2/3T ]

to n-tuple Y of paths on [−T, T ]:

Y (·) =
1

λ1/3
X(λ2/3·). (1.11)

The next lemma states that if Y is related to X via (1.11), then Y has distribution
Pn,T [· |aλ, λ] if and only if X has distribution Pn,Tλ2/3 [· |a, λ].
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Lemma 1.3. For all n, T , a, λ, and x, y

Z
x,y

n,Tλ2/3(a, λ) = λ−
n
3 Z

λ−1/3x,λ−1/3y

n,T (aλ, λ). (1.12)

Furthermore, for any bounded measurable function F on Ω+
n,T ,

Pn,T [F (X) |aλ, λ] = Pn,Tλ2/3

[
F (X(λ2/3)) |a, λ

]
, (1.13)

where X(λ2/3)(·) = 1
λ1/3X(λ2/3·).

Proof. For any γ > 0, consider the map Ω+
n,γT 7→ Ω+

n,T defined by

X(γ)(t) = γ−
1
2X(γt) , t ∈ [−T, T ].

The normalized Brownian bridge ensemble

Γ
x,y

T =
B
x,y

T

B
x,y

T (1)

has the Brownian scaling property:

Γ
x,y

γT [G(X(γ))] = Γ
γ−

1
2 x,γ−

1
2 y

T [G(X)] , γ > 0, (1.14)

where G is any bounded measurable function on Ω+
n,T . We apply (1.14) with

G(X) = 1Ω+
n,T

(X) e−
∑n

1 aλ
i−1AT (Xi),

and γ = λ2/3. Since, the area under the path scales as

1

λ

∫ Tλ2/3

−Tλ2/3

Xi(t)dt =

∫ T

−T

Xi(tλ
2/3)

λ1/3
dt,

this yields (1.12). The proof of (1.13) is similar, with

G(X) = F (X)1Ω+
n,T

(X) e−
∑n

1 aλ
i−1AT (Xi).

1.5.2 A general class of polymers with area tilts.

Let us say that two continuous1 functions f and g on [−T, T ] satisfy f ≺ g if f(t) ≤ g(t)

for any t ∈ [−T, T ]. By construction, if X ∈ Ω+
n,T , then 0 ≺ Xn ≺ Xn−1 ≺ · · · ≺ X1. For

every n ∈ N and T > 0, let us consider the following general class P
x,y

n,T

[
·|h−, h+, ρ

]
of

polymer measures which is parametrized by:

a Boundary conditions x, y ∈ A+
n .

b Two non-negative continuous functions h− ≺ h+ on [−T, T ], which are called the floor
h− and the ceiling h+.

c A tuple of n (not necessarily ordered) positive continuous functions ρ = {ρ1, . . . , ρn}
which are called area tilts.

1Here and below the assumption of continuity is for convenience.
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Then, setting
Ω
h
n,T = Ω+

n,T ∩ {h− ≺ Xn} ∩ {X1 ≺ h+} , (1.15)

define:
P
x,y

n,T

[
dX|h−, h+, ρ

]
∝ e−

∑n
1 A

ρi
T (Xi)1

Ω
h
n,T

B
x,y

T (dX) . (1.16)

The corresponding partition function is denoted Z
x,y

n,T (h−, h+, ρ).
There is a version of (1.16) which permits more general boundary conditions: Let

ν and η be n-tuples of functions on R+. For x ∈ A+
n set ν(x) =

∑n
1 νi(xi), and η(x) =∑n

1 ηi(xi). Similarly, set AρT (X) =
∑n

1 A
ρi
T (Xi). Then,

P
ν,η

n,T

[
dX|h−, h+, ρ

]
∝
∫
A

+
n

∫
A

+
n

e−A
ρ

T (X)1
Ω
h
n,T

(X) e−ν(x)B
x,y

T (dX) e−η(y)dxdy. (1.17)

The corresponding partition function is denoted Zη,νn,T (h−, h+, ρ). This notation could be
made formally compatible with (1.9) as follows: if we define

δx(y) =

{
∞ if y 6= x

0 if y = x

and, for a tuple x define the n-tuple δx = {δx1
, . . . , δxn}, then

Z
x,y

n,T (h−, h+, ρ) = Zδx,δyn,T (h−, h+, ρ).

1.5.3 Reduced notation.

In the sequel we shall, unless this creates a confusion, employ the following reduced
notation: If η, ν are identically zero, we shall drop them from the notation. We refer
to this as the case of free (or empty) boundary conditions. Similarly we shall drop
from the notation the floor h− whenever h− ≡ 0 and the ceiling h+ whenever h+ ≡ ∞.
Furthermore, we shall write a, λ instead of ρ whenever ρ =

{
a, aλ, . . . , aλn−1

}
. Finally

we shall drop n whenever talking about just one polymer, n = 1. In this way we make
new notation compatible with (1.10). For instance Pn,T

[
·
∣∣h+, a, λ

]
is the measure in

(1.17) with empty boundary conditions and ceiling h+.
Below we shall tacitly assume that boundary conditions ν, η are chosen in such

a way that the corresponding polymer measures are well defined. In Appendix A
this assumption will be justified for a class of boundary conditions ν, η, including free
boundary conditions.

1.5.4 Stochastic domination.

Equip Ω+
n,T with the partial order ≺, defined by

X ≺ Y iff Xi ≺ Yi , for all i,

and let
FKG
≺ denote the associated notion of stochastic domination of probability measures.

Lemma 1.4. For any n and T , h− ≺ g−, h+ ≺ g+, ρ � κ, the following holds. If, x ≺ u

and y ≺ v, then

P
x,y

n,T

[
·|h−, h+, ρ

] FKG
≺ P

u,v
n,T [·|g−, g+, κ] . (1.18)

Moreover, for an n-tuple χ = {χ1, . . . , χn} of smooth boundary condition let χ′ be the
n-tuple of corresponding first derivatives. Then,

P
ξ,ζ

n,T

[
·|h−, h+, ρ

] FKG
≺ P

ν,η

n,T [·|g−, g+, κ] , (1.19)
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whenever, h− ≺ g−, h+ ≺ g+, ρ � κ and, both ξ′ � ν′ and ζ ′ � η′. In particular, (1.19)
holds if ξ = ν and ζ = η (by approximation without any assumptions on smoothness).

The proof of Lemma 1.4 is given in Section B below.

1.5.5 A recursion.

Consider our polymer measure Pn+1,T [· |a, λ]. Let us record X = (X1, X̃), where X̃ =

(X2, . . . , Xn+1). It is easy to see that the conditional, on X1, distribution of X̃ is precisely
Pn,T [·|X1, aλ, λ] with ceiling X1 — see Subsection 1.5.3. By (1.19) it is stochastically
dominated by Pn,T [·|aλ, λ]. Therefore, if F is a non-decreasing function on Ω+

n,T ,

En+1,T

[
F (X̃)|a, λ

]
≤ En,T [F (X)|aλ, λ] . (1.20)

Let f be a non-decreasing functional of X1. Then, conditioning on X2,

En+1,T

[
f(X1)

∣∣X2 | a, λ
]

= ET
[
f(X)

∣∣X2, a
]

(1.21)

is, by (1.19), a non-decreasing functional of the floor X2. Applying (1.20) with F (X̃) =

ET
[
f(X)

∣∣X2, a
]

and then using the scaling property (1.13), this means:

En+1,T [f(X1)|a, λ] ≤ En,T
[
ET
[
f(X)

∣∣X1, a
] ∣∣aλ, λ]

(1.13)
= En,Tλ2/3

[
ET

[
f(X)

∣∣ X1(λ2/3·)
λ1/3

, a

] ∣∣a, λ] . (1.22)

Inequality (1.22) sets up the stage for various recursions which eventually lead to
tightness statements like the one formulated in Theorem 1.2. In particular, a natural
choice of f(X) = maxt∈[−T,T ]X(t) in (1.22) leads to a proof of tightness (in n) of the
maxima for each T fixed, but clearly is not suitable for proving tightness uniformly in T .
In order to prove Theorem 1.2 we introduce a kind of curved maximum, and use (1.22)
to control it uniformly in n and T . Both the usual and the curved maxima are discussed
in the subsequent sections.

Remark 1.5. Let us also remark that the above reasoning can be used to control the
height of the k-th path Xk in terms of the top path X1. Indeed, as in (1.20) one has
that Xk+1 under Pn,T [·|a, λ] is stochastically dominated by Xk under Pn−1,T [·|aλ, λ].
Iterating, it follows that Xk+1 under Pn,T [·|a, λ] is stochastically dominated by X1 un-
der Pn−k,T

[
·|aλk, λ

]
. By (1.13) therefore Xk+1(·) under Pn,T [·|a, λ] is stochastically

dominated by λ−k/3X1

(
λ2k/3·

)
where X1 has law Pn−k,Tλ2k/3 [·|a, λ].

In implementing the recursions, we shall repeatedly use the following easy fact,
which crucially depends on the linear structure of area tilts:

Lemma 1.6. For any number ξ > 0, any tilt ρ and any floor h, the distribution of (Y − ξ),
when Y is distributed according to PT [·|ξ + h, ρ], is the same as the distribution of Y
under PT [·|h, ρ].

Indeed, in view of the spatial translation invariance of Brownian bridge measures,

Bx+ξ,y+ξ
T

(
F (Y − ξ)1{Y�ξ+h}e−A

ρ
T (Y )

)
= e−ξ

∫ T
−T ρ(t)dtBx,y

T

(
F (Y )1{Y�h}e

−AρT (Y )
)
.

for any x > h(−T ), y > h(T ) and any bounded measurable functional F .

2 Tightness of maxima.

In this section we shall prove the following proposition, which can be considered as a
warm-up towards the much stronger statement of Theorem 3.1 below:
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Proposition 2.1. For any a > 0, λ > 1 and T fixed, there exists a constant C(a, λ, T )

such that

lim
n→∞

En,T

[
max

t∈[−T,T ]
X1(t)

∣∣ a, λ] = C(a, λ, T ) <∞. (2.1)

Proof. Define

Mn,T (a, λ)
∆
= En,T

[
max

t∈[−T,T ]
X1(t)

∣∣ a, λ] . (2.2)

When n = 1, we simply write MT (a) for M1,T (a, λ). Clearly, MT (a) <∞ for all a, T > 0.
As in the first line of (1.22) we obtain

Mn+1,T (a, λ) ≤ En,T
[
ET

[
max

t∈[−T,T ]
X(t)

∣∣X1, a

] ∣∣ aλ, λ] . (2.3)

Using stochastic domination and the remark at the end of Section 1.5.5, we may replace
the floor X1 by the constant floor ξ = maxt∈[−T,T ]X1(t) to obtain

ET

[
max

t∈[−T,T ]
X(t)

∣∣X1, a

]
≤MT (a) + max

t∈[−T,T ]
X1(t).

Thus (2.3) implies the recursive estimate

Mn+1,T (a, λ) ≤MT (a) +Mn,T (aλ, λ). (2.4)

Iterating, for any n ∈ N:

Mn,T (a, λ) ≤
n−1∑
k=0

MT (aλk). (2.5)

Stochastic domination implies also that the sequence Mn,T (a, λ) is monotone in n and
therefore

lim
n→∞

Mn,T (a, λ) = sup
n∈N

Mn,T (a, λ) ≤
∞∑
k=0

MT (aλk). (2.6)

From the scaling relation (1.13):

MT (b) =
1

b1/3
MTb2/3(1) , b > 0. (2.7)

From (2.7) it follows that the sum in (2.6) is finite if e.g.

MT (1) ≤ CTα , (2.8)

for some constants C > 0, α ∈ (0, 1
2 ), for all T ≥ 1. The bound (2.8) can be derived

from the explicit representation (A.4) for the partition functions. Since we prove much
stronger estimates in the next section we omit the details here. Notice in particular that
the argument for the estimate (3.27) below actually allows us to prove that

MT (1) ≤ C log(1 + T ), (2.9)

for all T ≥ 1.
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ξTϕ (h)

ξTϕ (h) + ϕ(t)

h(t)

t T−T
Figure 2: The curved maximum ξϕ.

3 Curved maximum and Uniform tightness.

Let us start with explaining our notion of curved maxima. Let ϕ(t) = |t|α with
α ∈ (0, 1

2 ). Given a continuous function h on [−T, T ] define (see Figure 2)

ξTϕ (h) = min {y ≥ 0 : y + ϕ � h} = max
t∈[−T,T ]

[h(t)− ϕ(t)]
+
. (3.1)

Informally, ξTϕ (h) is the minimal amount to lift ϕ so that it will stay above h. We think of
ξTϕ (h) in terms of the curved maximum of h on [−T, T ].

Theorem 1.2 is an immediate consequence of the following result which fetches a
uniform control over expected values of curved maxima of top paths in the ensembles in
question:

Theorem 3.1. Consider the curved maximum ξTϕ defined in (3.1). Then,

sup
T

max
n
En,T

[
ξTϕ (X1)|a, λ

]
<∞ (3.2)

for any a > 0, λ > 1 and α ∈ (0, 1
2 ).

Our proof of Theorem 3.1 comprises several steps. The first one is a reduction to the
key fact (3.8) below, about single polymers above concave floors.

3.1 Reduction to a statement about single polymers above concave floors

The functional h 7→ ξTϕ (h) is increasing, and we can take advantage of (1.22):

En+1,T

[
ξTϕ (X1)

∣∣a, λ] ≤ En,λ2/3T

[
ET

[
ξTϕ (Y )

∣∣ X1(λ2/3·)
λ1/3

, a

] ∣∣a, λ] . (3.3)

Set

ϕλ(t) =
1

λ1/3
ϕ
(
λ2/3t

)
=

1

λ
1
3 (1−2α)

ϕ(t) =:
1

λβ
ϕ(t). (3.4)

By the definition of ξTϕ ,

1

λ1/3
X1(λ2/3t) ≤ 1

λ1/3

(
ξTλ

2/3

ϕ (X1) + ϕ(λ2/3t)
)

=
1

λ1/3
ξTλ

2/3

ϕ (X1) + ϕλ(t). (3.5)
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Hence, the stochastic domination (1.19) implies

ET

[
ξTϕ (Y )

∣∣ X1(λ2/3·)
λ1/3

, a

]
≤ ET

[
ξTϕ (Y )

∣∣ ξTλ2/3

ϕ (X1)

λ1/3
+ ϕλ, a

]
=
ξTλ

2/3

ϕ (X1)

λ1/3
+ ET

[
ξTϕ (Y )

∣∣ϕλ, a] . (3.6)

In the last equality above we relied on the linearity of area tilts, see the observation at
the end of Section 1.5.5. Going back to (3.3) we conclude:

En+1,T

[
ξTϕ (X1)

∣∣a, λ] ≤ 1

λ1/3
En,Tλ2/3

[
ξTλ

2/3

ϕ (X1)
∣∣a, λ]+ ET

[
ξTϕ (Y )

∣∣ϕλ, a] . (3.7)

ξTϕ (Y )

ξTϕ (Y ) + ϕ(t)

Y (t)

ϕλ(t)

t T−T
Figure 3: Path Y and ξTϕ (Y ) under ET

[
·
∣∣ϕλ, a].

Consider

mn = mn(a, λ)
∆
= sup

T
En,T

[
ξTϕ (X1)|a, λ

]
.

If m1 <∞, then (3.7) implies that

mn+1 ≤
1

λ1/3
mn + sup

T
ET
[
ξTϕ (Y )

∣∣ϕλ, a] .
Hence (3.2) follows as soon as we shall check (see Figure 3) that

m1(a, λ) ≤ sup
T
ET
[
ξTϕ (Y )

∣∣ϕλ, a] <∞. (3.8)

Since ξTϕ (·) is monotone increasing, the first inequality in (3.8) follows by stochastic
domination (1.19). The key point is to prove the second uniform bound (3.8).

In the sequel we shall, without loss of generality in view of Brownian scaling, assume
that a = 1 and, accordingly, shall drop it from all the notation. For instance, ET

[
·
∣∣ϕλ, a]

becomes ET
[
·
∣∣ϕλ], and the corresponding partition function is recorded as ZT (ϕλ).

Moreover, we drop the superscript T and write ξϕ for ξTϕ .
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3.2 Straightening of the boundary and Girsanov transform

The idea to use Girsanov’s transform appeared in [21]. The floor should be smooth,
and the singularity of ϕλ at zero is a nuisance. However, by (1.19) the bound

sup
T
ET
[
ξϕ(Y )

∣∣h] <∞. (3.9)

with any h � ϕλ implies (3.8). We shall take a smooth symmetric h = hλ � ϕλ in such a
way that:

ϕ− hλ is monotone on R+, hλ = ϕλ outside some [−T0, T0] and max
t
h′′λ(t) ≤ 1

2
. (3.10)

Recall that

PT
[
·
∣∣h] =

1

ZT (h)

∫ ∞
h(−T )

∫ ∞
h(T )

Bx,y
T

(
· ; e−AT (X)1h≺X

)
dydx

=
1

ZT (h)

∫ ∞
h(−T )

PxT

(
· ; e−AT (X)1h≺X

)
dx,

(3.11)

where PxT is the law of Brownian motion X on [−T, T ] which starts at x at time −T .
We are going to derive a representation of ZT (h) and, accordingly, of PT [·|h] in terms

of polymers over flat wall, but with different tilts and boundary conditions. It, therefore,
makes sense to stress full names for boundary conditions, floors and tilts. So, according
to the notation introduced in (1.17), we are going to derive a representation of the
quantities Z0,0

T (h, 1) and P0,0
T [·|h, 1] corresponding to empty boundary conditions.

Define U(t) = Y (t)− h(t) and u = x− h(−T ). Thus U satisfies the SDE

dU(t) = dY (t)− h′(t)dt, U(−T ) = u.

By Girsanov (used in the second equality below),

eAT (h)PxT

(
e−AT (X)1X�h

)
= PuT

(
e−AT (U)1ΩT+

(U)
)

= PuT

(
e−

∫ T
−T h

′(t)dX(t)− 1
2

∫ T
−T (h′(t))

2
dt−AT (X)1Ω+

T
(X)

)
.

(3.12)

In the last line above X is a PuT -Brownian motion. Under PuT ,∫ T

−T
h′(t)dX(t) = Xh′

∣∣∣T
−T
−
∫ T

−T
X(t)h′′(t)dt.

Putting things together we conclude: Set

νT (u) = h′(T )u = −h′(−T )u. (3.13)

Then,
eAT (h+ 1

2 (h′)2)Z0,0
T (h, 1) = ZνT ,νTT (0, 1− h′′). (3.14)

A completely similar computation implies that the distribution of Y under P0,0
T [·|h, 1]

can be represented as the distribution of X + h = X + hλ where X has distribution
P
νT ,νT
T [·|0, 1− h′′]. Since for Y = X + hλ,

ξϕ(Y ) = inf {ξ ≥ 0 : Y ≺ ξ + ϕ} = ξϕ−hλ(X)
∆
= ξψλ(X), (3.15)

we conclude that one can rewrite the expression in our target (3.9) as

sup
T
E
νT ,νT
T

[
ξψλ(Y )

∣∣0, 1− h′′] .
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Since, by construction, 1− h′′ ≥ 1
2 , the stochastic domination (1.19) enables a reduction

to:

sup
T
E
νT ,νT
T

[
ξψλ(Y )

∣∣0, 1

2

]
<∞. (3.16)

Furthermore, since by construction, h′(T ) > 0 for all T large enough, the second part of
Lemma 1.4 implies that (3.16) will follow from

sup
T
ET

[
ξψλ(Y )

∣∣0, 1

2

]
<∞, (3.17)

which corresponds to empty boundary conditions. For the rest we shall focus on proving
(3.17).

3.3 Proof of (3.17)

We start with some useful estimates for the partition functions

Zx,y0,t := Zx,y0,t (0,∞, 1/2).

Here and for the rest of this proof, with slight abuse of notation we adopt the convention
that if a is omitted from the notation then it corresponds to the case a = 1

2 .
First of all note, that for any a > 0 the heat kernel Zx,y0,t (0,∞, a) has the following

expansion: Let κa0 , κ
a
1 , . . . be the normalized (Dirichlet) eigenfunctions of d2

2dx2 − ax on
L2 (R+), and let 0 > −λ0 > −λ1 > . . . be the corresponding eigenvalues. Of course
λ` = a

bω` and κa` ∝ Ai (bx− ω`), where 0 > −ω0 > −ω1 > · · · are zeroes of Airy
function Ai, and b = 3

√
2a. Then, see e.g. Problem 1 in Chapter 9 of [7], {κa`} is a

complete orthonormal system, and by Riesz-Fisher and the elementary spectral theory
the (Dirichlet) heat kernel

Zx,y0,t =

∞∑
m=0

e−λmtκm(x)κm(y), (3.18)

where we used the shortcut κ` = κa` for a = 1/2. The eigenfunctions κm(x) are uniformly
bounded. Furthermore, it is known that zeros of the Airy function decrease relatively
fast: ωk ∼ ck2/3 as k →∞; see e.g. (10.4.94) of the 9th edition of [1]. These facts allow
one to conclude that, uniformly in t ≥ t0 > 0,

max
x,y

Zx,y0,t ≤ max
m
‖κm‖2∞

∞∑
m=0

e−λmt ≤ C(t0)e−λ0t. (3.19)

Note that if the path X(s) starting at x does not go below x/2 then the corresponding
area is greater than xt/2. Therefore,∫ ∞

0

Zx,y0,t dy ≤ e−xt/4 + Px0,t

(
min
s≤t

X(s) < x/2

)
.

Using standard bound for the tail of the normal distribution, we conclude that there exist
t0 > 0 and γ = γ(t0) > 0 such that ∫ ∞

0

Zx,y0,t0
dy ≤ e−γx (3.20)

for any x > 0. Combining (3.19) and (3.20), we obtain

Zx,y0,t =

∫ ∞
0

∫ ∞
0

Zx,u0,t0
Zu,v0,t−2t0

Zv,y0,t0
dudv

≤ C(t0)e−λ0(t−2t0)

∫ ∞
0

∫ ∞
0

Zx,u0,t0
Zv,y0,t0

dudv

≤ C1(t0)e−λ0te−γ(x+y), t ≥ 3t0. (3.21)
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It follows from the representation (3.18) that

lim
t→∞

eλ0tZx,y0,t = κ0(x)κ0(y)

uniformly on compact subsets of (0,∞)2. Combining this with (3.21) one can easily
obtain

lim
T→∞

e2λ0TZT =

(∫ ∞
0

κ0(x)dx

)2

. (3.22)

We now derive an upper bound for the tail of the random variable ξψ, where ψ = ψλ =

ϕ−hλ. By (3.10) and (3.4) ψ is a symmetric function, it is monotone on R+, and it equals

to λβ−1
λβ

ϕ outside [−T0, T0].
Due to the symmetry of the function ψ,

PT (ξψ(Y ) > r) ≤ 2PT (Y (t) > ψ(t) + r for some t ∈ [0, T ]) .

There is no loss of generality to assume that T ∈ N.
Splitting [0, T ] into intervals of unit length and using the monotonicity of ψ, we get

PT (ξψ(Y ) > r) ≤ 2

T−1∑
k=0

PT

(
max

t∈[k,k+1]
Y (t) > ψ(k) + r

)
. (3.23)

For every k < T − 1 one has

PT

(
max

t∈[k,k+1]
Y (t) > ψ(k) + r

)
=

1

ZT

∫ ∞
0

∫ ∞
0

Z0,δx
0,T+kQ

x,y
k (r)Zδy,00,T−k−1dxdy, (3.24)

where

Qx,yk (r) = Bx,y
k,k+1

(
e−

1
2Ak,k+1(Y ); max

t∈[k,k+1]
Y (t) > ψ(k) + r;1Ω+(Y )

)
.

It is immediate from (3.21) that

Z0,δx
0,T+k ≤ Ce

−λ0(T+k)e−γx and Zδy,00,T−k−1 ≤ Ce
−λ0(T−k−1)e−γy. (3.25)

Applying these estimates and (3.22) to the corresponding terms in (3.24), we obtain

PT

(
max

t∈[k,k+1]
Y (t) > ψ(k) + r

)
≤ C

∫ ∞
0

∫ ∞
0

Qx,yk (r)e−γ(x+y)dxdy, k < T − 1. (3.26)

Set g(t) = (2π)−
1
2 e−t

2/2 and recall that Bx,y
0,1 (1) = g(y − x). By symmetry, we may assume

without loss of generality that x ≤ y. By the reflection principle for the Brownian bridge,

Qx,yk (r) ≤ Bx,y
k,k+1

(
max

t∈[k,k+1]
Y (t) > ψ(k) + r

)
=

{
g(y − x), y > ψ(k) + r,

g(y − 2ψ(k)− 2r + x), y ≤ ψ(k) + r.

Therefore,∫ ∞
0

Qx,yk (r)dr ≤
∫ (y−ψ(k))+

0

g(y − x)dr +

∫ ∞
(y−ψ(k))+

g(y − 2ψ(k)− 2r + x)dr

= (y − ψ(k))+g(y − x) +
1

2

∫ ∞
2ψ(k)+2(y−ψ(k))+−x−y

g(z)dz

≤ (y − ψ(k))+ +
1

2
1{y > ψ(k)/2}+ C e−ψ

2(k)/2.
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Combining this with (3.26), we conclude that∫ ∞
0

PT

(
max

t∈[k,k+1]
Y (t) > ψ(k) + r

)
dr ≤ Ce−γψ(k)/2, k < T − 1.

Since ψ(x) grows sufficiently fast, we conclude that, uniformly in T ,

T−2∑
k=0

∫ ∞
0

PT

(
max

t∈[k,k+1]
Y (t) > ψ(k) + r

)
dr ≤ C. (3.27)

For k = T − 1 one has

PT

(
max

t∈[T−1,T ]
Y (t) > ψ(T − 1) + r

)
=

1

ZT

∫ ∞
0

∫ ∞
0

Z0,δx
0,2T−1Q

x,y
T−1(r)dxdy.

Using (3.22) and (3.25), we get

PT

(
max

t∈[T−1,T ]
Y (t) > ψ(T − 1) + r

)
≤ C

∫ ∞
0

∫ ∞
0

e−γxQx,yT−1(r)dxdy. (3.28)

We infer from the definition of Qx,yT−1(r) that∫ ∞
0

Qx,yT−1(r)dy ≤ PxT−1,T

(
max

t∈[T−1,T ]
Y (t) > ψ(T − 1) + r

)
.

Integarting now over r, we obtain∫ ∞
0

∫ ∞
0

Qx,yT−1(r)dydr ≤
∫ ∞

0

P0
0,1

(
max
t∈[0,1]

Y (t) > ψ(T − 1)− x+ r

)
dr

≤ (x− ψ(T − 1))+ + 2

∫ ∞
(ψ(T−1)−x)+

P0
0,1 (Y (1) > r) dr

≤ (x− ψ(T − 1))+ + g(ψ(T − 1)− x)+).

Integrating (3.28) over r and applying the latter bound, we arrive at∫ ∞
0

PT

(
max

t∈[T−1,T ]
Y (t) > ψ(T − 1) + r

)
dr ≤ Ce−γψ(T−1)/2. (3.29)

It remains to note that (3.17) is immediate from (3.23), (3.27) and (3.29).

A Polymer measures are well defined

We shall describe conditions under which probability measures in (1.16) are well de-
fined, or, equivalently, under which the corresponding partition functions Z

x,y

n,T (h−, h+, ρ)

are finite. Define the minimal tilt on the interval [−T, T ] as

a = aT = min
k

min
t∈[−T,T ]

ρk(t) > 0. (A.1)

and let a be the corresponding tuple of constant functions. Evidently,

Z
x,y

n,T (h−, h+, ρ) ≤ Zx,yn,T (0,∞, a)

Define u = {x1, . . . , xn−1} and v = {y1, . . . , yn−1} and assume that Zu,vn−1,T (0,∞, a) < ∞.
Then,

Z
x,y

n,T (0,∞, a) = Z
u,v
n−1,T (0,∞, a) · Eu,vn−1,T

[
Bxn,yn
T

(
e−aAT (Y )10≺Y≺Xn−1

) ∣∣ 0,∞, a]
≤ Zu,vn−1,T (0,∞, a)Zxn,ynT (0,∞, a) ≤ · · · ≤

n∏
1

Zxk,ykT (0,∞, a),
(A.2)
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where the first inequality above folows by removing the constraint Y ≺ Xn−1.
Consequently, general partition functions in (1.17) may be bounded above as

Zν,ηn,T (h−, h+, ρ) ≤
n∏
k=1

(∫ ∞
0

∫ ∞
0

e−νk(x)Zx,yT (0,∞, a)e−ηk(y)dxdy

)
. (A.3)

As it was already briefly explained in the paragraph preceding (3.18), the kernel
Zx,yT (0,∞, a) has the following expansion:

Zx,yT (0,∞, a) =

∞∑
0

e−2λ`Tκa` (x)κa` (y). (A.4)

We, therefore, conclude:

Lemma A.1. Consider (A.1). Let κ0, κ1, . . . be the normalized eigenfunctions of d2

2dx2 −ax
on L2 (R+), and let 0 > −λ0 > −λ1 > . . . be the corresponding eigenvalues. Assume that

∞∑
`=0

e−2λ`T

(∫
e−νk(x)κ`(x)dx

)(∫
e−ηk(y)κ`(y)dy

)
<∞

is absolutely convergent for every k = 1, . . . , n. Then, P
ν,η

n,T

[
·
∣∣h−, h+, ρ

]
in (1.17) is well

defined. In particular, it is well defined whenever e−νk -s and e−ηk -s belong to L2(R+),
and, since limy→−∞

∫∞
y

Ai(x)dx exists and finite, the measures Pn,T
[
·
∣∣h−, h+, ρ

]
are

well defined also in the case of empty boundary conditions ν, η = 0.

B Proof of the stochastic domination lemma

Proof of Lemma 1.4. As in the proof of Lemma 2.6 in [9] we construct a coupling for
discrete random walk ensembles via Markov chains and then obtain the desired result by
appealing to the invariance principle. The presence of area tilts and boundary conditions
makes our setting slightly different from that of [9]. For completeness we provide the
details below.

We start with the case of fixed boundary conditions (1.18). For each N,n ∈ N,
let TN = bTNc, and consider vectors of integers xN = (xN,1, . . . , xN,n) and y

N
=

(yN,1, . . . , yN,n), such that, as N → ∞, 1√
N
xN,i = (1 + o(1))xi,

1√
N
yN,i = (1 + o(1))yi,

for i = 1, . . . , n. Given the floor and ceiling functions h±, consider height functions hN,±
such that 1√

N
hN,±(k) = (1 + o(1))h±(k/N), uniformly in k ∈ {−TN , . . . , TN}. Let Ω(N,n)

denote the set of vectors W = (W1, . . . ,Wn) where Wi denotes a lattice path {Wi(k) ∈
Z, k = −TN , . . . , TN} satisfying |Wi(k + 1) −W (k)| = 1 for all k ∈ {−TN , . . . , TN − 1}
and such that 0 ≤Wi+1(k) < Wi(k) for all i, k. Finally, let P

x,y

N,n,T

[
·|h−, h+, ρ

]
denote the

probability measure on Ω(N,n) associated to the partition function∑
W∈Ω(N,n)

1W (−TN )=xN ,W (TN )=y
N
1W1≤hN,+1hN,−≤Wn

e
− 1

N3/2

∑n
1 Aρi,N (Wi),

where

Aρi,N (Wi) =

TN∑
k=−TN

ρi(k/N)Wi(k).

Next, define the rescaled paths ŴN (t) = 1√
N
W (tN), t ∈ [−T, T ], where the value of W

at non-integer points is defined by linear interpolation. Call P̂
x,y

N,n,T

[
·|h−, h+, ρ

]
the law

of the continuous paths ŴN induced by P
x,y

N,n,T

[
·|h−, h+, ρ

]
. Since for all i, the Riemann

sum
1

N3/2
Aρi,N (Wi) =

1

N

TN∑
k=−TN

ρi(k/N)ŴN,i(k/N)
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approximates the integral
∫ T
−T ρi(t)ŴN,i(t)dt, the invariance principle implies that for all

fixed n, T , the probability measures P̂
x,y

N,n,T

[
·|h−, h+, ρ

]
converge weakly as N → ∞ to

the probability measure P
x,y

n,T

[
·|h−, h+, ρ

]
.

The same construction can be repeated for the measure Pu,vn,T [·|g−, g+, κ]. It is not
hard to check that, under the current assumptions, the sequences xN , yN , uN , vN and
hN,±, gN,± associated to the given boundary data can be chosen in such a way that, for
all N large enough:

• hN,±(k) ≤ gN,±(k) for all k = −TN , . . . , TN ;

• for every i, xN,i ≤ uN,i, and yN,i ≤ vN,i;
• for every i, xN,i and uN,i are integers with the same parity, and the same applies to
yN,i, vN,i;

• the set of W ∈ Ω(N,n) satisfying the boundary constraints

W (−TN ) = xN , W (TN ) = y
N
, W1 ≤ hN,+, hN,− ≤Wn,

is not empty, and the same applies with uN , vN and gN,±.

Then, the desired statement

P
x,y

n,T

[
·|h−, h+, ρ

] FKG
≺ P

u,v
n,T [·|g−, g+, κ] ,

follows if, for all large enough N , we can construct a coupling (W,W ′) on Ω(N,n) ×
Ω(N,n) of the probability measures P

x,y

N,n,T

[
·|h−, h+, ρ

]
and Pu,vN,n,T [·|g−, g+, κ] such that

with probability one for each i = 1, . . . , n, k = −TN , . . . , TN one has Wi(k) ≤W ′i (k).
The coupling (W,W ′) is defined as a limit of Markov chain couplings. We consider

the heat bath chain for the discrete polymer ensemble. This is the discrete time Markov
chain on Ω(N,n) such that at each time step a vertex k ∈ {−TN + 1, . . . , TN −1}, an index
i ∈ {1, . . . , n}, and a real number U ∈ [0, 1] are picked independently and uniformly at
random; if Wi(k − 1) 6= Wi(k + 1) then nothing happens; if Wi(k − 1) = Wi(k + 1), then
Wi(k) is replaced by Wi(k − 1) + 1 if U ≤ pk,i and by Wi(k − 1)− 1 if U > pk,i, where we
use the notation

pk,i =
e−2ρi(k/N)N−3/2

1 + e−2ρi(k/N)N−3/2
;

if the new polymer configuration W violates either of the constraints W ∈ Ω(N,n),
W1 ≤ hN,+, hN,− ≤ Wn, then the proposed update is rejected; otherwise the current
configuration is updated accordingly. The above defined Markov chain is reversible with
respect to the measure P

x,y

N,n,T

[
·|h−, h+, ρ

]
, and converges to it as time goes to infinity,

for any valid initial condition. Now, suppose that W,W ′ are two polymer configurations
in Ω(N,n) such that W1 ≤ hN,+, hN,− ≤ Wn and W ′1 ≤ gN,+, gN,− ≤ W ′n, and suppose
further that Wi(k) ≤ W ′i (k) at every i, k. A coupling of the single Markov chain step
for this pair is obtained by repeating the above described updating procedure with the
same choice of random numbers k, i, U for both copies. Since hN,± ≤ gN,± and ρi ≥ κi it
follows that the new polymer configurations must satisfy again Wi(k) ≤W ′i (k). Indeed,
because of the parity assumption on the boundary heights, the first violation of this
condition could only appear at a site k such that

Wi(k − 1) = Wi(k + 1) = W ′i (k − 1) = W ′i (k + 1),

and in this case the conditions hN,± ≤ gN,± and ρi ≥ κi guarantee that the order is pre-
served. Repeating this procedure at each time step yields a Markov chain coupling such
that if at time zero one has Wi(k) ≤W ′i (k) at every i, k, then this condition is preserved
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at all times. The initial polymer configurations can be chosen by taking W as the minimal
element of Ω(N,n) such that W (−TN ) = xN , W (TN ) = y

N
, W1 ≤ hN,+, hN,− ≤ Wn,

and W ′ as the maximal element of Ω(N,n) such that W (−TN ) = uN , W (TN ) = vN ,
W1 ≤ gN,+, gN,− ≤ Wn. As pointed out above, these initial configurations are well
defined. It follows that at time zero, and thus at all times, Wi(k) ≤ W ′i (k) at every i, k.
By taking time to infinity one obtains the desired coupling of P

x,y

N,n,T

[
·|h−, h+, ρ

]
and

P
u,v
N,n,T [·|g−, g+, κ]. This ends the proof of (1.18).

To prove the statement (1.19), we need to take into account the boundary conditions

encoded by the functions ξ, ζ, ν, η. Let P
ξ,ζ

N,n,T

[
·|h−, h+, ρ

]
denote the probability measure

on Ω(N,n) associated to the partition function∑
`,r

∑
W∈Ω(N,n)

1W (−TN )=`,W (TN )=r1W1≤hN,+1hN,−≤Wn
×

× e−
∑n

1 ξi(`i/
√
N)e−

∑n
1 ζi(ri/

√
N) e

− 1

N3/2

∑n
1 Aρi,N (Wi),

where `, r range over all vectors (k1, . . . , kn) ∈ Zn such that 0 ≤ kn < kn−1 < · · · < k1,
and hN,± is such that 1√

N
hN,±(k) = (1 + o(1))h±(k/N), uniformly in k ∈ {−TN , . . . , TN}.

As above we call P̂
ξ,ζ

N,n,T

[
·|h−, h+, ρ

]
the law induced on the rescaled continuous paths

ŴN . Then, approximating the sum over `, r by integrals, the invariance principle implies

that for all fixed n, T , the probability measures P̂
ξ,ζ

N,n,T

[
·|h−, h+, ρ

]
converge weakly as

N →∞ to the probability measure P
ξ,ζ

n,T

[
·|h−, h+, ρ

]
. Therefore, the desired statement

P
ξ,ζ

n,T

[
·|h−, h+, ρ

] FKG
≺ P

ν,η

n,T [·|g−, g+, κ] , (B.1)

follows if, for all N large enough, we can construct a coupling (W,W ′) on Ω(N,n) ×
Ω(N,n) of the probability measures P

ξ,ζ

N,n,T

[
·|h−, h+, ρ

]
and P

ν,η

N,n,T [·|g−, g+, κ] such that
with probability one for each i = 1, . . . , n, and k = −TN , . . . , TN , one has Wi(k) ≤W ′i (k).

The coupling (W,W ′) is defined as before with the only difference that the random
index k is now picked uniformly in {−TN , . . . , TN}. If k /∈ {−TN , TN} then we repeat the
previously described update rule. If k = −TN , then the height Wi(−TN ) is replaced by
Wi(−TN+1)+1 if U ≤ p̂−TN ,i(Wi(−TN+1)) and byWi(−TN+1)−1 if U > p̂−TN ,i(Wi(−TN+

1)), where

p̂−TN ,i(a) :=
e−2ρi(−TN/N)N−3/2

e−∇ξi(a)

1 + e−2ρi(−TN/N)N−3/2 e−∇ξi(a)
,

and we use the notation

∇ξi(a) = ξi

(
a+1√
N

)
− ξi

(
a−1√
N

)
.

Similarly, W ′i (−TN ) is replaced by W ′i (−TN + 1) + 1 if U ≤ q̂−TN ,i (W ′i (−TN + 1)) and by
W ′i (−TN + 1)− 1 if U > q̂−TN ,i (W ′i (−TN + 1)), where

q̂−TN ,i(a) =
e−2κi(TN/N)N−3/2

e−∇νi(a)

1 + e−2κi(TN/N)N−3/2 e−∇νi(a)
,

with

∇νi(a) = νi

(
a+1√
N

)
− νi

(
a−1√
N

)
.

As before we may assume without loss of generality that the configurations Wi,W
′
i at

time zero are such that Wi(−TN ) and W ′i (−TN ) have the same parity and that the same
applies to Wi(TN ) and W ′i (TN ). Note also that the parity of these boundary values does
not change with time. Thanks to this parity constraint, the first violation of the order
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Wi ≤W ′i can occur at site k = −TN only if for some i one has Wi(−TN+1) = W ′i (−TN+1).
Therefore, it is sufficient to show that for all a ≥ 0:

∇ξi(a)−∇νi(a) ≥ 0 .

The bound above follows immediately from the assumption ξ′i(x) ≥ ν′i(x), x ≥ 0. This
implies that our coupling preserves the order at the boundary −TN . The same argument
applies to the boundary at TN . A repetition of the previous argument then concludes the
proof of (1.19).
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