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1 Introduction

The paper introduces a new approach to establish central limit theorems (CLT) for
functionals on binomial point processes and Poisson point processes. CLTs in this setting
may be found in [18] for general functionals, and in [1, 20] for functionals of a specific
form. However, the work in [18] only deals with binomial point processes having uniform
distribution and homogeneous Poisson point processes. We are going to remove such
restrictions in this paper.

Binomial point processes considered here are Xn = {X1, . . . , Xn}, where {Xi}∞i=1 is an
i.i.d. (independent identically distributed) sequence of Rd-valued random variables hav-
ing probability density function f . The function f is assumed to be bounded and to have
compact support. Associated with {Xn} is the Poissonized version Pn = {X1, . . . , XNn}
which becomes a Poisson point process with intensity function nf . Here the random
variable Nn has Poisson distribution with parameter n and is independent of {Xi}. By a
functional, it means a real-valued measurable function H defined on all finite subsets
in Rd. We will study CLTs for H(n1/dXn) and H(n1/dPn) as n tends to infinity, where
aX = {ax : x ∈ X} for a ∈ R and X ⊂ Rd.
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On central limit theorems in stochastic geometry

Let us first introduce the results in [18]. Assume that Xi is uniformly distributed
on some bounded set S, or equivalently f(x) ≡ λ on S. The support S may need some
technical assumption. In this case, the point process n1/dPn has the same distribution
with the restriction on n1/dS of a homogeneous Poisson point process P(λ) with intensity
λ. Then a CLT holds for H(n1/dPn), that is, n−1/2(H(n1/dPn)−E[H(n1/dPn)]) converges
in distribution to a Gaussian distribution with mean 0 and variance σ2 ≥ 0, provided
that the functional H is weakly stabilizing and satisfies a bounded moment condition.
Here the concept of stabilization is defined via the add-one cost function associated
with H, D0(·) = H(· ∪ {0}) − H(·), which measures the increment of H by adding a
point at the origin. (The precise definition will be given in Section 3.2.) This approach
is based on the martingale difference central limit theorem as one may expect due to
a spatial independence property of Poisson point processes. A CLT for H(n1/dXn) is
then derived by a de-Poissonization technique in which a stronger condition, called
strong stabilization, is required. Roughly speaking, H is strongly stabilizing if the value
of D0 on P(λ) does not change when adding or removing points far from the origin.
Although some techniques had been developed in [8, 12, 13], the paper [18] is the
first one successfully dealing with general functionals. Since then, it has found many
applications.

For the non-uniform distributions case, that martingale-based approach has been
shown to work for some specific functionals (eg. the component count in geometric
graph [16, Section 13.7] and functionals related to Euclidean minimal spanning trees
[13]). To the best knowledge of the author, there is no general result like [18] yet. In
this paper, we develop a new fundamental approach to derive CLTs for functionals which
are assumed to be strongly stabilizing on P(λ) for all 0 ≤ λ ≤ sup f(x). (Some additional
bounded moments conditions are needed.) Note that we impose the strong stabilization
on homogeneous Poisson point processes only. This condition is very mild in the sense
that it is also a sufficient condition for the well-established de-Poissonization technique
in [16, Section 2.5].

Note that for functionals on general Poisson point processes (not necessary point
processes onRd), upper bounds for the normal approximation in the Wasserstein distance
and the Kolmogorov distance were established in [9] by using the second order difference
operator. Proposition 1.4 and Theorem 6.1 therein are related to our setting. Indeed, it
was mentioned in the paragraph following Proposition 1.4 that the crucial condition (1.8)
is closely related to the concept of strong stabilization. Of course, the results in [9]
can apply to non-stabilizing functionals as well. However, even in case of stabilizing
functionals, an additional condition on the radii of stabilization is needed. While CLTs in
this paper hold without any further requirement on the stabilization radii.

It is worth mentioning another direction in the study of the limiting behavior of
H(n1/dXn) and H(n1/dPn). In this direction, assume that the functional H can be
expressed in the following form

H(X) =
∑
x∈X

ξ(x;X), X ⊂ Rd: finite subset,

where ξ(x;X) is a local (or stabilizing) function. (The stabilization of ξ(x;X) has the
same meaning with the strong stabilization of D0.) Under some more conditions on the
tail of stabilization radii, laws of large numbers and central limit theorems have been
established [1, 17, 19, 20]. An explicit expression for the limiting variance and a rate of
convergence in CLTs have been also known. We need not to compare those results with
ours because the scope is different.

The paper is organized as follows. Section 2 introduces some probabilistic ingredi-
ents. CLTs for homogeneous Poisson point processes, non-homogeneous Poisson point
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On central limit theorems in stochastic geometry

processes and binomial point processes are established in turn in Section 3. A partial
result on CLT for Betti numbers in the thermodynamic regime, as an application of the
general theory, is discussed in Section 4.

2 Probabilistic ingredients

This section introduces several useful results needed in this paper.

2.1 CLT for triangular arrays

The following is an easy consequence of Lyapunov’s central limit theorem. For
Lyapunov’s central limit theorem, see [2, Theorem 27.3].

Theorem 2.1. For each n, let {ξn,i}`ni=1 be a sequence of independent real random
variables. Here we require that `n ≤ cn for some constant c > 0. Assume that

(i) limn→∞
1
n

∑`n
i=1 Var[ξn,i] = σ2 ∈ [0,∞);

(ii) for some δ > 0, supn supiE[|ξn,i|2+δ] <∞.

Then
1√
n

`n∑
i=1

(
ξn,i − E[ξn,i]

)
d→ N (0, σ2) as n→∞.

Here ‘
d→’ denotes the convergence in distribution, and N (0, σ2) denotes the Gaussian

distribution with mean zero and variance σ2.

The following result is fundamental and is somewhat similar to Theorem 6.3.1 in [15].
For the sake of convenience, a quick proof is provided.

Lemma 2.2. Let {Yn}∞n=1 and {Xn,k}∞n,k=1 be mean zero real random variables. Assume
that

(i) for each k, as n→∞, Xn,k
d→ N (0, σ2

k), and Var[Xn,k]→ σ2
k;

(ii) limk→∞ lim supn→∞Var[Xn,k − Yn] = 0.

Then the limit σ2 = limk→∞ σ2
k exists, and as n→∞,

Yn
d→ N (0, σ2), Var[Yn]→ σ2.

Proof. It follows from the triangular inequality that

Var[Xn,k]1/2 −Var[Xn,k − Yn]1/2 ≤ Var[Yn]1/2

≤ Var[Xn,k]1/2 + Var[Xn,k − Yn]1/2.

By letting n→∞ first, and then let k →∞ in the above inequalities, we see that

lim
n→∞

Var[Yn] = lim
k→∞

σ2
k =: σ2.

Let t ∈ R be fixed. By the assumption (i), for each k,

lim
n→∞

E[eitXn,k ] = e−σ
2
kt

2/2.

Similarly as above, it follows from the inequality

|E[eitXn,k ]− E[eitYn ]| ≤ |t|E[|Xn,k − Yn|] ≤ |t|Var[Xn,k − Yn]1/2,

that
lim
n→∞

E[eitYn ] = lim
k→∞

lim
n→∞

E[eitXn,k ] = e−σ
2t2/2.

Therefore Yn
d→ N (0, σ2) as desired. The proof is complete.

ECP 24 (2019), paper 76.
Page 3/15

http://www.imstat.org/ecp/

https://doi.org/10.1214/19-ECP279
http://www.imstat.org/ecp/


On central limit theorems in stochastic geometry

2.2 Poisson point processes

Let f(x) ≥ 0 be a locally integrable function on Rd. A Poisson point process with
intensity function f is a point process P on Rd which satisfies the following conditions

(i) for any bounded Borel set A, the number of points inside A, denoted by P(A), has
Poisson distribution with parameter (

∫
A
f(x)dx);

(ii) for disjoint bounded Borel sets A1, . . . , Ak, the random variables P(A1), . . . ,P(Ak)

are independent.

A Poisson point process with the intensity function f(x) identically equal to a constant
λ ≥ 0 is called a homogeneous Poisson point process with density λ.

We need the following result on the convergence of functionals on Poisson point
processes. Recall that a functional H is a real-valued measurable function defined on all
finite subsets in Rd.

Lemma 2.3. Let {fn}∞n=1 and f be non-negative integrable functions defined on a
bounded Borel set W . Assume that the sequence {fn} converges to f in L1(W ), that is,∫
W
|fn(x)− f(x)|dx→ 0 as n→∞. Then for any functional H,

H(P(fn))
d→ H(P(f)) as n→∞.

Here P(fn) (resp. P(f)) denotes a Poisson point process with intensity function fn
(resp. f ).

Proof. We use the following coupling. Let Φ be a homogeneous Poisson point process
with density 1 on W × [0,∞). Let

An = {(x, t) ∈W × [0,∞) : t ≤ fn(x)},
A = {(x, t) ∈W × [0,∞) : t ≤ f(x)}.

Let Pn (resp. P) be the projection of the point process Φ|An (resp. Φ|A) onto W . Then
by using the restriction theorem and the mapping theorem for Poisson point processes
(Chapter 5 in [10]), it follows that Pn (resp. P) becomes a Poisson point process with
intensity function fn (resp. f ).

Let Bn = {(x, t) ∈W × [0,∞) : f(x) ∧ fn(x) < t ≤ f(x) ∨ fn(x)}. Then Pn ≡ P, if and
only if there is no point of Φ on Bn. Thus

P(Pn ≡ P) = P(Φ(Bn) = 0) = exp

(
−
∫
W

|fn(x)− f(x)|dx
)
.

Consequently, as n→∞,

P(H(Pn) = H(P)) ≥ P(Pn ≡ P) = exp

(
−
∫
W

|fn(x)− f(x)|dx
)
→ 1.

It follows that on this realization, H(Pn) converges in probability to H(P). Therefore,
H(P(fn)) converges in distribution to H(P(f)). The proof is complete.

The functional H is said to be translation-invariant if H(y + X) = H(X) for all finite
subsets X ⊂ Rd and all y ∈ Rd, where y + X = {y + x : x ∈ X}. For translation-invariant
functional, Poisson point processes do not need to be defined on the same region.
Consequently, we have:
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Corollary 2.4. Let H be a translation-invariant functional. Let W ⊂ Rd be a bounded
Borel set. Assume that

∫
Wn
|fn(x) − λ|dx → 0 as n → ∞, where {fn} are non-negative

functions defined on Wn = yn +W , and λ ≥ 0 is a constant. Then

H(P(fn))
d→ H(P(λ)|W ) as n→∞.

Here P(λ)|W denotes the restriction on W of a homogeneous Poisson point process P(λ)

with density λ.

Assume further that for some δ > 0, supnE[|H(P(fn))|2+δ] <∞. Then as n→∞,

E[H(P(fn))]→ E[H(P(λ)|W )], Var[H(P(fn))]→ Var[H(P(λ)|W )].

Proof. Since the functional H is translation-invariant, the first statement follows directly
from the previous lemma. The second statement is a standard result in probability theory,
(for example, see the corollary following Theorem 25.12 in [2]).

Next, we introduce the so-called Poincaré inequality for the variance of Poisson
functional, an essential tool in this paper. Let P be a Poisson point process with intensity
function f . Assume that

∫
f(x)dx <∞. Then almost surely, P has finitely many points.

For a functional H, define the add-one cost at a point x as

Dx(X) = H(X ∪ {x})−H(X).

Then the following Poincaré inequality holds [11, Eq. (1.8)]

Var[H(P)] ≤ E
[ ∫
|Dx(P)|2f(x)dx

]
=

∫
E[|Dx(P)|2]f(x)dx. (2.1)

3 Central limit theorems

3.1 Homogeneous Poisson point processes

From now on, assume that the functional H is translation-invariant. Let P(f)

(resp. P(λ)) denote a Poisson point process with intensity function f (resp. homogeneous
Poisson point process with density λ).

The functional H is said to be weakly stabilizing on P(λ) if there is a (finite) random
variable ∆(λ) such that

D0(P(λ)|Vn)→ ∆(λ), almost surely,

for any sequence {Vn 3 0}∞n=1 of cubes which tends to Rd as n→∞. Here a cube means
a subset in Rd of the form y + [0, a)d.

Theorem 3.1. Assume that the functional H is weakly stabilizing on P(λ). Assume
further that for some p > 2,

sup
0∈W :cube

E[|D0(P(λ)|W )|p] <∞. (3.1)

Then as n→∞,

H(Pn(λ))− E[H(Pn(λ))]√
n

d→ N (0, σ̄2(λ)),
Var[H(Pn(λ))]

n
→ σ̄2(λ).

Here Pn(λ) = P(λ)|
[−n1/d

2 ,n
1/d

2 )d
, and n is not necessary an integer number.
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Remark 3.2. (i) This theorem (with p = 4) is a special case of Theorem 3.1 in [18] in
which the restriction of P(λ) on a general sequence of subsets {Bn} was considered.
Thus the weak stabilization and the moment condition (3.1) should be defined in
terms of {Bn}. Similar to Theorem 3.1 in [18], the above theorem still holds if in
the definition of weak stabilization, the almost sure convergence is replaced by the
convergence in probability.

(ii) Theorem 3.9 below provides sufficient conditions for the positivity of the limiting
variance σ̄2(λ) in which the strong stabilization (to be defined in the next subsection)
is required and the limiting add-one cost ∆(λ) is assumed to be non trivial. In a
forthcoming work [5], we derive an explicit expression for σ2(λ) in terms of ∆ and
show that σ̄2(λ) > 0, if ∆ is not identically equal to zero, P(∆ = 0) 6= 1. We may
also use [9, Theorem 5.2] to derive a lower bound for the limiting variance.

Proof. For L > 0, and for each n, divide the cube Kn := [−n1/d/2, n1/d/2)d according to
the lattice L1/dZd and let {Wi}`ni=1 be the lattice cubes entirely contained in Kn. Let

Xn,L =
1√
n

`n∑
i=1

(
H(PWi

)− E[H(PWi
)]
)

=

√
`n√
n

1√
`n

`n∑
i=1

(· · · ).

Here for simplicity, we remove λ in formulae. Then Xn,L is a (scaled) sum of i.i.d. mean
zero random variables. Note that the variance of H(PWi) is finite as a consequence of
the assumption (3.1) by using the Poincaré inequality (2.1). Thus by the central limit
theorem for i.i.d. sequences ([2, Theorem 27.1]), for fixed L > 0, as n→∞,

Xn,L
d→ N (0, σ2

L), Var[Xn,L]→ σ2
L = L−1Var[H(PWi

)],

because `n/n→ 1/L.
We need to show that the sequence Xn,L well approximates Yn := n−1/2(H(Pn) −

E[H(Pn)]) in the following sense

lim
L→∞

lim sup
n→∞

Var[Xn,L − Yn] = 0. (3.2)

Once this equation is proved, then our desired result, the CLT for Yn, follows from
Lemma 2.2.

Let us complete the proof by showing (3.2). It follows from the Poincaré inequality
that

Var[Xn,L − Yn]

≤ λ

n

∫
Kn

E[|Dy(Pn)−
∑
i

Dy(PWi
)1Wi

(y)|2]dy

=
λ

n

∫
Kn\(∪iWi)

E[|Dy(Pn)|2]dy +
λ

n

∑
i

∫
Wi

E[|Dy(Pn)−Dy(PWi
)|2]dy. (3.3)

Here we have used the Poincaré inequality (2.1) for the functional

H ′(X) := H(X ∩Kn)−
∑
i

H(X ∩Wi).

The integrands in the above integrals are uniformly bounded by the assumption (3.1),
that is, there is a constant C > 0 such that

E[|Dy(Pn)|2] ≤ C, E[|Dy(Pn)−Dy(PWi)|2] ≤ C.

Thus the first term in (3.3) vanishes as n→∞.
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For the second term, note that the weak stabilization assumption, together with the
uniform boundedness assumption (3.1), implies that

E[|D0(PVn)−∆|2]→ 0,

for any sequence {Vn 3 0} of cubes tending to Rd as n → ∞. It follows that for given
ε > 0, we can choose a number t > 0 such that for any pair (V,W ) of cubes with
Bt(0) ⊂ V ∩W ,

E[|D0(PV )−D0(PW )|2] < ε.

HereBr(x) denotes the closed ball of radius r centered at x (with respect to the Euclidean
metric). Note that the above inequality still holds if 0 is replaced by any y ∈ Rd because
of the translation invariance of H and of P(λ).

Let int(Wi) := {y ∈ Wi : Bt(y) ⊂ Wi} and ∂(Wi) := Wi \ int(Wi), for L > 2t. Then
|∂(Wi)| = L− (L1/d − 2t)d ≤ 2tdL(d−1)/d. Here |A| denotes the volume of a set A. Note
that Wi ⊂ Kn. Thus for y ∈ int(Wi), E[|Dy(Pn)−Dy(PWi)|2] < ε. Then the second term
in (3.3) can be estimated as follows (for n,L > 2t),

λ

n

∑
i

∫
Wi

E[|Dy(Pn)−Dy(PWi
)|2]dy

=
λ

n

∑
i

(∫
int(Wi)

(· · · ) dy +

∫
∂(Wi)

(· · · ) dy

)

≤ λ

n

∑
i

(∫
int(Wi)

εdy +

∫
∂(Wi)

Cdy

)

≤ λε+
const

L1/d
.

Therefore

lim sup
L→∞

lim sup
n→∞

Var[Xn,L − Yn] ≤ λε,

which implies the equation (3.2) because ε is arbitrary. The theorem is proved.

3.2 Non-homogeneous Poisson point processes

Let f : Rd → [0,∞) be a bounded measurable function with compact support. We
are going to establish a central limit theorem for H(n1/dP(nf)). When f is a probability
density function, then P(nf) has the same distribution with the Poissonized version
Pn = {X1, . . . , XNn}. However, in this section, f need not be a probability density
function. Let P̃n = n1/dP(nf). Then P̃n is a Poisson point process with intensity function
f(x/n1/d).

Let us discuss some terminologies. The functional H is strongly stabilizing on P(λ) if
there exist (finite) random variables τ(λ) (a radius of stabilization of H) and ∆(λ) (the
limiting add-one cost) such that almost surely,

D0((P(λ)|Bτ(λ)(0)) ∪ A) = ∆(λ),

for all finite A ⊂ Rd satisfying A ∩Bτ(λ)(0) = ∅. It is clear that the strong stabilization
implies the weak one.

The functional H satisfies the Poisson bounded moments condition on {P̃n} if there
exists a constant p > 2 such that

sup
n

sup
y∈Rd

sup
y∈W :cube

E[|Dy(P̃n|W )|p] <∞. (3.4)
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We claim that this condition on {P̃n} implies the condition (3.1) on a homogeneous
Poisson point process P(λ) with density λ = f(x), provided that x is a Lebesgue point of
f . Indeed, by definition, the point x is a Lebesgue point of f if

lim
r→0+

1

|Br(x)|

∫
Br(x)

|f(y)− f(x)|dy = 0.

Let W 3 0 be a cube. Let Wn = (n1/dx+W ) and Vn = x+ n−1/dW . Then |Vn| = n−1|W |,
and hence,∫

Wn

|f(y/n1/d)− f(x)|dy = n

∫
Vn

|f(z)− f(x)|dz → 0 as n→∞.

Lemma 2.3 applying to the shifted point process (P̃n|Wn
− n1/dx) and to the add-one cost

D0 implies that

Dn1/dx(P̃n|Wn
) = D0(P̃n|Wn

− n1/dx)
d→ D0(P(λ)|W ).

Then by Fatou’s lemma,

E[|D0(P(λ)|W )|p] ≤ lim sup
n→∞

E[|Dn1/dx(P̃n|Wn)|p],

from which the condition (3.1) follows. Consequently, the CLT in Theorem 3.1 holds for
λ = f(x), where x is a Lebesgue point of f , under the assumption that H is strongly
stabilizing on P(λ) and satisfies the Poisson bounded moments condition on {P̃n}.

The functional H satisfies the locally bounded moments condition on {P̃n} if for any
cube W ⊂ Rd, there is a δ > 0 such that

sup
n

sup
y
E[|H(P̃n|y+W )|2+δ] <∞. (3.5)

This condition is a technical one which might be a consequence of the Poisson bounded
moments condition (3.4).

Now we can state the main result in this section.

Theorem 3.3. Let f : Rd → [0,∞) be a bounded function with compact support. Let
Λ = sup f(x). Assume that the functional H is strongly stabilizing on P(λ) for any
λ ∈ [0,Λ], satisfies the Poisson bounded moments condition (3.4) and the locally bounded
moments condition (3.5). Then as n→∞,

Var[H(P̃n)]

n
→ σ2,

H(P̃n)− E[H(P̃n)]√
n

d→ N (0, σ2).

Here σ2 =
∫
σ̄2(f(x))dx, with σ̄2(λ) the limiting variance in Theorem 3.1.

Remark 3.4. From the argument following the Poisson bounded moments condition,
we see that the limiting variance σ̄2(f(x)) is defined at every Lebesgue point x of f .
Moreover, the Lebesgue differentiation theorem states that for an integrable function f ,
almost every point is a Lebesgue point. Thus σ̄2(f(x)) is defined almost everywhere.

We use the same idea as in the proof of Theorem 3.1. Let S be a cube which
contains the support of f . For L > 0, divide Rd according to the lattice (L/n)1/dZd

and let {Vi}`ni=1 be the cubes which intersect with S. Set Sn = ∪iVi. Then it holds that
`n/n = |Sn|/L→ |S|/L as n→∞. Let Wi be the image of Vi under the map x 7→ n1/dx.
Recall that P̃n is a Poisson point process on S̃n = n1/dS with intensity function f(x/n1/d).
Assume that the functional H satisfies all the assumptions in Theorem 3.3.

Let

Xn,L =
1√
n

`n∑
i=1

(
H(P̃n|Wi

)− E[H(P̃n|Wi
)]
)
.
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Lemma 3.5. There is a constant M > 0 such that for any cube W ,

Var[H(P̃n|W )]

|W |
≤M.

Proof. It follows from the Poisson bounded moments condition (3.4) that there is a
constant C > 0 such that for all n, all y and all W 3 y,

E[|Dy(P̃n|W )|2] ≤ E[|Dy(P̃n|W )|p]2/p ≤ C. (3.6)

Then the desired estimate is just a direct consequence of the Poincaré inequality (2.1)

Var[H(P̃n|W )] ≤
∫
W

E[|Dy(P̃n|W )|2]f(y/n1/d)dy ≤ CΛ|W |.

Lemma 3.6. Let x be a Lebesgue point of f . For each n, let Vn be a cube of volume L/n
containing x. Let Wn = n1/dVn. Then as n→∞,

E[H(P̃n|Wn)]→ E[H(PL(λ))], Var[H(P̃n|Wn)]→ Var[H(PL(λ))],

where λ = f(x) and PL(λ) denotes the restriction of P(λ) on a cube of volume L. In
particular, we also have L−1 Var[H(PL(λ))] ≤M , where M is the constant in Lemma 3.5.

Proof. Recall from the derivation of the condition (3.1) from the condition (3.4) that∫
Wn

|f(y/n1/d)− f(x)|dy → 0 as n→∞.

Together with the locally bounded moments condition (3.5), all the conditions in Corol-
lary 2.4 are satisfied. Thus the convergences of expectations and variances follow. The
proof is complete.

Lemma 3.7. For fixed L > 0, as n→∞,

Var[Xn,L]→
∫
S

Var[H(PL(f(x)))]

L
dx =: σ2

L, Xn,L
d→ N (0, σ2

L).

Proof. Let us first show the convergence of variances. We write the variance of Xn,L as
follows

Var[Xn,L] =
1

n

∑
i

Var[H(P̃n|Wi
)]

=
∑
i

Var[H(P̃n|Wi))]

L

L

n

=

∫
Sn

∑
i

Var[H(P̃n|Wi
))]

L
1Vi(x)dx

=:

∫
Sn

gn,L(x)dx.

It follows from Lemma 3.5 that |gn,L(x)| ≤M . Moreover, when x ∈ S is a Lebesgue point
of f , then by Lemma 3.6, as n→∞,

gn,L(x) =
Var[H(P̃n|Wi(x,n)

)]

L
→ Var[H(PL(f(x)))]

L
.

Here Vi(x,n) = n−1/dWi(x,n) is the unique cube in {Vi} containing x. In addition, it is clear
that |Sn \S| → 0 as n→∞. Recall that almost every x ∈ S is a Lebesgue point. Therefore
the convergence of the variance Var[Xn,L] follows by the bounded convergence theorem.

The CLT for Xn,L then follows from Theorem 2.1 because the locally bounded mo-
ments condition (3.5) has been assumed. The proof is complete.
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Lemma 3.8. The following holds

lim
L→∞

lim sup
n→∞

Var

[
H(P̃n)− E[H(P̃n)]√

n
−Xn,L

]
= 0.

Proof. We begin with a direct application of the Poicaré inequality (2.1)

Var

[
H(P̃n)− E[H(P̃n)]√

n
−Xn,L

]
=

Var[H(P̃n)−
∑
iH(P̃n|Wi)]

n

≤ 1

n

∫
S̃n

E[|Dy(P̃n)−
∑
i

Dy(P̃n|Wi)1Wi(y)|2]f(y/n1/d)dy

=
1

n

∑
i

∫
Wi

E[|Dy(P̃n)−Dy(P̃n|Wi
)|2]f(y/n1/d)dy.

It follows from (3.6) that,

E[|Dy(P̃n)−Dy(P̃n|Wi
)|2] ≤ 4C.

Let t > 0. Assume that L > 2t. Recall the notations int(Wi) and ∂(Wi) from the proof in
the homogeneous case. Then∫

∂Wi

E[|Dy(P̃n)−Dy(P̃n|Wi
)|2]f(y/n1/d)dy ≤ 4CΛ2tdL(d−1)/d,

and hence,

lim sup
n→∞

1

n

∑
i

∫
∂Wi

E[|Dy(P̃n)−Dy(P̃n|Wi
)|2]f(y/n1/d)dy ≤ const

L1/d
. (3.7)

Next, we deal with the case y ∈ int (Wi). Let x = y/n1/d. Consider a homogeneous
Poisson point process P(λ) with density λ = f(x). Let τ(λ) be the stabilization radius of
H on P(λ) at y. There is a coupling of P(λ) and P̃n such that (see the proof of Lemma 2.3)

P(A = {P̃n|Wi ≡ P(λ)|Wi}) = e−t̃n(y),

where t̃n(y) = tn(x) =
∫
Wi
|f(y/n1/d)− f(z/n1/d)|dz = n

∫
Vi
|f(x)− f(z)|dz. On the event

A∩ {τ(λ) ≤ t}, by the definition of the radius of stabilization, Dy(P̃n) = Dy(P̃n|Wi
). Thus

E[|Dy(P̃n)−Dy(P̃n|Wi)|2]

= E[|Dy(P̃n)−Dy(P̃n|Wi)|2;Ac ∪ {τ(λ) > t}]

≤ E[|Dy(P̃n)−Dy(P̃n|Wi
)|p]2/pP(Ac ∪ {τ(λ) > t})1/q

≤ Cp(1− e−t̃n(y) + P(τ(λ) > t))1/q.

Here Cp is a constant which comes from the Poisson bounded moments condition (3.4).
We have used Hölder’s inequality with q being the Hölder conjugate number of p/2.
Therefore ∫

int (Wi)

E[|Dy(P̃n)−Dy(P̃n|Wi
)|2]f(y/n1/d)dy

≤
∫
int (Wi)

Cp(1− e−t̃n(y) + P(τ(λ) > t))1/qf(y/n1/d)dy

≤ n
∫
Vi

Cp(1− e−tn(x) + P(τ(f(x)) > t))1/qf(x)dx.
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Note that tn(x) = n
∫
Vi
|f(x) − f(z)|dz → 0 as n → ∞, for a Lebesgue point x of f .

Therefore,

lim sup
n→∞

1

n

∑
i

∫
int (Wi)

E[|Dy(P̃n)−Dy(P̃n|Wi
)|2]f(y/n1/d)dy

≤ Cp lim sup
n→∞

∫
S

(1− e−tn(x) + P(τ(f(x)) > t))1/qf(x)dx

≤ Cp
∫
S

P(τ(f(x)) > t)1/qf(x)dx. (3.8)

Here the bounded convergence theorem has been used in the last estimate. Combining
the two estimates (3.7) and (3.8), we arrive at

lim sup
L→∞

lim sup
n→∞

Var[H(P̃n)−
∑
iH(P̃n|Wi

)]

n

≤ Cp
∫
S

P(τ(f(x)) > t)1/qf(x)dx.

The proof is complete by letting t→∞.

Proof of Theorem 3.3. Similar to the homogeneous case, the CLT for H(P̃n) follows by
combining Lemma 3.7 and Lemma 3.8. Indeed, Lemma 3.7 states that for fixed L > 0, as
n→∞,

Var[Xn,L]→ σ2
L =

∫
S

Var[H(PL(f(x)))]

L
dx, Xn,L

d→ N (0, σ2
L).

In addition, Lemma 3.8 shows that

lim
L→∞

lim sup
n→∞

Var[Yn −Xn,L] = 0,

where

Yn =
H(P̃n)− E[H(P̃n)]√

n
.

Therefore, the CLT for Yn holds by taking into account Lemma 2.2, that is, as n→∞,

Yn
d→ N (0, σ2), where σ2 = lim

n→∞
Var[Yn] = lim

L→∞
σ2
L.

For the limiting variance, recall that when x is a Lebesgue point of f ,

Var[H(PL(λ))]

L
→ σ̄2(λ) as L→∞, λ = f(x).

Recall also from Lemma 3.6 that L−1Var[H(PL(λ))] ≤M . Thus, by the bounded conver-
gence theorem again, it follows that

σ2 = lim
L→∞

σ2
L = lim

L→∞

∫
S

Var[H(PL(f(x)))]

L
dx =

∫
S

σ̄2(f(x))dx.

Theorem 3.3 is proved.

3.3 Binomial point processes

Let {Xi}∞i=1 be an i.i.d. sequence of Rd-valued random variables with a common
probability density function f . The function f is assumed to be bounded and to have
compact support. Let Xn = {X1, . . . , Xn} and Pn = {X1, . . . , XNn} be the binomial point
processes and the Poisson point processes associated with {Xi}, respectively. Assume
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that the functional H satisfies all the assumptions of Theorem 3.3. Then the CLT for
H(n1/dPn) holds, that is, as n→∞,

Var[H(n1/dPn)]

n
→
∫
σ̄2(f(x))dx =: σ2,

H(n1/dPn)− E[H(n1/dPn)]√
n

d→ N (0, σ2).

Here recall that σ̄2(λ) = limn→∞ n−1 Var[H(P(λ)|[−n1/d/2,n1/d/2)d)] is the limiting variance
in the homogeneous case.

We now use a de-Poissonization technique to derive a CLT for H(n1/dXn). It turns out
that we only need two more moments conditions. The first one requires that there is a
constant β > 0 such that for any m,n

H(n1/dXm) ≤ β(m+ n)β , almost surely. (3.9)

The second one requires

sup
n∈N

sup
m∈[(1−η)n,(1+η)n]

E[|H(n1/dXm+1)−H(n1/dXm)|q] <∞, (3.10)

for some q > 2, η > 0. When the two conditions are added, the CLT for H(n1/dXn) holds,
namely, we have

Theorem 3.9. Let f be a bounded probability density function with compact support.
Let Λ = sup f(x). Assume that the functional H is strongly stabilizing on P(λ) for any
λ ∈ [0,Λ], and satisfies conditions (3.4), (3.5), (3.9) and (3.10). Then as n→∞,

Var[H(n1/dXn)]

n
→ τ2,

H(n1/dXn)− E[H(n1/dXn)]√
n

d→ N (0, τ2),

with τ2 = σ2 − (
∫
E[∆(f(x))]f(x)dx)2 ≥ 0. Moreover, if the limiting add-one cost ∆(λ) is

non-constant for λ ∈ A, where P(X1 ∈ A) > 0, then τ2 > 0 and σ2 > 0.

The above theorem follows directly from [16, Theorem 2.16] in which the CLT for
H(n1/dPn) is an assumption. A detailed discussion on this de-Poissonization technique
can be found in Section 2.5 of [16].

4 CLT for Betti numbers

For a finite set of points X = {x1, . . . , xn} in Rd, the Čech complex of radius r > 0,
denoted by C(X, r), is defined as the abstract simplicial complex consisting of non-empty
subsets of X in the following way

{xi0 , . . . , xik} ∈ C(X, r)⇔
k⋂
j=0

Br(xij ) 6= ∅.

The nerve theorem (cf. [4]) tells us that the abstract simplical complex C(X, r) is homotopy
equivalent to the union of balls

Ur(X) =

n⋃
i=1

Br(xi).

Čech complexes may be regarded as a generalization of geometric graphs.
Denote by βk(C(X, r)) the kth Betti number, or the rank of the kth homology group

of C(X, r), with coefficients from some underlying field. The limiting behavior of
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βk(C(Xn, rn)) has been study intensively, where {rn} is a deterministic sequence tending
to zero. It is known that Betti numbers behave differently in three regimes divided
according to the limit of {n1/drn}: zero, finite, or infinite. Refer to the survey [3] for
more details on this topic. Note that the zeroth Betti number β0(C(X, r)) just counts
the number of connected components in Ur(X). Also βk(C(X, r)) = 0, if k ≥ d, as a
consequence of the nerve theorem.

We focus now on the thermodynamic regime, also called the critical regime, in which
n1/drn → r ∈ (0,∞). Without loss of generality, we may assume that n1/drn = r. Define a
functional Hr as

Hr(X) = βk(C(X, r)).

Then it is clear that in this regime βk(C(Xn, rn)) = Hr(n
1/dXn), which is exactly the

scaling considered in this paper.
The following results in the thermodynamical regime have been known.
(i) Homogeneous Poisson point processes. The following strong law of large numbers

(SLLN) and CLT hold (Theorem 3.5 and Theorem 4.7 in [22], respectively). For 0 ≤ k ≤
d− 1, as n→∞,

βk(C(Pn(λ), r))

n
→ β̄k(λ, r), almost surely, (Pn(λ) := P(λ)|[−n1/d/2,n1/d/2)d),

βk(C(Pn(λ), r))− E[βk(C(Pn(λ), r))]√
n

d→ N (0, σ̄2
k(λ, r)).

Here β̄k(λ, r) and σ̄2
k(λ, r) are constants, β̄k(λ, r) > 0 and σ̄2

k(λ, r) > 0, for λ, r > 0. Note
that the CLT follows from Theorem 3.1 in [18] by showing that Hr is weakly stabilizing
on P(λ). (Moments conditions for Betti numbers can be verified relatively easily.) These
results on Betti numbers are generalized to persistent Betti numbers in [7].

(ii) Binomial point processes. The following SLLN holds. Assume that the probability
density function f is bounded and has compact support. Then as n→∞,

βk(C(n1/dXn, r))
n

→
∫
β̄k(f(x), r)dx, almost surely.

Refer to [6, 21, 22] for more details.
It is clear that Hr is strongly stabilizing if almost surely, Ur(P(λ)) does not have

infinite connected component because Betti numbers are additive on connected compo-
nents. (See the proof of the binomial part of Theorem 4.7 in [22].) Let rc = rc(d) be the
critical radius for percolation of the occupied component

rc = inf{r : P(Ur(P(1)) has infinite connected component) > 0}.

It is known from the theory of continuum percolation theory that 0 < rc <∞ [14]. Thus
for r < rc, almost surely, Ur(P(1)) does not have infinite component. This implies the
strong stabilization of Hr on P(1) when r < rc. By a scaling property of homogeneous
Poisson point processes (P(λ) has the same distribution with λ−1/dP(1)), it follows that
Hr is strongly stabilizing on P(λ), if r < λ−1/drc. Therefore, the following CLT for Betti
numbers is a consequence of Theorem 3.9.

Theorem 4.1. Let f be a bounded probability density function with compact support.
Let Λ = sup f(x). Then for 0 ≤ k ≤ d− 1, as n→∞ with n1/drn → r ∈ (0,Λ−1/drc),

βk(C(Pn, rn))− E[βk(C(Pn, rn))]√
n

d→ N (0, σ2
k), σ2

k =

∫
σ̄2
k(f(x), r)dx,

βk(C(Xn, rn))− E[βk(C(Xn, rn))]√
n

d→ N (0, τ2k ), σ2
k > τ2k > 0.
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The positivity of the limiting variances σ2
k > τ2k > 0 holds because the limiting add-one

cost is non-constant for any λ > 0 [22, Theorem 4.7]. Note that β0 is strongly stabilizing
without any restriction on r because the infinite component, when exists, is unique. Thus,
Theorem 13.26 and Theorem 13.27 in [16] still hold without the Riemann integrable
assumption on f .

The regime where n1/drn → r ∈ (0,Λ−1/drc) is called the subcritical regime. A CLT in
the supercritical regime (n1/drn → r ∈ [Λ−1/drc,∞)) is still open. However, by a duality
property, it was shown in the proof of Theorem 4.7 in [22] that Hr is strongly stabilizing
on P(1), if r /∈ Id, where

Id =

{
(rc, r

∗
c ], if P(Urc(P(1)) has infinite connected component) = 0,

[rc, r
∗
c ], otherwise,

r∗c being the critical radius for percolation of the vacant component

r∗c = sup{r : P(Rd \ Ur(P(1)) has infinite connected component) > 0}.

In particular, I2 = ∅, which implies that for d = 2, Hr is strongly stabilizing on P(λ) for
all λ. Thus in two dimensional case, there is no restriction on r.
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