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Abstract

Discrete and continuum Liouville first passage percolation (DLFPP, LFPP) are two
approximations of the γ-Liouville quantum gravity (LQG) metric, obtained by exponen-
tiating the discrete Gaussian free field (GFF) and the circle average regularization
of the continuum GFF respectively. We show that these two models can be coupled
so that with high probability distances in these models agree up to o(1) errors in the
exponent, and thus have the same distance exponent.

Ding and Gwynne (2018) give a formula for the continuum LFPP distance exponent
in terms of the γ-LQG dimension exponent dγ . Using results of Ding and Li (2018) on
the level set percolation of the discrete GFF, we bound the DLFPP distance exponent
and hence obtain a new lower bound dγ ≥ 2 + γ2

2
. This improves on previous lower

bounds for dγ for the regime γ ∈ (γ0, 0.576), for some small nonexplicit γ0 > 0.
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1 Introduction

1.1 Overview

Let h be a continuum Gaussian free field (GFF) on a simply connected domain D ⊂ C.
For γ ∈ (0, 2], the γ-Liouville quantum gravity (γ-LQG) surface is, heuristically speaking,
the random two-dimensional Riemannian manifold with metric given by eγh(dx2 + dy2).
This definition does not make literal sense as h is a distribution (and so cannot be
evaluated pointwise), but by using regularization procedures one can make sense of
the random volume form of γ-LQG [Kah85, DS11, RV14]. An important problem is to

understand the metric structure of γ-LQG. In the special case γ =
√

8
3 , it was shown

in [MS19, MS16a, MS16b] that
√

8
3 -LQG admits a natural metric structure which is

isometric to the Brownian map, a random metric space that is the scaling limit of uniform

random planar maps [Le13, Mie13]. The construction of the
√

8
3 -LQG metric is via a

continuum growth process, and depends crucially on properties unique to γ =
√

8
3 .

Building on the works of [DDDF19, DFG+19, GM19a, GM19c], Gwynne and Miller
[GM19b] recently proved the existence and uniqueness of a natural metric associated to
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γ-LQG for all γ ∈ (0, 2). Their existence proof uses a tightness result of Ding-Dubédat-
Dunlap-Falconet [DDDF19], who show that for γ ∈ (0, 2) one can take a regularization of
γ-LQG called continuum Liouville first passage percolation (LFPP), and obtain a metric
space by sending the regularization parameter to zero along a subsequential limit1.

In this paper we consider continuum LFPP regularized at unit scale, which we define
as follows. For a GFF h on D and ξ > 0, the continuum LFPP distance is the distance
with respect to the Riemannian metric tensor eξh1(z)(dx2 + dy2), where h1(z) denotes
the average of h over the radius 1 circle ∂B1(z). Writing dγ for the γ-LQG dimension2,

for D = [0, n]2 and ξ = γ
dγ

the continuum LFPP distances scale as n
2
dγ

+ γ2

2dγ
+o(1)

[DG18b].

Continuum LFPP has also been studied in other works3 [DG18a, DF18, GP19b, DDDF19].

A discrete analog of continuum LFPP is discrete Liouville first passage percolation
(DLFPP), in which one samples a discrete Gaussian free field (DGFF) η on an n×n lattice,

assigns a weight of eξ
√

π
2 η(v) to each vertex v, and defines the distance between two

vertices to be the weight of the minimum-weight path between the vertices. Previous
works have studied DLFPP distances [DG18a], geodesics [DZ19], and subsequential
scaling limits [DD19].

We show that when we take ξ = γ
dγ

, with high probability ξ-DLFPP distances agree

with ξ-continuum LFPP distances up to an no(1) multiplicative error, and so the ξ-DLFPP
distance exponent agrees with the ξ-LFPP distance exponent. This proves a conjecture
of [DG18b, Section 1.5]. We can then use existing results on DGFF level set percolation
[DL18] to upper bound DLFPP annulus crossing distances, leading to a new lower bound

dγ ≥ 2 + γ2

2 . This lower bound is the best known for the range γ ∈ (γ0, 0.576), where
γ0 > 0 is small and non-explicit.

We note that our lower bound on dγ was used in two ([GM19b, DFG+19]) of the
aforementioned works proving the existence and uniqueness of the γ-LQG metric. We do
not use any results from that series of works, so there is no cyclic dependence.

1.2 Main results

Let S = [0, 1]2 be the unit square. For any point z ∈ R2, let [z] denote the lattice point
closest to z. For any set A ⊂ R2, let [A] = {[a] : a ∈ A} be its lattice approximation, and
for any positive integer n ∈ N write nA = {na : a ∈ A} for the dilation of A by a factor
of n. For example, nS = [0, n]2, and [nS] = {0, . . . , n} × {0, . . . , n}.

We define DLFPP on [nS] by exponentiating a DGFF ηn (see Section 2.2 for the
definition of a DGFF).

Definition 1.1 (Discrete Liouville first passage percolation distance). For ξ > 0 and n ∈ N,
consider a zero boundary DGFF ηn on [nS]. We define the (ξ-)DLFPP distance Dξ

ηn(u, v)

between u, v ∈ [nS] to be zero if u = v, and otherwise the minimum of
∑k
j=0 e

ξ
√
π/2ηn(wj)

over paths from w0 = u to wk = v in [nS] (equipped with its standard nearest-neighbor
graph adjacency).

Furthermore, for a vertex set S ⊂ [nS] and u, v ∈ S, we define the restricted DLFPP
distance Dξ

ηn(u, v;S) to be the above minimum taken over paths which stay in S. For

subsets A,B ⊂ S, we define Dξ
ηn(A,B;S) to be the minimum of Dξ

ηn(a, b;S) for a ∈ A, b ∈
B.

1This subsequential limit is, a posteriori, the γ-LQG metric.
2The dimension dγ originally arose as a universal exponent describing distance exponents of various

discretizations of the γ-LQG metric [GHS17, DZZ18, DG18b], and was later shown to be the Hausdorff
dimension of the γ-LQG metric [GP19a].

3While we consider continuum LFPP with regularization fixed at unit scale, other works typically consider
regularization at variable scales; see Remark 1.3.
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We similarly define unit scale regularized continuum LFPP by replacing the DGFF
with the unit radius circle averages of a continuum GFF hn (see [DS11, Section 3.1] for
the definition of a GFF and its circle averages) and replacing lattice paths with piecewise
continuously differentiable paths.

Definition 1.2 (Continuum Liouville first passage percolation distance (unit scale regu-
larization)). For ξ > 0 and n ∈ N, consider a continuum zero boundary GFF hn on nS

extended to zero outside nS. The (ξ-)continuum LFPP distance Dξ
hn,LFPP(z, w) is the

infimum over all piecewise continuously differentiable paths P : [0, T ] → nS from z to

w of the quantity
∫ T
0
eξh

n
1 (P (t))|P ′(t)| dt, where hn1 (z) denotes the average of hn over the

radius 1 circle ∂B1(z).
For open S ⊂ nS and z, w ∈ S, we define the restricted continuum LFPP distance

Dξ
hn,LFPP(z, w;S) to be the above infimum over paths in S, and for subsets A,B ⊂ S

define Dξ
hn,LFPP(A,B;S) = infa∈A,b∈B D

ξ
hn,LFPP(a, b;S).

Remark 1.3. Our definition of continuum LFPP differs slightly from that of other works
[DG18a, DG18b, DF18, DDDF19, GP19b], which have an additional parameter control-
ling the circle average radius (i.e. the regularization scale). In this work we will always
take the circle average radius to be 1.

We are interested in continuum LFPP distances in the domain nS with the circle
average radius set to 1. Conversely, [DG18b, Theorem 1.5] considers continuum LFPP
distances in the domain S but with circle average radius δ; we set δ = 1

n . By the scale
invariance of the GFF, when we identify nS with S by a dilation and use the same GFF
for both models, our continuum LFPP distances are exactly n times larger than those of
[DG18b] (this factor of n arises from the rescaling of the paths P ).

We come to our main theorem, that we can couple a GFF hn with a DGFF ηn so that
with high probability the circle average regularized GFF hn1 and the DGFF multiple

√
π
2 η

n

are uniformly not too far apart. Under this coupling, with high probability ξ-DLFPP and
ξ-continuum LFPP distances are comparable.

Theorem 1.4 (Coupling of ηn and hn). There exists a coupling of the GFF hn and the
DGFF ηn such that for each ζ > 0 and open U ⊂ S with dist(U, ∂S) > 0, except on an
event of probability decaying faster than any negative power of n, we have

max
v∈[nU ]

∣∣∣∣hn1 (v)−
√
π

2
ηn(v)

∣∣∣∣ ≤ ζ log n.

Under this coupling, for each ξ > 0, ζ ∈ (0, 1) and rectilinear polygon P ⊂ S with
dist(P, ∂S) > 0, with probability tending to 1 as n → ∞, we have uniformly for all
z, w ∈ nP that

n−ζDξ
ηn([z], [w]; [nP ])− nζeξ

√
π
2 η

n([z]) ≤ Dξ
hn,LFPP(z, w;nP )

≤ nζDξ
ηn([z], [w]; [nP ]) + nζeξ

√
π
2 η

n([z]).

As we will see in the proof of the next theorem, for ξ ∈ (0, 2
d2

) and ζ small, out-
side of a few edge cases the dominant terms in the upper and lower bounds are

nζDξ
ηn([z], [w]; [nP ]) and n−ζDξ

ηn([z], [w]; [nP ]) respectively. The term nζeξ
√

π
2 η

n([z]) in the

upper bound takes care of the edge case where [z] = [w] but z 6= w (soDξ
ηn([z], [w]; [nP ]) =

0 but Dξ
hn,LFPP(z, w;nP ) > 0). The analogous term in the lower bound takes care of the

case where z and w are close, but [z] and [w] are not. Finally, we note that the condition
of P being a rectilinear polygon can be weakened, but we prefer to avoid worrying about
lattice approximations of complicated domains.

Roughly speaking, Theorem 1.4 tells us that DLFPP and continuum LFPP distances
are comparable. Consequently, since [DG18b, Theorem 1.5] gives the ξ-continuum LFPP
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distance exponent for ξ = γ
dγ

in terms of the γ-LQG dimension dγ (defined in [DG18b]),
we can obtain the same distance exponent for ξ-DLFPP, proving a conjecture of [DG18b,
Section 1.5].

Theorem 1.5 (DLFPP distance exponent). Let γ ∈ (0, 2), and let ξ = γ
dγ

. Then for any
distinct z, w in the interior of S, with probability tending to 1 as n→∞ we have

Dξ
ηn([nz], [nw]) = n

2
dγ

+ γ2

2dγ
+o(1)

. (1.1)

Here, o(1) is a quantity that tends to zero as n→∞ while z, w are fixed.
Furthermore, for any open U ⊂ S with dist(U, ∂S) > 0 and compact K ⊂ U , with

probability tending to 1 as n→∞ we have

max
u,v∈[nK]

Dξ
ηn(u, v; [nU ]) = n

2
dγ

+ γ2

2dγ
+o(1)

and Dξ
ηn([nK], [n∂U ]) = n

2
dγ

+ γ2

2dγ
+o(1)

.

Here, o(1) is a quantity that tends to zero as n→∞ while U,K are fixed.

For small ξ, the paper [DD19] establishes the existence of a subsequential ξ-DLFPP
scaling limit as n→∞. Writing ξ = γ

dγ
, Theorem 1.5 gives the exponential order of the

distance normalization factors in terms of dγ ; namely, one should rescale distances by

n
− 2
dγ
− γ2

2dγ
+o(1)

.
[DG18b, Theorem 1.2, Proposition 1.7] tell us that γ 7→ γ

dγ
is continuous and in-

creasing. Thus Theorem 1.5 discusses the DLFPP distance exponent for ξ ∈ (0, 2
d2

). To
formulate things in full generality, we define the DLFPP distance exponent for all ξ > 0.

Definition 1.6. Let S1 ⊂ S2 be squares with the same center as S, and side lengths 1
3

and 2
3 respectively. For ξ > 0, define the ξ-DLFPP distance exponent λ(ξ) via

λ(ξ) = sup
{
α : lim

n→∞
P
[
Dξ
ηn([nS1], [n∂S2]) < n1−α

]
= 1
}
.

Remark 1.7. Our definition of λ(ξ) is chosen to align with that of the ξ-continuum LFPP
distance exponent defined in [GP19b, Equation (1.4)]. By Theorem 1.5 and [DG18b,
Theorem 1.5] these exponents agree for ξ ∈ (0, 2

d2
). More strongly we expect that these

two distance exponents agree for all ξ, though this is not proved here. We note that the
exponent bounds [GP19b, Theorem 2.3] are applicable to our λ(ξ); their proofs carry
over without modification.

Using a result on the DGFF level set percolation ([DL18], see also [DW18]), we can
easily establish a lower bound for λ(ξ).

Theorem 1.8. We have λ(ξ) ≥ 0 for all ξ > 0.

Proof. Consider a DGFF ηn on [nS], and fix any χ ∈ ( 1
2 , 1). Then [DL18, Theorem 1] tells

us that with probability tending to 1 as n→∞, there exists a path from [nS1] to [n∂S2]

passing through at most ne(logn)
χ

vertices, such that ηn is at most (log n)χ uniformly
along the path. As a result, with probability approaching 1 as n→∞, we have

Dξ
ηn([nS1], [n∂S2]) ≤ ne(logn)

χ

eξ
√

π
2 (logn)χ = n1+o(1).

Theorem 1.8 is an improvement over previous lower bounds4 for λ(ξ) for the regime
ξ ∈ (ξ0, 0.266) ∪ (0.708,∞) (where ξ0 > 0 is small and nonexplicit). Note that for ξ ∈
(ξ0, 0.241), the previous best lower bound [GHS17, Theorem 1.6] was obtained by working
with mated-CRT maps and considering the “LQG length” of a deterministic Euclidean

4See Remark 1.7.

ECP 24 (2019), paper 64.
Page 4/12

http://www.imstat.org/ecp/

https://doi.org/10.1214/19-ECP270
http://www.imstat.org/ecp/


Comparison of discrete and continuum LFPP

path via a KPZ relation [DS11]. Thus in some sense our result shows that for this range
of ξ, deterministic Euclidean paths do not have short ξ-DLFPP lengths.

For ξ ∈ (0.267, 0.707), stronger lower bounds were proved in [DG18b, GP19b], and
for ξ ∈ (0, ξ0), [DG18a] gives λ(ξ) ≥ Ω(ξ4/3/ log(1/ξ)).

For ξ = γ
dγ

, Theorems 1.5 and 1.8 immediately yield the following lower bound for dγ .

Theorem 1.9. For γ ∈ (0, 2), the fractal dimension of γ-LQG dγ satisfies

dγ ≥ 2 +
γ2

2
.

Proof. By Theorem 1.5 we see that λ(γ/dγ) = 1 − 1
dγ

(
2 + γ2

2

)
. Applying Theorem 1.8

yields the result.

This gives us a better understanding of the γ-LQG metric since dγ has been shown
to be the Hausdorff dimension of the γ-LQG metric [GP19a]. Moreover, by [DG18b,
Theorems 1.4, 1.5, 1.6], Theorem 1.9 yields a bound for each of the γ-LQG discretizations
discussed in [DG18b], including the mated-CRT map, Liouville graph distance, and
continuum LFPP.

Theorem 1.9 improves on previous lower bounds in the regime γ ∈ (γ0, 0.576), where
γ0 = γ0(γ) is small and non-explicit. Together with other works, we have the following.
For all γ ∈ (0, 2), we have

dγ ≥ dγ ,

where

dγ =


Ω(γ4/3/ log γ−1), γ ∈ (0, γ0] [DG18a]

max
(

2 + γ2

2 ,
12−
√
6γ+3

√
10γ+3γ2

4+
√
15

)
, γ ∈ (γ0,

√
8/3] this paper and [GP19b]

1
3

(
4 + γ2 +

√
16 + 2γ2 + γ4

)
, γ ∈ [

√
8/3, 2) [DG18b]

.

The asymptotic lower bound [DG18a] follows from a multi-scale analysis of continuum
LFPP; using the hierarchical structure of the GFF, the authors inductively construct
paths at a bigger scale from paths at a smaller scale. The bound of [DG18b] comes from
proving that d√

8/3
= 4 (via the ball volume growth exponent for uniform triangulations

[Ang03]), then coupling continuum LFPP models with fields ξ̃h̃ and ξh (with ξ̃ > ξ) by

decomposing the GFF h̃ as a combination ξ̃h̃ = ξh+

√
ξ̃2 − ξ2h′ for independent GFFs

h, h′. By bounding the contribution of h′, [DG18b] gets an inequality involving λ(ξ̃) and
λ(ξ), yielding the above bound. The paper [GP19b] couples continuum LFPP models with
ξ̃ > ξ by using the same GFF h for both models, and shows that the ξ̃-continuum LFPP
geodesic is not too long under the ξ-continuum LFPP metric by bounding separately the
contributions from points with very negative h̃ and points with typical h̃. For a discussion
of the best known upper bounds for dγ , see [GP19b, Corollary 2.5].

Finally, we briefly comment on the Euclidean length exponent of the ξ-DLFPP annulus
crossing geodesic (see Definition 1.6 for the definition of the annulus).

Remark 1.10. For ξ ∈ (0.267, 0.707) we have the bound λ(ξ) > 0 ([GP19b, Theorem 2.3],
see Remark 1.7), so by [DZ19, Theorem 1.2, Remark 1.3] we see that with probability
approaching 1 as n → ∞, the (a.s. unique) annulus crossing DLFPP geodesic passes
through at least n1+α vertices for some α = α(ξ) > 0. That is, the Euclidean length
exponent of the annulus crossing geodesic is strictly greater than 1. Also, for general ξ,
[GP19b, Theorem 2.6] gives an upper bound on the Euclidean length exponent of the
DLFPP annulus crossing geodesic; their proof carries over to our setting with minor
modification.
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In Section 2, we cover the necessary preliminaries. In Section 3.1 we prove the first
part of Theorem 1.4, and in Section 3.2 we prove the second part of Theorem 1.4. Finally
in Section 3.3 we prove Theorem 1.5.

2 Preliminaries

2.1 Notation

In this paper, we write O(1) to denote some quantity that remains bounded as n→∞,
and o(1) for some quantity that goes to zero as n → ∞. For any parameter x we also
write Ox(1) to denote a quantity bounded in terms of x as n→∞ while x stays fixed.

2.2 Discrete Gaussian free field

For a set of vertices V ⊂ Z2, let ∂V ⊂ V be the vertices having at least one neighbor
outside V . The discrete Green function GV (u, v) is the expected number of visits to
v of a simple random walk on Z2 started at u ∈ V and killed upon reaching ∂V . The
zero boundary DGFF ηn : [nS] → R is a mean zero Gaussian process indexed by [nS]

with covariances given by E[ηn(u)ηn(v)] = G[nS](u, v). In particular, since G[nS](v, v) = 0

whenever v ∈ ∂[nS], we have η|∂[nS] ≡ 0.
In our subsequent analysis, we will need the following DGFF local covariance esti-

mate.

Lemma 2.1. Let U ⊂ S be an open set satisfying dist(U, ∂S) > 0. Then for fixed k > 0,
for all u, v ∈ [nU ] with |u− v| ≤ k we have

E[ηn(u)ηn(v)] =
2

π
log n+OU,k(1),

where the term OU,k(1) is uniformly bounded for all n, u, v.

Proof. By definition we need to showG[nS](u, v) = 2
π log n+OU,k(1). There exist 0 < r < R

such that for every point z ∈ U we have Br(z) ⊂ S ⊂ BR(z), and by the domain monotonic-
ity of the Green function we have G[Bnr(u)](u, v) ≤ G[nS](u, v) ≤ G[BnR(u)](u, v). Using
standard properties of the Green function (see, e.g., [LL10, Theorem 4.4.4, Proposition
4.6.2]), each of G[Bnr(u)](u, v) and G[BnR(u)](u, v) is given by 2

π log n+Or,R,k(1), so we are
done.

2.3 DGFF as a projection

The following lemma from [She07, Section 4.3] relates the DGFF and continuum GFF.
For n ∈ N, the lattice Z2 divides the square nS into n2 unit squares. Cutting each of
these unit squares along its down-right diagonal gives us a triangulation of nS; let Hn

be the (finite dimensional) space of continuous functions on nS which are affine on each
triangle and vanish on ∂(nS).

Lemma 2.2. Suppose hn is a (continuum) zero boundary GFF on nS, and let
√

π
2 η

n be
the projection of hn to Hn. Then ηn restricted to [nS] has the law of a zero boundary
DGFF on [nS].

See [She07, Section 4.3] for details on how to make sense of this projection. We note
that the normalization constant

√
π
2 arises because our normalizations of the GFF and

DGFF differ from those of [She07].
Notice that given the values of ηn restricted to [nS] and the fact that it is affine

on each triangle, we can recover the function ηn on the whole domain nS by linear
interpolation within each triangle. Consequently, we will not distinguish between a
DGFF defined on [nS] and a linearly-interpolated DGFF defined on nS.
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Remark 2.3. With hn, ηn as in Lemma 2.2, the distributions
√

π
2 η

n and hn −
√

π
2 η

n are
independent. This follows from the fact that the projections of hn to spaces orthogonal
with respect to the Dirichlet inner product are independent; see [She07, Section 2.6].

3 Comparing DLFPP and continuum LFPP distances

In this section we prove Theorems 1.4 and 1.5.
As in Lemma 2.2, let hn be a zero boundary GFF on nS, and let

√
π
2 η

n be its projection
onto Hn (defined in Section 2.3). Recall that ηn|[nS] has the law of a DGFF. Write hn1 for
the unit radius circle average regularization of hn.

In Section 3.1 we prove that away from the boundary, with high probability as n→∞
the discrepancy |hn1 −

√
π
2 η

n| is uniformly not too large. In Section 3.2, we prove that
as n→∞, with high probability DLFPP and continuum LFPP distances are comparable,
proving Theorem 1.4. Finally in Section 3.3 we use Theorem 1.4 and the continuum
LFPP distance exponent from [DG18b] to obtain the DLFPP distance exponent, proving
Theorem 1.5.

3.1 Discrepancy between DGFF and circle average regularized GFF

In this section, we establish that for an open set U ⊂ S with dist(U, ∂S) > 0, with
high probability the discrepancy between hn1 and

√
π
2 η

n restricted to [nU ] is uniformly
bounded by o(log n).

We first show that the pointwise differences hn1 (v) −
√

π
2 η

n(v) for v ∈ [nU ] have
variances which are bounded as n→∞.

Lemma 3.1. Let hn be a zero boundary GFF on nS, and as in Lemma 2.2 let
√

π
2 η

n be
its projection onto Hn. Then for any open U ⊂ S with dist(U, ∂S) > 0, uniformly for all
n > 0 and v ∈ [nU ] we have

Var

(
hn1 (v)−

√
π

2
ηn(v)

)
= OU (1).

Proof. Observe that, writing ηn1 for the unit radius circle average of the linearly interpo-
lated DGFF ηn,

hn1 (v)−
√
π

2
ηn(v) =

(
hn1 (v)−

√
π

2
ηn1 (v)

)
+

√
π

2
(ηn1 (v)− ηn(v)). (3.1)

We will bound the variance of each of the two RHS terms by OU (1). By Remark 2.3,
we have Var(hn1 (v)−

√
π
2 η

n
1 (v)) = Varhn1 (v)− π

2 Var ηn1 (v). By [DS11, Proposition 3.2] we
have uniformly for v ∈ [nU ] that

Varhn1 (v) = log n+OU (1). (3.2)

We turn to analyzing Var ηn1 (v). Notice that since ηn is affine on each triangle, we can
write ηn1 (v) as a weighted average of ηn(u) for u close to v. Concretely, let Nv = {u ∈
Z2 : |u− v| < 2}, then for deterministic nonnegative weights {wu} with

∑
u∈Nv wu = 1

we have

ηn1 (v) =
∑
u∈Nv

wuη
n(u).

Thus, by Lemma 2.1 we have

Var ηn1 (v) =
∑

u,u′∈NV

wuwu′
2

π
log n+OU (1) =

2

π
log n+OU (1). (3.3)

ECP 24 (2019), paper 64.
Page 7/12

http://www.imstat.org/ecp/

https://doi.org/10.1214/19-ECP270
http://www.imstat.org/ecp/


Comparison of discrete and continuum LFPP

Combining (3.2) and (3.3), we conclude that Var(hn1 (v)−
√

π
2 η

n
1 (v)) = OU (1), so we have

bounded the variance of the first term of the RHS of (3.1). We can bound the variance of
the second term of (3.1) by OU (1) in exactly the same way that we derived (3.3). We are
done.

Remark 3.2. By doing a more careful analysis of the discrete and continuum Green
functions, one can improve the statement of Lemma 3.1 to the following: There exists
some explicit universal constant C independent of U such that for n sufficiently large
in terms of U , we have Var(hn1 (v) −

√
π
2 η

n(v)) < C for all v ∈ [nU ]. This statement is
unnecessary for our purposes so we omit its proof.

Since #[nU ] ≤ n2 is not too large, we can show using Lemma 3.1 that with high
probability the GFF circle-average field and the DGFF are uniformly not too different for
all v ∈ [nU ]. This proves the first assertion of Theorem 1.4.

Proposition 3.3. For n > 1 and U, hn and ηn as in Lemma 3.1, and any ζ ∈ (0, 1), there

is a constant C depending only on U so that with probability 1− 2n2−
ζ2 logn

2C we have

max
v∈[nU ]

∣∣∣∣hn1 (v)−
√
π

2
ηn(v)

∣∣∣∣ ≤ ζ log n.

Proof. For notational convenience write ∆n(v) = hn1 (v) −
√

π
2 η

n(v); this is a centered
Gaussian random variable. Let C (depending only on U ) be an upper bound for Var(∆n(v))

for all v ∈ [nU ] (Lemma 3.1). Then by a standard Gaussian tail bound we have for any
v ∈ [nU ] and r > 0 that

P[|∆n(v)| ≥ r] ≤ 2e−
r2

2C .

Substituting r = ζ log n and taking a union bound over v ∈ [nU ], we have

P

[
max
v∈[nU ]

|∆n(v)| ≥ ζ log n

]
≤ 2n2 · n−

ζ2 logn
2C .

We are done.

3.2 Comparing DLFPP to continuum LFPP

In this section, we use Proposition 3.3 and [DG18b, Proposition 3.16] to prove the
second part of Theorem 1.4: under the coupling of Proposition 3.3, with high probability
DLFPP and continuum LFPP distances are similar.

In Lemma 3.4, using [DG18b, Proposition 3.16] we check that with high probability
Dξ
hn,LFPP is comparable to a lattice variant of continuum LFPP. Since Proposition 3.3 tells

us that Dξ
ηn is also comparable to lattice LFPP, we complete the proof of Theorem 1.4.

Lemma 3.4. Define the lattice LFPP distance Dξ,lattice
hn,LFPP in exactly the same way that we

define Dξ
ηn in Definition 1.1, but with vertex weights of eξh

n
1 (v) rather than eξ

√
π/2ηn(v).

For each ξ, ζ > 0 and open rectilinear polygon P ⊂ S with dist(P, ∂S) > 0, with
probability approaching 1 as n→∞ we have for all z, w ∈ nP that

n−ζDξ,lattice
hn,LFPP([z], [w]; [nP ])− nζeξh

n
1 ([z]) ≤ Dξ

hn,LFPP(z, w;nP )

≤ nζ
(
Dξ,lattice
hn,LFPP([z], [w]; [nP ]) + eξh

n
1 ([z])

)
. (3.4)

Proof. This is precisely the statement of [DG18b, Proposition 3.16], but with three
differences which we address in turn.
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• It considers LFPP in a fixed domain, but sends the circle average radius δ to zero.
This is in contrast with our setting where we have LFPP in a growing domain but
fix the circle average radius.

This difference is cosmetic; see Remark 1.3. We set δ = 1
n and then scale everything

in [DG18b, Proposition 3.16] up by a factor of n so that it discusses LFPP in nS

with unit radius circle averages. Henceforth we consider the scaled-up version of
[DG18b, Proposition 3.16].

• It uses [−1, 2]2 and S rather than our sets S and P respectively.

The same method of proof applies, since the proofs of their Lemmas 3.4 and 3.7
require only dist(S, ∂[−1, 2]2) > 0 (we assume the corresponding dist(P, ∂S) > 0),
and their argument for replacing curves in nS with lattice paths in [nS] (and vice
versa) works when one replaces S with P , for sufficiently large n.

• In our rescaled notation, instead of proving (3.4), [DG18b, Proposition 3.16] instead
proves 5 that as n→∞, with probability tending to 1 we have

n−ζ
(
D̂δ

LFPP([z], [w]; [nP ])
)
−eξĥδ([z]) ≤ Dξ

hn,LFPP(z, w;nP ) ≤ nζD̂δ
LFPP([z], [w]; [nP ]),

(3.5)
where ĥδ is a certain field coupled to hn, and D̂δ

LFPP is defined the same way as

Dξ,lattice
hn,LFPP except we use vertex weights of eξĥδ instead of eξh

n
1 , and also set for all

v ∈ [nP ] that D̂δ
LFPP(v, v; [nP ]) = eξĥδ(v) instead of 0.

Firstly, we modify the definition of D̂δ
LFPP(v, v; [nP ]), setting it equal to 0 instead of

eξĥδ(v), and correspondingly add the correction term nζeξĥδ([z]) to the upper bound
in (3.5). Next, [DG18b, Equation (3.34)] tells us that with probability approaching
1 as n → ∞, for all z ∈ nP we have |ĥδ(z) − hn1 (z)| ≤ ζ log n, so we can replace
ĥδ and D̂δ

hn,LFPP with hn1 and Dξ,lattice
hn,LFPP in (3.5), incurring factors of nζ . This gives

(3.4) with 2ζ instead of ζ, so we are done.

Using Lemma 3.4 and Proposition 3.3, we prove Theorem 1.4.

Proof of Theorem 1.4. The first assertion of Theorem 1.4 follows from Proposition 3.3.
For the second assertion, Proposition 3.3 says that with probability tending to 1 as
n → ∞, uniformly for all z ∈ nP we have

∣∣hn1 ([z])−
√

π
2 η

n([z])
∣∣ ≤ ζ log n. When this

holds, the Dξ,lattice
hn,LFPP and Dξ

ηn lengths of any path differ by a factor of at most nζ , so we
have uniformly for all z, w ∈ nP that

n−ζDξ
ηn([z], [w]; [nP ]) ≤ Dξ,lattice

hn,LFPP([z], [w]; [nP ]) ≤ nζDξ
ηn([z], [w]; [nP ]).

Combining this with Lemma 3.4 yields the second assertion of Theorem 1.4 (with 2ζ

instead of ζ).

3.3 The DLFPP distance exponent

Finally, we combine Theorem 1.4 with the continuum LFPP distance exponent from
[DG18b] to obtain Theorem 1.5.

Lemma 3.5. For γ ∈ (0, 2), set ξ = γ
dγ

. Let U ⊂ S be an open set with dist(U, ∂S) > 0,
and K ⊂ U a compact set. Then with probability tending to 1 as n→∞ we have

max
u,v∈[nK]

Dξ
ηn(u, v; [nU ]) ≤ n

2
dγ

+ γ2

2dγ
+o(1)

. (3.6)

5 The statement of Proposition 3.16 in [DG18b] contains a minor inaccuracy. In that paper the lower

bound is written as n−ζ
(
D̂δLFPP([z], [w]; [nP ])− eξĥδ([z])

)
≤ Dξhn,LFPP(z, w;nP ), which does not hold when

z, w are close but [z] 6= [w]. The version stated here (3.5) follows from essentially the same proof, and the
aforementioned minor inaccuracy causes no problems for any other result of [DG18b] used in this paper.
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and

Dξ
ηn([nK], [n∂U ]) ≥ n

2
dγ

+ γ2

2dγ
−o(1)

(3.7)

Here, o(1) is a quantity that tends to zero as n→∞ while U,K are fixed.

Proof. We use the coupling of Theorem 1.4. By [DG18b, Lemma 2.1, Theorem 1.5] and
Remark 1.3, we see that for any ζ > 0, with probability tending to 1 as n→∞ we have

max
z,w∈nK

Dξ
hn,LFPP(z, w;nU) ≤ n

2
dγ

+ γ2

2dγ
+ζ

and Dξ
hn,LFPP(nK, n∂U) ≥ n

2
dγ

+ γ2

2dγ
−ζ
.

(3.8)

We first prove (3.6) up to a correction term. Choose an open rectilinear P so that
K ⊂ P ⊂ U and dist(K, ∂P ),dist(P, ∂U) > 0. Clearly Dξ

ηn(u, v; [nU ]) ≤ Dξ
ηn(u, v; [nP ]) for

any u, v ∈ [nK]. Thus, combining the lower bound of Theorem 1.4 with the first equation
of (3.8) (with U replaced by P ) gives, with probability approaching 1 as n→∞,

max
u,v∈[nK]

Dξ
ηn(u, v; [nU ]) ≤ nζ max

z,w∈nK
Dξ
hn,LFPP(z, w;nP ) + n2ζeξ

√
π
2 maxv η

n(v)

≤ n
2
dγ

+ γ2

2dγ
+2ζ

+ n2ζeξ
√

π
2 maxv η

n(v). (3.9)

Thus, up to a correction term, we have shown (3.6).

Next we prove (3.7) up to a correction term. Choose any rectilinear polygon P with
U ⊂ P ⊂ S and dist(U, ∂P ),dist(P, ∂S) > 0. Note that any shortest path from K to ∂U
stays in P . Combining the upper bound of Theorem 1.4 with the second equation of (3.8)
gives, with probability tending to 1 as n→∞,

Dξ
ηn([nK], [n∂U ]) ≥ n

2
dγ

+ γ2

2dγ
−2ζ − eξ

√
π
2 maxv η

n(v). (3.10)

Thus we have proved (3.7) up to a correction term.

Finally, we check that the correction terms (i.e. terms with eξ
√

π
2 maxv η

n(v)) in (3.9) and
(3.10) are dominated by the power of n. [BDG01, Theorem 2] states that the maximum

of a zero boundary DGFF on [nS] is (1 + o(1))2
√

2
π log n with probability tending to 1 as

n → ∞. Thus with probability tending to 1 as n → ∞ we have maxv∈[nS]
√

π
2 η

n(v) ≤
(2 + ζ) log n. Moreover, since γ < 2 we have 2

dγ
+ γ2

2dγ
> 2γ

dγ
= 2ξ, so for ζ > 0 small in

terms of γ we have 2
dγ

+ γ2

2dγ
− 3ζ > (2 + ζ)ξ. Combining these two observations, we see

that with probability approaching 1 as n→∞,

eξ
√

π
2 maxv η

n(v) ≤ n(2+ζ)ξ = o

(
n

2
dγ

+ γ2

2dγ
−2ζ
)
.

Taking ζ → 0 and combining this with (3.9) and (3.10), we obtain (3.6) and (3.7).

Now we are ready to prove Theorem 1.5.

Proof of Theorem 1.5. To compute the point-to-point distance (1.1), first apply (3.7) with
K,U chosen so z ∈ K and w 6∈ U to get the lower bound, then apply (3.6) with K

containing both z and w to get the upper bound.

Finally, (1.1) with z ∈ K and w 6∈ U gives us the the upper bound for Dξ
ηn([nK], [n∂U ]),

and (1.1) with any distinct z, w ∈ K yields the lower bound for maxu,v∈[nK]D
ξ
hn(u, v; [nU ]).

These bounds and the bounds of Lemma 3.5 yield Theorem 1.5.
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