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Abstract

Kinetically constrained models (KCMs) are interacting particle systems on Zd with a
continuous-time constrained Glauber dynamics, which were introduced by physicists
to model the liquid-glass transition. One of the most well-known KCMs is the one-
dimensional East model. Its generalization to higher dimension, the d-dimensional
East model, is much less understood. Prior to this paper, convergence to equilibrium
in the d-dimensional East model was proven to be at least stretched exponential,
by Chleboun, Faggionato and Martinelli in 2015. We show that the d-dimensional
East model exhibits exponential convergence to equilibrium in all settings for which
convergence is possible.
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1 Introduction

Kinetically constrained models (KCMs) are interacting particle systems on graphs, in
which each vertex (or site) of the graph has state (or spin) 0 or 1. Each site tries at rate
1 to update its spin, that is to replace it by 1 with probability p and by 0 with probability
1− p, but the update is accepted only if a certain constraint is satisfied, the constraint
being of the form “there are enough sites with spin zero around this site”.

KCMs were introduced by physicists to model the liquid-glass transition, which is an
important open problem in condensed matter physics (see [16, 11]). In addition to their
physical interest, they are also mathematically challenging because the presence of the
constraints gives them a very different behavior from classical Glauber dynamics and
renders most of the usual tools ineffective.

A key feature of KCMs is the existence of blocked spin configurations, which makes
the large-time behavior of KCMs hard to study, especially their relaxation to equilibrium
when starting out of equilibrium. Indeed, worst case analysis does not help and standard
coercive inequalities of the log-Sobolev type also fail. Furthermore, the dynamics of
KCMs is not attractive, so coupling arguments that have proven very useful for other
types of Glauber dynamics are here inefficient. Because of these difficulties, convergence
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Exponential convergence to equilibrium for the d-dimensional East model

to equilibrium has been proven only in a few models and under particular conditions
(see [6, 3, 7, 15]).

There is only one model for which exponentially fast relaxation to equilibrium was
proven under general conditions (apart from some models on trees that use the same
proof): the East model, whose base graph is Z and in which an update is accepted when
the site at the left has spin 0. Introduced by physicists in [13], the East model is the
most well-understood KCM (see [9] for a review).

A natural generalization of the East model to Zd, introduced in [1], is to accept
updates at a site x when x − e has spin 0 for some e in the canonical basis of Rd. The
higher dimension makes this d-dimensional East model much harder to study than the
unidimensional one, and until now the relaxation to equilibrium was only proved to be at
least stretched exponential ([7]).

In this article, we prove that the relaxation to equilibrium in the d-dimensional East
dynamics is exponentially fast as soon as the initial configuration is not blocked. This
also allowed us to prove that the persistence function, which is the probability that a
given site has not yet been updated, decays exponentially with time.

Our results, which are the first to hold for a KCM in dimension greater than 1
and for any p, may help to understand further the out-of-equilibrium behavior of the
d-dimensional East model. Indeed, such an exponential relaxation result was key to
proving “shape theorems” in one-dimensional models in [2, 10, 4].

This paper is organized as follows: we begin by presenting the notations and stating
our results in Section 2, then we prove the exponential relaxation to equilibrium in
Section 3, and finally we show the exponential decay of the persistence function in
Section 4.

2 Notations and results

We fix d ∈ N∗. For any Λ ⊂ Zd, the d-dimensional East model (in the following, we
will just call it “East model”) in Λ is a dynamics on {0, 1}Λ. The elements of Λ will be
called sites and the elements of {0, 1}Λ will be called configurations. For any η ∈ {0, 1}Λ,
x ∈ Λ, the value of η at x will be called the spin of η at x and denoted by η(x).

If f : {0, 1}Λ 7→ R is a function and Λ′ ⊂ Λ, we say the support of f is contained in
Λ′ and we write supp(f) ⊂ Λ′ when for any η, η′ ∈ {0, 1}Λ coinciding in Λ′, f(η) = f(η′).
Moreover, the `∞-norm of f , denoted by ‖f‖∞, is supη∈{0,1}Λ |f(η)|.

We denote {e1, . . . , ed} the canonical basis of Rd. For any r ∈ R+, we denote Λ(r) =

(
∏d
i=1{0, . . . , brc}) \ {(0, . . . , 0)}.
For any set A, |A| will denote the cardinal of A. For ρ, ρ′ ∈ R, we will use the

abbreviation ρ ∧ ρ′ = min(ρ, ρ′).

To define the East dynamics in Λ ⊂ Zd, we begin by fixing p ∈]0, 1[. Informally, the
East dynamics can be seen as follows: each site x, independently of all others, waits
for a random time with exponential law of mean 1, then tries to update its spin, that is
to replace it by 1 with probability p and by 0 with probability 1 − p, but the update is
accepted if and only if one of the x− ei is at zero. Then x waits for another random time
with exponential law, etc.

More rigorously, independently for each x ∈ Λ, we consider a sequence (Bx,n)n∈N∗

of independent random variables with Bernoulli law of parameter p, and a sequence
of times (tx,n)n∈N∗ such that, denoting tx,0 = 0, the (tx,n − tx,n−1)n∈N∗ are independent
random variables with exponential law of parameter 1, independent from (Bx,n)n∈N∗ .
The dynamics is continuous-time, denoted by (ηt)t∈R+ , and evolves as follows. For each
x ∈ Λ, n ∈ N∗, if there exists i ∈ {1, . . . , d} such that ηtx,n(x− ei) = 0, then the spin at x
is replaced by Bx,n at time tx,n. We then say there was an update at x at time tx,n, or
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that x was updated at time tx,n. (If there are sites x− ei, x ∈ Λ, i ∈ {1, . . . , d} that are
not in Λ, we need to fix the state of their spins in order to run the dynamics.) One can
use the arguments in Section 4.3 of [17] to see that this dynamics is well-defined.

For any η ∈ {0, 1}Λ, we denote the law of the dynamics starting from the configuration
η by Pη, and the associated expectation by Eη. If the initial configuration follows a law
ν on {0, 1}Λ, the law and expectation of the dynamics will be respectively denoted by
Pν and Eν . In the remainder of this work, we will always consider the dynamics on Zd

unless stated otherwise.
For any t ≥ 0 and Λ ⊂ Zd, we denote Ft,Λ = σ(tx,n, Bx,n, x ∈ Λ, tx,n ≤ t) the σ-algebra

of the exponential times and Bernoulli variables in the domain Λ between time 0 and
time t. We notice that if η0 is deterministic, for any x ∈ Zd, ηt(x) depends only on the
tx,n, Bx,n with tx,n ≤ t and on the state of sites “below” x: x − e1, . . . , x − ed, which in
turn depends only on the η0(x− ei), tx−ei,n, Bx−ei,n with tx−ei,n ≤ t and on the state of
the sites “below” the x− ei, etc. Therefore ηt(x) depends only on η0 and on the ty,n, By,n
with ty,n ≤ t and y ∈ x+ (−N)d, hence ηt(x) is Ft,x+(−N)d -measurable.

We will call µ the product Bernoulli(p) measure on the configuration space {0, 1}Λ.
The expectation with respect to µ of a function f : {0, 1}Λ 7→ R, if it exists, will be
denoted µ(f). µ is the equilibrium measure of the dynamics, which can be seen using
reversibility, since the detailed balance is satisfied.

We say that a measure ν on {0, 1}Zd satisfies Condition (C) when

(C) : ∃ a,A > 0,∀ ` ≥ 0, ν(∀x ∈ {−b`c, . . . , 0}d, η(x) = 1) ≤ Ae−a`.

Remark 2.1. The set of measures satisfying (C) includes

• the δη for any η ∈ {0, 1}Zd such that there exists x = (x1, . . . , xd) ∈ (−N)d with
η(x) = 0. This is the minimal condition on η for which to expect convergence to
equilibrium, since if the initial configuration contains only ones, there can be no
updates, hence the dynamics is blocked.

• the product Bernoulli(p′) measures with p′ ∈ [0, 1[, which are particularly relevant
for physicists (see [14]).

We can now state the main result of the paper, the convergence of the dynamics to
equilibrium:

Theorem 2.2. For any measure ν on {0, 1}Zd satisfying (C), there exist constants χ =

χ(p) > 0, c1 = c1(p, ν) > 0 and C1 = C1(p, ν) > 0 such that, for any t ≥ 0 and any

f : {0, 1}Zd 7→ R with supp(f) ⊂ Λ(χt1/d),∫
{0,1}Zd

|Eη(f(ηt))− µ(f)|dν(η) ≤ C1‖f‖∞e−c1t.

Remark 2.3. With only minor modifications in the proof, one can also show exponential
convergence of the quantity

∫
{0,1}Zd |Eη(f(ηt))− µ(f)|γ dν(η) for any γ > 0.

Another quantity of interest is the persistence function. If ν is the law of the initial
configuration and x ∈ Zd, the corresponding persistence function can be defined as
Fν,x(t) = Pν(τx > t) for any t ≥ 0, where τx is the first time there is an update at x. The
persistence function is a “measure of the mobility of the system”: the more the spin at x
can change, the faster it will decrease. Theorem 2.2 allows to prove exponential decay
of the persistence function:

Corollary 2.4. For any measure ν on {0, 1}Zd satisfying (C), there exist constants χ =

χ(p) > 0, c2 = c2(p, ν) > 0 and C2 = C2(p, ν) > 0 such that for any t ≥ 0 and any
x ∈ Λ(χt1/d), Fν,x(t) ≤ C2e

−c2t.
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Figure 1: The setting of the proof of Proposition 3.1 for d = 2. The thick squares
represent {−bαtc, . . . , 0}d, D′ and D (from smallest to largest). An oriented path joining
x ∈ {−bαtc, . . . , 0}d to D \D′ (thick arrows) intersects any Hk with k ∈ {dbαtc, . . . , bβtc}
(sloped rectangle).

Remark 2.5. The decay of the persistence function can not be faster than exponential,
because τx ≥ tx,1, thus Fν,x(t) ≥ Pν(tx,1 ≥ t) = e−t. Moreover, since the spin of a site x
will remain in its initial state until τx, the convergence to equilibrium can not be faster
than exponential. Consequently, the exponential speed is the actual speed.

Remark 2.6. In Theorem 2.2 and Corollary 2.4, one could replace Λ(χt1/d) with any box
of the form (

∏d
i=1{0, . . . , ai}) \ {(0, . . . , 0)}, a1, . . . , ad ∈ N,

∏d
i=1(ai + 1)− 1 ≤ 2dχdt.

3 Proof of Theorem 2.2

The proof of the theorem can be divided in three steps. Firstly, we use a novel
argument to find a site of (−N)d at distance O(t) from the origin that remains at zero for
a total time Ω(t) between time 0 and time t (Section 3.1). Afterwards, we use sequentially
a result of [7] to prove that the origin also stays at zero for a time Ω(t) (Section 3.2).
Finally, we end the proof of the theorem with the help of a formula derived in [7].

3.1 Finding a site that stays at zero for a time Ω(t)

For any t ≥ 0 and α > 0, we denote D = D(t, α) = {−b2dαtc, . . . , 0}d. For any x ∈ Zd,
we denote Tt(x) =

∫ t
0
1{ηs(x)=0}ds the time that x spends at zero between time 0 and

time t. We also define G = {∃x ∈ D | Tt(x) ≥ 1−p
4 t}. We then have

Proposition 3.1. For any α > 0, there exist constants c3 = c3(p, α) > 0 and C3 =

C3(p, α) > 0 such that for any t ≥ 0, for any η ∈ {0, 1}Zd such that there exists x ∈
{−bαtc, . . . , 0}d with η(x) = 0, Pη(Gc) ≤ C3e

−c3t.

Proof. The setting of the proof is illustrated in Figure 1. We set α > 0. It is enough to
prove the proposition for t ≥ 1/(2dα−α), so we fix t ≥ 1/(2dα−α). Let η ∈ {0, 1}Zd with
x ∈ {−bαtc, . . . , 0}d such that η(x) = 0 be the initial configuration. We define E = {y ∈ D |
there was an update at y in the time interval [0, t/2]}. Moreover, an oriented path will be
a sequence of sites (x(1), . . . , x(n)) with n ∈ N∗ such that for any k ∈ {1, . . . , n− 1}, there
exists i ∈ {1, . . . , d} with x(k+1) = x(k) − ei. Furthermore, writing β = 2dα, we can define
D′ = {−bβtc + 1, . . . , 0}d. Since t ≥ 1/(2dα − α), 2dαt − 1 ≥ αt, so −bβtc + 1 ≤ −bαtc,
thus x ∈ D′.
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The proof of Proposition 3.1 relies on the following auxiliary lemma, whose proof will
be postponed until after the proof of Proposition 3.1:

Lemma 3.2. If no site in D stays at zero during the time interval [0, t/2], then there
exists an oriented path in E joining x to D \D′.

This auxiliary lemma implies that we either get a site satisfying G, or a path of Ω(t)

sites that were updated before time t/2. In the latter case, the orientation of the model
allows us to use a conditioning which yields that the probabilty that none of the sites of
the path stays at zero for a time 1−p

4 t is the product of the probabilities for each of the
sites not to stay at zero for a time 1−p

4 t, and we can prove that this probabilty is strictly
smaller than one. We now make this argument precise to prove Lemma 3.1.

For any k ∈ {0, . . . , dbβtc}, we define the “diagonal hyperplane” Hk = {(x1, . . . , xd) ∈
D |x1 + · · · + xd = −k} (see Figure 1) and we denote Uk = {Hk ∩ E 6= ∅}. If Gc occurs,
no site of D can stay at zero during the whole time interval [0, t/2], hence by Lemma

3.2 there exists an oriented path in E joining x to D \ D′. Since x ∈
⋃dbαtc
k=0 Hk and

D \ D′ ⊂
⋃dbβtc
k=bβtcHk, E intersects all the Hk for k ∈ {dbαtc, . . . , bβtc}. This implies

Gc ⊂
⋂bβtc
k=dbαtc Uk. Furthermore, for any k ∈ {0, . . . , dbβtc}, we may define Gk = {∃x ∈

Hk, Tt(x) ≥ 1−p
4 t}, then Gc ⊂

⋂bβtc
k=dbαtc G

c
k. We deduce Gc ⊂

⋂bβtc
k=dbαtc(Uk ∩ G

c
k), so

Pη(Gc) ≤ Eη

 bβtc∏
k=dbαtc

(1Uk1Gck)

 .

For all k ∈ {dbαtc, . . . , bβtc}, we define a σ-algebra Fk = σ(Ft,Λ, σ(tx,n, x ∈ Hk, tx,n ≤
t/2)), where Λ = {(x1, . . . , xd) ∈ (−N)d |x1 + · · ·+xd < −k}. For any ` ∈ {dbαtc, . . . , bβtc}
with ` > k, one can see that everything that happens at the sites in H` between times 0
and t is Fk-measurable, thus U` and Gc` are Fk-measurable. Moreover, for any x ∈ Hk,
the spins of the x − ei, i ∈ {1, . . . , d} in the time interval [0, t/2] are Fk-measurable
and the tx,n ≤ t/2 are also Fk-measurable. Therefore the event {there was an up-
date at x between time 0 and time t/2} is Fk-measurable, hence Uk is Fk-measurable.
Consequently,

Pη(Gc) ≤ Eη

Eη (1Gc
dbαtc

∣∣∣Fdbαtc)1Udbαtc bβtc∏
k=dbαtc+1

(1Uk1Gck)

 .

Therefore, if we can find a constant c′3 = c′3(p) > 0 such that

∀k ∈ {dbαtc, . . . , bβtc},1UkEη
(
1Gck |Fk

)
≤ e−c

′
3 (3.1)

then we have

Pη(Gc) ≤ e−c
′
3Eη

 bβtc∏
k=dbαtc+1

(1Uk1Gck)

 ,

so by a simple induction Pη(Gc) ≤ e−c
′
3(bβtc+1−dbαtc) ≤ e−c

′
3(βt−dαt) = e−c

′
3dαt, which is

Proposition 3.1.
Consequently, we only need to prove (3.1). Let k ∈ {dbαtc, . . . , bβtc}. For any x ∈ Hk,

if the state of the x − ei, i ∈ {1, . . . , d} between time 0 and time t is known, and if the
tx,n ≤ t/2 are also known, the state of x between time 0 and time t depends only on the
t/2 < tx,n ≤ t and on the Bx,n such that tx,n ≤ t. Therefore, conditionally on Fk, the
state of x between time 0 and time t depends only on {t/2 < tx,n ≤ t} ∪ {Bx,n | tx,n ≤ t}.
Moreover, these sets for x ∈ Hk are mutually independent conditionally on Fk, hence the
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states of the x ∈ Hk between time 0 and time t are mutually independent conditionally
on Fk, which implies

1UkEη
(
1Gck |Fk

)
= 1Uk

∏
x∈Hk

Pη

(
Tt(x) <

1− p
4

t

∣∣∣∣Fk) ≤ 1Uk ∏
x∈Hk∩E

Pη

(
Tt(x) <

1− p
4

t

∣∣∣∣Fk).
(3.2)

In addition, for x ∈ Hk ∩ E, we have the following (in the second inequality we use
the Markov inequality):

Pη

(
Tt(x) <

1− p
4

t

∣∣∣∣Fk) ≤ Pη
(∫ t

t/2

1{ηs(x)=0}ds <
1− p

4
t

∣∣∣∣∣Fk
)

≤
Eη

(∫ t
t/2
1{ηs(x)=1}ds

∣∣∣Fk)
t
2 −

1−p
4 t

=

∫ t
t/2
Pη(ηs(x) = 1|Fk)ds(

1− 1−p
2

)
t
2

.

Furthermore, for s ∈ [t/2, t], since x ∈ Hk ∩ E, conditionally on Fk we know that there
was an update at x before time s, but not the associated Bernoulli variable, hence
Pη(ηs(x) = 1|Fk) = p. This implies

Pη

(
Tt(x) <

1− p
4

t

∣∣∣∣Fk) ≤
∫ t
t/2

pds(
1− 1−p

2

)
t
2

=
p

1− 1−p
2

.

Moreover, p

1− 1−p
2

= 2p
1+p < 1, hence if we write c′3 = − ln( p

1− 1−p
2

), we have c′3 > 0 and

Pη(Tt(x) < 1−p
4 t|Fk) ≤ e−c′3 . Consequently, (3.2) yields

1UkEη
(
1Gck |Fk

)
≤ 1Uk

∏
x∈Hk∩E

e−c
′
3 = 1Uke

−c′3|Hk∩E|.

Finally, Uk indicates that Hk ∩ E 6= 0, thus 1UkEη(1Gck |Fk) ≤ 1Uke−c
′
3 ≤ e−c

′
3 with c′3 > 0

depending only on p, which is (3.1).

Proof of Lemma 3.2. Let us suppose that no site of D stays at zero during the time
interval [0, t/2]. Then E contains x, because x ∈ D and if there was no update at x
between time 0 and time t/2, the spin of x would stay during this whole time interval at
its initial state of 0, which does not happen by assumption. We are going to show that if
we have an oriented path in E starting from x that does not reach D \D′, we can add a
site at its end in a way we still have an oriented path in E. This is enough, because from
the path composed only of x we can do at most dbβtc steps before reaching D \D′. Thus
we consider an oriented path in E starting from x that does not reach D \D′. Let us call
y its last site; we have y ∈ D′. Since y ∈ E, y was updated between time 0 and time t/2.
This implies that one of the y − ei, i ∈ {1, . . . , d}, that we may call y′, was at zero at the
moment of the update. Moreover, y ∈ D′, hence y′ ∈ D. There are two possibilities:

• Either the spin of y′ was not zero in the initial configuration. Then there was an
update at y′ before the update at y, hence before time t/2, so since y′ ∈ D, y′ ∈ E.

• Or the spin at y′ was zero in the initial configuration. In this case, if there was no
update at y′ before time t/2, y′ stayed at 0 during the whole time interval [0, t/2].
However y′ ∈ D, so this is impossible by assumption. Therefore there was an
update at y′ before time t/2, which implies y′ ∈ E.

Therefore y′ ∈ E in both cases, which allows to add a site to the path and ends the proof
of Lemma 3.2.
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3.2 Proving the origin stays at zero for a time Ω(t)

In this section, we will use Proposition 3.1 to prove the following result:

Lemma 3.3. There exist constants δ = δ(p) ∈]0, 1[, α = α(p) > 0, c4 = c4(p) > 0 and

C4 = C4(p) > 0 such that for any t ≥ 0, for any η ∈ {0, 1}Zd such that there exists
x ∈ {−bαtc, . . . , 0}d with η(x) = 0, Pη(Tt(0) ≤ 1−p

4 δdt) ≤ C4e
−c4t.

Proof. Let t ≥ 0. Thanks to Proposition 3.1, for any α > 0 and η ∈ {0, 1}Zd such that
there exists x ∈ {−bαtc, . . . , 0}d with η(x) = 0, we have Pη(Gc) ≤ C3e

−c3t with c3, C3 > 0

depending only on p and α. Therefore, it is enough to find δ = δ(p) ∈]0, 1[, α = α(p) > 0,

C ′4 = C ′4(p) > 0 and c′4 = c′4(p) > 0 depending only on p such that for η ∈ {0, 1}Zd we have
Pη(G, Tt(0) ≤ 1−p

4 δdt) ≤ C ′4e−c
′
4t.

Moreover, for any δ ∈]0, 1[, α > 0 and η ∈ {0, 1}Zd , we have

Pη

(
G, Tt(0) ≤ 1− p

4
δdt

)
≤
∑
y∈D

Pη

(
Tt(y) ≥ 1− p

4
t, Tt(0) ≤ 1− p

4
δdt

)
. (3.3)

For y = (y1, . . . , yd) ∈ D, we define the following sequence of sites: y(0) = y, y(1) =

(0, y2, . . . , yd), y
(2) = (0, 0, y3, . . . , yd), . . . , y

(d) = (0, . . . , 0). We then have

Pη

(
Tt(y) ≥ 1− p

4
t, Tt(0) ≤ 1− p

4
δdt

)
≤

d∑
i=1

Pη

(
Tt(y(i−1)) ≥ δi−1 1− p

4
t, Tt(y(i)) ≤ 1− p

4
δit

)
.

(3.4)

To deal with this expression, we are going to use Lemma 4.9 of [7]. This lemma
yields that there exist constants δ ∈]0, 1[ and c > 0 depending only on p such that for any
i ∈ {1, . . . , d}, defining Ii = {(0, . . . , j, yi+1, . . . , yd)|j ∈ {yi + 1, . . . , 0}} if yi 6= 0 and Ii = ∅
if yi = 0,

Pη(Tt(y(i)) ≤ δTt(y(i−1))|Ft,Ici ) ≤ 1

(p ∧ (1− p))|yi|
e−cTt(y

(i−1)).

(Actually, this lemma was proven for a dynamics in Nd, but the proof works in Zd with
only minor modifications.)

Therefore we can set δ to the value given by [7], and obtain the following (in the first
inequality we use that Tt(y(i−1)) is Ft,y(i−1)+(−N)d -measurable, hence Ft,Ici -measurable):

Pη

(
Tt(y(i−1)) ≥ δi−1 1− p

4
t, Tt(y(i)) ≤ 1− p

4
δit

)
≤ Eη(1{Tt(y(i−1))≥δi−1 1−p

4 t}Pη(Tt(y(i)) ≤ δTt(y(i−1))|Ft,Ici ))

≤ Eη
(
1{Tt(y(i−1))≥δi−1 1−p

4 t}
1

(p ∧ (1− p))|yi|
e−cTt(y

(i−1))

)
≤ 1

(p ∧ (1− p))|yi|
e−cδ

i−1 1−p
4 t.

Moreover, since y ∈ D, |yi| ≤ b2dαtc ≤ 2dαt, so if we set α = c(1−p)δd−1

−16d ln(p∧(1−p)) (which is

positive and depends only on p), we obtain (p ∧ (1− p))|yi| ≥ e−
c(1−p)δd−1

8 t, hence the last

term in the display is bounded by e−
c(1−p)δd−1

8 t. Therefore, by (3.4),

Pη

(
Tt(y) ≥ 1− p

4
t, Tt(0) ≤ 1− p

4
δdt

)
≤ de−

c(1−p)δd−1

8 t,

so by (3.3)

Pη

(
G, Tt(0) ≤ 1− p

4
δdt

)
≤ |D|de−

c(1−p)δd−1

8 t = (b2dαtc+ 1)dde−
c(1−p)δd−1

8 t
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Exponential convergence to equilibrium for the d-dimensional East model

with c(1−p)δd−1

8 > 0 depending only on p and α depending only on p, so we get a suitable
bound on Pη(G, Tt(0) ≤ 1−p

4 δdt).

3.3 Ending the proof of Theorem 2.2

Let ν a measure on {0, 1}Zd satisfying (C), t ≥ 0 and f : {0, 1}Zd 7→ R non constant
with ‖f‖∞ <∞. We denote N (η) = {∃x ∈ {−bαtc, . . . , 0}d, η(x) = 0}, where α = α(p) > 0

is given by Lemma 3.3. We also denote g = f−µ(f)
‖f−µ(f)‖∞ . Then∫

{0,1}Zd
|Eη(f(ηt))− µ(f)|dν(η) = ‖f − µ(f)‖∞

∫
{0,1}Zd

|Eη(g(ηt))|dν(η)

≤ 2‖f‖∞

(∫
{0,1}Zd

|Eη(g(ηt))|1N (η)cdν(η) +

∫
{0,1}Zd

|Eη(g(ηt))|1N (η)dν(η)

)
.

Moreover, since ‖µ(g)‖∞ = 1 and ν satisfies (C), we can see that we have the following:∫
{0,1}Zd |Eη(g(ηt))|1N (η)cdν(η) ≤ ν(N (η)c) ≤ Ae−aαt with A, a > 0 depending only on ν.

Therefore, to prove Theorem 2.2, it is enough to find χ > 0 depending only on p such
that for any f : {0, 1}Zd 7→ R non constant (if f is constant the theorem is trivially true)

with support in Λ(χt1/d) (which automatically gives ‖f‖∞ < ∞) and any η ∈ {0, 1}Zd

such that N (η), |Eη(g(ηt))| ≤ C ′1e−c
′
1t with C ′1, c

′
1 > 0 depending only on p. For χ > 0, we

set such f and η. Since ‖g‖∞ = 1, for δ as in Lemma 3.3 we have

|Eη(g(ηt))| ≤ Pη
(
Tt(0) ≤ 1− p

4
δdt

)
+
∣∣∣Eη (1{Tt(0)> 1−p

4 δdt}g(ηt)
)∣∣∣ .

In addition, since there is x ∈ {−bαtc, . . . , 0}d such that η(x) = 0, by Lemma 3.3 we have
Pη(Tt(0) ≤ 1−p

4 δdt) ≤ C4e
−c4t with C4, c4 > 0 depending only on p. Consequently, it is

enough to bound |Eη(1{Tt(0)> 1−p
4 δdt}g(ηt))|.

Writing Λ = Λ(χt1/d) for short, we notice that the event {Tt(0) > 1−p
4 δdt} is Ft,(−N)d -

measurable hence Ft,Λc -measurable, which implies∣∣∣Eη (1{Tt(0)> 1−p
4 δdt}g(ηt)

)∣∣∣ =
∣∣∣Eη (1{Tt(0)> 1−p

4 δdt}Eη (g(ηt)|Ft,Λc)
)∣∣∣ ,

therefore ∣∣∣Eη (1{Tt(0)> 1−p
4 δdt}g(ηt)

)∣∣∣
≤ 1

minσ∈{0,1}Λ µ(σ)
Eη

1{Tt(0)> 1−p
4 δdt}

∑
σ∈{0,1}Λ

µ(σ)Eσ·η (g(ηt)|Ft,Λc)

 ,

where σ ·η is the configuration equal to σ in Λ and to η in Λc. Furthermore, the reasoning
of Equation (4.2) of [7] and of the paragraphs around it yields that∑

σ∈{0,1}Λ
µ(σ)Eσ·η (g(ηt)|Ft,Λc) ≤ e−λTt(0)

where λ is the spectral gap of the East dynamics in Λ where the spin of the origin is
fixed at 0 and the other spins outside Λ are at 1 (see Chapter 2 of [12] for the definition
of the spectral gap and Section 2.4 of [5] for an introduction to the spectral gap in
the particular context of kinetically constrained models). Moreover, one can use the
argument of Section 6.2.2 of [8] on our Λ instead of on a cube to obtain that λ is bigger
than the spectral gap λ′ of the one-dimensional East dynamics in {1, . . . , dbχt1/dc} with
the origin fixed at zero. To do that, one can use a forest instead of a tree and apply the

ECP 24 (2019), paper 55.
Page 8/10

http://www.imstat.org/ecp/

https://doi.org/10.1214/19-ECP261
http://www.imstat.org/ecp/


Exponential convergence to equilibrium for the d-dimensional East model

fact that the spectral gap of a product dynamics is the minimum of the spectral gaps of
the component dynamics (Theorem 2.5 of [12]). Furthermore, Equation (3.3) of [8] yields
that λ′ is bigger than the spectral gap λ′′ of the East dynamics in Z, which depends only
on p and is positive by Theorem 6.1 of [5].

Consequently, we have∣∣∣Eη (1{Tt(0)> 1−p
4 δdt}g(ηt)

)∣∣∣ ≤ 1

minσ∈{0,1}Λ µ(σ)
Eη

(
1{Tt(0)> 1−p

4 δdt}e
−λ′′Tt(0)

)
≤ 1

(p ∧ (1− p))|Λ|
e−λ

′′ 1−p
4 δdt.

Moreover, |Λ| ≤ (χt1/d + 1)d and we can suppose χt1/d ≥ 1, since if χt1/d < 1, |Λ|
is empty and there is no non constant function with support in Λ. Therefore we get

|Λ| ≤ (2χt1/d)d = 2dχdt. Now, if we set χ = 1
2 ( λ′′(1−p)δd
−8 ln(p∧(1−p)) )1/d, χ is positive and depends

only on p, and we have (p ∧ (1− p))|Λ| ≥ e−
λ′′(1−p)δd

8 t, thus∣∣∣Eη (1{Tt(0)> 1−p
4 δdt}g(ηt)

)∣∣∣ ≤ e−λ′′(1−p)δd

8 t

with λ′′(1−p)δd
8 positive depending only on p, which ends the proof of Theorem 2.2.

4 Proof of Corollary 2.4

This proof is inspired from the proof of Lemma A.3 of [8].
Let ν a measure on {0, 1}Zd satisfying (C), χ as in Theorem 2.2, t ≥ 0, x ∈ Λ(χt1/d).

For any η ∈ {0, 1}Zd , we have

Eη(ηt(x)) = Eη(ηt(x)|τx ≤ t)Pη(τx ≤ t) + Eη(ηt(x)|τx > t)Pη(τx > t)

= pPη(τx ≤ t) + η(x)Pη(τx > t) = p− pPη(τx > t) + η(x)Pη(τx > t)

since if τx ≤ t, ηt(x) is a Bernoulli random variable of parameter p. Therefore,

|Eη(ηt(x))− p| = |η(x)− p|Pη(τx > t) ≥ (p ∧ (1− p))Pη(τx > t),

and we deduce

Fν,x(t) = Pν(τx > t) =

∫
{0,1}Zd

Pη(τx > t)dν(η)

≤ 1

p ∧ (1− p)

∫
{0,1}Zd

|Eη(ηt(x))− p|dν(η) ≤ 1

p ∧ (1− p)
C1e

−c1t

by Theorem 2.2 with C1 > 0 and c1 > 0 depending only on p and ν.
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