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Abstract

In this short note we study the asymptotic behaviour of the minima over compact
intervals of Gaussian processes, whose paths are not necessarily smooth. We show
that, beyond the logarithmic large deviation Gaussian estimates, this problem is closely
related to the classical small-ball problem. Under certain conditions we estimate
the term describing the correction to the large deviation behaviour. In addition, the
asymptotic distribution of the location of the minimum, conditionally on the minimum
exceeding a high threshold, is also studied.
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1 Introduction

Let X =
(
X(t), t ∈ R

)
be a centered Gaussian process with continuous sample paths.

For a compact subinterval [a, b] of the real line we are interested in the right tail of the
random variable mina≤t≤bX(t). This is a complicated object; see e.g. [4] and [1]. On the
logarithmic scale, however, this tail can be described as follows:

lim
u→∞

1

u2
logP

(
min
a≤t≤b

X(t) > u
)

= − 1

2σ2
∗(a, b)

, (1.1)

where

σ2
∗(a, b) = min

ν∈M1[a,b]

∫
[a,b]

∫
[a,b]

RX(s, t) ν(ds) ν(dt) , (1.2)

with RX the covariance function of the process and M1[a, b] the set of all Borel probability
measures ν on [a, b]; see Theorem 5.1 in [1]. The quantity in (1.2) is strictly positive
whenever the tail probability in (1.1) is strictly positive for u = 0. In order to obtain more
precise results on the right tail of the minimum than (1.1), additional assumptions on the
process X, in addition to its continuity, are needed. In [3] such additional assumptions
guarantee that the process X is very smooth. Under these assumptions the optimization
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High minima of non-smooth Gaussian processes

problem (1.2) has a unique optimal solution, a probability measure ν∗ whose support is a
finite set. If k is the cardinality of that set, then (under a non-degeneracy assumption),

P
(

min
a≤t≤b

X(t) > u
)
∼ cu−k exp

{
− 1

2σ2
∗(a, b)

u2
}

(1.3)

for some c ∈ (0,∞).
Our goal in this paper is to obtain results on the asymptotics of the right tail of

the Gaussian minimum, more precise than the logarithmic asymptotics (1.1), when the
process X is not so smooth as to satisfy the assumptions of [3] (and, hence, also (1.3)).
Such more precise asymptotics are, clearly, related to the support of the optimal measure
in (1.2), so the next Section 2 describes certain situations where information on the
optimal measure or, at least, on its support, is available. The more precise asymptotic
results on the tail of the minima are in Section 3; the results are the most precise in the
Markovian case. In Section 4 we show that, in many cases, the law of the location of the
minimum of a non-smooth Gaussian process, given that the minimum is high, converges,
as the height of the minimum increases, to the minimizer in the optimization problem
(1.2). We conclude with examples in Section 5.

2 The optimal measure and its support

When a Gaussian process is very smooth, optimal measures in the optimization
problem (1.2) are supported by finite sets; see [3]. On the other hand, processes whose
sample paths are sufficiently “rough” may lead to optimal measures with large supports.
For example, if X is the stationary Ornstein-Uhlenbeck process, with covariance function
RX(s, t) = exp{−|s− t|}, then the optimal measure in (1.2) is

ν∗ =
1

2 + b− a
δa +

1

2 + b− a
δb +

b− a
2 + b− a

λa,b ,

where δx is a point mass at x, and λa,b is the uniform probability distribution on the
interval (a, b); see Example 6.2 in [1]. In this case the optimal measure has a full support
in the interval [a, b]. We now demonstrate other situations where this phenomenon holds.

We start with considering certain stationary Gaussian processes, in which case we will
use the standard single variable notation for the covariance function RX(t) := RX(s, s+t),
s, t ∈ R. By stationarity it is enough to take a = 0 and consider intervals of the type [0, b],
b > 0.

Theorem 2.1. Let X =
(
X(t), t ∈ R

)
be a centered stationary Gaussian process with

continuous sample paths and covariance function RX. Suppose that RX is strictly convex
on [0, b]. Then the optimization problem (1.2) has a unique optimal probability measure,
which has a full support in the interval [0, b].

Proof. By Polya’s theorem, the spectral measure of the process X has an absolutely
continuous component which is of full support on R; see e.g. [7]. Then there is a unique
optimal probability measure ν∗ in the optimization problem (1.2); see [1]. Furthermore,
the strict convexity of the covariance function implies that it is strictly decreasing on
[0, b].

Note that the support of the optimal probability measure ν∗ cannot consist of a
single point, for in that case the value of the double integral in (1.2) is RX(0), while any
two-point probability measure ν would give a strictly smaller integral. We show now
that endpoints 0 and b of the interval belong to the support. By symmetry it is enough to
prove that b is in the support of ν∗.

Suppose that, to the contrary, for some 0 < ε < b we have ν∗
(
[b− ε, b]

)
= 0, and let c

be the right-most point of the support of ν∗. Then 0 < c ≤ b− ε. Choosing, if necessary,
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High minima of non-smooth Gaussian processes

a smaller ε we can assure that c > ε and that ν∗
(
[0, c − ε)

)
> 0. Construct now a new

probability measure, ν̂∗ by translating the positive mass of ν∗ in the interval [c− ε, c] to
the interval [b− ε, b]. By the strict monotonicity of the covariance function,∫

[0,b]

∫
[0,b]

RX(t− s) ν̂∗(ds) ν̂∗(dt)

=

∫
[0,c−ε)

∫
[0,c−ε)

RX(t− s) ν∗(ds) ν∗(dt)

+

∫
[c−ε,c]

∫
[c−ε,c]

RX(t− s) ν∗(ds) ν∗(dt)

+2

∫
[c−ε,c]

∫
[0,c−ε)

RX(b− c+ t− s) ν∗(ds) ν∗(dt)

<

∫
[0,c−ε)

∫
[0,c−ε)

RX(t− s) ν∗(ds) ν∗(dt)

+

∫
[c−ε,c]

∫
[c−ε,c]

RX(t− s) ν∗(ds) ν∗(dt)

+2

∫
[c−ε,c]

∫
[0,c−ε)

RX(t− s) ν∗(ds) ν∗(dt)

=

∫
[0,b]

∫
[0,b]

RX(t− s) ν∗(ds) ν∗(dt) ,

contradicting the optimality of the measure ν∗.
Hence, the endpoints of the interval are in the support of ν∗, and we proceed to prove

that the support of ν∗ is the entire interval [0, b]. Suppose that, to the contrary, there are
points 0 ≤ c1 < c2 ≤ b, both in the support of ν∗, such that ν∗

(
(c1, c2)

)
= 0. Denote

m(t) =

∫
[0,b]

RX(t− s) ν∗(ds), 0 ≤ t ≤ b .

The optimality of the measure ν∗ implies that m(t) ≥ σ2
∗(0, b) (the optimal value of the

double integral in (1.2)) for all 0 ≤ t ≤ b, with equality on the support of ν∗; see Theorem
4.3 in [1]. Note that on the interval [c1, c2] this function,

m(t) =

∫
[0,c1]

RX(t− s) ν∗(ds) +

∫
[c2,b]

RX(s− t) ν∗(ds) ,

is strictly convex by the assumptions. Since m(c1) = m(c2) = σ2
∗(0, b), this rules out the

possibility that m(t) ≥ σ2
∗(0, b) for c1 < t < c2. The resulting contradiction completes the

proof of the theorem.

For certain nonstationary Gaussian processes the optimization problem (1.2) can be
explicitly solved. Here is one such situation. Let

(
B(t), t ≥ 0

)
be the standard Brownian

motion, and 0 < a < b <∞. Consider a centered Gaussian process of the form

X(t) =
1

g(t)
B(t), a ≤ t ≤ b , (2.1)

where g : [a, b]→ (0,∞) is a continuous function.

Theorem 2.2. (a) Suppose that g is a nondecreasing concave and twice continuously
differentiable function on [a, b]. Define

f(x) = −g(x)g′′(x) ≥ 0, a < x < b ,

pa =
g(a)

a

(
g(a)− ag′(a)

)
≥ 0 ,

pb = g(b)g′(b) ≥ 0 .
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High minima of non-smooth Gaussian processes

Then the finite measure µ on [a, b] defined by

µ(dx) = paδa(dx) + pbδb(dx) + f(x) dx, a ≤ x ≤ b , (2.2)

is equal, up to a multiplicative constant, to an optimal solution to the optimization
problem (1.2).

(b) Suppose that g is concave on [a, b], and nondecreasing and twice continuously
differentiable on [a0, b], for some a < a0 < b such that g(a0) = a0g

′(a0). If pb is as in part
(a), and

f(x) = −g(x)g′′(x) ≥ 0, a0 < x < b ,

then the finite measure µ on [a, b] defined by

µ(dx) = pbδb(dx) + f(x) dx, a0 ≤ x ≤ b , (2.3)

is equal, up to a multiplicative constant, to an optimal solution to the optimization
problem (1.2).

Proof. Observe that the covariance function of the process X is given by

RX(s, t) =
s

g(s)g(t)
, a ≤ s ≤ t ≤ b .

With the measure µ defined by (2.2),∫
[a,b]

RX(s, t)µ(ds) = paRX(a, t) + pbRX(b, t) +

∫ b

a

RX(x, t)f(x) dx

=
g(a)

a

(
g(a)− ag′(a)

) a

g(a)g(t)
+ g(b)g′(b)

t

g(b)g(t)

−
∫ t

a

x

g(t)g(x)
g(x)g′′(x) dx−

∫ b

t

t

g(t)g(x)
g(x)g′′(x) dx

=
1

g(t)

[
g(a)− ag′(a) + tg′(b)−

∫ t

a

xg′′(x) dx− t
∫ b

t

g′′(x) dx

]

=
1

g(t)

[
g(a) +

∫ t

a

g′(x) dx

]
= 1

for each a ≤ t ≤ b. By Theorem 4.3 in [1] this implies the claim of part (a).
For part (b) note that by the above argument we already know that∫

[a,b]

RX(s, t)µ1(ds) = 1 (2.4)

for all a0 ≤ t ≤ b. Appealing, once again, to Theorem 4.3 in [1] we see that the claim of
part (b) will follow once we check that the value of the integral in (2.4) is at least 1 for
a ≤ t < a0. For such t,∫

[a,b]

RX(s, t)µ1(ds) = pbRX(b, t) +

∫ b

a0

RX(x, t)f(x) dx

=
1

g(t)

[
tg′(b)− t

∫ b

a0

g′′(x) dx

]

=
tg′(a0)

g(t)
.

ECP 24 (2019), paper 53.
Page 4/12

http://www.imstat.org/ecp/

https://doi.org/10.1214/19-ECP251
http://www.imstat.org/ecp/


High minima of non-smooth Gaussian processes

Since by concavity of g,

g(a0)− g(t) =

∫ a0

t

g′(x) dx ≥ g′(a0)(a0 − t) ,

we conclude that

g(t) ≤ g(a0)− a0g′(a0) + tg′(a0) = tg′(a0) ,

which gives the required lower bound on the integral of the covariance function.

Remark 2.3. It is clear that the assumption of continuous second derivative of the
function g in Theorem 2.2 can be replaced by the assumption of absolutely continuous
first derivative, in which case the function g′′ in the statement of the theorem is simply a
nonpositive derivative of g′ in the sense of absolute continuity.

3 Tails of the minima

In this section we describe certain situations in which we can give more precise
asymptotics of the tail of the minimum of a Gaussian process X beyond the logarithmic
asymptotics in (1.1). In these situations the smoothness assumptions of [3] are not
satisfied, and asymptotics of the type (1.3) are no longer applicable. Our most precise
results apply to Gaussian Markov processes, of which the processes of the type defined
in (2.1) are a special case.

Theorem 3.1. Let (X(t), a ≤ t ≤ b) be a centered Gaussian Markov process with
continuous sample paths, such that an optimal measure ν∗ in the optimization problem
(1.2) has an absolutely continuous component νac, whose density with respect to the
Lebesgue measure has a version with

η := inf
x∈[a,b]

dνac(x)

dx
> 0 . (3.1)

Then

−∞ < lim inf
u→∞

u−2/3
(

logP

(
min
a≤t≤b

X(t) > u

)
+

1

2σ2
∗(a, b)

u2
)

≤ lim sup
u→∞

u−2/3
(

logP

(
min
a≤t≤b

X(t) > u

)
+

1

2σ2
∗(a, b)

u2
)
< 0 .

Proof of Theorem 3.1. We will use the following easily checkable fact (which also follows
from Theorem 4.12.11 (iii) of [2]): if f : (0,∞)→ (0,∞) is a bounded measurable function
such that

lim
ε↓0

εβ log f(ε) = −c , (3.2)

for some β, c ∈ (0,∞), then there exists C ∈ (0,∞) such that

lim
x→∞

x−β/(1+β) log

∫ ∞
0

e−xεf(ε)dε = −C . (3.3)

Denote

Y =

∫
[a,b]

X(t) ν∗(dt) . (3.4)

Since ν∗ has full support, it follows that

E(X(t)|Y ) = Y a.s. for all t ∈ [a, b] ;
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see e.g. p.8 in [3]. With
Z(t) := X(t)− Y, t ∈ [a, b] ,

wee see that Y and
(
Z(t), t ∈ [a, b]

)
are independent. Since∫

[a,b]

Z(t) ν∗(dt) = 0 a.s. ,

it follows that
Z∗ := min

a≤t≤b
Z(t) ≤ 0 a.s. .

Therefore, for u > 0,

P

(
min
a≤t≤b

X(t) > u

)
= P (Y + Z∗ > u)

=

∫ ∞
u

P (Z∗ > u− y)P (Y ∈ dy)

=

∫ ∞
u

P (Z∗ > u− y)
1

σ∗(a, b)
√

2π
e−y

2/2σ2
∗(a,b) dy

=
1

σ∗(a, b)
√

2π
e−u

2/2σ2
∗(a,b)

∫ ∞
0

e−uε/σ
2
∗(a,b)P (Z∗ > −ε)e−ε

2/2σ2
∗(a,b) dε .

We will prove that
lim inf
ε↓0

ε2 logP (Z∗ > −ε) > −∞ . (3.5)

By (3.3) with β = 2 this will prove the lower bound in the statement of the theorem.
However, if X∗ and X∗ are the smallest and the largest values, respectively, of X on [a, b],
then, as ε ↓ 0,

logP (Z∗ > −ε) ≥ logP (X∗ −X∗ < ε) ∼ −κε−2

for some κ ∈ (0,∞). The asymptotic equivalence in the last line has been shown in [6].
Thus, (3.5) follows.

In order to prove the upper bound in the statement of the theorem, we use a change of
measure. Let LX be the closed in L2 linear span of the process X. For every Z ∈ LX, the
function fZ(t) = E

(
ZX(t), a ≤ t ≤ b

)
belongs to the reproducing kernel Hilbert space of

X and, hence, the probability measures
(
X(t), a ≤ t ≤ b

)
and

(
X(t) + fZ(t), a ≤ t ≤ b

)
generate on R[a,b] are equivalent. Furthermore, in the obvious notation,

dPX+fZ

dPX
= exp

{
Z − EZ2/2

}
;

see [8]. In particular, for every such Z,

P
(

min
a≤t≤b

X(t) + fZ(t) > 0
)

(3.6)

= exp
{
−EZ2/2

}
E

[
eZ1

(
min
a≤t≤b

X(t) > 0
)]

.

With Y as in (3.4) we choose Z = −uY/EY 2. Since ν∗ has a full support, we have
fZ(t) = −u for all a ≤ t ≤ b. By (3.6),

P
(

min
a≤t≤b

X(t) > u
)

= exp

{
− 1

2σ2
∗(a, b)

u2
}

(3.7)

E

[
exp

{
−u 1

σ2
∗(a, b)

∫
[a,b]

X(t) ν∗(dt)

}
1
(

min
a≤t≤b

X(t) > 0
)]

.
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Next,

E

[
exp

{
−u 1

σ2
∗(a, b)

∫
[a,b]

X(t) ν∗(dt)

}
1
(

min
a≤t≤b

X(t) > 0
)]

≤E

[
exp

{
−u 1

σ2
∗(a, b)

∫
[a,b]

|X(t)| ν∗(dt)

}]

≤ exp

{
−u2/3 1

σ2
∗(a, b)

}
+ P

(∫
[a,b]

|X(t)| ν∗(dt) ≤ u−1/3
)
.

Appealing, once again, to [6], we have, by (3.1),

logP

(∫
[a,b]

|X(t)| ν∗(dt) ≤ u−1/3
)

≤ logP

(
η

∫
[a,b]

|X(t)| dt ≤ u−1/3
)
∼ −κ1u2/3

for some κ1 ∈ (0,∞). In conjunction with (3.7) this establishes the upper bound in the
theorem.

It is clear from the proof of Theorem 3.1 that there is a close connection between
the improvements on the logarithmic asymptotics (1.1) of the minima of Gaussian
processes and small ball problems for these processes. Availability of bounds on small
ball probabilities is often helpful in obtaining bounds on the tail of the Gaussian minimum.
The following theorem is another example of this.

Theorem 3.2. Let (X(t), a ≤ t ≤ b) be a centered Gaussian process with continuous
sample paths, such that an optimal measure ν∗ in the optimization problem (1.2) has a
full support in [a, b]. Suppose that there exists a function σ : [0,∞)→ [0,∞) satisfying

lim
h↓0

h−βσ(h) = c ∈ (0,∞) (3.8)

for some β > 0, such that such that

E
[
(X(t)−X(s))2

]
≤ σ(|t− s|)2, s, t ∈ [a, b] .

Then,

lim inf
u→∞

u−1/(β+1)

(
logP

(
min
t∈[a,b]

X(t) > u

)
+

1

2σ2
∗(a, b)

u2
)
> −∞ ,

where σ2
∗(a, b) is as in (1.2), and should not be confused with the σ of (3.8).

Proof. An argument identical to the proof of the lower bound in Theorem 3.1 gives us

P

(
min
a≤t≤b

X(t) > u

)
≥ 1

σ∗(a, b)
√

2π
e−u

2/2σ2
∗(a,b)∫ ∞

0

e−uε/σ
2
∗(a,b)P

(
max
a≤t≤b

|X(t)−X(a)| < ε/2

)
e−ε

2/2σ2
∗(a,b) dε .

Since by the assumption (3.8) we have, for some K ∈ (0,∞),

P

(
max
a≤t≤b

|X(t)−X(a)| ≤ ε
)
≥ exp

(
−Kε−1/β

)
, ε > 0 ,

by Theorem 4.1 in [5], the claim of the theorem follows from (3.3).
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4 The location of the minimum

For a continuous centered Gaussian process X =
(
X(t), t ∈ R

)
consider the location

of the minimum of the process on an interval [a, b]:

T∗ := arg min
a≤t≤b

X(t) ,

where we choose the leftmost location of the minimum in case there are ties. For very
smooth Gaussian processes considered in [3] it was proved that, as u→∞,

¶
(
T∗ ∈ ·

∣∣∣ min
a≤t≤b

X(t) > u

)
⇒ ν∗ , (4.1)

with ν∗ the unique minimizer in the optimization problem (1.2). In that case the latter
optimal measure is always supported by a finite set. Our goal in this section is to show
that (4.1) continues to hold for Gaussian processes whose sample paths are not smooth,
and for which the optimal measure may have full support.

Theorem 4.1. Let X =
(
X(t), t ∈ R

)
be a centered stationary Gaussian process with

continuous sample paths and covariance function RX. Suppose that RX is strictly convex
on [0, b]. Then (4.1) holds with a = 0 and any b > 0, where ν∗ is the unique optimal
probability measure for the optimization problem (1.2).

Proof. The fact that the optimization problem (1.2) has a unique optimal solution ν∗ was
established in Theorem 2.1. We use (3.7) (with a = 0). Let A ⊆ [a, b] be a Borel set that
is a continuity set for ν∗. Recalling the notation (3.4) we obtain

P
(
T∗ ∈ A| min

a≤t≤b
X(t) > u

)
=
E
[
exp

{
−uY/σ2

∗(a, b)
}
1
(
mina≤t≤bX(t) > 0, T∗ ∈ A

)]
E
[
exp {−uY/σ2

∗(a, b)}1
(
mina≤t≤bX(t) > 0

)] .

By Fubini’s theorem this can be rewritten in the form

P
(
T∗ ∈ A| min

a≤t≤b
X(t) > u

)
=

∫∞
0

exp
{
−ux/σ2

∗(a, b)
}
P
(
Y ≤ x, mina≤t≤bX(t) > 0, T∗ ∈ A

)
dx∫∞

0
exp {−ux/σ2

∗(a, b)}P
(
Y ≤ x, mina≤t≤bX(t) > 0

)
dx

,

and so it is enough to prove that

ν∗(A) = lim
x→0

P
(
Y ≤ x, mina≤t≤bX(t) > 0, T∗ ∈ A

)
P
(
Y ≤ x, mina≤t≤bX(t) > 0

)
= lim
x→0

P
(
T∗ ∈ A

∣∣Y ≤ x, min
a≤t≤b

X(t) > 0
)
.

If we denote by mx the probability measure described by the right hand side of this
statement, then we need to prove that

mx ⇒ ν∗ as x→ 0. (4.2)

To this end, we use a discrete approximation. Let Pk =
{
bi2−k, i = 0, 1, . . . , 2k

}
be

the kth binary partition of the interval [0, b], k = 1, 2, . . .. For each k we consider the
following restricted version of the optimization problem (1.2):

min
ν∈M1(Pk)

∫
[0,b]

∫
[0,b]

RX(s, t) ν(ds) ν(dt) , (4.3)
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where the probability measures are required to be supported by the finite set Pk. As
in the case of the full optimization problem (1.2), the fact that the spectral measure of
the process X is of full support guarantees that the problem (4.3) has a unique optimal
solution, which we will denote by ν∗,k. We also denote by σ2

∗,k the corresponding value
of the double integral. The same argument as in the case of the restricted optimization
problem shows that, because of strict convexity of RX, ν∗,k assigns a positive mass to
each point in Pk.

Clearly, σ2
∗,1 ≥ σ2

∗,2 ≥ . . . ≥ σ2
∗[0, b]. On the other hand, the obvious discretizations of

the measure ν∗ produce a sequence of probability measures ν′k ∈ Pk, k = 1, 2, . . . such
that ν′k ⇒ ν∗ as k →∞. By continuity,∫

[0,b]

∫
[0,b]

RX(s, t) ν′k(ds) ν′k(dt)→
∫
[0,b]

∫
[0,b]

RX(s, t) ν∗(ds) ν∗(dt)

as k → ∞, so by the optimality of the measures (ν∗,k) we conclude that σ2
∗,k → σ2

∗[0, b].
We claim that ν∗,k ⇒ ν∗. Since the space M1[0, b] is weakly compact, it is enough to prove
that every subsequential limit of the sequence (ν∗,k) is equal to ν∗. However, for every
subsequence of the sequence (ν∗,k) the value of the double integral in the optimization
problem (1.2) converges to σ2

∗[0, b] and, by weak continuity of the double integral, it also
converges to the double integral with respect to the subsequential limit. Since under
the assumptions of the theorem the optimization problem (1.2) has a unique optimal
solution, we conclude that every subsequential limit of the sequence (ν∗,k) is equal to ν∗.

Define, analogously to (3.4),

Yk =

∫
[a,b]

X(t) ν∗,k(dt) ,

and let

T∗,k := arg min
t∈Pk

X(t) k = 1, 2, . . . ,

once again choosing the leftmost location in the case of a tie. For each k we define a
probability measure on [a, b] by

mx,k(A) = P
(
T∗,k ∈ A

∣∣Yk ≤ x, min
t∈Pk

X(t) > 0
)
, A Borel.

It is clear that T∗,k → T∗ and mint∈Pk
X(t)→ mina≤t≤bX(t) a.s. Furthermore, Yk → Y in

L2. Furthermore, the distribution of mina≤t≤bX(t) is atomless (see Lemma 1 in [9]). We
conclude that, for each fixed x > 0, mx,k ⇒ mx as k →∞. It follows that the claim (4.2)
will follow if we prove that

mx,k ⇒ ν∗,k uniformly in k as x→ 0. (4.4)

Consider the zero mean Gaussian random vector X(k) =
(
X(bi2−k), i = 0, 1, . . . , 2k

)
.

Let Σk denote its covariance matrix. The uniqueness of the minimizing measure ν∗,k
implies that the vector X(k) has full support, so Σk is invertible. For any j = 0, 1, . . . , 2k

we can write

mx,k

(
{bj2−k}

)
=

P
(
X(k) ∈ Ej(x)

)∑2k

i=0 P
(
X(k) ∈ Ei(x)

) (4.5)

=

∫
Ej(x)

exp
{
−zTΣ−1k z/2

}
dz∑2k

i=0

∫
Ei(x)

exp
{
−zTΣ−1k z/2

}
dz

,
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where

Ej(x) =
{
z ∈ (0,∞)2

k+1, zj < zi, i 6= j,

2k+1∑
i=0

ν∗,k
(
{bi2−k}

)
zi ≤ x

}
,

j = 0, 1, . . . , 2k + 1. It is straightforward to compute that∫
Ej(x)

dz =
x2

k+1

(2k + 1)!

ν∗,k
(
{bj2−k}

)∏2k+1
i=0 ν∗,k

(
{bi2−k}

)
Therefore, if we prove that

zTΣ−1k z→ 0 as x→ 0 (4.6)

uniformly on ∪2
k+1
i=0 Ei(x), then we obtain uniform convergence in (4.4) (even in total

variation).
To this end, let w = Σ−1k z, so that

zTΣ−1k z = wTΣkw .

Let θ = Σ−11. The vector θ is equal, up to a multiplicative scale, to the probability vector
of the measure ν∗,k; see [3]. Therefore,

‖θ‖1 = 1Tθ = 1TΣ−1k 1 = θTΣkθ = (‖θ‖1)2σ2
∗,k ,

so that

‖θ‖1 =
1

σ2
∗,k

.

In particular,

wT1 = zTθ ≤ ‖θ‖1x =
x

σ2
∗,k

on ∪2
k+1
i=0 Ei(x). We conclude that

wTΣkw ≤ RX(0)
(
wT1

)2
= R(0)

x2

σ4
∗,k

.

Since σ2
∗,k → σ2

∗[0, b] > 0, for all k large enough we have σ2
∗,k ≥ σ2

∗[0, b]/2, and we have
obtained the desired uniform convergence, thus completing the proof.

5 Examples

In this section, the results in Sections 2–4 are applied to two examples. The first
example illustrates applications of Theorems 2.2 and 3.1.

Example 5.1. Let (B(t) : t ≥ 0) be a standard Brownian motion, and fix 0 < α < 1.
Define

X(t) = t−αB(t), t > 0 .

Fix 0 < a < b <∞, and set
X∗ = min

t∈[a,b]
X(t) .

Theorem 2.2 implies that the finite measure µ on [a, b] defined by

µα(dx) = α(1− α)x2α−2 dx+ (1− α)a2α−1δa(dx) + αb2α−1δb(dx) ,

is a constant multiple of the optimal measure, that is, the solution to the optimization
problem (1.2). Let

σ2
∗(a, b;α) = µα([a, b])−2Var

(∫ b

a

X(t)µα(dt)

)
.
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As the Radon-Nykodym derivative of the absolutely continuous component of µα with
respect to the Lebesgue measure is bounded away from 0 on [a, b], the hypotheses of
Theorem 3.1 are clearly satisfied, which implies that

lim inf
u→∞

u−2/3
(

logP (X∗ > u) +
1

2σ2
∗(a, b;α)

u2
)
> −∞ ,

and

lim sup
u→∞

u−2/3
(

logP (X∗ > u) +
1

2σ2
∗(a, b;α)

u2
)
< 0 .

In other words, as u→∞,

P (X∗ > u) = exp

(
− 1

2σ2
∗(a, b;α)

u2 − u 2
3+O(1/ log u)

)
. (5.1)

When α = 1/2, X(t) is a time-changed Ornstein-Uhlenbeck process. That is,(
X(e2t) : t ∈ R

) d
= (Zt : t ∈ R) ,

the process on the right hand side being an Ornstein-Uhlenbeck process. Therefore, a
special case of (5.1) is that for any compact interval [a, b] ⊂ R,

P

(
min
t∈[a,b]

Zt > u

)
= exp

(
− 1

2σ2
∗(e

2a, e2b; 1/2)
u2 − u 2

3+O(1/ log u)

)
, (5.2)

as u→∞.

The second example illustrates applications of Theorems 2.1, 3.2 and 4.1.

Example 5.2. Let (X(t) : t ∈ R) be a stationary Gaussian process with mean zero and
covariance function

RX(t) = exp
{
−|t|α

}
, t ∈ R ,

for a fixed 0 < α ≤ 1. The assumptions of Theorem 2.1 are satisfied for any b > 0 and,
hence, the optimal measure, say ν∗, in the optimization problem (1.2) is of full support.
If α = 1, this follows from the explicit solution of the optimization problem in [1].

The hypotheses of Theorem 3.2 are therefore satisfied with β = α/2 and c =
√

2,
which implies the existence of C ∈ (0,∞) satisfying

logP

(
min
t∈[a,b]

X(t) > u

)
≥ − 1

2σ2
∗(a, b)

u2 − Cu−2/(α+2) ,

for large u. When α = 1 this reduces to the upper bound in (5.2).
Finally, an appeal to Theorem 4.1 shows that the conditional law of the location of the

minimum (the leftmost one to be chosen in case of ties) on [a, b] given that the minimum
if above u, converges weakly to ν∗ as u→∞.
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