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Optimal stopping of oscillating Brownian motion
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Abstract

We solve optimal stopping problems for an oscillating Brownian motion, i.e. a diffusion
with positive piecewise constant volatility changing at the point x = 0. Let o1 and
o2 denote the volatilities on the negative and positive half-lines, respectively. Our
main result is that continuation region of the optimal stopping problem with reward
((1+)™)? can be disconnected for some values of the discount rate when 207 < o3.
Based on the fact that the skew Brownian motion in natural scale is an oscillating
Brownian motion, the obtained results are translated into corresponding results for
the skew Brownian motion.
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1 Introduction

The optimal stopping problems of diffusions with exceptional points have attracted
interest in recent years. These include cases where the underlying diffusion has sticky
points, skew points, or discontinuities in the diffusion coefficients. One of the first
findings is that in the presence of sticky points the classical smooth fit principle does
not necessarily hold, even for differentiable payoff functions (as found in Crocce and
Mordecki [4] and Salminen and Ta [19]). A second finding is that if the diffusion has a
skew point, it can be the case that this point is in the continuation region for all discount
values, as found by Alvarez and Salminen [1] and Presman [16]. A third one is that the
continuation region in these cases can be disconnected, as observed in [1] for the skew
Brownian motion, and also found recently by Mordecki and Salminen [12] for a diffusion
with discontinuous drift and payoff function (1 4+ x)*. General verification results for
diffusions with discontinuous coefficients were obtained by Riischendorf and Urusov [17].
An exposition of the general theory of optimal stopping (including historical comments)
can be found in Shiryaev [20] and Peskir and Shiryaev [15].

In this paper the focus is on the case when the underlying diffusion has discontinuous
infinitesimal variance. We then consider the optimal stopping problem for the oscillating
Brownian motion (OBM), a diffusion with positive piecewise constant volatility changing
at the origin. For details and further results on OBM, see Keilson and Wellner [7],
Lejay and Pigato [10], and the references therein. Our main results are the following:
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Optimal stopping of oscillating Brownian motion

Firstly, for the payoff (1 + z)™ the solution of the optimal stopping problem for the
OBM is one sided for all values of the parameters, but for the payoff ((1 + z)*)? the
continuation region is disconnected for some values of the parameters. Hence, this
latter situation is similar to the one in [12]. Secondly, based on the fact that the skew
Brownian motion (SBM) in natural scale is an OBM, we obtain a result that connects the
solutions of the respective optimal stopping problems for SBM and OBM, finding that
the non-differentiability of the scale function of SBM at the origin plays a key role in
understanding some of the phenomena that appear in the solutions of these problems.

2 Diffusions and optimal stopping

Consider a conservative and regular one-dimensional (or linear) diffusion X = (X;)¢>0
taking values in R, in the sense of It6 and McKean [6] (see also Borodin and Salminen
[2]). Let P, and [E, denote the probability and the expectation associated with X when
starting from z, respectively; m denotes the speed measure and S the scale function.
For r > 0 let ¢, (1..) be the decreasing (increasing) positive fundamental solution of the

generalized ODE

d d
%%U—T’u, (21)

satisfying the appropriate boundary conditions (see [2] I1.10 p. 18). Denote by M the
set of all stopping times in the filtration (F;);>¢, the usual augmentation of the natural
filtration generated by X. Given a continuous reward function g: R — [0,00) and a
discount factor » > 0, consider the optimal stopping problem consisting in finding a
function V,. and a stopping time 7* € M, such that

Vi(z) = B[e ™" g(X,-)] = sup Egle "g(X,)], (2.2)
TEM

where on the set {7 = oo}

e "g(X,) :=limsupe "fg(X,).
t—o0
The value function V,. and the optimal stopping time 7* constitute the solution of the
problem. The optimal stopping time 7* in (2.2), can be characterized (see Theorem 3,
Section 3.3 in [20]) as the first entrance time into the stopping region

Ty :={z: V.(z) = g(x)}. (2.3)

The set C,. := R\ T, is called the continuation region.

Our main tools to solve the optimal stopping problem for OBM are the representation
theory for excessive functions, and the following two results from the theory of optimal
stopping. The first one (Theorem 2.1) — formulated here for a left boundary point of the
stopping region — is the smooth fit theorem, proof of which can be found in [18] or [14];
the second one (Proposition 2.2) is a verification result, for the proof see Corollary on p.
124 in [20].

Theorem 2.1. Let z be a left boundary point of T',., i.e., [z,z+¢1) C [, and (z—¢2,2) C C,
for some positive €1 and 5. Assume that the reward function g and the fundamental
solutions ¢, and 1, are differentiable at z. Then the value function V, in (2.2) is
differentiable at z and it holds V!(z) = ¢'(2).

Proposition 2.2. Let A C R be a nonempty Borel subset of R and

Hy:=inf{t: X; € A}
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Optimal stopping of oscillating Brownian motion

Assume that the function ~
V(z) :=E, [e""g(Xp,)]

is r-excessive and dominates g. Then XA/ coincides with the value function of OSP (2.2)
and H 4 is an optimal stopping time.

3 Oscillating Brownian motion

Consider the diffusion satisfying the stochastic differential equation

t
Xt:er/ o(Xs)dWs,
0

where

0
O'(JT) _ {Ola r <0,

g2, xzo,

o1 >0, 02 >0, and (W;);>¢ is a standard Brownian motion. The diffusion X is called an
oscillating Brownian motion (OBM). Notice that this process is in natural scale, i.e. the
scale function is S(x) = x, and the speed measure is

o?)dz, x <0,
m(dz) = {(2/ ;)d , <0
(2/03)dz, x> 0.

(by definition there is no mass at x = 0). Let

/\fzi—m, M= —\@.

01 02

The decreasing fundamental solution is

on(z) = {A1 exp(A\] ) + Asexp(\Tz), =<0, 3.1)

exp(A; x), x>0,

where the constants A; and A, are determined so that ¢, is continuous and differentiable
at 0. Hence,

_/\T—)\Q_:1+0'1/0'2 _)\2_—)\1__1—0'1/0'2

A = = , Ag= ==
AT =] 2 AT =] 2
Analogously, the increasing solution is
exp(A\z), x <0,
Yol = { SPND, ) (3.2)
By exp(A3 x) + Baexp(Ay x), >0,

with
B A=Ay _ 14+ 05/01

_)\2+—)\;r_1—0'2/0'1
A - 2 '

By = =

B
! A=A 2

4 Optimal stopping of OBM
We first analyze the optimal stopping problem (2.2) for the diffusion introduced above
and the reward function
(2) 0, r < —1,
€Tr) =
g 14z, o>—1.
The following result shows that the solution of this problem is one sided.
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Proposition 4.1. Consider the OSP problem (2.2) with payoff ¢g,. For all values of r > 0,
o1 and oy the continuation region is given by

C, = (700, C)v
where ¢ = ¢(r) > —1 is the unique solution of the equation
Ui (@) (1 + @) = () = 0. (4.1)

Furthermore
2rZ0f = c(r)20. (4.2)

Proof. To prove the first statement, consider for x > —1 the functions (cf. [18])

H_(z) == ¢p(x)g(x) — P (x)g'(x) = ¢ () (1 + ) — Yp (), (4.3)
Hy(z) = pp(z)g (x) — pr(x)g(x) = @r(z) — @) (x)(1 +2), (4.4)

and their derivatives which for z # 0 can be expressed as

d H_(z) = m(z)Y,(x) (r(l +x) — %%(1 + a;))

dm™ "

— m(@), (2)r(1 + ),

H' () = m(x)

where m is the density of the speed measure, and, similarly,
H (z) = —m(z)pr(z)r(1 + ),

where it is used that ¢, and v, solve (2.1). Observe now that the function H_ in (4.3)
has a unique positive root, since for > —1 the derivative is strictly positive, H_(—1) =
—,(—1) < 0, and H_(x) — oo as  — oo. Therefore, equation (4.1) has a unique solution
as claimed. The rest of the proof is standard, see for instance [18] or the detailed proof
of Proposition 4.2 below. Statement (4.2) follows since H_(0) = v/2r/o; — 1. O

A key role in the construction of the solution to the OSP is played by the sign of
the derivative of the function H_ in (4.3). For a general payoff g, the derivative of the
corresponding function H has the same sign as the function

x> rg(x) — %%g(m) (4.5)
We remark that this function appears in the expression for the density of the representing
measure of the smallest r-excessive majorant of g both in the Martin kernel approach (see
Proposition 3.3 in [18]) and in the Green kernel approach (see (5.11) in [12] or (4) in [3]).
It is also worth noting that this density can be traced back to formula (8.30) in [5], for
the cases when the limit therein can be interchanged with the integral. The monotonicity
of the function in (4.5) usually ensures a one-sided solution to the considered OSP. Since
we are interested in problems for which the solution is not one-sided, i.e., the stopping
set is unconnected, we focus on OSP with the payoff function

(1+2)2, z>-1,
4.6
g92(x) {07 o< 1 (4.6)

The sign of the function in (4.5) with this g, can be seen from Figure 1. Possible
applications of these type of rewards include the pricing of perpetual power options.
There is a large literature on optimal stopping for power-like and polynomial rewards.
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First contributions to this type of payoffs, for random walks and Lévy process where
given in [13] and [8], respectively.

We turn now to study the OSP (2.2) for OBM with 0 < 0; < 03 and the reward
function g2 given in (4.6). In this situation it is seen that, for some specific values of
the parameters, the continuation region is disconnected. The approach to analyze this
problem is similar to the one in [12]. Let

G_(z) =1, (x)g2(x) — ¥r(2)g5(x)
=(1+2) (Y (2)(1 +z) = 2¢,(2)), (4.7)

G (x) ==, (7)g5(x) — ¢ ()ga(2)
=20, (x)(1 + z) — @ (x)(1 + z)*. (4.8)

These functions are used below to verify the excessivity of the proposed value function.
The derivatives for x > —1 and = # 0 are

, M1 42— o, x<0,
o T 4.9
,(fl') m(x)w (.’ﬁ) {T(l + l‘)2 _ 0_%’ x> O, ( )
o2 — (1 + x)2 z <0
G/ _ ; 1 ) ? 4.10
+(@) =m(@)er(x) {05 —r(l+x)% x>0 o

Figure 1: The sign of the derivative G'_ is ruled by the above depicted function r(1 +
z)? — o(z)?. Here the parameters are r = 1.5, 01 = 1, g9 = 2.

Proposition 4.2. In case 0 < r < 0} < o3 the continuation region for OSP (2.2) is given
by
C, = (—o0,0),

where ¢ = ¢(r) is the unique positive solution of the equation
() (1+2) — 24 () =0, = >—1. (4.11)

Proof. We show first that equation (4.11) has a unique positive solution. To this end,
consider for x > —1 the function GG_ defined in (4.7). The claim is equivalent with the
statement that G_ has a unique positive zero. In fact, we claim a bit more; namely
that the function G_ attains the global minimum at zy := 03/y/r — 1 > 0, is negative
and decreasing for z < x, is increasing for x > z(, and has, therefore, a unique zero.
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Optimal stopping of oscillating Brownian motion

Analyzing G’_ as given in (4.9), it is straightforward to deduce, since 0 < r < a% < a%,
the claimed properties of G_.
Let
H. :=inf{t : X; > ¢},

where c is the unique solution of (4.11), and define

Yr ()
V(z) =B, [e e gs(Xp,)] = { r(c) g2(), T<e, (4.12)
g2(x), T > ec.

If V is an r-excessive majorant of g, it follows from Proposition 2.2 that V is the value
function of OSP (2.2). The excessivity can be checked with the method based on the
representation theory of excessive functions (cf. [18] Section 3). This boils down to study
for x # —1 the functions

[V(,CE) :

YL(@)V (@) — ¥ (2) V' (2),
Dy (z): (2)V %

or(@)V'(x) = V(2)¢, ().

Clearly, Iy (z) = 0 for z < ¢ and increasing for z > ¢. Notice that Iy = G_ on [c, +0).
Studying the derivative (w.r.t. the speed measure) of Dy it is easily seen that Dy is
positive and decreasing to 0 on [¢, +00). Consequently, Iy and Dy induce a (probability)
measure which represents 1% proving that V is r-excessive. To prove that Visa majorant
of g5 consider for -1 <z < ¢

The inequality on the right hand side holds since the derivative of ¢,./g2 is G_(z) which
is negative for —1 < = < ¢, as is shown above. O

If the volatilities are close enough the problem is one sided for all discount values.
This is made precise in the next result.

Proposition 4.3. In case 0 < 07 < 03 < 20? the continuation region for the OSP (2.2) is
given by
CT = (700, C)v

where ¢ = ¢(r) is the unique solution of equation (4.11). As r increases from 0 to +oo,
c(r) decreases monotonically from +occ to —1. In particular, ¢(r) = 0 for r = 203.

Proof. If r < o2 the statement is the same as in Proposition 4.2. We assume next that
r > o2. The proof in this case is very similar to the proof of Proposition 4.2. It can be seen
that G_ attains the global minimum at z; := o1 /4/7 — 1 < 0, is negative and decreasing
for x < x4, is increasing for « > x1, and has, therefore, a unique zero. Consequently, this
root can be taken to be an optimal stopping point ¢ = ¢(r) and the analogous function v
as in (4.12) can be proved to be the value of OSP (2.2). Finally, assume 0% < r < 03 < 207
In this case, G_ has a local maximum at 0, which is negative since

2
G_(O):UJ;(O)*Q%(O):AT—Q:Q—ng. (4.13)

1
Clearly, G_(0) = 0 (and then c(r) = 0) when r = 207. Hence, equation (4.11) has a
unique positive root and the proof can be completed as in the previous cases. O
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Proposition 4.4. Assume 0 < 20? < 03. Forr > 20% there exist A and B such that the
function

(4.14
(1+ )2, x>0, )

Flz) = {Aexp()\f'x) + Bexp(A7x), =<0,

satisfies the principle of smooth fit at 0, i.e., F'(0—) = F'(0+) = 2. The function F is
r-harmonic (and positive) on (—oo,0) but not r-excessive if r < 3. Forr < 20% the
coefficient B is negative and the function F(z) — —oo as © — —oo (and the function is
not r-excessive).

Proof. We study only the case r = r( := 207 and leave the details of the other cases to
the reader. In this case )\f = +/2r/o; = 2, and, obviously,

e, x <0,

F(x) = -
(@) {(1+x)2, x>0,
satisfies smooth fit at 0. Consequently, F' is rg-harmonic (and positive) on (—o0,0) and it

remains to prove that F' is not rp-excessive. For this, consider the representing function
(this corresponds G_ in (4.7))

= P (1) F(2) =ty () F' ().

The claim is that this function is not non-decreasing. Indeed, differentiate w.r.t. the
speed measure to obtain

(01, @) F @)~y () ()

dm
d d d d
= F(x)%%d’m (z) — Pry (l’)%@

0, z <0,
ro(1+ )2 — o2, z>0.

F(x)
= P, (2) {

Since 79 = 207 < 03 this derivative is negative, e.g., for small positive z-values; therefore,
F' is not rp-excessive. O

For the theorem to follow, which can be seen as our main result concerning OSP (2.2),
we need the following technical result.

Lemma 4.5. Consider a family {h.: R — [0,00); r € I} such that for eachr € I C R
the function h, is r-excessive. Assume that this family is dominated by a function h (i.e.
h, < h) such that E,(h(X;)) < oo forallt > 0 and « € R. Then, if for some rq the limit

lim A, (x) — ho(x)

T—>7T0

exists for all x € R, the function hg is rqo-excessive.
Proof. Consider

E, [e7"tho(X,)] = E, [ lim e "h.(X,)] = lim E, [e"h,(X,)]

T—7T0 T—7T0

< lim h,(z) = ho(z),

=70

where in the second step we use the dominated convergence theorem which is applicable
since e~ "'h,.(X;) < h(X}). O
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The theorem below states that if r € (207, 02) but is close enough to 032 then C, has
a bubble (i.e. an isolated bounded interval in the continuation region). However, the
bubble disappears when r becomes larger than o3 or tends to 202.

Theorem 4.6. In case 0 < 20} < o3 there exists ro € (20},03) with the following
properties:

(@) Ifr € [ro,03) the continuation region is given by
Cr = (7007 Cl) U (627 63)7

where ¢; = ¢;(r), i = 1,2,3, are such that —1 < ¢; < ¢ < 0 < ¢3. In particular, for
r =1 it holds c; = co < 0.

(b) Ifr > o3 the continuation region is explicitly given by

C, = (—00,67)7
where 9
01
c_=c_(r)= —-1<0,
(r) Jor

i.e. c_ is the unique solution of (4.11).
(c) Ifr < rg the continuation region is given by
Cp = (—o00,c4),
where c; = ¢4 (r) > 0 is the unique solution of (4.11).

Proof. The proof of (b) is as the proof of Proposition 4.3 when r > a%. Notice, however,
that in the present case ¢(r) < 0 for all r > o3.

We consider next (c) in case r < 207. Studying G’ and G_(0) in (4.9) and (4.13)
respectively, it is seen, as in the proof of Proposition 4.2, that equation G_(z) = 0 has
for r < 202 one (and only one) root p = p(r) > 02/4/r — 1 > 0. In case r = 20? there are
two roots p; = 0 and py > 02/(v/201) — 1 > 0. Proceeding as in the proof of Proposition
4.2 it is seen that the stopping region is as claimed with ¢, = p if r < 207 and ¢, = py if

r =207
Finally we consider (a). Assume now that there does not exist a bubble for any
r € [20%,03]. Then for all r € [20%,0%] we can find ¢ = ¢(r) such that T, = [c, +0).

Knowing that ¢(r) > 0 for r = 207 and c(r) < 0 for r = 03 we remark first that there
does not exists r such that ¢(r) = 0. Indeed, by Theorem 2.1, the value should satisfy
the smooth fit principle at 0 but from Proposition 4.4 we know that such functions are
not r-excessive. Next, using I',, C I',, for r; < ry (cf. Proposition 1 in [12]) it is seen
that » — ¢(r) is non-increasing, and has, hence, left and right limits. Consquently, there
exists a unique point ry such that

¢y :=lime(r) >0 and é- :=limc(r) <O.

rTro rlro

Under the assumption that there is no bubble the value function is of the form given in
(4.12), i.e.,

(1+¢(r)*
Vi(z) = Urla) ey =) (4.15)
(1+ )2, x > c(r).
=E, (e (1+ Xu,)?),
ECP 24 (2019), paper 50. http://www.imstat.org/ecp/
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where H. := inf{y : X; > ¢(r)}. For 7 small enough, there exists an excessive majorant
hz, so that we can apply Proposition 4.5 with ho= hs, since E e " ha(X;) < hp(x) < oo.
Then, letting in (4.15) r 1 r( yields an rg-excessive function which by Proposition 2.2 is
the value of the corresponding OSP (2.2). Similarly, letting r | r¢ yields an ry-excessive
function which should also be the value of the same OSP. However, the functions are
clearly different and since the value is unique we have reached a contradiction showing
that there exists at least one bubble, i.e. a bounded open interval (z1,z2) C C, with
endpoints z; and x5 in the stopping set (see [12]). Proceeding similarly as in Proposition
6 in [12], it can be seen that if there is a bubble, there is at most one bubble, and this
contains the origin or the origin is its left end point. This completes the proof. O

show that the stopping region in this case is always one sided.

Proposition 4.7. Consider the OSP problem (2.2) for OBM with ¢ > o3, r > 0 and
g2(z) as given in (4.6). For all values of r > 0, the continuation region is given by

We end this section by considering the case 07 > o2 with quadratic reward (4.6), and

CT = (_007 6)7
where ¢ = ¢(r) > —1 is the unique solution of the equation (4.11). Furthermore
< >
r= 207 = cr) =0

Proof. The proof follows the general lines of [18] developed in the previous proofs of
Propositions 4.1 and 4.2. Consider then the functions defined in (4.7) and (4.8), with
their respective derivatives in (4.9) and (4.10). As a% > a%, the derivative G’_(x) changes
sign only once, from negative to positive. Hence, equation (4.11) has only one root
¢(r) > —1, and the first claim is proved. For the second claim, notice that the root ¢(r)
equals 0 when r = 20%, the result then follows from the monotonicity of the function
c(r). O

5 OSP for skew Brownian motion

Consider a skew Brownian motion (SBM) ()A(t>t20 with index 8 € (0,1) starting at
7 € R (see [6], [22], [9]). This diffusion can be characterized by scale function

Se) = {x/<2<1—5>>7 <0,
z/(28), x>0

and speed measure
4(1 — B)dx, =<0,
m(dx) =
48dx, x > 0.

It is known (see e.g. [10]) that (§()A(t))t20 4 (Xt)¢>0, i.e., the composition of SBM with
its scale function, has the same law as OBM with o; = 1/(2(1 — 5)) and 02 = 1/(28) and
starting point x = S (Z). In other words, we can say that SBM in natural scale is OBM.
We use this relationship to obtain conclusions about the OSP problem (2.2). Given a

payoff function ¢g: R — [0, c0) we introduce the payoff function

g(z) = (go §)(x). (5.1)

Due to the fact that S is not differentiable at the origin, both functions g and g can not
be differentiable at the origin. The next result connects the optimal stopping problems
for OBM and SBM.
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Proposition 5.1. For 8 € (0,1) the optimal stopping problem (2.2) for OBM X with
parameters o1 = 1/(2(1 — 8)), o2 = 1/(2) and continuous reward g has value function
V(z) and stopping region I if and only if the optimal stopping problem for SBM X with

index 3 € (9, 1) and reward g in (5.1) has stopping region I' = S~!(T") and value function
Viy) =V(S(y)).

Proof. It holds

and this yields XA/(y) =V(S(y)). LetT = {y: 9(y) = 17(y)}, and consider

S(T) = {z: 3y € T such that = = S(y)}
= {2: (57" (2) = V(5! (@)}
= {w: g(a) = V(2)} = T.
This concludes the proof. O

From this proposition it follows that 0 ¢ I if and only if 0 ¢ I, because S(0) = 0.
Furthermore, I' is disconnected if and only if T is disconnected, as the function S is
strictly increasing and continuous.

Example 5.2. Consider the problem (2.2) for SBM with 8 > 1/2 and reward g(x) =
(14 z)* (cf. [1]). The corresponding OSP for OBM has o1 = 1/(2(1 — 3)), o2 = 1/(28),
and reward

o) = {(1 +2(1-B)x)*, <0, 5.2)

1+ 28, x> 0.

Notice that ¢'(0—) = 2(1 — 8) < 28 = ¢’(0+) (see Figure 2). As the scale function of OBM
is S(z) = =z, any r-excessive function h satisfies (see p. 93 in [18])

B (z—) > h(x+), forall z € R. (5.3)

If 0 € T for some r > 0, then V(0) = ¢(0), hence V'(0—) < V'(0+) violating condition
(5.3). We conclude that 0 ¢ T" for any value of r, hence 0 ¢ I for any value of r for the
SBM problem. This is a particular case of the result obtained in Proposition 1 in [1].

6 Conclusions

In this paper we consider the optimal stopping problem for the oscillating Brownian
motion having a larger infinitesimal variance on the positive side than on the negative
side. Our main findings are that for the classical payoff

gi(z) =1 +a2)"

the solution is one-sided, that is, there exists an optimal threshold that can be determined
using different classical methods. Here we rely on equation (4.1), but, e.g., the principle
of smooth pasting can also be applied.

More interesting, when the reward is quadratic, i.e. has the form

g2(z) = (1 +2)")%,

ECP 24 (2019), paper 50. http://www.imstat.org/ecp/
Page 10/12


https://doi.org/10.1214/19-ECP250
http://www.imstat.org/ecp/

Optimal stopping of oscillating Brownian motion

Figure 2: The reward g in (5.2) for OBM, with o1 = 2 and o9 = 2/3 (5 = 3/4).

then for some values of the volatilities and the discount the optimal stopping region
becomes disconnected. Such results have previously been recorded in [1] for a skew
Brownian motion and in [12] for a diffusion with a piecewise constant drift changing at
Zero.

A key role in the analysis is played by the representation theory of excessive functions
as discussed in [18]. This boils down to study the sign of a function that is the candidate
for the density of the representing measure of the r-excessive value of the problem.
This function involves the infinitesimal generator of the process. Since the generator
is a second order differential operator without a first order term the discontinuity of
the infinitesimal variance is not noticed in case of a linear payoff and the solution is
one-sided.

Our analysis also suggests that the phenomenon of the one-sided solution happens
only when the second derivative of the payoff vanishes at the discontinuity point. Con-
sequently, e.g., for a general power payoff g, (z) = ((1 + z)")%, a # 1, a disconnected
stopping region can arise similarly as in the quadratic case.

The results in the present paper and in [12] show that if the drift and/or the diffusion
coefficient of a diffusion have discontinuities the stopping region could be disconnected
even for nice monotonic payoff functions, and special care should be taken when calcu-
lating optimal stopping rules. Such considerations may have also economical relevance
when applying the real options theory.

The concrete optimal stopping problem for diffusions with several discontinuities
both in the drift and the diffusion coefficient is technically challenging but, undoubtedly,
important. It is our hope that the joint analysis of the results obtained in [12] and in the
present paper would provide some necessary tools for further research.
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