Electron. Commun. Probab. 24 (2019), no. 32, 1-6. ELECTRONIC
https . //dOl . org/10 .1214/19-ECP228 COMMUNICATIONS

ISSN: 1083-589X in PROBABILITY

An upper bound for the probability of visiting a distant point
by a critical branching random walk in Z**
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Abstract

In this paper, we study the probability of visiting a distant point a € Z* by a critical
branching random walk starting at the origin. We prove that this probability is
bounded by 1/(|a|? log |a|) up to a constant factor.
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1 Introduction

A branching random walk is a discrete-time particle system in Z¢ as the following.
Fix a probability measure 1 on IN, called offspring distribution, and another probability
measure A on Z<, called jump distribution. At time 0, there is a single particle at the
origin 0 € Z?. At each time step n € IN, every particle, say at the site = € Z?, gives birth
to a random number of offspring (and dies afterwards), according to yu; each of these
moves independently to a site according to distribution = + 6. If the mean of y is one, we
say that the branching random walk is critical.

The asymptotic behavior of the probability of visiting a distant point a € Z? by a
critical branching random walk (denoted by &) in low dimensions (d < 3) was established
recently by Le Gall and Lin (Theorem 7 in [3]). Their theorem implies that (under some
regularity assumption about the critical branching random walk)

P(S visits a) < |a|7? inZ? ford <3,

where we write f(a) > g(a) (f(a) =< g(a) respectively) if there exists a positive constant
c (only depending on d, the offspring distribution x and the jump distribution 6 of the
critical branching random walk) such that f(a) > cg(a) (f(a) < cg(a) respectively) and
fa) =< g(a) if f(a) = g(a) and f(a) < g(a).

A simple calculation of the first and second moments gives (see e.g. Remark (2) at
the end of Section 2.4 in [2])

P(S visits a) < [a[*"® inZ¢ ford>5,

and
P(S visits a) = 1/(|a*log|a|) in Z*. (1.1)
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It is expected that:
P(S visits a) < 1/(|a*loga|) in Z*. (1.2)

In this paper, we prove (1.2) under some regularity assumption about #- we almost
assume nothing about p, as long as u is critical and nondegenerate i.e. p is not the Dirac
mass at 1. Let us state our main theorem.

Theorem 1.1. Let u be a critical probability measure on IN, which is not the Dirac mass
at 1, and 0 be a probability measure on Z* with zero mean and finite (4 + ¢)-th moment
for some e >0 (i.e. Y, 4. 0(z)z =0and Y, . 0(2)|z|*"¢ < o), which is not supported
on a strict subgroup of Z*. Write S for the critical branching random walk with offspring
distribution p and jump distribution 0 starting at the origin. Then, there exists a positive
constant C' depending on . and 0, such that, for any a € Z* with |a| sufficiently large,

1

P(S visit <C - —.
(8 visits a) < alZTog [al

(1.3)
Remark 1.2. If 4 is the Dirac mass at 1, then the branching random walk is just the
ordinary random walk and it is classical that (1.3) is not true and the visiting probability
of a behaves like c||a|| =2 for some explicit positive constant ¢, where |ja|| = v/a - Q~1a/2
with @) being the covariance matrix of 6.

Remark 1.3. Note that for (1.1) we need to assume that p has finite variance. Hence if
w has finite variance in addition to the assumptions above, then: (when |a| > 1)

P(S visits a) 1 (1.4)

visits a) X ———. .
|a|? log |al

Remark 1.4. In this paper we are only interested in the case that 6 is centered, i.e. the
mean of § is zero. Moreover, we need the moment assumption for 6 in order to control
the long jump (see the proof of (2.4)). We have not striven for the greatest generality
about the assumption on # and would like to make our proof simple.

Remark 1.5. Update: based on the result and some idea in this paper, the asymptotics
of P(S visits a) has been constructed in [5], under an additional and essential assumption
that u has finite variance. It is shown there (under further assumptions that x has finite
variance and that 6 has finite exponential moments),

1
. 2 .. o
ali)rgo la]|* log ||a|| P(S visits a + K) = 357

where K is any fixed nonempty finite subset of Z* and o2 is the variance of ..

2 Proof of the main theorem

Before the formal proof, let us first mention the main idea. Since the branching is
critical, the expectation of the number of visits to a is G(a) = G(0,a) where G is the
Green function of an ordinary random walk with jump distribution 6. Our assumptions
about ¢ can guarantee G(z) < |2|~2 (see Theorem 2 in [4]). If conditionally on visiting
a, the conditional expectation of the number of visits is of order log |a|, then we can get
(1.3). In fact, we will show that this is true with high probability.

Let us introduce some notations. Classically, a branching random walk can be
regarded as a random function S : V(T) — Z*, where T is a random plane tree, i.e. a
rooted ordered tree, and V' (7T') is the set of all vertices of 7. In our case T is a Galton-
Watson tree with offspring distribution x. Conditionally on 7', we assign to every edge e
of T' a random variable Y, according to # independently. Then, S(v), for any v € V(T) is
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just the sum of the random variables Y, over all edges e belonging to the unique simple
path from the root to u in the tree (hence the root is mapped to the origin). Since we
have an order < for the children of each vertex in T, we could adopt the classical order,
for all vertices, according to the so-called Depth-first search on V(T as follows. For

v and ¢/, two different vertices, let w = (vg,v1,...,vy) and ' = (v),v1,...,v),) be the
unique simple paths in the tree from the root (hence vy = v] is the root) to v and v’
respectively. We say that v is on the left of v/, if either (vg, vy, ..., v,) is a subsequence
of (vy,v1,...,v,) or v; < v;, where i = min{k : v, # v }.

For any branching random walk sample S : V(T) — Z* that visits a, V, := {v €
V(T) : S(v) = a} is not empty. Let u be the leftmost point in V,, and (vg,v1,...,vx) be
the unique simple path in T from the root to u. Then (S(vp),S(v1),...,S(vk)) is a path
in Z* from the origin to a. We denote this path by 7(S). Let N be the number of visits
to a. For any ~, a path from the origin to a, define p(y) = P(N > 0,%(S) = ~) and
e(y) = E(N|N > 0,7(S) = 7). Note that N > 0 iff S visits a. For any path v = (2o, ..., 2»)
in Z*, define g(v) = Y1 G(zi,a) = Y., G(a — z;). Let G = 1{S visits a} - g(7(S)). The
following lemmas are key ingredients for our main theorem.

Lemma 2.1. For any ~, a path from the origin to a such that p() > 0, we have:

e(v) > g(v) Y u(i). (2.1)

i>2

Lemma 2.2. There exists positive constants c,ci, co, such that for all a € Z* with |a|
sufficiently large, we have

P(0 < G < ciloglal) < eaflal*T. (2.2)

We postpone proofs of these two lemmas and start the proof of Theorem 1.1. Since u
is critical, we have:

EN =G(0,a) < |a| ™%
By Lemma 2.1, we have:
la| 2 < EN > P(G > ¢, log|a|)E(N|G > ¢; log |al)

> P(G = erlog al) (Y pli))er loglal
1>2

= P(G > c1loglal) log |al.
Note that since 4 is critical and nondegenerate, > -, /(i) > 0. Therefore:
P(G > crlog al) = 1/(Ja|*log|al).
Then we have:

P(S visits a) = P(G > 0)
=P(0< G <cyloglal) + P(G > c1loglal)
< 1/a|*** +1/(|a|* log |al)
< 1/(|al*log |al).
Proof of Lemma 2.1. Fix a v = (29, 21, .., 2) such that p(y) > 0. For any branching

random walk sample S such that 5(S) = ~, write a; (b; respectively) for the number of
siblings of z; on the left of z; (on the right respectively), fori =1,..., k. From the tree
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structure, one can easily see that, for any [y, ...,lt, m1,...,mr € IN, we have

P(N > 0,%(S) =v;a; = l;,b; =m;, fori=1,...,k)

k
= s(y) H (p(l; +mi +1)(gla — zi_l))li) , (2.3)

=1
where s(7) is the probability weight for the random walk with jump distribution 6, i.e.,

s(vy) = Hle 0(z;—z;—1) and ¢(z) is the probability that the branching random walk avoids

z conditioned on the initial particle having only one child.
Conditionally on the event in (2.3), the expectation of N is:

k
G(0)+ > miGla—zi1).
=1

Recall that g(v) = Zf:o G(a—z)=G(0)+ Zle G(a — #z;—1). Thus it suffices to show:
BN >0,7(8) =v) > > pli),
i>2

A straight computation using (2.3) gives:

- > 150ms0 Ml +m + 1)(g(a — zi—1))!
B Y is0mso LI +m+1)(g(a — z-1))!
S di—om>1 L p(l+m+1)

T Dsomso il +m+1)

Y (m+1)

O Xsinl)

1
= uli). O

i>2

E(b|N > 0,%(S) =)

Proof of Lemma 2.2. A straight calculation using (2.3) gives:

p(v) = (i + mi + 1)(q(a — zi-1))")
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Hence, we have:

P(0 <G < ciloglal) = > p(7)

~:0—a,g(v)<ci log a]

< > s(7)-

v:0—a,g9(v)<c1 log |a]

Then Lemma 2.2 is implied by the following proposition. O
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Proposition 2.3. There exist c, c1, ¢, such that for a € Z* with |a| sufficiently large,
P(r, < OO,ZG(Sq;) < ¢ loglal) < ezla| =3+,
i=0

where (S;);cn is the ordinary random walk starting from 0 with jump distribution 6 and
Tq Is the hitting time for a.

Note that we actually deduce Lemma 2.2 by applying the previous proposition to the
random walk with jump distribution —#6.

This proposition is an adjusted version of Lemma 10.1.2 (a) in [1]. It is assumed there
that 6 has finite support which is stronger than our case, though its conclusion is also
stronger than ours. Following the argument there, we present a proof here.

Proof of Proposition 2.3. It suffices to show:
P(Z G(S;) < crlogn) < czn_(2+c), (2.4)
=0

where 7,, = min{k > 0: [Si| > n}.
Choose a < 8 < ¢ € (0,0.1), such that

(A+e)(1-8)—2(1—a)>2+c (2.5)

Let A be the event that |X;| < M = |[n'~#| fori = 1,2,...,T = 2|n?>1~%)| (where
X, = S; — Si—1). Write X] = X;1{|X;| < M} and S} = X{ + --- + X/. Note that on A4,
S; =8 fori=1,...,T and

4+e€
n2(1-a) EL\);L: ‘255) n—(2te)

Write | = max{i € N : 4' < n'7#} and L = max{i € IN : 4' < n!~®}. Define ¢, for
i=1,1+1,...,L, inductively by & = 0, &1 = (& + (471)?) Amin{k € N : |S}| > 471},
where we write z A y = min{z, y}. Note that £, < (4%)%(1 + 15 + (1—16)2 +...)<204h)2 <
2[n?0-% ] and L — [ < (8 — a)logn.

On the other hand, since G(z) = (|z| + 1)~2, we have

P(A) < n20=9)P(|X,| > M) <

Err1—1
37 G(8) = (Err — &) (A2,

=8

It is not difficult to see that for every b € (0,0.1) we could find some ¢ € (0,0.1) such that

k+1)\2
SUD neN,zezti<k<L—1,|z|<2-4¢ P(§kt1 — §p < H(4 i) |Sék =x) <b.

For example, one could first show, using Kolmogorov’s maximal inequality, the corre-
sponding result when the role of X/ is replaced by X; and then note that on 4, S; = S!
and that P(A°) is very small.

Write I, for 1{¢, 1 — & < t(4*1)2}. Then we have

P(I}c+1 = 1|S(/],,Sék) < b.

Therefore, J = Zf;ll Iy, is stochastically bounded by a binomial random variable with
parameters L — [ and b. By choosing b small enough and standard estimates for binomial
random variables, one could get

L—1

P(J 2 =) < 2v/b(1 - )"~ 207"
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On the event {J < £}, we have

Er—1

L—1
Z G(S)) > Tt = (8 — a)tlogn.
=&

Noting that P(A°) < n~*% and on A4, 3", G(S;) > Zfi; G(S}), we finish the proof.
O
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