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Abstract

In this paper, we study the probability of visiting a distant point a ∈ Z4 by a critical
branching random walk starting at the origin. We prove that this probability is
bounded by 1/(|a|2 log |a|) up to a constant factor.
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1 Introduction

A branching random walk is a discrete-time particle system in Zd as the following.
Fix a probability measure µ on N, called offspring distribution, and another probability
measure θ on Zd, called jump distribution. At time 0, there is a single particle at the
origin 0 ∈ Zd. At each time step n ∈ N, every particle, say at the site x ∈ Zd, gives birth
to a random number of offspring (and dies afterwards), according to µ; each of these
moves independently to a site according to distribution x+ θ. If the mean of µ is one, we
say that the branching random walk is critical.

The asymptotic behavior of the probability of visiting a distant point a ∈ Zd by a
critical branching random walk (denoted by S) in low dimensions (d ≤ 3) was established
recently by Le Gall and Lin (Theorem 7 in [3]). Their theorem implies that (under some
regularity assumption about the critical branching random walk)

P (S visits a) � |a|−2 in Zd for d ≤ 3,

where we write f(a) � g(a) (f(a) � g(a) respectively) if there exists a positive constant
c (only depending on d, the offspring distribution µ and the jump distribution θ of the
critical branching random walk) such that f(a) ≥ cg(a) (f(a) ≤ cg(a) respectively) and
f(a) � g(a) if f(a) � g(a) and f(a) � g(a).

A simple calculation of the first and second moments gives (see e.g. Remark (2) at
the end of Section 2.4 in [2])

P (S visits a) � |a|2−d in Zd for d ≥ 5,

and
P (S visits a) � 1/(|a|2 log |a|) in Z4. (1.1)
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It is expected that:

P (S visits a) � 1/(|a|2 log |a|) in Z4. (1.2)

In this paper, we prove (1.2) under some regularity assumption about θ- we almost
assume nothing about µ, as long as µ is critical and nondegenerate i.e. µ is not the Dirac
mass at 1. Let us state our main theorem.

Theorem 1.1. Let µ be a critical probability measure on N, which is not the Dirac mass
at 1, and θ be a probability measure on Z4 with zero mean and finite (4 + ε)-th moment
for some ε > 0 (i.e.

∑
z∈Z4 θ(z)z = 0 and

∑
z∈Z4 θ(z)|z|4+ε <∞), which is not supported

on a strict subgroup of Z4. Write S for the critical branching random walk with offspring
distribution µ and jump distribution θ starting at the origin. Then, there exists a positive
constant C depending on µ and θ, such that, for any a ∈ Z4 with |a| sufficiently large,

P (S visits a) ≤ C · 1

|a|2 log |a|
. (1.3)

Remark 1.2. If µ is the Dirac mass at 1, then the branching random walk is just the
ordinary random walk and it is classical that (1.3) is not true and the visiting probability
of a behaves like c‖a‖−2 for some explicit positive constant c, where ‖a‖ =

√
a ·Q−1a/2

with Q being the covariance matrix of θ.

Remark 1.3. Note that for (1.1) we need to assume that µ has finite variance. Hence if
µ has finite variance in addition to the assumptions above, then: (when |a| > 1)

P (S visits a) � 1

|a|2 log |a|
. (1.4)

Remark 1.4. In this paper we are only interested in the case that θ is centered, i.e. the
mean of θ is zero. Moreover, we need the moment assumption for θ in order to control
the long jump (see the proof of (2.4)). We have not striven for the greatest generality
about the assumption on θ and would like to make our proof simple.

Remark 1.5. Update: based on the result and some idea in this paper, the asymptotics
of P (S visits a) has been constructed in [5], under an additional and essential assumption
that µ has finite variance. It is shown there (under further assumptions that µ has finite
variance and that θ has finite exponential moments),

lim
a→∞

‖a‖2 log ‖a‖P (S visits a+K) =
1

2σ2
,

where K is any fixed nonempty finite subset of Z4 and σ2 is the variance of µ.

2 Proof of the main theorem

Before the formal proof, let us first mention the main idea. Since the branching is
critical, the expectation of the number of visits to a is G(a) = G(0, a) where G is the
Green function of an ordinary random walk with jump distribution θ. Our assumptions
about θ can guarantee G(z) � |z|−2 (see Theorem 2 in [4]). If conditionally on visiting
a, the conditional expectation of the number of visits is of order log |a|, then we can get
(1.3). In fact, we will show that this is true with high probability.

Let us introduce some notations. Classically, a branching random walk can be
regarded as a random function S : V (T ) → Z4, where T is a random plane tree, i.e. a
rooted ordered tree, and V (T ) is the set of all vertices of T . In our case T is a Galton-
Watson tree with offspring distribution µ. Conditionally on T , we assign to every edge e
of T a random variable Ye according to θ independently. Then, S(v), for any v ∈ V (T ) is
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just the sum of the random variables Ye over all edges e belonging to the unique simple
path from the root to u in the tree (hence the root is mapped to the origin). Since we
have an order ≺ for the children of each vertex in T , we could adopt the classical order,
for all vertices, according to the so-called Depth-first search on V (T ) as follows. For
v and v′, two different vertices, let ω = (v0, v1, . . . , vm) and ω′ = (v′0, v

′
1, . . . , v

′
n) be the

unique simple paths in the tree from the root (hence v0 = v′0 is the root) to v and v′

respectively. We say that v is on the left of v′, if either (v0, v1, . . . , vm) is a subsequence
of (v′0, v

′
1, . . . , v

′
n) or vi ≺ v′i, where i = min{k : vk 6= v′k}.

For any branching random walk sample S : V (T ) → Z4 that visits a, Va := {v ∈
V (T ) : S(v) = a} is not empty. Let u be the leftmost point in Va and (v0, v1, . . . , vk) be
the unique simple path in T from the root to u. Then (S(v0),S(v1), . . . ,S(vk)) is a path
in Z4 from the origin to a. We denote this path by γ̃(S). Let N be the number of visits
to a. For any γ, a path from the origin to a, define p(γ) = P (N > 0, γ̃(S) = γ) and
e(γ) = E(N |N > 0, γ̃(S) = γ). Note that N > 0 iff S visits a. For any path γ = (z0, . . . , zn)

in Z4, define g(γ) =
∑n
i=0G(zi, a) =

∑n
i=0G(a− zi). Let G = 1{S visits a} · g(γ̃(S)). The

following lemmas are key ingredients for our main theorem.

Lemma 2.1. For any γ, a path from the origin to a such that p(γ) > 0, we have:

e(γ) ≥ g(γ)
∑
i≥2

µ(i). (2.1)

Lemma 2.2. There exists positive constants c, c1, c2, such that for all a ∈ Z4 with |a|
sufficiently large, we have

P (0 < G ≤ c1 log |a|) ≤ c2/|a|2+c. (2.2)

We postpone proofs of these two lemmas and start the proof of Theorem 1.1. Since µ
is critical, we have:

EN = G(0, a) � |a|−2.

By Lemma 2.1, we have:

|a|−2 � EN ≥ P (G ≥ c1 log |a|)E(N |G ≥ c1 log |a|)

≥ P (G ≥ c1 log |a|)(
∑
i≥2

µ(i))c1 log |a|

� P (G ≥ c1 log |a|) log |a|.

Note that since µ is critical and nondegenerate,
∑
i≥2 µ(i) > 0. Therefore:

P (G ≥ c1 log |a|) � 1/(|a|2 log |a|).

Then we have:

P (S visits a) = P (G > 0)

= P (0 < G < c1 log |a|) + P (G ≥ c1 log |a|)
� 1/|a|2+c + 1/(|a|2 log |a|)
� 1/(|a|2 log |a|).

Proof of Lemma 2.1. Fix a γ = (z0, z1, . . . , zk) such that p(γ) > 0. For any branching
random walk sample S such that γ̃(S) = γ, write ai (bi respectively) for the number of
siblings of zi on the left of zi (on the right respectively), for i = 1, . . . , k. From the tree
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structure, one can easily see that, for any l1, . . . , lk, m1, . . . ,mk ∈ N, we have

P (N > 0, γ̃(S) = γ; ai = li, bi = mi, for i = 1, . . . , k)

= s(γ)

k∏
i=1

(
µ(li +mi + 1)(q(a− zi−1))li

)
, (2.3)

where s(γ) is the probability weight for the random walk with jump distribution θ, i.e.,
s(γ) =

∏k
i=1 θ(zi−zi−1) and q(z) is the probability that the branching random walk avoids

z conditioned on the initial particle having only one child.
Conditionally on the event in (2.3), the expectation of N is:

G(0) +

k∑
i=1

miG(a− zi−1).

Recall that g(γ) =
∑k
i=0G(a− zi) = G(0) +

∑k
i=1G(a− zi−1). Thus it suffices to show:

E(bi|N > 0, γ̃(S) = γ) ≥
∑
i≥2

µ(i).

A straight computation using (2.3) gives:

E(bi|N > 0, γ̃(S) = γ) =

∑
l≥0,m≥0mµ(l +m+ 1)(q(a− zi−1))l∑
l≥0,m≥0 µ(l +m+ 1)(q(a− zi−1))l

≥
∑
l=0,m≥1 1 · µ(l +m+ 1)∑
l≥0,m≥0 µ(l +m+ 1)

=

∑
m≥1 µ(m+ 1)∑
j≥1 jµ(j)

=

∑
i≥2 µ(i)

1

=
∑
i≥2

µ(i).

Proof of Lemma 2.2. A straight calculation using (2.3) gives:

p(γ) = s(γ)

k∏
i=1

(
∑

li≥0,mi≥0

µ(li +mi + 1)(q(a− zi−1))li)

≤ s(γ)
k∏
i=1

(
∑

li≥0,mi≥0

µ(li +mi + 1))

= s(γ)

k∏
i=1

(
∑
j≥1

jµ(j))

= s(γ).

Hence, we have:

P (0 < G ≤ c1 log |a|) =
∑

γ:0→a,g(γ)≤c1 log |a|

p(γ)

≤
∑

γ:0→a,g(γ)≤c1 log |a|

s(γ).

Then Lemma 2.2 is implied by the following proposition.
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Proposition 2.3. There exist c, c1, c2 such that for a ∈ Z4 with |a| sufficiently large,

P (τa <∞,
τa∑
i=0

G(Si) ≤ c1 log |a|) ≤ c2|a|−(2+c),

where (Si)i∈N is the ordinary random walk starting from 0 with jump distribution θ and
τa is the hitting time for a.

Note that we actually deduce Lemma 2.2 by applying the previous proposition to the
random walk with jump distribution −θ.

This proposition is an adjusted version of Lemma 10.1.2 (a) in [1]. It is assumed there
that θ has finite support which is stronger than our case, though its conclusion is also
stronger than ours. Following the argument there, we present a proof here.

Proof of Proposition 2.3. It suffices to show:

P (

τn∑
i=0

G(Si) ≤ c1 log n) ≤ c2n−(2+c), (2.4)

where τn = min{k ≥ 0 : |Sk| ≥ n}.
Choose α < β < c ∈ (0, 0.1), such that

(4 + ε)(1− β)− 2(1− α) > 2 + c. (2.5)

Let A be the event that |Xi| ≤ M
.
= bn1−βc for i = 1, 2, . . . , T

.
= 2bn2(1−α)c (where

Xi = Si − Si−1). Write X ′i = Xi1{|Xi| ≤ M} and S′i = X ′1 + · · · + X ′i. Note that on A,
Si = S′i for i = 1, . . . , T and

P (Ac) � n2(1−α)P (|X1| ≥M) ≤ n2(1−α)E|X1|4+ε

M4+ε

(2.5)
� n−(2+c).

Write l = max{i ∈ N : 4i ≤ n1−β} and L = max{i ∈ N : 4i ≤ n1−α}. Define ξi for
i = l, l + 1, . . . , L, inductively by ξl = 0, ξi+1 = (ξi + (4i+1)2) ∧min{k ∈ N : |S′k| ≥ 4i+1},
where we write x ∧ y = min{x, y}. Note that ξL ≤ (4L)2(1 + 1

16 +
(

1
16

)2
+ . . . ) ≤ 2(4L)2 ≤

2bn2(1−α)c and L− l � (β − α) log n.
On the other hand, since G(x) � (|x|+ 1)−2, we have

ξk+1−1∑
i=ξk

G(S′i) � (ξk+1 − ξk)(4k+1)−2.

It is not difficult to see that for every b ∈ (0, 0.1) we could find some t ∈ (0, 0.1) such that

supk,n∈N,x∈Z4:l≤k≤L−1,|x|≤2·4kP (ξk+1 − ξk ≤ t(4k+1)2|S′ξk = x) < b.

For example, one could first show, using Kolmogorov’s maximal inequality, the corre-
sponding result when the role of X ′i is replaced by Xi and then note that on A, Si = S′i
and that P (Ac) is very small.

Write Ik for 1{ξk+1 − ξk ≤ t(4k+1)2}. Then we have

P (Ik+1 = 1|S′0, . . . , S′ξk) < b.

Therefore, J
.
=
∑L−1
k=l Ik is stochastically bounded by a binomial random variable with

parameters L− l and b. By choosing b small enough and standard estimates for binomial
random variables, one could get

P (J ≥ L− l
2

) ≤ (2
√
b(1− b))L−l � n−3.
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On the event {J < L−l
2 }, we have

ξL−1∑
i=ξl

G(S′i) ≥
L− l
2

t � (β − α)t log n.

Noting that P (Ac) � n−(2+c) and on A,
∑τn
i=0G(Si) ≥

∑ξL−1
i=ξl

G(S′i), we finish the proof.
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