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1 Introduction

Our note is concerned with “mirror” couplings of reflected Brownian motions, defined
in Section 2. These couplings were used many times to prove theorems in potential
theory, see [1, 2, 3, 4, 5, 6]. The main arguments in all of these articles were based on
the analysis of the motion of the “mirror,” i.e., the line of symmetry for two coupled
reflected Brownian motions. Mirror motion analysis is simple and intuitive as long as a
certain simple construction (see Section 2.2) of the mirror coupling can be applied. We
will prove that, unfortunately, the simple construction is limited in its scope because two
mirror coupled reflected Brownian motions can hit the sides of a wedge at the same time.
The mirror-coupling-based proofs in [1, 2, 3, 4, 5, 6] are correct to our best knowledge.
The negative result presented in this paper means that the existing proofs cannot be
simplified and at least some future applications of mirror couplings will have to be based
on less intuitive and less convenient constructions. To our best knowledge, the first
rigorous construction of a mirror coupling in any domain with piecewise C2-boundary
for all positive times was given in [2].

It is known (see [8]) that two reflected Brownian motions in a disc driven by the same
Brownian motion (i.e., a “synchronous coupling”) can hit the boundary of the domain
at the same time. Many results on path properties of the stochastic flow of reflected
Brownian motions can be found in [12] and references therein.

Later in the paper we will need the following representation of a reflected Brownian
motion. Let D ⊂ R2 be a bounded connected open set with piecewise C2-smooth
boundary. Let n(x) denote the unit inward normal vector at x ∈ ∂D. Let B be standard
2-dimensional Brownian motion, x ∈ D, and consider the following Skorokhod equation,

Xt = x+Bt +

∫ t

0

n(Xs)dLs, for t ≥ 0. (1.1)
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Brownian couplings

Here L is the local time of X on ∂D. In other words, L is a non-decreasing continuous
process which does not increase when X is in D, i.e.,

∫∞
0

1D(Xt)dLt = 0, a.s. Equation
(1.1) has a unique pathwise solution (X,L) such that Xt ∈ D for all t ≥ 0, for all x ∈ D
(see [10]). The reflected Brownian motion X is a strong Markov process.

2 Mirror couplings

We will present three different constructions of “mirror couplings” of Brownian
motions and reflected Brownian motions in planar domains, starting with couplings in
the whole plane and then moving to domains of greater complexity. These constructions
were originally developed in [7] and later applied in [4] and other articles. Our review is
similar to that in [5].

2.1 Mirror couplings in the plane

Suppose that x, y ∈ R2 are symmetric with respect to a line M and x 6= y. Let X be a
Brownian motion starting from x, let TXM = inf{t ≥ 0 : X ∈M}, and let Yt be the mirror
image of Xt with respect to M for t ≤ TXM . We let Yt = Xt for t > TXM . By the strong
Markov property applied at TXM , the process Y is a Brownian motion starting from y. The
pair (X,Y ) is a “mirror coupling” of Brownian motions in the plane.

2.2 Mirror couplings in half-planes

Informally speaking, a mirror coupling in a half-plane is the unique coupling of
reflected Brownian motions in the half-plane that behaves exactly as the mirror coupling
in the whole plane when both processes are away from the boundary. Suppose that
D∗ is a half-plane, x, y ∈ D∗, and let M be the line of symmetry for x and y. The case
when M is parallel to ∂D∗ is essentially a one-dimensional problem, so we focus on
the case when M intersects ∂D∗. By performing rotation and translation, if necessary,
we may suppose that D∗ is the upper half-plane and M passes through the origin. We
will write x = (rx, θx) and y = (ry, θy) in polar coordinates. The points x and y are at
the same distance from the origin so rx = ry. Suppose without loss of generality that
θx < θy. We first generate a 2-dimensional Bessel process Rt starting from rx. Then we
generate two coupled one-dimensional processes on the “half-circle” as follows. Let Θ̃x

t

be a 1-dimensional Brownian motion starting from θx. Let Θ̃y
t = −Θ̃x

t + θx+ θy. Let Θx
t be

reflected Brownian motion on [0, π], constructed from Θ̃x
t by the means of the Skorokhod

equation. Thus Θx
t solves the stochastic differential equation dΘx

t = dΘ̃x
t + dLt, where Lt

is a continuous process that changes only when Θx
t is equal to 0 or π and Θx

t is always
in the interval [0, π]. The process Θx

t is constructed in such a way that the difference
Θx
t − Θ̃x

t is constant on every interval of time on which Θx
t does not hit 0 or π. The

analogous reflected process obtained from Θ̃y
t will be denoted Θ̂y

t . Let τΘ be the smallest
t with Θx

t = Θ̂y
t . Then we let Θy

t = Θ̂y
t for t ≤ τΘ and Θy

t = Θx
t for t > τΘ. We define

a “clock” by σ(t) =
∫ t

0
R−2
s ds. Then Xt = (Rt,Θ

x
σ(t)) and Yt = (Rt,Θ

y
σ(t)) are reflected

Brownian motions in D∗ with normal reflection—one can prove this using the same ideas
as in the discussion of the skew-product decomposition for 2-dimensional Brownian
motion presented in [9]. Moreover, X and Y behave like free Brownian motions coupled
by the mirror coupling as long as they are both strictly inside D∗. The processes will stay
together after the first time they meet. We call (X,Y ) a “mirror coupling” of reflected
Brownian motions in half-plane.

The two processes X and Y in the upper half-plane remain at the same distance from
the origin. Suppose now that D∗ is an arbitrary half-plane, and x and y belong to D∗.
Let M be the line of symmetry for x and y. Then an analogous construction yields a
pair of reflected Brownian motions starting from x and y such that the distance from
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Xt to M ∩ ∂D∗ is always the same as for Yt. Let Mt be the line of symmetry for Xt and
Yt. Note that Mt may move, but only in a continuous way, while the point Mt ∩ ∂D∗ will
never move. We will call Mt the mirror and the point H := Mt ∩ ∂D∗ will be called the
hinge. The absolute value of the angle between the mirror and the normal vector to ∂D∗
at H can only decrease because, assuming that only one of the processes is reflecting
from the boundary at some time, the reflecting process will receive an infinitesimal push
in the direction of the inner normal vector, due to the local time Lt, and, therefore, the
mirror will be pushed away from that process.

2.3 Mirror couplings in polygons

We will present an inductive construction of a mirror coupling (X,Y ) of reflected
Brownian motions in a planar convex polygonal domain D based on the constructions
presented in Sections 2.1 and 2.2. We will construct a coupling only on a (random) time
interval [0, S∞] such that Xt /∈ ∂D or Yt /∈ ∂D for every t ∈ [0, S∞).

Assume that x, y ∈ D, x 6= y, and let {(X1
t , Y

1
t ), t ≥ 0} be the mirror coupling of

Brownian motions in the whole plane, starting from (X1
0 , Y

1
0 ) = (x, y). Let S0 = 0 and

S1 = inf{t ≥ 0 : X1
t ∈ ∂D or Y 1

t ∈ ∂D}.
If X1

S1
∈ ∂D and Y 1

S1
∈ ∂D then we let S∞ = S1 and we end the induction.

Suppose that either X1
S1

/∈ ∂D or Y 1
S1

/∈ ∂D. In the first case let I1 be the edge of ∂D
to which Y 1

S1
belongs and let K1 be the line containing I1. In the second case let I1 be

the edge of ∂D to which X1
S1

belongs and let K1 be the line containing I1.
Suppose that {(Xk

t , Y
k
t ), t ≥ Sk−1}, Sk, Ik and Kk have been defined and either

Xk
Sk

/∈ ∂D or Y kSk
/∈ ∂D, for some k ≥ 1. Let {(Xk+1

t , Y k+1
t ), t ≥ Sk} be the mirror

coupling of Brownian motions starting from (Xk+1
Sk

, Y k+1
Sk

) = (Xk
Sk
, Y kSk

), constructed as
in Section 2.2, in the half-plane containing D, with boundary Kk. Let Sk+1 = inf{t ≥ Sk :

Xk+1
t ∈ ∂D or Y k+1

t ∈ ∂D}.
If Xk+1

Sk+1
∈ ∂D and Y k+1

Sk+1
∈ ∂D then we let S∞ = Sk+1 and we end the induction.

Suppose that either Xk+1
Sk+1

/∈ ∂D or Y k+1
Sk+1

/∈ ∂D. In the first case let Ik+1 be the edge

of ∂D to which Y k+1
Sk+1

belongs and let Kk+1 be the line containing Ik+1. In the second case

let Ik+1 be the edge of ∂D to which Xk+1
Sk+1

belongs and let Kk+1 be the line containing
Ik+1.

If there is no k such that S∞ = Sk then we let S∞ = limk→∞ Sk.
We define (Xt, Yt) for t ∈ [0, S∞) by (Xt, Yt) = (Xk

t , Y
k
t ) for t ∈ [Sk−1, Sk) and k such

that Sk−1 < S∞. If S∞ < ∞ then we extend the definition of (Xt, Yt) to t = S∞ by
continuity.

The construction of the mirror coupling can be easily continued beyond S∞ under
some circumstances. For example, if XS∞ = YS∞ then X and Y can be continued beyond
S∞ as a single reflected Brownian motion in D.

Let Mt denote the mirror, i.e., the line of symmetry for Xt and Yt. Since the process
which hits Ik does not “feel” the shape of ∂D except for the direction of Ik, it follows
that the two processes behave as a mirror coupling in a half-plane and, therefore, they
remain at the same distance from the hinge Ht := Mt ∩Kk on the interval [Sk, Sk+1).
The mirror Mt can move but the hinge Ht remains constant on the interval [Sk, Sk+1).
Typically, the hinge Ht jumps at times Sk. The hinge Ht may lie outside D at some times.

2.4 Mirror couplings of reflected Brownian motions in a wedge

Remark 2.1. Before we state our result, we will list three events. Each one of these
events can occur with strictly positive probability for some polygonal domain and initial
conditions. In each case, XT ∈ ∂D and YT ∈ ∂D for some stopping time T ≥ 0, but the
construction of the mirror coupling for times greater than T does not pose any technical
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difficulties. Hence these three situations are not interesting.

(i) It may happen that XT = YT ∈ ∂D. In this case, one can continue the mirror
coupling as a single reflected Brownian motion in D representing both X and Y after
time T .

(ii) It may happen that X and Y hit the same edge I at the same time T , at different
points. In this case the mirror is orthogonal to I at time T . One can easily continue the
mirror coupling after T , on some random time interval, until one of the processes hits a
different edge of ∂D.

(iii) If the mirror passes through the intersection point of lines containing two edges
I and J then it may happen that X hits I and Y hits J at the same time T . One can
easily continue the mirror coupling after T , on some random time interval, until one of
the processes hits a different edge of ∂D.

Note that one may take T ≡ 0 in cases (i)-(iii), for some domains and starting positions
for X and Y . Hence, Theorem 2.2 cannot be strenghtened from “some x and y” to “all x
and y.”

We will use complex and vector notation interchangeably.

Theorem 2.2. Consider a wedge D = {reiθ ∈ C : r > 0, 0 < θ < α} with angle
α ∈ (0, π/2). We will denote the edges of D by EX = (0,∞) and EY = {reiα : r > 0}.
There exist x, y ∈ D such that if {(Xt, Yt), t ∈ [0, S∞)} is the mirror coupling of reflected
Brownian motions in D constructed as in Section 2.3 and (X0, Y0) = (x, y) then

P (S∞ <∞, XS∞ ∈ EX , YS∞ ∈ EY , |XS∞ | 6= |YS∞ |) > 0. (2.1)

Remark 2.3. (i) Recall that if S∞ < ∞ then XS∞ is defined as limt↑S∞ Xt. A similar
remark applies to YS∞ .

(ii) It is easy to see that if the event in (2.1) holds then none of the situations listed in
Remark 2.1 (i)-(iii) could have occurred at time S∞.

(iii) It is clear from the construction given in Section 2.3 that Theorem 2.2 applies
also to polygonal domains. The reason is that the mirror coupling “can only see” the
boundary of the domain locally and, therefore, it evolves in the same way in a polygonal
domain as in a wedge formed by the two sides of the polygon that are the closest to the
two Brownian motions.

Proof of Theorem 2.2. Step 1. This step is devoted to a purely deterministic lemma. We
will study the effect of increasing β on the position of A and the logarithmic transforma-
tion of the blue wedge in Fig. 1 (rigorous definitions are given below).

Recall that ∠ denotes an angle; we will adopt the convention that all angles are
in [0, π]. For any points F and G in the plane, let |FG| denote the distance between
them. We will identify points in the plane with complex numbers and points on the real
axis with real numbers. Hence, if F is a point in the positive part of the real axis then
F = |F | = |0F |. Let U := {z ∈ C : 0 ≤ Im z ≤ π}.

Fix any α ∈ (0, π/2), consider H > 0, β ∈ (α, π/2), and let M = {H + reiβ : r ∈ R}.
Define H ′ by {H ′} = M ∩ EY . Let S be the symmetry with respect to M , and define A
and A′ by {A} = EX ∩ S(EY ) and {A′} = {S(A)} = EY ∩ S(EX). See Fig. 1.

We will consider α and H to be constants and we will treat β as a variable. Note that
H ′, A and A′ are uniquely determined given H,α and β.

Elementary geometry shows that ∠(0AH ′) = π + α− 2β and ∠(0A′H) = 2β − α. By
the law of sines,

H

sin∠(0A′H)
=

|HA′|
sin∠(H0A′)

,
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Figure 1: The first step of the proof is devoted to studying the effect of increasing β on
the position of A and the logarithmic transformation of the blue wedge.

H

sin(2β − α)
=
|HA′|
sinα

,

|HA| = |HA′| = H sinα

sin(2β − α)
,

A = |H|+ |HA| = H(1 + sinα csc(2β − α)). (2.2)

Let W be the closed wedge with vertex A, such that its sides contain H and H ′, and
A′ lies in its interior. Note that π/4 + α/2 < π/2. For z ∈W and β ∈ (α, π/4 + α/2) let

f(β, z) = (log(z −A) + i(α− 2β))
π

π + α− 2β
(2.3)

=

(
log

(
z −H

(
1 +

sinα

sin(2β − α)

))
+ i(α− 2β)

)
π

π + α− 2β
.

The function f(β, z) takes values in U and, informally speaking, sends (β,A) to −∞.
Consider r ∈ (H,A). We use (2.2) to see that

f(β, r) = (log(r −A) + i(α− 2β))
π

π + α− 2β

= (log(−r +A) + i(π + α− 2β))
π

π + α− 2β

=

(
log

(
−r +H

(
1 +

sinα

sin(2β − α)

)))
π

π + α− 2β
+ iπ.

We use (2.2) once again to get,

∂

∂β
f(β, r) = − 2πH sin(α) cot(2β − α) csc(2β − α)

(π + α− 2β)(H(1 + sin(α) csc(2β − α))− r)

+
2π

(π + α− 2β)2
log(H(1 + sin(α) csc(2β − α))− r)

= − 2πH sin(α) cot(2β − α) csc(2β − α)

(π + α− 2β)(A− r)
+

2π

(π + α− 2β)2
log(A− r). (2.4)

Recall that α ∈ (0, π/2) and fix β∗1 and β∗2 such that α < β∗1 < β∗2 < π/2 and 2β∗2 −
α < π/2. If β ∈ [β∗1 , β

∗
2 ] then sin(α) cot(2β − α) csc(2β − α) > 0. Hence we can find
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c∗1 = c∗1(α,H, β∗1 , β
∗
2) > 0 such that if β ∈ [β∗1 , β

∗
2 ] then

∂

∂β
f(β, r) < −c∗1(A− r)−1. (2.5)

Next we calculate the normal derivative of f with respect to the second variable. If
we write z = reiθ then∣∣∣∣1r · ∂∂θf(β, reiθ)

∣∣∣
θ=0

∣∣∣∣ =
π

π + α− 2β
(A− r)−1. (2.6)

We will derive an analogous estimate for a mapping corresponding to the other side
of the wedge D. Let γ = ∠(0H ′H) and note that γ = β − α. We will now consider α and
H ′ to be constants and we will treat γ as a variable. Note that H,A and A′ are uniquely
determined given H ′, α and γ.

We have ∠(0AH ′) = π − α− 2γ. By the law of sines,

|H ′|
sin∠(0AH ′)

=
|H ′A|

sin∠(H ′0A)
,

|H ′|
sin(π − α− 2γ)

=
|H ′A|
sinα

,

|H ′A′| = |H ′A| = |H ′| sinα
sin(2γ + α)

,

|A′| = |H ′| − |H ′A′| = |H ′|(1− sinα csc(2γ + α)). (2.7)

Let W ′ be the closed wedge with vertex A′, such that its sides contain H and H ′, and
A lies in its interior. Let (v)− denote the complex conjugate of v ∈ C. For z ∈ W ′ and
γ ∈ (0, π/4− α/2) let

g(γ, z) =

(
(log(z −A′)− iα)

π

π − α− 2γ

)−
(2.8)

=

(
(log(z −H ′(1− sinα csc(2γ + α)))− iα)

π

π − α− 2γ

)−
.

The function g(γ, z) takes values in U and, informally speaking, sends (γ,A′) to −∞.
Consider z = reiα with r ∈ (|A′|, |H ′|). Using (2.7), we obtain

g(γ, z) =

(
(log(reiα −A′)− iα)

π

π − α− 2γ

)−
=

(
log(r − |A′|) π

π − α− 2γ

)−
= log(r − |A′|) π

π − α− 2γ

= log(r − |H ′|(1− sinα csc(2γ + α)))
π

π − α− 2γ
,

so, using (2.7) once again,

∂

∂γ
g(γ, z) = − 2π|H ′| sin(α) cot(α+ 2γ) csc(α+ 2γ)

(π − α− 2γ)(r − |H ′|(1− sin(α) csc(α+ 2γ)))

+
2π log(r − |H ′|(1− sin(α) csc(α+ 2γ)))

(π − α− 2γ)2

= −2π|H ′| sin(α) cot(α+ 2γ) csc(α+ 2γ)

(π − α− 2γ)(r − |A′|)
+

2π log(r − |A′|)
(π − α− 2γ)2

.
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Recall that α ∈ (0, π/2) and let γ∗1 = β∗1 − α and γ∗2 = β∗2 − α. Then

0 < γ∗1 < γ∗2 < π/2− α, 2γ∗2 + α < π/2. (2.9)

If γ ∈ [γ∗1 , γ
∗
2 ] then sin(α) cot(2γ+α) csc(2γ+α) > 0. Hence we can find c∗2 = c∗2(α,H ′, γ∗1 , γ

∗
2) >

0 such that if γ ∈ [γ∗1 , γ
∗
2 ] then

∂

∂γ
g(γ, r) < −c∗2(r − |A′|)−1. (2.10)

We will now calculate the normal derivative of g with respect to the second variable.
Write z = reiθ. Then ∣∣∣∣1r · ∂∂θ g(γ, reiθ)

∣∣∣
θ=α

∣∣∣∣ =
π

π − α− 2γ
(r − |A′|)−1. (2.11)

Recall that γ = β − α and note that for fixed α, β and H, we have for z ∈W ′,

g(γ, z) = f(β,S(z)). (2.12)

Step 2. Let LX and LY denote the local times in the representation (1.1) for X and Y ,
resp. Recall that Mt denotes the line of symmetry for Xt and Yt, reflected Brownian
motions in D. Assume that M0 = {K + reiβ0 : r ∈ R} for some K ∈ EX and α < β0 <

π/4 + α/2.
Let ĒX (ĒY ) be the straight line containing EX (EY ). Let {HX,t} = Mt ∩ ĒX and

{HY,t} = Mt ∩ ĒY . Let St be the symmetry with respect to Mt for t < S∞. In particular,
we have St(Xt) = Yt for all t < S∞.

Let βt be defined by Mt = {HX,t + reiβt : r ∈ R} and

T ′ = inf {t ≥ 0 : Xt = Yt or 0 ∈Mt or βt /∈ (α, π/4 + α/2)} , (2.13)

T ′′ = inf {t ≥ 0 : Xt ∈ ∂D and Yt ∈ ∂D} , (2.14)

T = T ′ ∧ T ′′. (2.15)

The following definitions apply to t ∈ [0, T ).
Let AX,t and AY,t be defined by {AX,t} = ĒX ∩ St(ĒY ) and {AY,t} = {St(AX,t)} =

ĒY ∩ St(ĒX). See Fig. 2.
We will argue that our assumptions on M0 and β0 imply that 0 < HX,0 < AX,0 and

0 < |AY,0| < |HY,0|. Since α ∈ (0, π/2), we have α < β0 < π/4+α/2 < π/2. Hence, St(ĒY )

must intersect EX at a point AX,0 to the right of HX,0 and such that |0AX,0| < 2|0HX,0|.
The bound β0 < π/2 also implies that AY,0 must lie between 0 and HY,0.

Let WX,t be the closed wedge with vertex AX,t, such that its sides contain HX,t and
HY,t, and AY,t lies in its interior. For t ∈ [0, T ) and z ∈WX,t let

F(t, z) = (log(z −AX,t) + i(α− 2βt))
π

π + α− 2βt
.

Let γt = βt − α. Let WY,t be the closed wedge with vertex AY,t, such that its sides
contain HY,t and HX,t, and AX,t lies in its interior. Recall that (v)− denotes the complex
conjugate of v ∈ C. For t ∈ [0, T ) and z ∈WY,t let

G(t, z) =

(
(log(z −AY,t)− iα)

π

π − α− 2γt

)−
.

It follows from (2.3), (2.8) and (2.12) that

F(t, z) = f(βt, z), for t ∈ [0, T ), z ∈WX,t,
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Figure 2: The proof shows that it is possible for X and Y to visit the boundary
simultaneously at a time t such that Xt = AX,t, Yt = AY,t and |Xt| 6= |Yt|.

G(t, z) = g(γt, z), for t ∈ [0, T ), z ∈WY,t,

G(t, z) = F(t,S(z)), for z ∈WY,t,

G(t, Yt) = F(t,S(Yt)) = F(t,Xt), for t ∈ [0, T ).

The function F(t, z) takes values in U and sends (t, AX,t) to −∞. The function G(t, z)

also takes values in U and sends (t, AY,t) to −∞.
If Xt ∈ EX for some t then we will call X active at time t, and similarly for Y . Suppose

that Xt is active at time t. Then, over a short time interval [t, t+ δ], the mirror Mt will
move from the position Mt to Mt+δ, the angle βt will increase to βt+δ, the wedge WX,t

will be transformed into the wedge WX,t+δ, and the angle of WX,t will change from
π + α− 2βt to π + α− 2βt+δ. As a result, AX,t will move to AX,t+δ in the direction of Xt.
Analogous remarks apply to the situation when Y is active at time t. In that case AY,t
will move to AY,t+δ in the direction of Yt. For a point z between 0 and AX,t+δ, its image
under F will change from F(t, z) to F(t+ δ, z).

Let

Z∗t = G(t, Yt) = F(t,Xt), t ∈ [0, T ), (2.16)

ρ̃(t) =

∫ t

0

∣∣∣∣( d

dz
F(s, z)

∣∣∣
z=Xs

)∣∣∣∣2 ds, t ∈ [0, T ),

s∗ = lim
t↑T

ρ̃(t), (2.17)

ρ(t) = inf{s ≥ 0 : ρ̃(s) ≥ t},
Zs = Z∗(ρ(s)), s ∈ [0, s∗).

The process {Zt, t ∈ [0, s∗)} is reflected Brownian motion in U with (random) oblique
reflection, by an argument very similar to the proof of [11, Thm. 2.3]. We will not
reproduce that proof here but we will point similarities. In [11, Thm. 2.3], a reflected
Brownian motion is transformed by a continuous mapping depending on space and
time. In that paper, there is a non-decreasing process, the norm of the original reflected
Brownian motion, that is constant on time intervals whose union has full Lebesgue
measure. On each of these intervals, the mapping does not depend on time and is
analytic in the space variable. In our case, the local times LX and LY are constant on
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time intervals whose union has full Lebesgue measure. On each of these intervals, the
mapping F(t, z) does not depend on time and is analytic in the space variable.

The obliquely reflected Brownian motion Zt in U has the following representation.
For some two-dimensional Brownian motion B′ and z0 = F(0, X0) ∈ U ,

Zt = z0 +B′t +

∫ t

0

v(s, Zs)dL
Z
s , for t ∈ [0, s∗). (2.18)

Here LZ is the local time of Z on ∂U . In other words, LZ is a non-decreasing continuous
process which does not increase when Z is in the interior U◦ of U , i.e.,

∫ s∗
0

1U◦(Zt)dL
Z
t =

0, a.s. The vector of oblique reflection v is normalized in (2.18) so that the absolute
value of its normal component is equal to 1. The vector v is random, i.e., v(s, · ) depends
on {Zt, 0 ≤ t ≤ s}. We will write v = (v1, v2) = v1 + iv2, for v1, v2 ∈ R. Hence, |v2| = 1.
More precisely, v2(z) = 1 if z ∈ R and v2(z) = −1 if Im (z) = π.

We will now determine the first component v1 of the vector of oblique reflection v.
We will use the informal differential notation: ∆βt = a(t)∆LXt should be interpreted as∫ u
s
dβt =

∫ u
s
a(t)dLXt for all s < u. It follows from the construction of the mirror coupling

in a half-plane outlined in Section 2.2 that at the time when Xt is active, this process
gets an infinitesimal push along the inner normal vector of the size ∆LXt so the angular
motion of the mirror, in radians, is equal to one half of the angle swept by X, i.e.,

∆βt =
∆LXt

2|Xt −HX,t|
. (2.19)

Therefore, by the chain rule,

v1(ρ̃(t), Zρ̃(t))

|v2(ρ̃(t), Zρ̃(t))|
=

∆βt
∆LXt

·
∂
∂β f(β, r)

∣∣∣
r=|Xt|,β=βt∣∣∣∣ 1r · ∂∂θf(β, reiθ)
∣∣∣
θ=0,r=|Xt|,β=βt

∣∣∣∣ (2.20)

=
1

2|Xt −HX,t|
·

∂
∂β f(β, r)

∣∣∣
r=|Xt|,β=βt∣∣∣∣ 1r · ∂∂θf(β, reiθ)
∣∣∣
θ=0,r=|Xt|,β=βt

∣∣∣∣ .
Fix some β∗1 and β∗2 such that α < β∗1 < β0 < β∗2 < π/2 and 2β∗2 − α < π/2. Let

T1 = T ∧ inf{t ≥ 0 : βt /∈ [β∗1 , β
∗
2 ]}. We combine (2.5), (2.6) and (2.20) to derive the

following estimate for times t ∈ [0, T1) such that Xt is active,

v1(ρ̃(t), Zρ̃(t))

|v2(ρ̃(t), Zρ̃(t))|
≤ − c∗1

2|Xt −HX,t|
· π + α− 2β∗2

π
=: − ĉ1

|Xt −HX,t|
. (2.21)

Note that ĉ1 > 0.
Let γ∗1 = β∗1 − α and γ∗2 = β∗2 − α. Since γt = βt − α, we have γ∗1 < γ0 < γ∗2 . Note

that T1 = T ∧ inf{t ≥ 0 : γt /∈ [γ∗1 , γ
∗
2 ]}. The conditions imposed on β∗1 and β∗2 imply that

0 < γ∗1 < γ0 < γ∗2 < π/2−α and 2γ∗2 +α < π/2. Hence, the assumptions (2.9) are satisfied.
It follows that we can use (2.10) and (2.11) to derive the following estimate, analogous
to (2.21), for times t ∈ [0, T1) such that Yt is active,

v1(ρ̃(t), Zρ̃(t))

|v2(ρ̃(t), Zρ̃(t))|
≤ − c∗2

2|Yt −HY,t|
· π − α− 2γ∗2

π
=: − ĉ2

|Yt −HY,t|
, (2.22)

where ĉ2 > 0.
It is easy to see that we can choose r1 > 0 so small that

r1 <
1

8
(|AX,0 −AY,0| ∧ |AX,0 −HX,0| ∧ |AY,0 −HY,0|), (2.23)
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and if T ′ <∞ then |XT ′ −AX,0| ≥ 3r1 and |YT ′ −AY,0| ≥ 3r1.
It follows from the construction of the mirror coupling given in Sections 2.2-2.3

that on the interval [0, T1], the distance |0HX,t| is non-decreasing, the distance |0HY,t| is
non-increasing, and the functions βt and γt are non-decreasing. This implies that there
exist β̂2 ∈ (β0, β

∗
2) and γ̂2 ∈ (γ0, γ

∗
2) so small that if

T2 = T ∧ inf{t ≥ 0 : βt /∈ [β0, β̂2]} ∧ inf{t ≥ 0 : γt /∈ [γ0, γ̂2]} (2.24)

then for t ∈ [0, T2],

|HX,t −HX,0| ≤ r1, |HY,t −HY,0| ≤ r1, (2.25)

|AX,t −AX,0| ≤ r1, |AY,t −AY,0| ≤ r1. (2.26)

We will now argue that

{T = T ′′ = T2} ⊂ {s∗ =∞}. (2.27)

It follows from (2.4), (2.6) and (2.20) that the vector of oblique reflection v(ρ̃(t), Z∗t )

is locally bounded on the upper boundary of U for t < T2 ≤ T . The analogous remark
applies to the lower boundary of U .

Suppose that s∗ <∞ and T = T ′′ = T2. We will show that this leads to a contradiction.
The limit lims↑s∗ Zs exists and is finite because s∗ is finite and Z is a reflected Brownian
motion with a locally bounded vector of oblique reflection, a continuous process. If
XT− ∈ ∂D and YT− ∈ ∂D then XT− = AX,T− and YT− = AY,T−. Hence, (2.16) implies
that lims↑s∗ ReZs = −∞, a contradiction. This implies that either XT /∈ ∂D or YT /∈ ∂D,
hence T 6= T ′′, according to the definition (2.14) of T ′′. This is a contradiction so we
conclude that (2.27) is true.

Let c1 = (ĉ1 ∧ ĉ2)/r1. It follows from (2.21), (2.22) and (2.25)-(2.26) that we have
the bound v1(ρ̃(t), Zρ̃(t)) ≤ −c1 if t ≤ T2 and either Xt ∈ B(AX,0, r1) ∩ ∂D or Yt ∈
B(AY,0, r1) ∩ ∂D.

It follows from (2.19), a formula analogous to (2.19) for γt (not stated explicitly), and
(2.25)-(2.26) that there exists c2 > 0 such that{

LXt ≤ c2, LYt ≤ c2, sup
0≤s≤t

|AX,0 −Xs| ≤ r1, sup
0≤s≤t

|AY,0 − Ys| ≤ r1

}
(2.28)

⊂

{
βt ≤

β0 + β̂2

2
, γt ≤

γ0 + γ̂2

2

}
.

Let c3 > 0 be so small that if

DX = {w ∈ D : dist(w, ∂D) ≤ c3, |w −AX,0| ≤ 2r1}, (2.29)

DY = {w ∈ D : dist(w, ∂D) ≤ c3, |w −AY,0| ≤ 2r1}, (2.30)

T̂X = inf{t ≥ 0 : Xt /∈ DX}, T̂Y = inf{t ≥ 0 : Yt /∈ DY }, (2.31)

F1 = {LX(T̂X) ≤ c2 and LY (T̂Y ) ≤ c2}, (2.32)

then

P(F1 | x ∈ DX , y ∈ DY ) > 3/4. (2.33)

In view of the definition (2.24)-(2.26), we can fix a deterministic c4 ∈ R so small that

if t ∈ [0, T2] and w /∈ DX then ReF(t, w) > c4, and (2.34)

if t ∈ [0, T2] and w /∈ DY then ReG(t, w) > c4. (2.35)
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Assume for a moment that s∗ defined in (2.17) is infinite, a.s. We will argue that no
matter what oblique vector of reflection is, the local time on the boundary increases at a
linear rate in the sense that for some c5 > 0, not depending on the reflection vector,

lim
t→∞

LZt /t = c5, a.s. (2.36)

The process {LZt , t ≥ 0} is the same as the local time of one dimensional reflected
Brownian motion ImZt in (0, π). The process LZt increases when ImZt is reflecting
from 0 or π. Let ξk be the consecutive hitting times of the boundary, i.e., ξ0 = inf{t ≥
0 : ImZt = 0}, ξk = inf{t ≥ ξk−1 : |ImZξk−1

− ImZξt | = π}, k ≥ 1. The vectors(
ξk − ξk−1, L

Z
ξk
− LZξk−1

)
are i.i.d., by the strong Markov property. Standard methods

show that both components of these vectors have finite expectations so the strong law of
large numbers implies (2.36).

We use (2.36) to see that there exists c6 < c4 such that if the vector of oblique
reflection (v1, v2) satisfies v1(t, z) ≤ −c1 for t ≥ 0 and z ∈ ∂U with Re z ≤ c4, and

F2 =

{
lim
t→∞

ReZt = −∞, sup
t≥0

ReZt < c4

}
(2.37)

then

P(F2 | ReZ0 ≤ c6) > 3/4. (2.38)

It follows that if

F3 =

{
sup

0≤t<ρ̃(T2)∧s∗
ReZt < c4

}
(2.39)

then

P(F3 | ReZ0 ≤ c6) > 3/4. (2.40)

Recall that (X0, Y0) = (x, y). We choose x, y ∈ D such that x ∈ DX , y ∈ DY and
ReF(0, x) = ReG(0, y) ≤ c6.

The event F1 ∩ F2 ∩ F3 has probability greater than 1/4 because of (2.33), (2.38) and
(2.40). Suppose that F1 ∩ F2 ∩ F3 occurred.

Assume that ρ̃(T2) < s∗. We will show that this assumption leads to a contradiction.
Since F3 occurred and ρ̃(T2) < s∗,

sup
0≤t<ρ̃(T2)∧s∗

ReZt = sup
0≤t<ρ̃(T2)

ReZt < c4. (2.41)

This, (2.24), (2.31) and (2.34)-(2.35) imply that

T2 < T̂X ∧ T̂Y . (2.42)

This, the assumption that F1 occurred and (2.32) imply that LX(T2) ≤ c2 and LY (T2) ≤ c2.
Since T2 < T̂X ∧ T̂Y holds, it follows from (2.29)-(2.30) that sup0≤s≤T2

|AX,0 −Xs| ≤ r1

and sup0≤s≤T2
|AY,0 − Ys| ≤ r1 hold. This, coupled with the earlier observations, shows

that the event on the left hand side of (2.28) holds with t replaced with T2. Hence, the
event on the right hand side of (2.28) holds with t replaced with T2. But this contradicts
the definitions of T2 and s∗ and the assumption that ρ̃(T2) < s∗. The proof that ρ̃(T2) ≥ s∗
is complete.

The fact that ρ̃(T2) ≥ s∗ and the definitions of s∗ and T2 given in (2.17) and (2.24)
imply that T = T2 and, therefore, ρ̃(T2) = s∗. This, in turn implies that (2.41) and (2.42)
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remain valid. The definition of r1 (see the paragraph containing (2.23)) and (2.29)-(2.31)
imply that T̂X ∧ T̂Y < T ′. Hence, the fact that T = T2 < T̂X ∧ T̂Y implies that T < T ′.
Now it follows from (2.15) that T = T ′′. According to (2.27), s∗ =∞. This, the fact that
ρ̃(T2) = s∗ and the definition (2.39) of F3 imply that sup0≤t<∞ReZt < c4. Comparing
(2.37) and (2.39), and recalling that we are assuming that F2 holds, we conclude that
T < ∞, XT = AX,T ∈ EX and YT = AY,T ∈ EY . We have |XT | 6= |YT | because T < T ′.
The theorem holds with S∞ = T .
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