Error bounds in normal approximation for the squared-length of total spin in the mean field classical N-vector models*

Lê Vǎn Thành ${ }^{\dagger} \quad$ Nguyen Ngoc Tu ${ }^{\text {*§ }}$

Abstract

This paper gives the Kolmogorov and Wasserstein bounds in normal approximation for the squared-length of total spin in the mean field classical N-vector models. The Kolmogorov bound is new while the Wasserstein bound improves a result obtained recently by Kirkpatrick and Nawaz [Journal of Statistical Physics, 165 (2016), no. 6, 1114-1140]. The proof is based on Stein's method for exchangeable pairs.

Keywords: Stein's method; Kolmogorov distance; Wasserstein distance; mean-field model.
AMS MSC 2010: 60F05.
Submitted to ECP on July 5, 2018, final version accepted on February 16, 2019.

1 Introduction and main result

Let $N \geq 2$ be an integer, and let \mathbb{S}^{N-1} denote the unit sphere in \mathbb{R}^{N}. In this paper, we consider the mean-field classical N-vector spin models, where each spin σ_{i} is in \mathbb{S}^{N-1}, at a complete graph vertex i among n vertices ([5, Chapter 9$]$). The state space is $\Omega_{n}=\left(\mathbb{S}^{N-1}\right)^{n}$ with product measure $P_{n}=\mu \times \cdots \times \mu$, where μ is the uniform probability measure on \mathbb{S}^{N-1}. In the absence of an external field, each spin configuration $\sigma=\left(\sigma_{1}, \ldots, \sigma_{n}\right)$ in the state space Ω_{n} has a Hamiltonian defined by

$$
H_{n}(\sigma)=-\frac{1}{2 n} \sum_{i=1}^{n} \sum_{j=1}^{n}\left\langle\sigma_{i}, \sigma_{j}\right\rangle,
$$

where $\langle\cdot, \cdot\rangle$ is the inner product in \mathbb{R}^{N}. Let $\beta>0$ be the inverse temperature. The Gibbs measure with Hamiltonian H_{n} is the probability measure $P_{n, \beta}$ on Ω_{n} with density function:

$$
d P_{n, \beta}(\sigma)=\frac{1}{Z_{n, \beta}} \exp \left(-\beta H_{n}(\sigma)\right) d P_{n}(\sigma)
$$

[^0]where $Z_{n, \beta}$ is the partition function: $Z_{n, \beta}=\int_{\Omega_{n}} \exp \left(-\beta H_{n}(\sigma)\right) d P_{n}(\sigma)$. This model is also called the mean field $O(N)$ model. It reduces to the $X Y$ model, the Heisenberg model and the Toy model when $N=2,3,4$, respectively (see, e.g., [5, p. 412]).

Before proceeding, we introduce the following notations. Throughout this paper, Z is a standard normal random variable, and $\Phi(z)$ is the probability distribution function of Z. For a real-valued function f, we write $\|f\|=\sup _{x}|f(x)|$. The symbol C denotes a positive constant which depends only on the inverse temperature β, and its value may be different for each appearance. For two random variables X and Y, the Wasserstein distance d_{W} and the Kolmogorov distance d_{K} between $\mathcal{L}(X)$ and $\mathcal{L}(Y)$ are as follows:

$$
d_{\mathrm{W}}(\mathcal{L}(X), \mathcal{L}(Y))=\sup _{\left\|h^{\prime}\right\| \leq 1}|E h(X)-E h(Y)|
$$

and

$$
d_{\mathrm{K}}(\mathcal{L}(X), \mathcal{L}(Y))=\sup _{z \in \mathbb{R}}|P(X \leq z)-P(Y \leq z)|
$$

In the Heisenberg model ($N=3$), Kirkpatrick and Meckes [6] established large deviation, normal approximation results for total spin $S_{n}=\sum_{i=1}^{n} \sigma_{i}$ in the non-critical phase ($\beta \neq 3$), and a non-normal approximation result in the critical phase ($\beta=3$). The results in [6] are generalized by Kirkpatrick and Nawaz [7] to the mean field N-vector models with $N \geq 2$.

Let I_{ν} denote the modified Bessel function of the first kind (see, e.g., [2, p. 713]) and

$$
\begin{equation*}
f(x)=\frac{I_{\frac{N}{2}}(x)}{I_{\frac{N}{2}-1}(x)}, x>0 \tag{1.1}
\end{equation*}
$$

By Lemma A. 2 in the Appendix, we have

$$
\begin{equation*}
\left(\frac{f(x)}{x}\right)^{\prime}<0 \text { for all } x>0 \tag{1.2}
\end{equation*}
$$

We also have

$$
\begin{equation*}
\lim _{x \rightarrow 0^{+}} \frac{f(x)}{x}=\frac{1}{N} \text { and } \lim _{x \rightarrow \infty} \frac{f(x)}{x}=0 \tag{1.3}
\end{equation*}
$$

In the case $\beta>N$, from (1.2) and (1.3), there is a unique strictly positive solution b to the equation

$$
\begin{equation*}
x-\beta f(x)=0 \tag{1.4}
\end{equation*}
$$

Based on their large deviations, Kirkpatrick and Nawaz [7] argued that in the case $\beta>N$, there exists $\varepsilon>0$ such that

$$
P\left(\left|\frac{\beta\left|S_{n}\right|}{n}-b\right| \geq x\right) \leq e^{-C n x^{2}}
$$

for all $0 \leq x \leq \varepsilon$, where $S_{n}=\sum_{i=1}^{n} \sigma_{i}$ is total spin. It means that $\left|S_{n}\right|$ is close to $b n / \beta$ with high probability. On the other hand, all points on the hypersphere of radius $b n / \beta$ will have equal probability due to symmetry. Based on these facts, they considered the fluctuations of the squared-length of total spin:

$$
\begin{equation*}
W_{n}:=\sqrt{n}\left(\frac{\beta^{2}}{n^{2} b^{2}}\left|S_{n}\right|^{2}-1\right) \tag{1.5}
\end{equation*}
$$

where $S_{n}=\sum_{j=1}^{n} \sigma_{j}$. Let

$$
\begin{equation*}
B^{2}=\frac{4 \beta^{2}}{\left(1-\beta f^{\prime}(b)\right) b^{2}}\left[1-\frac{(N-1) f(b)}{b}-(f(b))^{2}\right] \tag{1.6}
\end{equation*}
$$

Kirkpatrick and Nawaz [7] proved that when $\beta>N$, the bounded-Lipschitz distance between W_{n} / B and Z is bounded by $C(\log n / n)^{1 / 4}$. Their proof is based on Stein's method for exchangeable pairs (see Stein [10]). Recall that a random vector (W, W^{\prime}) is called an exchangeable pair if $\left(W, W^{\prime}\right)$ and $\left(W^{\prime}, W\right)$ have the same distribution. Kirkpatrick and Nawaz [7] construct an exchangeable pair as follows. Let W_{n} be as in (1.5) and let $\sigma^{\prime}=\left\{\sigma_{1}^{\prime}, \ldots, \sigma_{n}^{\prime}\right\}$, where for each i fixed, σ_{i}^{\prime} is an independent copy of σ_{i} given $\left\{\sigma_{j}, j \neq i\right\}$, i.e., given $\left\{\sigma_{j}, j \neq i\right\}, \sigma_{i}^{\prime}$ and σ_{i} have the same distribution and σ_{i}^{\prime} is conditionally independent of σ_{i} (see, e.g., [4, p. 964]). Let I be a random index independent of all others and uniformly distributed over $\{1, \ldots, n\}$, and let

$$
\begin{equation*}
W_{n}^{\prime}=\sqrt{n}\left(\frac{\beta^{2}}{n^{2} b^{2}}\left|S_{n}^{\prime}\right|^{2}-1\right) \tag{1.7}
\end{equation*}
$$

where $S_{n}^{\prime}=\sum_{j=1}^{n} \sigma_{j}-\sigma_{I}+\sigma_{I}^{\prime}$. Then $\left(W_{n}, W_{n}^{\prime}\right)$ is an exchangeable pair (see Kirkpatrick and Nawaz [7, p. 1124], Kirkpatrick and Meckes [6, p. 66]).

The bound $C(\log n / n)^{1 / 4}$ obtained by Kirkpatrick and Nawaz [7] is not sharp. The aim of this paper is to give the Kolmogorov and Wasserstein distances between W_{n} / B and Z with optimal rate $C n^{-1 / 2}$.

The main result is the following theorem. We recall that, throughout this paper, C is a positive constant which depends only on β, and its value may be different for each appearance.
Theorem 1.1. Let $\beta>N$ and f be as in (1.1). Let b be the unique strictly positive solution to the equation $x-\beta f(x)=0$ and B^{2} as in (1.6). For W_{n} as defined in (1.5), we have

$$
\begin{equation*}
\sup _{\left\|h^{\prime}\right\| \leq 1}\left|E h\left(W_{n} / B\right)-E h(Z)\right| \leq C n^{-1 / 2} \tag{1.8}
\end{equation*}
$$

and

$$
\begin{equation*}
\sup _{z \in \mathbb{R}}\left|P\left(W_{n} / B \leq z\right)-\Phi(z)\right| \leq C n^{-1 / 2} \tag{1.9}
\end{equation*}
$$

The Wasserstein bound in Theorem 1.1 will be a consequence of the following proposition, a version of Stein's method for exchangeable pairs. It is a special case of Theorem 2.4 of Eichelsbacher and Löwe [4] or Theorem 13.1 in [3].
Proposition 1.2. Let $\left(W, W^{\prime}\right)$ be an exchangeable pair and $\Delta=W-W^{\prime}$. If $E(\Delta \mid W)=$ $\lambda(W+R)$ for some random variable R and $0<\lambda<1$, then

$$
\sup _{\left\|h^{\prime}\right\| \leq 1}|E h(W)-E h(Z)| \leq \sqrt{2 / \pi} E\left|1-\frac{1}{2 \lambda} E\left(\Delta^{2} \mid W\right)\right|+\frac{1}{2 \lambda} E|\Delta|^{3}+2 E|R| .
$$

The Kolmogorov distance is more commonly used in probability and statistics, and is usually more difficult to handle than the Wasserstein distance. Recently, Shao and Zhang [9] proved a very general theorem. Their result is as follows.
Proposition 1.3. Let $\left(W, W^{\prime}\right)$ be an exchangeable pair and $\Delta=W-W^{\prime}$. Let $\Delta^{*}:=$ $\Delta^{*}\left(W, W^{\prime}\right)$ be any random variable satisfying $\Delta^{*}\left(W, W^{\prime}\right)=\Delta^{*}\left(W^{\prime}, W\right)$ and $\Delta^{*} \geq|\Delta|$. If $E(\Delta \mid W)=\lambda(W+R)$ for some random variable R and $0<\lambda<1$, then

$$
\sup _{z \in \mathbb{R}}|P(W \leq z)-\Phi(z)| \leq E\left|1-\frac{1}{2 \lambda} E\left(\Delta^{2} \mid W\right)\right|+\frac{1}{\lambda} E\left|E\left(\Delta \Delta^{*} \mid W\right)\right|+E|R| .
$$

Shao and Zhang [9] applied their bound in Proposition 1.3 to get optimal bound in many problems, including a bound of $O\left(n^{-1 / 2}\right)$ for the Kolmogorov distance in normal approximation of total spin in the Heisenberg model. We note that if $|\Delta| \leq a$, then the following result is an immediate corollary of Proposition 1.3. In this case, the bound is much simpler than that of Proposition 1.3.

Corollary 1.4. If $|\Delta| \leq a$, then

$$
\begin{equation*}
\sup _{z \in \mathbb{R}}|P(W \leq z)-\Phi(z)| \leq E\left|1-\frac{1}{2 \lambda} E\left(\Delta^{2} \mid W\right)\right|+(E|W|+1) a+E|R| \tag{1.10}
\end{equation*}
$$

Proof. In Proposition 1.3, let $\Delta^{*}=a$, then

$$
\begin{equation*}
E\left|E\left(\Delta \Delta^{*} \mid W\right)\right|=a E|E(\Delta \mid W)| \leq a \lambda(E|W|+E|R|) \tag{1.11}
\end{equation*}
$$

If $E|R| \geq 1$, then (1.10) is trivial. If $E|R|<1$, then (1.10) follows immediately from (1.11) and Proposition 1.3.

For $S_{n}=\sum_{i=1}^{n} \sigma_{i}$, and for W_{n} and W_{n}^{\prime} respectively defined in (1.5) and (1.7), we have

$$
\left.|\Delta|=\left|W_{n}-W_{n}^{\prime}\right|=\left.\frac{\beta^{2}}{n^{3 / 2} b^{2}}| | S_{n}\right|^{2}-\left|S_{n}^{\prime}\right|^{2} \right\rvert\, \leq \frac{4 \beta^{2}}{n^{1 / 2} b^{2}}
$$

since $\left|S_{n}\right|+\left|S_{n}^{\prime}\right| \leq 2 n$ and $\left|S_{n}\right|-\left|S_{n}^{\prime}\right| \leq\left|\sigma_{I}-\sigma_{I}^{\prime}\right| \leq 2$. Therefore, we will apply Corollary 1.4 to obtain the Kolmogorov bound in Theorem 1.1.

2 Proof of the main result

The proof of Theorem 1.1 depends on Kirkpatrick and Nawaz's finding [7]. Applying Proposition 1.2 and Corollary 1.4, Theorem 1.1 follows from the following proposition.
Proposition 2.1. Let $\beta>N$, and let f be as in (1.1), b the unique strictly positive solution to the equation $x-\beta f(x)=0$. Let W_{n} and W_{n}^{\prime} be as in (1.5) and (1.7), respectively. Then the following statements hold:
(i) $\left|W_{n}-W_{n}^{\prime}\right| \leq 4 \beta^{2} b^{-2} n^{-1 / 2}$ and $E W_{n}^{2} \leq C$,
(ii) $E\left(W_{n}-W_{n}^{\prime} \mid W_{n}\right)=\lambda\left(W_{n}+R\right)$, where $\lambda=\frac{1-\beta f^{\prime}(b)}{n}$ and R is a random variable satisfying $E|R| \leq C n^{-1 / 2}$,
(iii) $\left.E \left\lvert\, \frac{1}{2 \lambda} E\left(\left(W_{n}-W_{n}^{\prime}\right)^{2} \mid W_{n}\right)\right.\right)-B^{2} \mid \leq C n^{-1 / 2}$, where B^{2} is defined in (1.6).

Remark 2.2. Kirkpatrick and Nawaz's [7] used their large deviation result for total spin S_{n} to prove that $E W_{n}^{2} \leq C \log n$. Intuitively, we see that this bound would be improved to $E W_{n}^{2} \leq C$ since W_{n} approximates a normal distribution. By a more careful estimate, we can prove that $E\left(\beta\left|S_{n}\right| / n-b\right)^{2} \leq C / n$ (see Lemma A.1). This will lead to desired bound $E W_{n}^{2} \leq C$. Kirkpatrick and Nawaz's [7] also proved that

$$
\left.E \left\lvert\, \frac{1}{2 \lambda} E\left(\left(W_{n}-W_{n}^{\prime}\right)^{2} \mid W_{n}\right)\right.\right)-B^{2} \left\lvert\, \leq C\left(\frac{\log n}{n}\right)^{1 / 4}\right.
$$

To get optimal bound of order $n^{-1 / 2}$ for this term, we use a fine estimate of function $f(x)=I_{\frac{N}{2}}(x) / I_{\frac{N}{2}-1}(x)$ (Lemma A.2) and a technique developed recently by Shao and Zhang [9, Proof of (5.51)].

Proof of Proposition 2.1. (i) We have

$$
\begin{aligned}
\left|W_{n}-W_{n}^{\prime}\right| & \left.=\left.\frac{\beta^{2}}{b^{2} n^{3 / 2}}| | S_{n}\right|^{2}-\left|S_{n}^{\prime}\right|^{2}\left|=\frac{\beta^{2}}{b^{2} n^{3 / 2}}\right|\left\langle S_{n}+S_{n}^{\prime}, S_{n}-S_{n}^{\prime}\right\rangle \right\rvert\, \\
& \leq \frac{2 \beta^{2} n\left|S_{n}-S_{n}^{\prime}\right|}{b^{2} n^{3 / 2}}=\frac{2 \beta^{2}\left|\sigma_{I}-\sigma_{I}^{\prime}\right|}{b^{2} n^{1 / 2}} \leq \frac{4 \beta^{2}}{b^{2} n^{1 / 2}} .
\end{aligned}
$$

Normal approximation for the mean field classical N-vector models

The proof of the first half of (i) is completed. Now, apply Lemma A. 1 given in the Appendix, we have

$$
E W_{n}^{2}=n E\left(\left(\frac{\beta\left|S_{n}\right|}{n b}+1\right)\left(\frac{\beta\left|S_{n}\right|}{n b}-1\right)\right)^{2} \leq C n E\left(\frac{\beta\left|S_{n}\right|}{n b}-1\right)^{2} \leq C .
$$

(ii) Kirkpatrick and Nawaz [7, equation (9)] showed that

$$
\begin{equation*}
E\left(W_{n}-W_{n}^{\prime} \mid W_{n}\right)=\frac{2}{n} W_{n}+\frac{2}{\sqrt{n}}-\frac{2 \beta}{n^{1 / 2} b^{2}}\left(\frac{\beta\left|S_{n}\right|}{n}\right) f\left(\frac{\beta\left|S_{n}\right|}{n}\right)+R_{1}, \tag{2.1}
\end{equation*}
$$

where R_{1} is a random variable satisying $E\left|R_{1}\right| \leq C n^{-3 / 2}$. Set $g(x)=x f(x), x>0$. By Taylor's expansion, we have for some positive random variable ξ :

$$
\begin{equation*}
g\left(\frac{\beta\left|S_{n}\right|}{n}\right)=g(b)+g^{\prime}(b)\left(\frac{\beta\left|S_{n}\right|}{n}-b\right)+\frac{g^{\prime \prime}(\xi)}{2}\left(\frac{\beta\left|S_{n}\right|}{n}-b\right)^{2} \tag{2.2}
\end{equation*}
$$

Set $V=\frac{\beta\left|S_{n}\right|}{n b}+1$, we have $1 \leq V \leq C$ and

$$
\begin{align*}
\frac{\beta\left|S_{n}\right|}{n}-b & =b\left(\frac{\beta\left|S_{n}\right|}{n b}-1\right)=\frac{b W_{n}}{\sqrt{n} V}=\frac{b W_{n}}{2 \sqrt{n}}-\frac{b W_{n}}{\sqrt{n}}\left(\frac{1}{2}-\frac{1}{V}\right) \\
& =\frac{b W_{n}}{2 \sqrt{n}}-\frac{b W_{n}}{2 \sqrt{n} V}\left(\frac{\beta\left|S_{n}\right|}{n b}-1\right)=\frac{b W_{n}}{2 \sqrt{n}}-\frac{b W_{n}^{2}}{2 n V^{2}} . \tag{2.3}
\end{align*}
$$

Combining (2.1)-(2.3) and noting that $b=\beta f(b)$, we have

$$
\begin{aligned}
& E\left(W_{n}-W_{n}^{\prime} \mid W_{n}\right) \\
& =\frac{2 W_{n}}{n}+\frac{2}{\sqrt{n}}+R_{1}-\frac{2 \beta}{n^{1 / 2} b^{2}}\left(g(b)+g^{\prime}(b)\left(\frac{b W_{n}}{2 \sqrt{n}}-\frac{b W_{n}^{2}}{2 n V^{2}}\right)+\frac{g^{\prime \prime}(\xi)}{2}\left(\frac{\beta\left|S_{n}\right|}{n}-b\right)^{2}\right) \\
& =\frac{2 W_{n}}{n}+\frac{2}{\sqrt{n}}+R_{1}-\frac{2 \beta}{n^{1 / 2} b^{2}}\left(\frac{b^{2}}{\beta}+\left(\frac{b}{\beta}+b f^{\prime}(b)\right)\left(\frac{b W_{n}}{2 \sqrt{n}}-\frac{b W_{n}^{2}}{2 n V^{2}}\right)+\frac{g^{\prime \prime}(\xi) b^{2} W_{n}^{2}}{2 n V^{2}}\right) \\
& =\frac{1-\beta f^{\prime}(b)}{n}\left(W_{n}+R\right),
\end{aligned}
$$

where

$$
R=\frac{n}{1-\beta f^{\prime}(b)}\left(R_{1}+\frac{\beta W_{n}^{2}}{n^{3 / 2} V^{2}}\left(\frac{1}{\beta}+f^{\prime}(b)-g^{\prime \prime}(\xi)\right)\right) .
$$

By Lemma A. 2 (ii), we have $\left|g^{\prime \prime}(\xi)\right|<6$. Since $V \geq 1, E W_{n}^{2} \leq C$ and $E\left|R_{1}\right| \leq C n^{-3 / 2}$, we conclude that $E|R| \leq C n^{-1 / 2}$. The proof of (ii) is completed.
(iii) Denote $I d$ is the $n \times n$ identity matrix and set $\sigma^{(i)}=S_{n}-\sigma_{i}, b_{i}=\beta\left|\sigma^{(i)}\right| / n, r_{i}=$ $\frac{\sigma^{(i)}}{\left|\sigma^{(i)}\right|}$. From Kirkpatrick and Nawaz [7, Equations (11) and (12)], we have

$$
\begin{aligned}
E\left(\left(W_{n}-W_{n}^{\prime}\right)^{2} \mid \sigma\right)= & 2 \lambda B^{2}+\frac{4 \beta^{4}}{n^{4} b^{4}} \sum_{i=1}^{n}\left(1-\frac{N-1}{\beta}\right)\left(\left|\sigma^{(i)}\right|^{2}-\frac{(n-1)^{2} b^{2}}{\beta^{2}}\right) \\
& -\frac{8 \beta^{3}}{n^{4} b^{3}} \sum_{i=1}^{n}\left(\left|\sigma^{(i)}\right|\left\langle\sigma_{i}, \sigma^{(i)}\right\rangle-\frac{n^{2} b^{3}}{\beta^{3}}\right) \\
& +\frac{4 \beta^{4}}{n^{4} b^{4}} \sum_{i=1}^{n}\left(\left\langle\sigma_{i}, \sigma^{(i)}\right\rangle^{2}-\left(1-\frac{N-1}{\beta}\right) \frac{(n-1)^{2} b^{2}}{\beta^{2}}\right) \\
& +\frac{4 \beta^{4}}{n^{4} b^{4}} \sum_{i=1}^{n} \sum_{j, k \neq i} \sigma_{j}^{T} R_{i}^{\prime} \sigma_{k}
\end{aligned}
$$

Normal approximation for the mean field classical N-vector models

where

$$
R_{i}^{\prime}=\left(\frac{f\left(b_{i}\right)}{b_{i}}-\frac{1}{\beta}\right) I d-\left(\frac{N f\left(b_{i}\right)}{b_{i}}-\frac{N}{\beta}\right) P_{i}-\left(f\left(b_{i}\right)-\frac{b}{\beta}\right)\left(r_{i} \sigma_{i}^{T}+\sigma_{i} r_{i}^{T}\right),
$$

and P_{i} is orthogonal projection onto r_{i}. Therefore,

$$
\begin{equation*}
\left.\frac{1}{2 \lambda} E\left(\left(W_{n}-W_{n}^{\prime}\right)^{2} \mid \sigma\right)\right)-B^{2}=\frac{2 \beta^{4}}{n^{3} b^{4}\left(1-\beta f^{\prime}(b)\right)}\left(R_{2}-\frac{2 b}{\beta} R_{3}+R_{4}+R_{5}\right) \tag{2.4}
\end{equation*}
$$

where

$$
\begin{aligned}
R_{2} & =\sum_{i=1}^{n}\left(1-\frac{N-1}{\beta}\right)\left(\left|\sigma^{(i)}\right|^{2}-\frac{(n-1)^{2} b^{2}}{\beta^{2}}\right) \\
R_{3} & =\sum_{i=1}^{n}\left(\left|\sigma^{(i)}\right|\left\langle\sigma_{i}, \sigma^{(i)}\right\rangle-\frac{n^{2} b^{3}}{\beta^{3}}\right) \\
R_{4} & =\sum_{i=1}^{n}\left(\left\langle\sigma_{i}, \sigma^{(i)}\right\rangle^{2}-\left(1-\frac{N-1}{\beta}\right) \frac{(n-1)^{2} b^{2}}{\beta^{2}}\right), \\
R_{5} & =\sum_{i=1}^{n} \sum_{j, k \neq i} \sigma_{j}^{T} R_{i}^{\prime} \sigma_{k} .
\end{aligned}
$$

For R_{2}, noting that $\left|\sigma^{(i)}-S_{n}\right| \leq 1$, then by Lemma A.1, we have

$$
\begin{equation*}
\left(E\left|\frac{\beta\left|\sigma^{(i)}\right|}{n}-b\right|\right)^{2} \leq E\left|\frac{\beta\left|\sigma^{(i)}\right|}{n}-b\right|^{2} \leq E\left|\frac{\beta\left|S_{n}\right|}{n}-b\right|^{2}+\frac{C}{n^{2}} \leq \frac{C}{n} \tag{2.5}
\end{equation*}
$$

Thus,

$$
\begin{align*}
E\left|R_{2}\right| & \left.\leq\left. C \sum_{i=1}^{n} E| | \sigma^{(i)}\right|^{2}-\frac{(n-1)^{2} b^{2}}{\beta^{2}} \right\rvert\, \\
& \leq C n^{2} \sum_{i=1}^{n}\left(E\left|\frac{\beta^{2}\left|\sigma^{(i)}\right|^{2}}{n^{2}}-b^{2}\right|+\frac{(2 n-1) b^{2}}{n^{2}}\right) \tag{2.6}\\
& \leq C n^{2}\left(\sum_{i=1}^{n} E\left|\frac{\beta\left|\sigma^{(i)}\right|}{n}-b\right|+C\right) \leq C n^{5 / 2} .
\end{align*}
$$

For R_{3}, we have

$$
\begin{align*}
E\left|R_{3}\right| & =E\left|\sum_{i=1}^{n}\left(\left|S_{n}\right|\left\langle\sigma_{i}, S_{n}\right\rangle-\frac{n^{2} b^{3}}{\beta^{3}}+\left|\sigma^{(i)}\right|\left\langle\sigma_{i}, \sigma^{(i)}\right\rangle-\left|S_{n}\right|\left\langle\sigma_{i}, S_{n}\right\rangle\right)\right| \\
& \left.\leq\left. E| | S_{n}\right|^{3}-\frac{n^{3} b^{3}}{\beta^{3}}|+E| \sum_{i=1}^{n}\left|\sigma^{(i)}\right|\left\langle\sigma_{i}, \sigma^{(i)}\right\rangle-\left|S_{n}\right|\left\langle\sigma_{i}, S_{n}\right\rangle \right\rvert\, \\
& \leq C n^{2} E| | S_{n}\left|-\frac{n b}{\beta}\right|+E\left|\sum_{i=1}^{n}\left(\left|\sigma^{(i)}\right|-\left|S_{n}\right|\right)\left\langle\sigma_{i}, \sigma^{(i)}\right\rangle-\left|S_{n}\right|\left\langle\sigma_{i}, \sigma_{i}\right\rangle\right| \tag{2.7}\\
& \leq C n^{3} E\left|\frac{\beta\left|S_{n}\right|}{n}-b\right|+E \sum_{i=1}^{n}\left(\left|\left\langle\sigma_{i}, \sigma^{(i)}\right\rangle\right|+\left|S_{n}\right|\right) \\
& \leq C n^{3} E\left|\frac{\beta\left|S_{n}\right|}{n}-b\right|+C n^{2} \leq C n^{5 / 2} .
\end{align*}
$$

To bound $E\left|R_{5}\right|$, we note that

$$
\begin{aligned}
\sum_{i=1}^{n} & \sum_{j, k \neq i} \sigma_{j}^{T} R_{i}^{\prime} \sigma_{k} \\
= & \sum_{i=1}^{n} \sum_{j, k \neq i}\left[\left(\frac{f\left(b_{i}\right)}{b_{i}}-\frac{1}{\beta}\right)\left\langle\sigma_{j}, \sigma_{k}\right\rangle-\left(f\left(b_{i}\right)-\frac{b}{\beta}\right) \sigma_{j}^{T}\left(r_{i} \sigma_{i}^{T}+\sigma_{i} r_{i}^{T}\right) \sigma_{k}\right] \\
& -\sum_{i=1}^{n} \sum_{j, k \neq i}\left(\frac{N f\left(b_{i}\right)}{b_{i}}-\frac{N}{\beta}\right) \sigma_{j}^{T} P_{i} \sigma_{k} \\
= & \sum_{i=1}^{n}\left[\left(\frac{f\left(b_{i}\right)}{b_{i}}-\frac{1}{\beta}\right)\left|\sigma^{(i)}\right|^{2}-2\left(f\left(b_{i}\right)-\frac{b}{\beta}\right)\left|\sigma^{(i)}\right|\left\langle\sigma^{(i)}, \sigma_{i}\right\rangle\right] \\
& -\sum_{i=1}^{n}\left(\frac{N f\left(b_{i}\right)}{b_{i}}-\frac{N}{\beta}\right) \sum_{j, k \neq i} \operatorname{Trace}\left(\sigma_{k} \sigma_{j}^{T} r_{i} r_{i}^{T}\right) \\
= & \sum_{i=1}^{n}\left[\left(\frac{f\left(b_{i}\right)}{b_{i}}-\frac{1}{\beta}\right)\left|\sigma^{(i)}\right|^{2}-2\left(f\left(b_{i}\right)-\frac{b}{\beta}\right)\left|\sigma^{(i)}\right|\left\langle\sigma^{(i)}, \sigma_{i}\right\rangle\right] \\
& -\sum_{i=1}^{n}\left(\frac{N f\left(b_{i}\right)}{b_{i}}-\frac{N}{\beta}\right)\left\langle\sigma^{(i)}, r_{i}\right\rangle^{2} \\
= & \sum_{i=1}^{n}(1-N)\left(\frac{f\left(b_{i}\right)}{b_{i}}-\frac{1}{\beta}\right)\left|\sigma^{(i)}\right|^{2}-2 \sum_{i=1}^{n}\left(f\left(b_{i}\right)-\frac{b}{\beta}\right)\left|\sigma^{(i)}\right|\left\langle\sigma^{(i)}, \sigma_{i}\right\rangle \\
:= & R_{51}-2 R_{52} .
\end{aligned}
$$

Since $1 / \beta=f(b) / b$ and $b_{i}=\beta\left|\sigma^{(i)}\right| / n$, we have

$$
\begin{aligned}
E\left|R_{51}\right| & \left.=\left.E\left|\sum_{i=1}^{n}(1-N)\left(\frac{f\left(b_{i}\right)}{b_{i}}-\frac{f(b)}{b}\right)\right| \sigma^{(i)}\right|^{2} \right\rvert\, \\
& \left.\leq C n^{2} \sum_{i=1}^{n} E\left|b_{i}-b\right| \text { (by Lemma A. } 2 \text { (iii) and the fact that }\left|\sigma^{(i)}\right| \leq n\right) \\
& \leq C n^{2} \sum_{i=1}^{n} E\left(\left|\frac{\beta\left|S_{n}\right|}{n}-b\right|+\frac{\beta}{n}\left(\left|\sigma^{(i)}\right|-\left|S_{n}\right|\right)\right) \\
& \left.\leq C n^{5 / 2} \text { (by (2.5) and the fact that }\left|\left|\sigma^{(i)}\right|-\left|S_{n}\right|\right| \leq 1\right)
\end{aligned}
$$

Similarly,

$$
\begin{align*}
E\left|R_{52}\right| & =E\left|\sum_{i=1}^{n}(1-N)\left(f\left(b_{i}\right)-f(b)\right)\right| \sigma^{(i)}\left|\left\langle\sigma^{(i)}, \sigma_{i}\right\rangle\right| \\
& \left.\leq C n^{2} \sum_{i=1}^{n} E\left|b_{i}-b\right| \text { (by Lemma A.2 (i) and the fact that }\left|\sigma^{(i)}\right| \leq n\right) \tag{2.9}\\
& \leq C n^{5 / 2}
\end{align*}
$$

Combining (2.8) and (2.9), we have

$$
\begin{equation*}
E\left|R_{5}\right| \leq C n^{5 / 2} \tag{2.10}
\end{equation*}
$$

Bounding $E\left|R_{4}\right|$ is the most difficult part. Here we follow a technique developed by Shao and Zhang [9, Proof of (5.51)]. Set

$$
a=\left(1-\frac{N-1}{\beta}\right) \frac{(n-1)^{2} b^{2}}{\beta^{2}}, \sigma^{(1,2)}=S_{n}-\sigma_{1}-\sigma_{2}, V_{1}=\left\langle\sigma_{1}, \sigma^{(1,2)}\right\rangle^{2}, V_{2}=\left\langle\sigma_{2}, \sigma^{(1,2)}\right\rangle^{2}
$$

Normal approximation for the mean field classical N-vector models

we have

$$
\left|\left\langle\sigma_{1}, \sigma^{(1)}\right\rangle^{2}-V_{1}\right| \leq C n,\left|\left\langle\sigma_{1}, \sigma^{(2)}\right\rangle^{2}-V_{2}\right| \leq C n
$$

It follows that

$$
\begin{align*}
E R_{4}^{2}= & n E\left(\left\langle\sigma_{1}, \sigma^{(1)}\right\rangle^{2}-a\right)^{2}-n(n-1) E\left(\left\langle\sigma_{1}, \sigma^{(1)}\right\rangle^{2}-a\right)\left(\left\langle\sigma_{2}, \sigma^{(2)}\right\rangle^{2}-a\right) \\
\leq & C n^{5}+n(n-1)\left|E\left(\left\langle\sigma_{1}, \sigma^{(1)}\right\rangle^{2}-V_{1}+V_{1}-a\right)\left(\left\langle\sigma_{2}, \sigma^{(2)}\right\rangle^{2}-V_{2}+V_{2}-a\right)\right| \\
\leq & C n^{5}+n(n-1)\left|E\left(V_{1}-a\right)\left(V_{2}-a\right)\right| \tag{2.11}\\
\leq & C n^{5}+n(n-1)\left|E\left(V_{1}-E\left(V_{1} \mid\left(\sigma_{j}\right)_{j>2}\right)\right)\left(V_{2}-E\left(V_{2} \mid\left(\sigma_{j}\right)_{j>2}\right)\right)\right| \\
& +n(n-1)\left|E\left(E\left(V_{1} \mid\left(\sigma_{j}\right)_{j>2}\right)-a\right)\left(E\left(V_{2} \mid\left(\sigma_{j}\right)_{j>2}\right)-a\right)\right| \\
& =C n^{5}+n(n-1)\left(\left|R_{41}\right|+\left|R_{42}\right|\right) .
\end{align*}
$$

Define a probability density function

$$
\begin{equation*}
p_{12}(x, y)=\frac{1}{Z_{12}^{2}} \exp \left(\frac{\beta}{n}\left\langle x+y, \sigma^{(1,2)}\right\rangle\right), x, y \in \mathbb{S}^{N-1}, \tag{2.12}
\end{equation*}
$$

where Z_{12}^{2} is the normalizing constant. Let $\left(\xi_{1}, \xi_{2}\right) \sim p_{12}(x, y)$ given $\left(\sigma_{j}\right)_{j>2}$, and for $i=1,2$

$$
\begin{equation*}
\tilde{V}_{i}=E\left(\left\langle\xi_{i}, \sigma^{(1,2)}\right\rangle^{2} \mid\left(\sigma_{j}\right)_{j>2}\right) . \tag{2.13}
\end{equation*}
$$

Similar to Shao and Zhang [9, pages 97, 98], we can show that

$$
\begin{equation*}
R_{41}=E\left(\left\langle\xi_{i}, \sigma^{(1,2)}\right\rangle^{2}-\tilde{V}_{1}\right)\left(\left\langle\xi_{i}, \sigma^{(1,2)}\right\rangle^{2}-\tilde{V}_{2}\right)+H_{1}, \tag{2.14}
\end{equation*}
$$

and

$$
\begin{equation*}
R_{42}=E\left(\tilde{V}_{1}-a\right)\left(\tilde{V}_{2}-a\right)+H_{2} \tag{2.15}
\end{equation*}
$$

where $\left|H_{1}\right| \leq C n^{3}$ and $\left|H_{2}\right| \leq C n^{3}$. Let

$$
\begin{equation*}
b_{12}=\frac{\beta\left|\sigma^{(1,2)}\right|}{n} \tag{2.16}
\end{equation*}
$$

By Lemma A. 3 and the definition of a, we have

$$
\begin{aligned}
& \left.\left|\tilde{V}_{1}-a\right|=\left.\left|\left(1-\frac{(N-1) f\left(b_{12}\right)}{b_{12}}\right)\right| \sigma^{(1,2)}\right|^{2}-\left(1-\frac{N-1}{\beta}\right) \frac{(n-1)^{2} b^{2}}{\beta^{2}} \right\rvert\, \\
& \left.\quad=\left.\left|\left(1-\frac{N-1}{\beta}\right)\left(\left|\sigma^{(1,2)}\right|^{2}-\frac{(n-1)^{2} b^{2}}{\beta^{2}}\right)+(N-1)\left(\frac{1}{\beta}-\frac{f\left(b_{12}\right)}{b_{12}}\right)\right| \sigma^{(1,2)}\right|^{2} \right\rvert\, \\
& \quad \leq C n^{2}\left(\left|\frac{\beta^{2}\left|\sigma^{(1,2)}\right|^{2}}{n^{2}}-\frac{(n-1)^{2} b^{2}}{n^{2}}\right|+\left|\frac{f(b)}{b}-\frac{f\left(b_{12}\right)}{b_{12}}\right|\right) \\
& \quad \leq C n^{2}\left(\left|\frac{\beta^{2}\left|S_{n}\right|^{2}}{n^{2}}-b^{2}\right|+\left|b_{12}-b\right|\right)+C n \\
& \quad \leq C n^{2}\left(\left|\frac{\beta\left|S_{n}\right|}{n}-b\right|+\left|\frac{\beta\left|\sigma^{(1,2)}\right|}{n}-b\right|\right)+C n \leq C n^{2}\left|\frac{\beta\left|S_{n}\right|}{n}-b\right|+C n .
\end{aligned}
$$

Using similar estimate for $\left|\tilde{V}_{2}-a\right|$, then we have

$$
\begin{align*}
E\left|\left(\tilde{V}_{1}-a\right)\left(\tilde{V}_{2}-a\right)\right| & \leq C\left(n^{4} E\left|\frac{\beta\left|S_{n}\right|}{n}-b\right|^{2}+n^{3} E\left|\frac{\beta\left|S_{n}\right|}{n}-b\right|+n^{2}\right) \tag{2.17}\\
& \leq C n^{3} \text { (by Lemma A.1) }
\end{align*}
$$

Note that given $\left(\sigma_{j}\right)_{j>2}, \xi_{1}$ and ξ_{2} are conditionally independent. It implies that

$$
\begin{equation*}
E\left(\left\langle\xi_{i}, \sigma^{(1,2)}\right\rangle^{2}-\tilde{V}_{1}\right)\left(\left\langle\xi_{i}, \sigma^{(1,2)}\right\rangle^{2}-\tilde{V}_{2}\right)=0 \tag{2.18}
\end{equation*}
$$

Combining (2.11)-(2.18), we have $E R_{4}^{2} \leq C n^{5}$, and so

$$
\begin{equation*}
E\left|R_{4}\right| \leq C n^{5 / 2} \tag{2.19}
\end{equation*}
$$

Combining (2.4), (2.6), (2.7), (2.10) and (2.19), we have

$$
\left.E \left\lvert\, \frac{1}{2 \lambda} E\left(\left(W_{n}-W_{n}^{\prime}\right)^{2} \mid W_{n}\right)\right.\right)-B^{2} \mid \leq C n^{-1 / 2}
$$

The proposition is proved.

A Appendix

In this Section, we will prove the technical results that used in the proof of Theorem 1.1.
Lemma A.1. We have

$$
E\left|\frac{\beta\left|S_{n}\right|}{n}-b\right|^{2} \leq \frac{C}{n}
$$

Proof. By the large deviation for S_{n} / n [7, Proposition 2] and the argument in [7, p. 1126], one can prove that there exists $\varepsilon>0$ such that

$$
P\left(\left|\frac{\beta\left|S_{n}\right|}{n}-b\right| \geq x\right) \leq e^{-C n x^{2}}
$$

for all $0 \leq x \leq \varepsilon$. Since $\left|\frac{\beta\left|S_{n}\right|}{n}-b\right| \leq C$, it implies that

$$
\begin{aligned}
E\left|\frac{\beta\left|S_{n}\right|}{n}-b\right|^{2} \leq & 2 \int_{0}^{\varepsilon} x P\left(\left|\frac{\beta\left|S_{n}\right|}{n}-b\right|>x\right) d x \\
& +E\left(\left|\frac{\beta\left|S_{n}\right|}{n}-b\right|^{2} I\left(\left|\frac{\beta\left|S_{n}\right|}{n}-b\right|>\varepsilon\right)\right) \\
\leq & 2 \int_{0}^{\varepsilon} x e^{-C n x^{2}} d x+C P\left(\left|\frac{\beta\left|S_{n}\right|}{n}-b\right|>\varepsilon\right) \\
\leq & \frac{C}{n}+C e^{-C n \varepsilon^{2}} \leq \frac{C}{n}
\end{aligned}
$$

Lemma A.2. Let $x>0$ and $f(x)=\frac{I_{N / 2}(x)}{I_{N / 2-1}(x)}$. Then the following statements hold:
(i) $0<f^{\prime}(x)<\frac{1}{N-1} \leq 1$.
(ii) $\left|(x f(x))^{\prime \prime}\right|<6$.
(iii) $-5 \leq \frac{-5}{N-1}<\left(\frac{f(x)}{x}\right)^{\prime}<0$.

Proof. As was showed in [7, p. 1134], we have

$$
\begin{equation*}
f^{\prime}(x)=1-\frac{N-1}{x} f(x)-f^{2}(x) \tag{A.1}
\end{equation*}
$$

It implies

$$
\begin{equation*}
\frac{f(x)}{x}=\frac{1-f^{\prime}(x)-f^{2}(x)}{N-1} \tag{A.2}
\end{equation*}
$$

and

$$
\begin{equation*}
f^{2}(x)=1-\frac{N-1}{x} f(x)-f^{\prime}(x) \tag{A.3}
\end{equation*}
$$

Amos [1, p. 243] proved that

$$
\begin{equation*}
0<f^{\prime}(x)<\frac{f(x)}{x} \tag{A.4}
\end{equation*}
$$

Combining (A.2)-(A.4), we have

$$
\begin{equation*}
0<f^{\prime}(x)<\frac{f(x)}{x}<\frac{1}{N-1}, \text { and } f^{2}(x)<1 \tag{A.5}
\end{equation*}
$$

Therefore,

$$
\begin{aligned}
\left|(x f(x))^{\prime \prime}\right| & =\left|2 f^{\prime}(x)+x f^{\prime \prime}(x)\right| \\
& =\left|2 f^{\prime}(x)+x\left(-f^{\prime}(x)\left(\frac{N-1}{x}+2 f(x)\right)+\frac{N-1}{x^{2}} f(x)\right)\right| \\
& \leq 2+(N-1) f^{\prime}(x)+2 x f(x) f^{\prime}(x)+\frac{(N-1) f(x)}{x} \\
& \leq 4+2 f^{2}(x) \text { (by the first half of (A.5)) } \\
& \leq 6 \text { (by the second half of (A.5)). }
\end{aligned}
$$

The proof of (i) and (ii) is completed. For (iii), we have

$$
\begin{equation*}
\left(\frac{f(x)}{x}\right)^{\prime}=\frac{1}{x}\left(f^{\prime}(x)-\frac{f(x)}{x}\right) \tag{A.6}
\end{equation*}
$$

Combining the first half of (A.5) and (A.6), we have $\left(\frac{f(x)}{x}\right)^{\prime}<0$. It follows from (A.1), (A.5) and (A.6) that

$$
\begin{equation*}
\left(\frac{f(x)}{x}\right)^{\prime}=\frac{1}{x}\left(1-\frac{N f(x)}{x}\right)-\frac{f^{2}(x)}{x}>\frac{1}{x}\left(1-\frac{N f(x)}{x}\right)-\frac{1}{N-1} \tag{A.7}
\end{equation*}
$$

Apply Theorem 2 (a) of Nȧsell [8], we can show that

$$
\begin{equation*}
\frac{1}{x}\left(1-\frac{N f(x)}{x}\right)>\frac{-4}{N-1} \tag{A.8}
\end{equation*}
$$

Combining (A.7) and (A.8), we have $\left(\frac{f(x)}{x}\right)^{\prime}>\frac{-5}{N-1}$. The proof of (iii) is completed.
Lemma A.3. With the notation in the proof of Theorem 1.1, we have

$$
\tilde{V}_{i}=\left|\sigma^{(1,2)}\right|^{2}\left(1-\frac{(N-1) f\left(b_{12}\right)}{b_{12}}\right), i=1,2
$$

Proof. Let $A_{N}=2 \pi^{N / 2} / \Gamma(N / 2)$ the Lebesgue measure of S^{N-1}. It follows from (2.12) that

$$
\begin{aligned}
Z_{12}^{2} & =\int_{S^{N-1}} \int_{S^{N-1}} \exp \left(\frac{\beta}{n}\left\langle x+y, \sigma^{(1,2)}\right\rangle\right) d \mu(x) d \mu(y) \\
& =\left(\int_{S^{N-1}} \exp \left(\frac{\beta}{n}\left\langle x, \sigma^{(1,2)}\right\rangle\right) d \mu(x)\right)^{2} \\
& =\left(\frac{A_{N-1}}{A_{N}} \int_{0}^{\pi} e^{b_{12} \cos \varphi_{N-2}} \sin ^{N-2} \varphi_{N-2} d \varphi_{N-2}\right)^{2} \\
& =\left(\frac{A_{N-1}}{A_{N}} \frac{\sqrt{\pi} \Gamma(N / 2-1 / 2)}{\left(b_{12} / 2\right)^{N / 2-1}} I_{N / 2-1}\left(b_{12}\right)\right)^{2}
\end{aligned}
$$

where we have used formula

$$
I_{\nu}(z)=\frac{1}{\sqrt{\pi} \Gamma(\nu+1 / 2)}\left(\frac{\nu}{2}\right)^{\nu} \int_{0}^{\pi} \exp (z \cos \theta) \sin ^{2 \nu} \theta d \theta
$$

(see, e.g., Exercise 11.5.4 in [2]) in the last equation. For $i=1$, 2, we have

$$
\begin{aligned}
\tilde{V}_{i}= & \frac{1}{Z_{12}} \int_{\mathbb{S}^{N-1}}\left\langle\theta, \sigma^{(1,2)}\right\rangle^{2} \exp \left[\frac{\beta}{n}\left\langle\theta, \sigma^{(1,2)}\right\rangle\right] d \mu(\theta) \\
= & \frac{1}{Z_{12}} \int_{\mathbb{S}^{N-1}}\left|\sigma^{(1,2)}\right|^{2}\left\langle\theta, \frac{\sigma^{(1,2)}}{\left|\sigma^{(1,2)}\right|}\right\rangle^{2} \exp \left(\frac{\beta\left|\sigma^{(1,2)}\right|}{n}\left\langle\theta, \frac{\sigma^{(1,2)}}{\left|\sigma^{(1,2)}\right|}\right\rangle\right) d \mu(\theta) \\
= & \left|\sigma^{(1,2)}\right|^{2} \frac{A_{N-1}}{A_{N} Z_{12}} \int_{0}^{\pi} \cos ^{2} \varphi_{N-2} \sin ^{N-2} \varphi_{N-2} e^{b_{12} \cos \varphi_{N-2} d \varphi_{N-2}} \\
= & \left|\sigma^{(1,2)}\right|^{2} \frac{A_{N-1}}{A_{N} Z_{12}} \int_{0}^{\pi} e^{b_{12} \cos \varphi_{N-2}} \sin ^{N-2} \varphi_{N-2} d \varphi_{N-2} \\
& -\int_{0}^{\pi} e^{b_{12} \cos \varphi_{N-2}} \sin ^{N} \varphi_{N-2} d \varphi_{N-2} \\
= & \left(1-\frac{A_{N-1}}{A_{N} Z_{12}} \int_{0}^{\pi} e^{\left.b_{12} \cos \varphi_{N-2} \sin ^{N} \varphi_{N-2} d \varphi_{N-2}\right)\left|\sigma^{(1,2)}\right|^{2}}\right. \\
= & \left(1-\frac{A_{N-1}}{A_{N} Z_{12}} \frac{\sqrt{\pi} \Gamma(N / 2+1 / 2)}{\left(b_{12} / 2\right)^{N / 2}} I_{N / 2}\left(b_{12}\right)\right)\left|\sigma^{(1,2)}\right|^{2} \\
= & \left(1-\frac{(N-1) f\left(b_{12}\right)}{b_{12}}\right)\left|\sigma^{(1,2)}\right|^{2} .
\end{aligned}
$$

Finally, we would like to note again that Proposition 1.2 is a special case of Theorem 2.4 of Eichelsbacher and Löwe [4] or Theorem 13.1 in [3], but the constants in the bound may be different from those of Theorem 2.4 in [4] or Theorem 13.1 in [3]. Since the proof is short and simple, we will present here.

Proof of the Proposition 1.2. Let $h: \mathbb{R} \rightarrow \mathbb{R}$ such that $\left\|h^{\prime}\right\| \leq 1$ and $E|h(Z)|<\infty$, and let $f:=f_{h}$ be the unique solution to the Stein's equation $f^{\prime}(w)-w f(w)=h(w)-E h(Z)$. Since $\left(W, W^{\prime}\right)$ is an exchangeable pair and $E\left(W-W^{\prime} \mid W\right)=\lambda(W+R)$,

$$
\begin{aligned}
0 & =E\left(W-W^{\prime}\right)\left(f(W)+f\left(W^{\prime}\right)\right) \\
& =E\left(W-W^{\prime}\right)\left(f\left(W^{\prime}\right)-f(W)\right)+2 E f(W)\left(W-W^{\prime}\right) \\
& =E\left(W-W^{\prime}\right)\left(f\left(W^{\prime}\right)-f(W)\right)+2 \lambda E f(W) E\left(W-W^{\prime} \mid W\right) \\
& =E \Delta\left(f\left(W^{\prime}\right)-f(W)\right)+2 \lambda E W f(W)+2 \lambda E f(W) R .
\end{aligned}
$$

It thus follows that

$$
\begin{align*}
& |E h(W)-E h(Z)| \\
& =\left|E\left(f^{\prime}(W)-W f(W)\right)\right| \\
& =\left|E\left(f^{\prime}(W)+\frac{1}{2 \lambda} E \Delta\left(f\left(W^{\prime}\right)-f(W)\right)+E f(W) R\right)\right| \tag{A.9}\\
& =\left|E\left(f^{\prime}(W)\left(1-\frac{1}{2 \lambda} E\left(\Delta^{2} \mid W\right)\right)+\frac{1}{2 \lambda} \Delta\left(f\left(W^{\prime}\right)-f(W)+\Delta f^{\prime}(W)\right)+f(W) R\right)\right| \\
& \leq\left\|f^{\prime}\right\| E\left|1-\frac{1}{2 \lambda} E\left(\Delta^{2} \mid W\right)\right|+\frac{1}{4 \lambda}\left\|f^{\prime \prime}\right\| E|\Delta|^{3}+\|f\| E|R| .
\end{align*}
$$

By Lemma 2.4 in [3] we have

$$
\begin{equation*}
\|f\| \leq 2,\left\|f^{\prime}\right\| \leq \sqrt{2 / \pi},\left\|f^{\prime \prime}\right\| \leq 2 \tag{A.10}
\end{equation*}
$$

The conclusion of the proposition follows from (A.9) and (A.10).

References

[1] Amos, D. E.: Computation of modified bessel functions and their ratios. Math. Comput. 28 (1974), no. 125, 239-251. MR-0333287
[2] Arfken, G. B. and Weber, H. J.: Mathematical methods for Physicists. Elsevier Academic Press, 6th edition, 2005. xii+1182 pp.
[3] Chen, L. H. Y., Goldstein, L. and Shao, Q. M.: Normal approximation by Stein's method. Probability and its Applications (New York). Springer, Heidelberg, 2011. xii+405 pp. MR2732624
[4] Eichelsbacher, P. and Löwe, M.: Stein's method for dependent random variables occuring in statistical mechanics. Electron. J. Probab. 15 (2010), no. 30, 962-988. MR-2659754
[5] Friedli, S. and Velenik, Y.: Statistical mechanics of lattice systems. A concrete mathematical introduction. Cambridge University Press, Cambridge, 2018. xix+622 pp. MR-3752129
[6] Kirkpatrick, K. and Meckes, E.: Asymptotics of the mean-field Heisenberg model. J. Stat. Phys., 152 (2013), 54-92. MR-3067076
[7] Kirkpatrick, K. and Nawaz, T.: Asymptotics of mean-field $O(N)$ model. J. Stat. Phys., 165 (2016), no. 6, 1114-1140. MR-3575640
[8] Nȧsell, I.: Rational bounds for ratios of modified Bessel functions. SIAM J. Math. Anal. 9 (1978), no. 1, 1-11. MR-0466662
[9] Shao, Q. M. and Zhang, Z. S.: Berry-Esseen bounds of normal and nonnormal approximation for unbounded exchangeable pairs. Ann. Probab. 47 (2019), no. 1, 61-108. MR-3909966
[10] Stein, C.: Approximate computation of expectations. Institute of Mathematical Statistics Lecture Notes Monograph Series, 7. Institute of Mathematical Statistics, Hayward, CA. 1986. iv+164 pp. MR-0882007

Acknowledgments. We are grateful to the Associate Editor and an anonymous referee whose comments have been very useful to make our development clearer and more comprehensive.

[^0]: *This work was supported by National Foundation for Science and Technology Development (NAFOSTED), grant no. 101.03-2015.11.
 ${ }^{\dagger}$ Department of Mathematics, Vinh University, Nghe An 42118, Vietnam. E-mail: levt@vinhuni.edu.vn
 ${ }^{\ddagger}$ Department of Applied Sciences, HCMC University of Technology and Education, Ho Chi Minh City, Vietnam.
 ${ }^{\S}$ Department of Mathematics and Computer Science, University of Science, Viet Nam National University Ho Chi Minh City, Ho Chi Minh City, Vietnam.

 E-mail: tunn@hcmute.edu.vn

