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Abstract. The market weight of a stock is its capitalization (cap) divided
by the total market cap. Rank these weights from top to bottom. The capital
distribution curve is a plot of weights versus ranks. For the US stock mar-
ket, it is linear on a double logarithmic scale, and stable with respect to time
(Stochastic Portfolio Theory (2002) Springer). This property has been cap-
tured by models with rank-dependent dynamics: Each stock’s cap logarithm
is a Brownian motion with drift and diffusion coefficients depending on its
current rank (Probability Theory and Related Fields 147 (2010) 123–159).
However, short-term stock movements have heavy tails. One can add jumps
to Brownian motions to capture this. Observed time stability follows from a
long-term stability result, stated and proved here. Via simulations, we find
which properties of continuous models are preserved after adding jumps.

1 Introduction

1.1 Motivation and definitions

A market model is a collection (S1, . . . , SN) of N positive real-valued continuous-time ran-
dom processes Si = (Si(t), t ≥ 0): The capitalization of the ith stock at time t ≥ 0 is given
by Si(t). The total capitalization of the stock market is S(t) = S1(t) + · · · + SN(t), and the
market weight of the ith stock at time t ≥ 0 is

μi(t) = Si(t)

S(t)
. (1.1)

Rank these market weights from top to bottom: μ(1)(t) ≥ · · · ≥ μ(N)(t). Fernholz (2002),
Chapter 5, page 95, contains the double logarithmic plot of ranked market weights
(lnn, lnμ(n)(t)), n = 1, . . . ,N , December 31, 1929–1999 (8 plots, every 10 years), stocks
from the Center of Research in Securities Prices at the University of Chicago. This plot ex-
hibits two features: (A) It is stable over time: It is almost the same for all t . (B) It is close to
a straight line, except at lower and upper ends.

We reproduce this (and see the same properties) in Figure 1 for the S&P 500 stocks in-
cluded in this index as of May 9, 2019, in December 31, 2009–2018, using the data from the
YCharts database. (The code is given on GitHub.) These observations (a) and (b) were
explained by the following rank-based model in Banner and Fernholz (2005).

We introduce a few pieces of notation. The Dirac delta measure at point b is denoted by δb.
For a vector x = (x1, . . . , xN) ∈ R

N , its ranking permutation px for the vector x is defined as
the unique permutation on {1, . . . ,N} such that:

• xpx(i) ≤ xpx(j) for i < j (this permutation is ranking the vector x).
• if i < j and xpx(i) = xpx(j), then px(i) < px(j) (ties resolved in lexicographic order).

We rank from bottom to top, except market weights, ranked from top to bottom.
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Figure 1 Double logarithmic plot (ln k, lnμ(k)(t)), k = 1, . . . ,N , of real-world ranked market weights, Dec 31,
2009–2018.

Definition 1. Take N continuous adapted random processes Xi = (Xi(t), t ≥ 0), i =
1, . . . ,N . Rank them at each time t from bottom to top: X(k)(t) = XpX(t)(k) for k = 1, . . . ,N ;
X(1)(t) ≤ · · · ≤ X(N)(t). If they satisfy a system of stochastic differential equations:

dXi(t) =
N∑

k=1

1
(
Xi(t) has rank k at time t

)(
gk dt + σk dWi(t)

)
, i = 1, . . . ,N, (1.2)

with W1, . . . ,WN independent Brownian motions, and constant numbers gk and σk , then
(X1, . . . ,XN) is called a system of competing Brownian particles; with drift and diffusion
coefficients for rank k equal to gk and σ 2

k . The gap process is defined as

Z(t) = (
X(2) − X(1)(t), . . . ,X(N) − X(N−1)(t)

)
, t ≥ 0. (1.3)

Weak existence and uniqueness in law for this system is proved in Banner and Fernholz
(2005). Take such a system of competing Brownian particles, and consider the following
market model:

Si(t) = exp
(−Xi(t)

)
, i = 1, . . . ,N; t ≥ 0. (1.4)

Definition 2. A stationary distribution, or invariant measure, for the gap process Z, is any
probability measure � in the orthant [0,∞)N−1 such that Z(0) ∼ � implies Z(t) ∼ � for
every t ≥ 0. This measure � is sometimes called a stationary gap distribution. The gap
process is called stable if it has a unique stationary distribution �, and we have:

sup
E⊆[0,∞)N−1

∣∣P(
Z(t) ∈ E | Z(0) = z

) − �(E)
∣∣ → 0 as t → ∞. (1.5)

We introduce the following notation. For any vector x = (x1, . . . , xN) ∈ R
N , we define

two other vectors: running average x̃ ∈ R
N , and centered vector x ∈ R

N :

x̃k := 1

k
(x1 + · · · + xk); xk := xk − x̃N , k = 1, . . . ,N. (1.6)

From (1.6), we have the following algebraic relation:

x1 + · · · + xk = k(x̃k − x̃N ), k = 1, . . . ,N. (1.7)

Assume the average drift g̃k for the bottom-ranked k particles is greater than the average drift
g̃N for all N particles.

g̃k > g̃N, k = 1, . . . ,N − 1. (1.8)
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Under this condition (1.8), it was proved in Banner and Fernholz (2005) and Banner et al.
(2011) that the gap process is stable. This has the following intuition: The drift of the “cloud”
composed of k bottom-ranked particles is larger than the drift for all particles; therefore, the
bottom-ranked k particles and the top-ranked N − k particles cannot eventually separate into
two “clouds”. Multiplying the numerator and the denominator of (1.1) by exp(X(1)(t)), we
see that the ranked market weights from (1.1) can be computed from this gap process in (1.3),
and vice versa. Thus the vector of ranked market weights

(μ(1), . . . ,μ(N)) (1.9)

has a unique stationary distribution M (which is a push-forward of P), and a stability result
similar to (1.5) holds. For the case σ 2

k = αk + β (for some α, β), the distribution � is a
product of exponentials (Banner et al. (2011)). The exponential distribution with rate λ is
denoted by Exp(λ); and for σk = 1, k = 1, . . . ,N , this distribution takes the form

� =
N−1⊗
k=1

Exp
(
2k(gk − gN)

)
.

For the Atlas model (named after the ancient Atlas hero, holding the sky on his shoulders)

gk =
{
g, k = 1;
0, k = 2, . . . ,N; σk = 1, k = 1, . . . ,N;g > 0, (1.10)

the limiting shape (as N → ∞) of the double logarithmic plot of ranked market weights
(lnk, lnμ(k)(t)), k = 1, . . . ,N from (1.9) is essentially a straight line, see Chatterjee and Pal
(2010). (The precise statement is a bit more complicated.)

However, this model (1.2) has one disadvantage: Fluctuations of real-world stock prices
are not well described by Gaussian distributions. Instead, these prices make occasional large
jumps and fluctuations have heavy tails. This is captured by adding jump components to ran-
dom processes describing the stock market dynamics. An important class of stock price mod-
els contains Lévy processes, which are generalizations of a Brownian motion: Wi(t)−Wi(s)

for s < t can have some distribution other than Gaussian. In this case, the trajectories are
not continuous. (A Brownian motion is the only example of a Lévy process with continuous
trajectories.) Here is an example of a Lévy process.

Definition 3. A compound Poisson process X(t) = V1 + · · · + VN(t), where V1,V2, . . . are
independent identically distributed random variables, and N(·) is a Poisson process with rate
λ > 0, independent of V1,V2, . . .: That is, N(t) − N(s) for t > s is distributed as a Poisson
random variable with mean λ(t − s), and is independent of N(u), 0 ≤ u ≤ s. If Q is the
distribution of Zi , then � := λQ is called the spectral measure.

The sum of a compound Poisson process and a Brownian motion with drift g and diffusion
σ 2 is also a Lévy process. In fact, every Lévy process with finitely many jumps on a finite
time interval can be represented in this way. We say that this Lévy process is associated with
triple (g, σ,�).

Definition 4. For every k = 1, . . . ,N , let Lk be a Lévy process associated with the triple
(gk, σk,�k), k = 1, . . . ,N ; that is, we can express each Lk as follows:

Lk(t) = Lk(0) + gkt + σkWk(t) +
Nk(t)∑
j=1

Vj , t ≥ 0, (1.11)
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where Wk is a Brownian motion, Nk is a Poisson process with rate λk := �k(R), independent
of Wk , and Vj ∼ λ−1

k �k , j = 1,2, . . . are i.i.d. random variables, independent of Wk and Nk .
The processes L1, . . . ,LN are assumed to be independent. Modifying (1.2) as follows:

dXi(t) =
N∑

k=1

1
(
Xi(t) has rank k at time t

)
dLk(t), i = 1, . . . ,N, (1.12)

we get a system of competing Lévy particles.

In this article, we have the following goals:

1. To prove a long-term stability result for the gap process (1.3) of (1.12);
2. To find an explicit stationary distribution � for the gap process, and the corresponding

stationary distribution R for the vector of ranked market weights (1.9);
3. To show that for some choice of parameters (gk, σk,�k), the capital distribution curve for

a large number N of companies is close to the straight line.

We accomplish Goal 1 by proving a (slightly more general) result: Theorem 1.1. We ac-
complish Goal 3 by simulations of these particle systems. We are unable to accomplish Goal 2
in exact form: It was shown in Guillemin, Mazumdar and Piera (2008) that a stationary distri-
bution for a reflected Brownian motion with jumps in the orthant (of which the gap process is
a particular case) does not have a product form. Instead, we perform numerical simulations,
find empirical properties of the stationary gap distribution, and compare it to models without
jumps.

Often, jumps in financial models are modeled using Lévy processes with infinitely many
jumps on a finite time interval, for example α-stable processes, see Cont and Tankov (2004).
Such Lévy process cannot be represented as a sum of a Brownian motion and a compound
Poisson process. It is important to establish results for these models. But the fluctuations of
such processes do not have a second moment, and this makes modifying the proof in Section 3
quite difficult.

1.2 The main stability result

The condition (1.8) for a system with jumps takes the form:

m̃k > m̃N, k = 1, . . . ,N − 1,

mk := gk + fk, fk :=
∫
R

z�k(dz), k = 1, . . . ,N,
(1.13)

and m̃k is defined from mk using (1.6). Using (1.7), we can rewrite the condition (1.13) as

min
k=1,...,N−1

(m1 + · · · + mk) > 0, where mk = gk + f k, k = 1, . . . ,N. (1.14)

Each mk has the following meaning: For every t ≥ 0, E[Lk(t)−Lk(0)] = mkt . This effective
drift mk contains two terms: the actual drift gk in (1.11), and the product fk of λk , the rate
of the Poisson process Nk , with the expected value of Zj , distributed as λ−1

k �k . Therefore,
m̃k is the average drift for the bottom-ranked k particles out of X1, . . . ,XN : The drift for the
“cloud” of these particles, as they move together. Thus, m̃k plays the same role for the model
(1.2) with jumps as the quantity g̃k for the model (1.12) without jumps.

Now comes the main theoretical result of this article. The proof is in Section 3.

Theorem 1.1. Under condition (1.13), and an additional technical condition:∫
R

z2�k(dz) < ∞ for k = 1, . . . ,N, (1.15)
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equivalent to E[V 2
j ] < ∞ for Vj in (1.11), there exists a unique stationary distribution π for

the gap process Z from (1.3), and the stability result (1.5) holds. The same is true for the
process (1.9) of ranked market weights, with another stationary distribution R instead of �.

Remark 1. This statement can be extended to the case of correlated driving Brownian mo-
tions W1, . . . ,WN , and dependent Lévy processes L1, . . . ,LN . If the N -dimensional Lévy
process L = (L1, . . . ,LN) having jump measure � (that is, making jumps with intensity
λ = �(RN+), each jump’s displacement is distributed as the normalized measure λ−1�(·).
Indeed, our setting in Theorem 1.1 fits in this extended framework: If the jumps of the kth
ranked particle are governed by a finite Borel measure νk , k = 1, . . . ,N , and all jumps are
independent, then

� = ∑
λN

k=1�k, �k := δ0 ⊗ δ0 ⊗ · · · δ0 ⊗ νk ⊗ δ0 ⊗ · · · ⊗ δ0. (1.16)

1.3 Other results

Centering X(t) using (1.6) produces the centered process X = (X(t), t ≥ 0). This is a Markov
process on the hyperplane H := {(x1, . . . , xN) ∈R

N | x1 +· · ·+ xN = 0}. It is easier to prove
the stability of the centered system X(t) than that of the gap process. We state this result as
Theorem 1.2, proved in Section 3.2, which we then use to deduce Theorem 1.1 in Section 3.1.
Corollary 1.3 is the law of large numbers, proved in Section 3.3. For systems without jumps,
it was proved in Banner et al. (2011).

Theorem 1.2. Under conditions (1.13) and (1.15), the process X has a unique stationary
distribution π , and the stability result (1.5) holds.

Corollary 1.3. For any bounded measurable function f :H →R,

1

T

∫ T

0
f

(
X(t)

)
dt →

∫
H

f (z)�(dz), a.s. as T → ∞. (1.17)

In the long run, each particle Xi occupies each rank k on average (1/N)th of the time:

lim
T →∞

1

T

∫ T

0
1(Xi has rank k at time t)dt = 1

N
for each i, k = 1, . . . ,N,a.s. (1.18)

1.4 Historical review

Systems of competing Lévy particles were introduced in Shkolnikov (2011) for ν1 = · · · =
νN . Our results extend stability results (Shkolnikov (2011), Theorem 1.2(a), Theorem 1.3(a)).
In Sarantsev (2016b), we studied stability of systems of two competing Lévy particles, as well
as the explicit rate of exponential convergence of the gap process to its stationary distribution.
Articles of Atar and Budhiraja (2002), Guillemin, Mazumdar and Piera (2008), Kella and
Whitt (1996), Mazumdar and Piera (2008) are devoted to stability for reflected diffusions
with jumps.

For competing Brownian particles (no jumps), the stationary distribution of (1.3) is not
known explicitly in general case. It satisfies a complicated integro-differential equation, see
Banner et al. (2011). For σk = 1, there is an explicit product-of-exponential form. Limits
as N → ∞ of these systems are studied in Cabezas et al. (2019), Shkolnikov (2012). Ap-
plications in Stochastic Portfolio theory are in Jourdain and Reygner (2015), Karatzas and
Sarantsev (2016).

We know long-term behavior and scaling limits for infinite systems of competing Brownian
particles in case σk = 1 for all k; see Cabezas et al. (2019), Dembo and Tsai (2017), Sarantsev
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(2016a), Sarantsev and Tsai (2017), Tsai (2018). For the infinite Atlas model: g1 = 1, g2 =
g3 = · · · = 0, there are, in fact, infinitely many (a continuum of) stationary distributions for
the gap process as in (1.3), and in one of them, the bottom-ranked particle X(1) behaves in the
long run as the fractional Brownian motion with H = 1/4. We can hardly hope to get such
results for infinite systems with jumps, for lack of explicit formula for stationary distributions
for (1.3).

1.5 Simulations

As discussed earlier, we could not find the stationary gap distribution � explicitly. Instead,
we perform simulations of the jump Atlas model, which is a particular case of a system
of competing Lévy particles. In this system, all particles move as Brownian motions, with
gk = 0, σk = 1, k = 1, . . . ,N . In addition, the (currently) bottom-ranked particle jumps up
by b with intensity λ; that is, �1 = λδb, and �k = 0 for k = 2, . . . ,N . This system has a
stationary gap distribution by Theorem 1.1. A detailed description of simulations is given in
Section 2, with code on GitHub. We answer the following questions:

(A) In the stationary distribution, are gaps still exponential?
(B) In the stationary distribution, are different gaps independent?
(C) How do mean and variance of the gap depend on jump intensity?
(D) How do mean and variance depend on jump size?
(E) Is the capital distribution curve still linear on the double logarithmic plot?

The answers are: (A) No; (B) No; (C) Linear dependence (on the logarithmic scale);
(D) Nonlinear dependence (on the logarithmic scale); (E) Yes.

2 Details of simulations

2.1 Jump Atlas model

We simulate 300 times a system of N = 200 particles with time steps 0.01, up to time T =
100. We performed the following simulations:

1. λ = 5 and b ∈ {0.1,0.2, . . . ,4.9,5.0};
2. b = 5 and λ ∈ {0.1,0.2, . . . ,4.9,5.0}.

See Figure 2 for cases b = 5 and λ = 1.
For all these 100 cases, the hypothesis that the empirical distribution is exponential, was

(very much) rejected by the Kolmorogov–Smirnov test. This is in contrast with the classic
Atlas model without jumps, where the stationary distribution of each gap is exponential.

2.2 The first two gaps

We computed empirical means μ̂1, μ̂2 and variances ŝ2
1 , ŝ2

2 of the first gap Z1 = X(2) − X(1)

and the second gap Z2 = X(3) −X(2), and plotted them versus λ ∈ {0.1,0.2, . . . ,4.9,5.0} and
b = 1 in Figure 3(A) and (B) in a double logarithmic plot. All plots were close to linear, with
almost the same slopes for the two means, and similarly for the first two variances. We did
the same for b ∈ {0.1,0.2, . . . ,4.9,5.0} and λ = 1, and plotted empirical means and variances
versus b in a double logarithmic plot in Figure 3(C) and (D). These plots were not linear, but
resembled functions of the type f (x) = max(c1, c2 − x).
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Figure 2 The first two gaps for jump size b = 5 and jump intensity λ = 1.

Figure 3 Log–log plot for first (red) and second (blue) gap.

2.3 Comparison with classic Atlas model

Without jumps, similar linearity holds for the Atlas model from (1.10), if you replace λ by
b from (1.10) (Banner et al. (2011)). The kth gap Zk ∼ Exp(r) with r = 2g(1 − kN−1) has
mean m = r−1 and variance v = r−2. Therefore,

lnm = − ln(g) − ln(2) − ln
(
1 − kN−1)

, lnv = −2 ln(g) − 2 ln(2) − 2 ln
(
1 − kN−1)

.

That is, the double logarithmic plot of mean vs g has a linear shape with slope −1 and in-
tercept − ln(2(1 − kN−1)). For the variance vs g, this double logarithmic plot has a similar
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linear shape, but with slope −2 and intercept −2 ln(2(1 − kN−1)). In this respect, the inten-
sity λ in this jump Atlas model behaves similarly to the drift g in the classic Atlas model, but
the jump size b behaves differently.

2.4 Correlations

We computed Pearson correlation coefficients between the first gap and the next 4 gaps.
They are plotted in Figure 4 vs jump size b. Although the variables are not normal, we still
use Pearson correlation coefficient for the t-test, since the sample is large, and thus the t-
variable (for a large degree of freedom) is close to normal. For the sample size 300, Pearson
coefficient corresponding to p = 0.05 is 0.094. We see that many points (much more than
5% of the total quantity) are above this level, but not many are below −0.094. Thus, we can
rule out the hypothesis that the first and the second gaps are independent. Instead, there is
evidence that they are positively correlated. This is in contrast with the case of no jumps,
when the stationary distribution has independent components.

2.5 Capital distribution curve

Recall that in real-world stock markets and in the classic Atlas model, the capital distribution
curve is linear in the double logarithmic scale. Now we simulate a jump Atlas model, modi-
fied slightly by allowing the bottom-ranked particle to have a continuous linear drift as well
as jumps. Each graph displays 10 simulations of the capital distribution curve, with N the
number of stocks, time steps 0.001, time horizon T = 200. For the bottom-ranked particle,

Figure 4 Correlation of the first gap and the next four gaps, for jump size b ∈ {0.1,0.2, . . . ,4.9,5.0} and jump
intensity λ = 1.
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Figure 5 10 simulations of the capital distribution curve for the jump Atlas model, time steps 0.001, time horizon
T = 200.

we denote its continuous drift by g, its jump size by b, and jump intensity λ, see Figure 5.
All other particles are driftless Brownian motions. All diffusion coefficients σk = 1.

3 Proofs

We introduce some notation: For a vector x = (x1, . . . , xN) ∈ R
N and a permutation q on

{1, . . . ,N}, we denote xq = ((xq)1, . . . , (xq)N), (xq)k := xq(k), k = 1, . . . ,N . The dot prod-
uct of a = (a1, . . . , ad) and b = (b1, . . . , bd) in R

d is denoted by a · b = a1b1 + · · · + adbd .
The Euclidean norm of a ∈ R

d is defined as ‖a‖ = [a · a]1/2. We denote the transition kernel
for the centered process X by P t(x, ·).

3.1 Derivation of Theorem 1.1 from Theorem 1.2

Theorem 1.1 follows from Theorem 1.2, since the gap process Z(t) is a function of the
centered system X(t). Indeed, rank centered components: X(1)(t) ≤ · · · ≤ X(N)(t), and from
(1.6) we see that Zk(t) = X(k+1)(t)−X(k)(t) = X(k+1)(t)−X(k)(t), k = 1, . . . ,N −1. Thus,
if we proved stability for the centered system X, we automatically have the stability result
for the gap process Z.

3.2 Proof of Theorem 1.2

The key ingredient is the function

V (x) := [‖x‖2 + 1
]1/2

, (3.1)

which satisfies the following statement for some constants b, k, r > 0 and all x ∈H:

LV (x) ≤ −k + b1B(r)(x), where B(r) := {
x ∈ H | ‖x‖ ≤ r

}
. (3.2)

We shall show (3.2), and then complete the proof of Theorem 1.2. The generator L consists
of the continuous part A and the jump part N . That is,

Lf (x) := Af (x) +Nf (x), f ∈ C2(H),

Af (x) := g(x) · ∇f (x) + 1

2

∑
λN

i=1

∑
λN

j=1ρij (x)
∂2f (x)

∂xi∂xj

,

Nf (x) :=
∫
H

[
f (y) − f (x)

]
μx(dy),

(3.3)
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where for x ∈ H, we define ρij (x), G(x), μx as follows:

ρij (x) :=
⎧⎨
⎩σ 2

p−1
x (i)

, i = j ;
0, i �= j,

G(x) :=
N∑

k=1

xpx(k)gk,

and μx is the push-forward to the measure � with respect to the mapping

Fx : H →R
N, Fx : w 
→ x + wp−1

x
. (3.4)

Therefore, we can rewrite the integral in the right-hand side of Nf (x) from (3.3) as

Nf (x) :=
∫
RN

[
f

(
Fx(w)

) − f (x)
]
�(dw). (3.5)

Now, plug in f = V from (3.1) into (3.3). In Banner and Fernholz (2005), Appendix, Proof
of (2.18) (with notation slightly different than here), the expression AV is already calculated:
It is the coefficient attached to dt in Banner and Fernholz (2005), Appendix, Proof of (2.18),
(A.13). In our notation, we have:

AV (x) := x · G(x)

V (x)
+ 1

V (x)

(
1 − N−1) N∑

k=1

σ 2
k − 1

V 3(x)

∑
λN

k=1σ
2
k x2

px(k). (3.6)

We can rewrite (3.6) as

AV (x) := x · G(x)

V (x)
+ δ∗(x), lim‖x‖→∞

∣∣δ∗(x)
∣∣ = 0. (3.7)

Consider the expression inside of the integral in (3.5) for f := V from (3.1). The function V

is infinitely differentiable on R
N , and

∇V (z) = z

V (z)
,

∂2V

∂zi∂zj

= δij

V (z)
− zizj

V 3(z)
, i, j = 1, . . . ,N. (3.8)

Therefore, we have:

lim‖z‖→∞

∣∣∣∣∂
2V (z)

∂zi∂zj

∣∣∣∣ = 0, i, j = 1, . . . ,N; CV := max
z,i,j

∣∣∣∣∂
2V (z)

∂zi∂zj

∣∣∣∣ < ∞. (3.9)

We can write the following Taylor decomposition for all z,u ∈ R
N :

V (z + u) − V (z) = z · u
V (z)

+ θ(z, u). (3.10)

The error term θ(z, u) is given by the following expression for some η(z,u) ∈ [0,1]:

θ(z, u) := η2(z, u)

2

∑
λN

i=1

∑
λN

j=1uiuj

∂2V (z)

∂zi∂zj

. (3.11)

From (3.9) and (3.11), we have

lim‖z‖→∞ θ(z, u) = 0 for every u ∈ R
N ; ∣∣θ(z, u)

∣∣ ≤ CV

2
‖u‖2. (3.12)

Letting z := x and u := wp−1
x

in (3.10),

V
(
Fx(w)

) − V (x) = x · wp−1
x

V (x)
+ θ(x,wp−1

x
). (3.13)
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From (3.12) and the observation that ‖wp−1
x

‖ = ‖w‖ ≤ ‖w‖, we have

∣∣θ(x,wp−1
x

)
∣∣ ≤ CV

2
‖w‖2. (3.14)

Combine (1.15), (3.12), (3.13), (3.14), and apply Lebesgue dominated convergence theorem
to infer

NV (x) = 1

V (x)

∫
RN

[x · wp−1
x

]�(dw) + δ(x), lim‖x‖→∞ δ(x) = 0. (3.15)

Rewrite the expression inside the integral in (3.15) as follows:

x · wp−1
x

=
N∑

i=1

xiwp−1
x (i)

=
N∑

k=1

xpx(k)wk.

Integrating with respect to �(dw), we obtain:∫
RN

[x · wp−1
x

]�(dw) = ∑
λN

k=1xpx(k)f̃k. (3.16)

Combining (3.15), (3.16), we get:

NV (x) = 1

V (x)

∑
λN

k=1xpx(k)f̃k + δ(x). (3.17)

As calculated in Banner and Fernholz (2005), page 2302, (2.17), via summation by parts,

x · G(x) = −∑
λN−1

k=1 (xpx(k+1) − xpx(k))(g1 + · · · + gk). (3.18)

Similarly, we can rewrite the sum in (3.17) as∑
λN

k=1xpx(k)f k = −∑
λN−1

k=1 (xpx(k+1) − xpx(k))(f 1 + · · · + f k). (3.19)

Now we combine (3.7), (3.15), (3.17), (3.18), (3.19) with the observation that mj = gj +f j .
Letting δ∗(x) := δ(x) + δ∗(x), we have:

LV (x) = − 1

V (x)

∑
λN−1

k=1 (xpx(k+1) − xpx(k))(m1 + · · · + mk) + δ∗(x). (3.20)

Note that V (x)/‖x‖ → 1 and δ∗(x) → 0 as ‖x‖ → ∞ for x ∈H. As in Banner and Fernholz
(2005), page 2302, we have:∑

λN−1
k=1 (xpx(k+1) − xpx(k))

∑
λk−1

j=1mj ≤ −K‖x‖,
K := N−1/2 min

1≤k≤N−1
(m1 + · · · + mk) > 0.

(3.21)

From (3.20) and (3.21), we can prove (3.2), which is the main step of this proof of (1.5). We
complete this proof as follows. Denote by mes the Lebesgue measure on H. The centered
system X forms a Feller continuous strong Markov process, because X is a Feller continuous
strong Markov process, by Sawyer (1970), Theorem 2.4, Theorem 5.3, Example 1; and X is
a continuous function of X. Next, X is a T -process in the terminology of Meyn and Tweedie
(1993a), Section 3.2: That is, there exists a nonzero function H : H × B → [0,∞) (B is the
Borel σ -algebra over H), lower semicontinuous in the first argument and a measure in the
second argument; and for a probability measure a on [0,∞),

Ka(x,A) :=
∫ ∞

0
P t(x,A)a(dt) ≥ H(x,A), A ∈ B. (3.22)
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Let Qt(x, ·) be the transition kernel of a (centered) system of competing Brownian particles
with the same drifts gk and diffusions σ 2

k , but without any jumps. Then

Qt(x,A) > 0, t > 0, x ∈ H,A ∈ B,mes(A) > 0. (3.23)

Indeed, we treat H as R
N−1, with an orthogonal coordinate system. The drift coefficients

are bounded, and the covariance matrix field is uniformly elliptic: There exists a δ > 0 such
that σ(x)ξ · ξ ≥ δ‖ξ‖2, ξ ∈ R

N−1, x ∈ H. Under such conditions, the transition kernel has a
Lebesgue density p(t, x, y) which satisfies a parabolic PDE with maximum principle; thus
this density is strictly positive on the whole space. This completes the proof of (3.23).

Since λ0 = λ1 + · · · + λN is the jump intensity of the multidimensional process
(L1, . . . ,LN), we conclude that with probability e−λ0t the system of competing Lévy parti-
cles does not jump until time t , and behaves as a system of competing Brownian particles.
Thus,

P t(x, ·) ≥ e−λ0tQt (x, ·). (3.24)

It follows from (3.23) and (3.24) that

P t(x,A) > 0, t > 0, x ∈ H,A ∈ B,mes(A) > 0. (3.25)

The rest of the proof can be split in several small steps. The definition of a petite set A is
taken from Meyn and Tweedie (1993a), Section 4.1: There exists a nontrivial measure ν on
H and a probability measure a on [0,∞) such that Ka(x, ·) ≥ ν(·) for all x ∈ A, with Ka

defined in (3.22).

(A) The discrete-time Markov chain (X(n))n≥0 is irreducible with respect to Lebesgue mea-
sure: For every subset A ∈ B with mes(A) > 0, there is a positive probability that starting
from any x, the Markov chain will eventually visit A. We took this definition from Meyn
and Tweedie (2009), Section 4.2. This follows from (3.25), take t = 1 or any positive
integer.

(B) We claim that all compact subsets of H are petite for the discrete-time Markov chain
(X(n))n≥0. By Meyn and Tweedie (2009), Proposition 6.2.8(b), this property is true
for a discrete-time Markov chain which is Feller continuous (transition kernel maps
bounded continuous functions to bounded continuous functions), if it has positivity prop-
erty (3.25) for subset A of positive ψ-measure, with support of ψ having non-empty
interior. This is indeed applicable here, since ψ = mes is the Lebesgue measure and
therefore trivially has a non-empty interior.

(C) Finally, Meyn and Tweedie (1993b), Theorem 5.1, implies that (in our notation and
definitions): If all compact sets are petite, and if we find a function V : H → [0,∞) and
a compact set C ⊆ H such that LV (x) ≤ −c < 0 for x /∈ C, and V is bounded on C,
then the process is ergodic. We have found just such function V in (3.1).

Combine these statements (A), (B), (C), and finish the proof of (1.5).

3.3 Proof of Corollary 1.3

Let us show (1.17). From (3.2) by Meyn and Tweedie (1993b), Theorem 4.2, it follows that
the process X is positive Harris recurrent: It has a unique (up to multiplication by a constant)
invariant measure, and this measure is finite; it is equal to �. Applying Theorem 17.1.7 of
Meyn and Tweedie (2009) (stated and proved for discrete-time Markov chains, but similarly
shown for continuous-time Markov processes), we get (1.17).

The limit (1.18) follows from (1.17) in the same way as (2.22) of Banner and Fernholz
(2005) follows from (2.19) of Banner and Fernholz (2005): Indeed, the limit exists by (1.17).
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But in this system of particles, their dynamics depends only on their current ranks. Apply
any fixed permutation q to the particle indices. Then the permuted system is still governed
by the same law as the original system. Therefore, the limit in the right-hand side of (1.17)
must be the same for all N ! permutations q. The sum of these limits is 1; therefore, each of
these limits is equal to 1/N !. There are (N − 1)! permutations on {1, . . . ,N} which map i

to k. Therefore, the right-hand side of (1.18) is the sum of (N − 1)! terms, each of which is
equal to 1/N !; the result is N−1.

4 Conclusion

We established long-term stability results for systems of competing Brownian particles with
jumps, which we named competing Lévy particles. However, we cannot find an explicit for-
mula for stationary gap distribution, and the corresponding distribution for ranked market
weights. Instead, we studied the properties of this stationary gap distribution via Monte Carlo
simulations. Gaps are not independent and exponential. However, capital distribution curves
are still approximately linear in the log–log scale, which captures the property of the real
world markets. In the log–log scale, mean and variance of the first and second gaps depend
linearly on the jump intensity, but not on the jump size. Such linearity holds for the classic
Atlas model (with drift of the bottom particle instead of jump intensity).

Possible future research:

(A) Find how the kth margin of the stationary distribution depends on k.
(B) Simulate more general models of competing Lévy particles, instead of the jump Atlas

model, and replicate the research above in this more general setting.
(C) Find or estimate exponential rate of convergence to the stationary distribution as t → ∞.
(D) Extend to competing Lévy particles with infinitely many jumps on finite time interval.
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