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Abstract. This paper studies the measure of symmetry or asymmetry of a
continuous variable under the multiplicative distortion measurement errors
setting. The unobservable variable is distorted in a multiplicative fashion by
an observed confounding variable. First, two direct plug-in estimation proce-
dures are proposed, and the empirical likelihood based confidence intervals
are constructed to measure the symmetry or asymmetry of the unobserved
variable. Next, we propose four test statistics for testing whether the unob-
served variable is symmetric or not. The asymptotic properties of the pro-
posed estimators and test statistics are examined. We conduct Monte Carlo
simulation experiments to examine the performance of the proposed estima-
tors and test statistics. These methods are applied to analyze a real dataset for
an illustration.

1 Introduction

Measurement errors may exist in many disciplines. At least this seems to be true if data are
collected from medical research, health science and economics, due to improper instrument
calibration or many other reasons. However, very seldom the exact characteristics of these
errors are known. Therefore, the biassing effects on estimation and testing are mostly con-
sidered under the assumption of white noise added to the variable under discussion Fuller
(1987). When the variables have been measured with errors, the presence of measurement er-
rors causes biased and inconsistent parameter estimates and leads to erroneous conclusions to
various degrees in practical analysis even in a large sample. Techniques for addressing mea-
surement error problems can be classified along two dimensions. Different techniques are
employed in errors-in-variables linear models and in errors-in-variables non-linear models.
The attenuation bias in a simple measurement error linear regression is an underestimate of
the coefficient (Fuller (1987)). Bias in nonlinear models is more complex than linear regres-
sion models (Carroll et al. (2006)). Due to the importance of the measurement error problems,
some research on measurement error models has been carefully studied, see, for example,
Liang and Ren (2005), Liang, Härdle and Carroll (1999), Li, Zhang and Feng (2016).

In this paper, we consider that a unobservable variable X is measured with multiplicative
errors and involved by a confounding variable:

X̃ = Xψ(U), (1.1)

where, X is the unobservable continuous variable of interest, X̃ is the available observed
variable, and ψ(·) is a contaminating unknown function of the observed confounding variable
U , which is assumed to be independent of X. The multiplicative distortion function ψ(U)
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satisfies E[ψ(U)] = 1 for identifiability. The multiplicative distortion measurement errors
model (1.1) is introduced by Şentürk and Müller (2005). The model (1.1) is different from
Hwang (1986), who considered a multiplicative measurement error model where the observed
value W is assumed by W = XU , and X and U are unobserved variables and asymmetric
distribution such that E(U) = 1 and Var(U) = σ 2. In model (1.1), the confounding variable
U is observed but distorting function ψ(u) is unknown. For the regression models in the
multiplicative fashion, Chen et al. (2010) proposed the least absolute relative error estimation
method and Chen et al. (2016), Liu and Xia (2018) proposed the least product relative error
for estimating parameters in the multiplicative regression models.

Recently, a number of authors have studied the multiplicative distortion measurement er-
rors model (1.1) in various parametric or semi-parametric setting. See, for example, Şentürk
and Müller (2006) considered the estimation for multiplicative distortion measurement er-
rors linear regression models. Cui et al. (2009) studied the nonlinear multiplicative distortion
measurement errors models. Li, Lin and Cui (2010) considered partial linear models, where
the linear part is observed with multiplicative distortion measurement errors, and Li and Lu
(2018) considered to use lasso-type penalty functions including lasso and adaptive lasso for
simultaneous variable selection and parameter estimation. Delaigle, Hall and Zhou (2016)
obtained a fundamental work of nonparametric estimation of a regression curve when the
data are observed with multiplicative distortion. Recently, Zhao and Xie (2018) and Li et al.
(2018) respectively, considered the adaptive model test and adaptive estimation for the non-
parametric multiplicative distortion measurement error models. Toward this end, there are
no systematic studies on measuring the symmetry or asymmetry of X under the distortion
measurement errors model (1.1).

In this paper, we study the symmetry or asymmetry of a continuous variable X under the
distortion measurement errors models (1.1). Let f (x) and F(x), x ∈ R be the probability
density function and the distribution function, respectively. We say X is symmetric about γ

if F(γ − x) = 1 − F(γ + x) (or equivalently f (γ − x) = f (γ + x)) for every x ∈ R. The
concept of symmetry plays an important role in mathematics as well as in statistics. For the
validity of signed rank procedures, symmetry is a crucial assumption (Kraft and van Eeden
(1972)) for the Mann–Whitney type tests and also the Wilcoxon signed-rank test. It is known
that the Wilcoxon signed-rank test is not robust against the assumption of symmetry, so it is
necessary to check the assumption of symmetry before employing the Wilcoxon signed-rank
procedure in practice. There are several tests available in the literature to assess the symmetry
of an unknown density function f (x) based on an i.i.d. random sample. See, for example, Hill
and Rao (1977) considered Cramér–von Mises type statistics to test the symmetry, Butler
(1969) in which a test statistic is proposed by using a sample version of supx≤0 |F(γ + x) +
F(γ − x) − 1|, Davis and Quade (1978) proposed U -statistics by using the triple sample
for testing the symmetry. Recently, Patil, Patil and Bagkavos (2012) proposed measuring the
symmetry and asymmetry by using the correlation coefficient between the density function
and the distribution function, namely, ρ(f,F ) = Cov(f (X),F (X))√

σ 2
f σ 2

F

when 0 < σ 2
f < ∞, where

σ 2
f = Var(f (X)) and σ 2

F = Var(F (X)) (= 1
12 ). Patil, Patil and Bagkavos (2012) showed that

ρ(f,F ) works well in capturing the visual impression of asymmetry in a given density curve.
Some other test statistics are referred to in Gupta (1967), Csörgő and Heathcote (1987) and
the references therein.

As the variable X is observed with multiplicative distortion measurement errors, the ex-
isting literature for measuring the symmetry or asymmetry of X cannot be directly used.
There is no literature to study the symmetry or asymmetry of a continuous variable un-
der the model setting (1.1). In this paper, we propose a general kth correlation coefficient

ρk = Cov(f k(X),F (X))√
σ 2

f k σ 2
F

with σ 2
f k = Var(f k(X)) for some k > 0 as a measure of symmetry or
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asymmetry. Note that ρ1 is the correlation coefficient ρ(f,F ) proposed by Patil, Patil and
Bagkavos (2012). Under multiplicative distortion measurement errors setting (1.1), we first
propose two direct plug-in estimation procedures to calibrate unobserved X by using the esti-
mation methods proposed in Cui et al. (2009) and Delaigle, Hall and Zhou (2016), and further
use calibrated variable X̂ to estimate ρk . Next, we construct empirical likelihood based con-
fidence intervals of ρk , which can be used to judge the symmetry or asymmetry of X. We
also consider a special case by using the symmetry or asymmetry of observed X̃ to judge the
symmetry or asymmetry of X. Finally, we propose four test statistics for testing whether X

is symmetric or not. The asymptotic properties of the proposed estimators and test statistics
are examined. We conduct Monte Carlo simulation experiments to examine the performance
of the proposed estimators and test statistics.

The paper is organized as follows. In Section 2, we propose two direct plug-in estimation
procedures and derive related asymptotic results. The empirical likelihood based confidence
intervals are also investigated. In Section 3, we propose four test statistics for measuring the
symmetry or asymmetry of the unobserved variable, and study the asymptotic properties of
the test statistics. In Section 4, simulation studies are conducted to examine the performance
of the proposed estimators and test statistics. In Section 5, the analysis of a real dataset is
presented. In Section 6, some discussion of the proposed methods is presented. Technical
proofs of theorems are provided in the on-line supplementary materials (Zhang et al. (2019)).

2 Direct plug-in estimation procedure

2.1 General setting

As the distorted X̃ is available, we first calibrate unobservable X by using the observed i.i.d.
sample {X̃i,Ui}ni=1. To ensure identifiability of model (1.1), it is assumed that

E
[
ψ(U)

]= 1. (2.1)

The identifiability condition (2.1) is introduced by Şentürk and Müller (2005), and it is anal-
ogous to the classical additive measurement error setting: E(θ) = 0 for W = Z + θ , where
W is error-prone and Z is error-free. For the distorting function ψ(u) and the expectation of
X, it is commonly assumed in the literature as:

Assumption M1: E(X) �= 0, the unknown smoothing distorting function ψ(u) satisfies
ψ(u) �= 0 for all u ∈ [UL,UR], UL < UR , where [UL,UR] denotes the compact support
of U .

Assumption M2: the unknown smoothing distorting function ψ(u) satisfies ψ(u) > 0 for all
u ∈ [UL,UR].

By using two assumptions M1 and M2, we have two different estimation procedures of ρk .

Step 1.1. Using the identifiability condition (2.1) and assumption M1, we have E(X̃) = E(X)

and ψ(u) = E(X̃|U = u)/E(X̃). Then, the local linear estimator ψ̂1(u) of ψ(u) is pro-
posed as

ψ̂1(u) = Sn2(u)Qn0,X̃(u) − Sn1(u)Qn1,X̃(u)

[Sn2(u)Sn0(u) − [Sn1(u)]2]X̃
, (2.2)

where Snω(u) = 1
nh1

∑n
i=1(

Ui−u
h1

)ωK(Ui−u
h1

) for ω = 0,1,2, and Qnδ,X̃(u) = 1
nh1

×∑n
i=1(

Ui−u
h1

)δK(Ui−u
h1

)X̃i for δ = 0,1, and X̃ = 1
n

∑n
i=1X̃i . Here K(·) denotes a kernel

density function, and h1 is a bandwidth.
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Step 1.2. Using the identifiability condition (2.1) and assumption M2, we have E(|X̃|) =
E(|X|) and ψ(u) = E(|X̃||U = u)/E(|X̃|). Then, the local linear estimator ψ̂2(u) is used
to estimate ψ(u) by

ψ̂2(u) = Sn2(u)Vn0,|X̃|(u) − Sn1(u)Vn1,|X̃|(u)

[Sn2(u)Sn0(u) − [Sn1(u)]2]|X̃|
, (2.3)

where Vnδ,|X̃|(u) = 1
nh1

∑n
i=1(

Ui−u
h1

)δK(Ui−u
h1

)|X̃i | for δ = 0,1, and |X̃| = 1
n

∑n
i=1|X̃i |.

Step 2. Using (2.2) and (2.3), we obtain X̂
[1]
i = X̃i/ψ̂1(Ui) and X̂

[2]
i = X̃i/ψ̂2(Ui), i =

1, . . . , n and the estimators of f (x) and F(x) are constructed as⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
f̂1(x) = 1

nh2

n∑
i=1

K

(
X̂

[1]
i − x

h2

)
,

F̂1(x) = 1

n

n∑
i=1

I
{
X̂

[1]
i ≤ x

}
,

(2.4)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
f̂2(x) = 1

nh3

n∑
i=1

K

(
X̂

[2]
i − x

h3

)
,

F̂2(x) = 1

n

n∑
i=1

I
{
X̂

[2]
i ≤ x

}
,

(2.5)

where h2 and h3 are two positive-valued bandwidths.
Step 3. Directly using E[F(X)] = 1

2 , σ 2
F = 1

12 , two moment based estimators of ρk are pro-
posed as, for s = 1,2,

ρ̂
[s]
k = √

12
1
n

∑n
i=1 f̂ k

s (X̂
[s]
i )F̂s(X̂

[s]
i ) − 1

2n

∑n
i=1 f̂ k

s (X̂
[s]
i )

{ 1
n

∑n
i=1[f̂ k

s (X̂
[s]
i ) − 1

n

∑n
i=1 f̂ k

s (X̂
[s]
i )]2}1/2

.

In the simulation study in Section 4, k will be considered as k = 0.5, k = 1, k = 2 and
k = 3 for illustrations.

We first list some of the conditions needed for the proofs of our asymptotic results.

(A1) The density function fU(u) of the random variable U is bounded away from 0 and
satisfies the Lipschitz condition of order 1 on [UL,UR].

(A2) The distorting function ψ(u) has three continuous derivatives on [UL,UR].
(A3) The density functions f (x) of X and f̃ (x̃) of X̃ have two continuous derivatives, sat-

isfying
∫∞
−∞ f 1+4k(x) dx < ∞,

∫∞
−∞ f̃ 1+4k(x̃) dx̃ < ∞, k > 0.

(A4) The kernel function K(·) is a univariate bounded, continuous and symmetric density
function about zero, supported on [−C,C], C > 0. The second derivative of K(·) is
bounded on [−C,C], satisfying a Lipschitz condition. Moreover,

∫ C
−C t2K(t) dt �= 0

and
∫ C
−C |t |jK(t) dt < ∞ for j = 1,2,3.

(A5) As n → ∞, nh4
s → 0, log2 n

nh2
s

→ 0 for s = 1,2,3,4.

Condition (A1) ensures that the density function fU(u) is positive, which implies that the
denominators involved in the nonparametric estimators are bounded away from zero in a
large sample setting. Condition (A2) is a mild smoothness condition on the distorting func-
tion ψ(u). Condition (A3) is the technique condition of density functions to ensure that the
asymptotic variances in Theorem 2.1 and Theorem 2.3 are finite. Condition (A4) is the com-
mon condition for the kernel function K(t). The Epanechnikov kernel complies with this con-
dition. Condition (A5) is generally required for bandwidth hs in nonparametric smoothing.
Bandwidths hs , s = 1,2,3 are used in Section 2.1 and bandwidth h4 is used in Section 2.2.
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In the following, we define f̂ k
s F̂s = 1

n

∑n
i=1 f̂ k

s (X̂
[s]
i )F̂s(X̂

[s]
i ), f̂ k

s = 1
n

∑n
i=1 f̂ k

s (X̂
[s]
i )

and σ̂s,f k = { 1
n

∑n
i=1[f̂ k

s (X̂
[s]
i )− f̂ k

s ]2}1/2, E(f kF ) = E[f k(X)F (X)], E(f k) = E[f k(X)].
Moreover, let μf d = ∫

f d(x) dx and

δk(t, f,F ) =

⎛⎜⎜⎜⎜⎜⎝
(k + 1)f k(t)F (t) +

∫ ∞
t

f k+1(x) dx

(k + 1)f k(t)

2k + 1

2σf k

f 2k(t) + (k + 1)μf k+1

σf k

f k(t)

⎞⎟⎟⎟⎟⎟⎠ , ηk =
⎛⎜⎝E

(
f kF

)
E
(
f k)

σf k

⎞⎟⎠ .

Theorem 2.1. Assume that conditions (A1)–(A5) hold,

(a) we have
√

n
((

f̂ k
s F̂s − E

(
f kF

))
,
(
f̂ k

s − E
(
f k)), (σ̂s,f k − σf k )

)T
L−→ N(0,
k,s),

where


k,s = k2ηkη
T
k E

(
X2)Var

(
ψ(U)

)(I {s = 1}
[E(X)]2 + I {s = 2}

[E(|X|)]2

)
+ Cov

(
δk(X,f,F )

);
(b) let θk = 1

σ
f k

(
√

12,−
√

12
2 ,−ρk)

T, we have

√
n
(
ρ̂

[s]
k − ρk

) L−→ N
(
0, θT

k 
k,sθk

)
.

Remark 1. The term k2ηkη
T
k E(X2)Var(ψ(U))(

I {s=1}
[E(X)]2 + I {s=2}

[E(|X|)]2 ) in Theorem 2.1(a) is

caused by the distortion function ψ(U). One can see that, the estimator ρ̂
[s]
k performs effi-

ciently only when Var(ψ(U)) = 0 that is, ψ(u) ≡ 1. When Var(ψ(U)) > 0, the increment of
the asymptotic variance of ρ̂

[s]
k is caused by using the calibrated variables {X̂[s]

i , i = 1, . . . , n}
instead of unobserved {Xi, i = 1, . . . , n}, i.e., the effect of distorting function ψ(U) exists.

Remark 2. It is known that |E(X)| ≤ E(|X|), and 1
[E(X)]2 ≥ 1

[E|X|]2 when E(X) �= 0. This

inequality tells us the estimator ρ̂
[2]
k will perform better than ρ̂

[1]
k in an asymptotic way

when E(X) �= 0. Moreover, when X is a almost surely positive-valued random variable,
that is, P(X < 0) = 0, we have E(X) �= 0 and E(|X|) = E(X). Thus, 
k,1 = 
k,2 and
the asymptotic variance of ρ̂

[1]
k is the same as ρ̂

[2]
k . If E(X) = 0, we only use ρ̂

[2]
k because

X̃ = OP (n−1/2) and the denominator in (2.2) will converge to zero in probability, and the
performance of estimator ρ̂

[1]
k is unstable.

We now use empirical likelihood (EL) (Owen (1991)) method to construct confidence in-
tervals of ρk . Empirical likelihood method avoids to estimate asymptotic covariances, im-
proves the accuracy of coverage in a moderate sample setting, and also is easily imple-
mented and automatically studentized. So, the EL method is widely applied in practice.
See, for example, Liu and Xia (2018), Kiwitt and Neumeyer (2012). It is noted that the
asymptotic results of Theorem 2.1 can be used to construct asymptotic confidence inter-
vals when one gets an estimator of asymptotic variance, namely, θ̂T

k,s
̂k,s θ̂k,s . In details,
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the confidence intervals for ρ̂
[s]
k , s = 1,2, got from normal approximation are, I

[s]
α,NOR =

{ρ′
k,s : n(ρ̂

[s]
k − ρ ′

k,s)
2/(θ̂T

k 
̂k,s θ̂k,s) ≤ cα}. Partlett and Patil (2017) claimed that a numerical
method is need to evaluate the integrals in the asymptotic variance when f (x) is symmetric
for ρ1 = 0. When ρ1 �= 0, the performance of estimator of θ̂T

1,s
̂1,s θ̂1,s may not be appro-
priate, as one need to estimate so many complicated terms in the asymptotic variance and
their finite-sample behaviors may not perform well. Although the estimator can be shown to
be consistent under some mild assumptions. In the following, we make statistical inference
based on the EL principle for ρk .

The correlation coefficient ρk can be estimated through the estimating equation in the
population level:

E

[{√
12
(
F(X) − 1

2

)
− ρk

(
f k(X) − E[f k(X)]

σf k

)}

×
(

f k(X) − E[f k(X)]
σf k

)]
= 0.

Motivated by this equation, the empirical log-likelihood ratio function is defined as

�̂[s]
n (ρk) = −2 max

{
n∑

i=1

log(npi) : pi ≥ 0,

n∑
i=1

pi = 1,

n∑
i=1

pi�̂[s]
n,i(ρk) = 0

}
,

where, for i = 1, . . . , n, s = 1,2,

�̂[s]
n,i(ρk) =

{√
12
(
F̂s

(
X̂

[s]
i

)− 1

2

)
− ρk

(
f̂ k

s (X̂
[s]
i ) − f̂ k

s

σ̂s,f k

)}

×
(

f̂ k
s (X̂

[s]
i ) − f̂ k

s

σ̂s,f k

)
.

By the Lagrange multiplier method, we have �̂[s]
n (ρk) = 2

∑n
i=1 log{1 + λ̂s�̂[s]

n,i(ρk)}, where

λ̂s is determined by the equation 1
n

∑n
i=1

�̂[s]
n,i (ρk)

1+λ̂s �̂[s]
n,i (ρk)

= 0.

Theorem 2.2. Assume that conditions (A1)–(A5) hold, �̂[s]
n (ρk) converges to a centered chi-

squared distribution with degree of freedom one.

From Theorem 2.2, an EL confidence interval for ρk is constructed as Iρk
= {ρ′

k,s :
�̂[s]
n (ρ′

k,s) ≤ cκ}, where cκ denotes the κ quantile of the chi-squared distribution with degree
of freedom one.

2.2 A special setting

Suppose that X is symmetric about γ , i.e., F(x) = 1 − F(2γ − x), and ψ(u) > 0 for all
u ∈ [UL,UR] under assumption M2. Using the independence condition between U and X, it
is seen that

F̃ (x) = EI {X̃ ≤ x} = E
[
EI

{
X ≤ x/ψ(U)

}|U ]= E
[
F
(
x/ψ(U)

)|U ]
= E

[
1 − F

(
2γ − x/ψ(U)

)|U ]
= E

[
1 − EI

{
X ≤ 2γ − x/ψ(U)

}|U ]
= E

[
1 − EI

{
X̃ ≤ 2γψ(U) − x

}|U ]. (2.6)
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From (2.6), if X is symmetric about zero (γ = 0), then, F̃ (x) = 1 − F̃ (−x). This implies
that X̃ is also symmetric about zero, and the effect of multiplicative distortion for testing the
symmetry of X about zero vanishes. In this case, testing the symmetry of X about zero is
equivalent to testing the symmetry of X̃ about zero. Similar to (2.4) and (2.5), we propose
the estimators of the density function of X̃, f̃ (x̃) and distribution function of X̃, F̃ (x̃) as

ˆ̃
f (x) = 1

nh4

n∑
i=1

K

(
X̃i − x

h4

)
, ˆ̃F(x) = 1

n

n∑
i=1

I {X̃i ≤ x},

where h4 is a positive-valued bandwidth.
Directly using E[F̃ (X̃)] = 1

2 , σ 2
F̃

= Var(F̃ (X̃)) = 1
12 , a moment based estimator of ρ̃k =

Cov(f̃ k(X̃),F̃ (X̃))√
σ 2

F̃
σ 2

f̃ k

, σ 2
f̃ k

= Var(f̃ (X̃)), is proposed as

ˆ̃ρk = √
12

1
n

∑n
i=1

ˆ̃
f k(X̃i)

ˆ̃F(X̃i) − 1
2n

∑n
i=1

ˆ̃
f k(X̃i)

{ 1
n

∑n
i=1[ ˆ̃

f k(X̃i) − 1
n

∑n
i=1

ˆ̃
f k(X̃i)]2}1/2

.

Next, we define ˆ̃
f k ˆ̃F = 1

n

∑n
i=1

ˆ̃
f k(X̃i)

ˆ̃F(X̃i),
ˆ̃

f k = 1
n

∑n
i=1

ˆ̃
f k(X̃i) and σ̂

f̃ k = { 1
n

×∑n
i=1[ ˆ̃

f k(X̃i) − ˆ̃
f k]2}1/2, E(f̃ kF̃ ) = E[f̃ k(X̃)F̃ (X̃)], E(f̃ k) = E[f̃ k(X̃)]. Moreover, let

μ
f̃ d = ∫

f̃ d(x̃) dx̃ and

δk(t, f̃ , F̃ ) =

⎛⎜⎜⎜⎜⎜⎜⎝
(k + 1)f̃ k(t)F̃ (t) +

∫ ∞
t

f̃ k+1(x̃) dx̃

(k + 1)f̃ k(t)

2k + 1

2σ
f̃ k

f̃ 2k(t) + (k + 1)μ
f̃ k+1

σ
f̃ k

f̃ k(t)

⎞⎟⎟⎟⎟⎟⎟⎠ .

Theorem 2.3. Assume that conditions (A1)–(A5) hold,

(a) let 
̃k = Cov(δk(X̃, f̃ , F̃ )), we have

√
n
(( ˆ̃

f k ˆ̃F − E
(
f̃ kF̃

))
,
( ˆ̃
f k − E

(
f̃ k)), (σ̂

f̃ k − σ
f̃ k )

)T
L−→ N(0, 
̃k);

(b)
√

n( ˆ̃ρk − ρ̃k)
L−→ N(0, θ̃T

k 
̃kθ̃k), where θ̃k = 1
σ

f̃ k
(
√

12,−
√

12
2 ,−ρ̃k)

T.

The correlation coefficient ρ̃k can be estimated through the estimating equation in the
population level:

E

[{√
12
(
F̃ (X̃) − 1

2

)
− ρ̃k

(
f̃ k(X̃) − E[f̃ k(X̃)]

σ
f̃ k

)}

×
(

f̃ k(X̃) − E[f̃ k(X̃)]
σ

f̃ k

)]
= 0.

The empirical log-likelihood ratio function is defined as

ˆ̃
�n(ρ̃k) = −2 max

{
n∑

i=1

log(np̃i) : p̃i ≥ 0,

n∑
i=1

p̃i = 1,

n∑
i=1

p̃i
ˆ̃�n,i(ρ̃k) = 0

}
,
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where, for i = 1, . . . , n,

ˆ̃�n,i(ρ̃k) =
{√

12
( ˆ̃F(X̃i) − 1

2

)
− ρ̃k

( ˆ̃
f k(X̃i) − ˆ̃

f k

σ̂
f̃ k

)}

×
( ˆ̃

f k(X̃i) − ˆ̃
f k

σ̂
f̃ k

)
.

Using Lagrange multiplier, we have ˆ̃
�n(ρ̃k) = 2

∑n
i=1 log{1 + ˆ̃

λ ˆ̃�n,i(ρ̃k)}, where ˆ̃
λ is deter-

mined by the equation 1
n

∑n
i=1

ˆ̂�n,i (ρ̃k)

1+ˆ̃
λ ˆ̃�n,i (ρ̃k)

= 0.

Theorem 2.4. Assume that conditions (A1)–(A5) hold, ˆ̃
�n(ρ̃k) converges to a centered chi-

squared distribution with degree of freedom one.

From Theorem 2.4, an EL confidence interval for ρ̃k is constructed as Ĩρ̃k
= {ρ̃′

k : ˆ̃
�n(ρ̃

′
k) ≤

cκ}, where cκ denotes the κ quantile of the chi-squared distribution with degree of freedom
one. From (2.6), the symmetry of X̃ and X about γ is equivalent when ψ(U) ≡ 1. We can also
conduct a hypothesis H0: ψ(u) = 1, u ∈ [UL,UR] and H1: ψ(u) �= 1, for some u ∈ [UL,UR]
at first. If the hypothesis H0 holds, one can directly use the distorted variable X̃, estimator
ˆ̃ρk and Theorem (2.4) to conclude whether X̃ is symmetric or not. If X̃ is symmetric, then X

is symmetric because ψ(U) ≡ 1. Otherwise, if X̃ is asymmetric, the symmetry of X can be
determined through the proposed estimators ρ̂

[l]
k , l = 1,2, or the proposed test statistics pre-

sented in the following section. There are many literature to discuss whether a nonparametric
function is a constant function for the hypothesis H0. One can use one of them to test H0.
There is unnecessary to repeat these statistics and we omit them here.

3 Some tests of symmetry for distortion measurement errors

In parametric inference, there are many methods for measuring symmetry or asymmetry for
a continuous random variable X. The historically known measures for detecting departures
from symmetry include

SP = E(X) − ϑ

σ
, SG = E(X) − ϑ

E|X − ϑ | ,

SM = E[(X − E(X))3]
σ 3 , SQ,δ = q1−δ + qδ − 2ϑ

q1−δ − qδ

, δ ∈ (0,0.5),

where ϑ stands for the median, σ 2 stands for the variance and qδ stands for the δ-quantile
for a continuous random variable X, respectively. There are many literature on the study of
SP , SG, SM and SQ,δ when X is observed without measurement errors. For the multiplicative
distortion measurement errors data considered in this paper, as {X1,X2, . . . ,Xn} are distorted
and unobservable, and only {(X̃i,Ui), i = 1, . . . , n} are available. In this section, we study
how to estimate SP , SG, SM and SQ,δ under the multiplicative measurement errors setting
(1.1) and propose some test statistics for measuring symmetry or asymmetry of X.
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3.1 Skewness measures SP and SG

Pearson’s skewness is defined as SP = E(X)−ϑ
σ

, Hotelling and Solomons (1932) showed that
|SP | ≤ 1. Suppose that {X1,X2, . . . ,Xn} are observable, Cabilio and Cabilio (1996) consid-

ered to use ŜP = X̄−me(X)
s

for testing symmetry versus skewness, where X̄ and me(X) are
the sample mean and median respectively, and s2 is the sample variance.

To estimate SP in the multiplicative distortion measurement errors setting, we propose

̂̃SP,l = X̃ − me(X̂[l])
ŝl

, l = 1,2,

where, me(X̂[l]) is the median of calibrated variables {X̂[l]
1 , . . . , X̂[l]

n }, ŝ2
l is the estima-

tor of σ 2, and ŝ2
l is defined as ŝ2

l = 1
n

∑n
i=1

(X̃i−Ê(X̃i |Ui))
2

ψ̂2
l (Ui)

, l = 1,2, here, Ê(X̃i |Ui) =
Sn2(Ui)Qn0,X̃(Ui)−Sn1(Ui)Qn1,X̃(Ui)

Sn2(Ui)Sn0(Ui)−[Sn1(Ui)]2 .

Theorem 3.1. Assume that conditions (A1)–(A5) hold, f (ϑ) > 0, we have

√
n(̂̃SP,l − SP )

L−→ N
(
0, σ 2

SP,l

)
,

where

σ 2
SP,1

= 1

σ 2 Var
(

ϑ(2X̃ − X)

E(X)
− I {X ≤ ϑ}

f (ϑ)
− E(X) − ϑ

2σ 2

[
X − E(X)

]2)
,

σ 2
SP,2

= 1

σ 2 Var
(
X̃ + 2ϑ − E(X)

E(|X|) |X̃| − ϑ

E(|X|) |X| − I {X ≤ ϑ}
f (ϑ)

− E(X) − ϑ

2σ 2

[
X − E(X)

]2)
.

Remark 3. Note that if X is a positive random, we have |X| = X and E(|X|) = E(X), and
the assumption M2 also entails that |X̃| = |X|ψ(U) = Xψ(U) = X̃. Then, the asymptotic
variances σ 2

SP,1
, σ 2

SP,2
satisfy σ 2

SP,1
= σ 2

SP,2
. If X is a negative random, we have |X| = −X and

E(|X|) = −E(X), and the assumption M2 also entails that |X̃| = |X|ψ(U) = −Xψ(U) =
−X̃. Then, the asymptotic variances σ 2

SP,1
, σ 2

SP,2
also satisfy σ 2

SP,1
= σ 2

SP,2
.

If X is symmetric with mean E(X) and median ϑ , it is easily seen that E(X) = ϑ . Then,
the asymptotic variances σ 2

SP,1
, σ 2

SP,2
reduce to

σ 2
SP,1

=
{

1 + 4E(X̃2)

σ 2

Var(ψ(U))

Var(ψ(U)) + 1
+ 1

4σ 2f 2(ϑ)
+ E|X − ϑ |

σ 2f (ϑ)

}
× I {ϑ �= 0},

σ 2
SP,2

= Var(X̃)

σ 2 + ϑ2E(X̃2)

[E|X|]2σ 2

Var(ψ(U))

Var(ψ(U)) + 1

+ 2ϑE(X̃|X̃|)
E|X|σ 2

Var(ψ(U))

Var(ψ(U)) + 1
+ 1

4σ 2f 2(ϑ)
+ E|X − ϑ |

σ 2f (ϑ)
.

Moreover, if ϑ = 0, the asymptotic variance σ 2
SP,2

further reduces to Var(X̃)

σ 2 + 1
4σ 2f 2(0)

+
E|X|

σ 2f (0)
.
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Next, we propose consistent estimators of σ 2
SP,1

and σ 2
SP,2

when X is symmetric. A consis-

tent estimator of σ 2
SP,1

is proposed as

σ̂ 2
SP,1

= 1 + 4X̃2

ŝ2
1

V̂ar1(ψ(U))

V̂ar1(ψ(U)) + 1
+ 1

4ŝ2
1 f̂ 2

1 (me(X̂[1]))
+ Ê1(|X − ϑ |)

ŝ2
1 f̂1(me(X̂[1]))

,

where X̃2 = 1
n

∑n
i=1 X̃2

i , f̂1(me(X̂[1])) is defined in (2.4) by substituting x with me(X̂[1]),
V̂ar1(ψ(U)) is defined as V̂ar1(ψ(U)) = 1

n

∑n
i=1 ψ̂2

1 (Ui) − {ψ̂1(U)}2, ψ̂1(U) = 1
n

×∑n
i=1 ψ̂1(Ui), and Ê1(|X − ϑ |) = 1

n

∑n
i=1 |X̂[1]

i − me(X̂[1])|.
A consistent estimator of σ 2

SP,2
is proposed as

σ̂ 2
SP,2

= V̂ar(X̃)

ŝ2
2

+ me2(X̂[2])X̃2

(|X̃|)2ŝ2
2

V̂ar2(ψ(U))

V̂ar2(ψ(U)) + 1

+ 2 me(X̂[2])X̃|X̃|
|X̃|ŝ2

2

V̂ar2(ψ(U))

V̂ar2(ψ(U)) + 1

+ 1

4ŝ2
2 f̂ 2

2 (me(X̂[2]))
+ Ê2|X − ϑ |

ŝ2
2 f̂2(me(X̂[2]))

,

where, V̂ar(X̃) = 1
n

∑n
i=1(X̃i − X̃)2, X̃|X̃| = 1

n

∑n
i=1 X̃i |X̃i |, V̂ar2(ψ(U)) = 1

n
×∑n

i=1 ψ̂2
2 (Ui)−{ψ̂2(U)}2, ψ̂2(U) = 1

n

∑n
i=1 ψ̂2(Ui), and also Ê2(|X−ϑ |) = 1

n

∑n
i=1 |X̂[2]

i −
me(X̂[2])|, moreover, f̂2(me(X̂[2])) is defined in (2.5) by substituting x with me(X̂[2]). In
particular, if ϑ = 0, a consistent estimator of the asymptotic variance σ 2

SP,2
is defined as

σ̂ 2
0,SP,2

= V̂ar(X̃)

ŝ2
2

+ 1
4ŝ2

2 f̂ 2
2 (0)

+ |X̃|
ŝ2
2 f̂2(0)

.

Theorem 3.2. Under the conditions of Theorem 3.1, if X is symmetric and satisfies ϑ =
E(X), we have:

(i) If ϑ �= 0,
√

nŜP,1/σ̂SP,1

L−→ N(0,1).

(ii)
√

nŜP,2/σ̂SP,2

L−→ N(0,1).

(iii) In particular, if ϑ = 0,
√

nŜP,2/σ̂0,SP,2

L−→ N(0,1).

Using Theorem 3.2, for a sample of size n, the proposed α-level asymptotic free test of
H∗

0: f (x + ϑ) = f (ϑ − x) when ϑ �= 0 is |√n̂̃SP,l/σ̂SP,l
| ≥ z1−α/2, l = 1,2, where z1−α/2

is the 1 − α/2 quantile of the standard normal distribution, i.e., �(z1−α/2) = 1 − α/2, α ∈
(0,1). If ϑ = 0, we can use |√n̂̃SP,2/σ̂SP,2 | ≥ z1−α/2 or |√n̂̃SP,2/σ̂0,SP,2 | ≥ z1−α/2 to test
the hypothesis H∗

0.
The measure SG is known as Groeneveld & Meeden’s measure of skewness (Groeneveld

and Meeden (1984)). An estimator of SG is proposed as

̂̃SG,l = X̃ − me(X̂[l])
Êl|X − ϑ | , l = 1,2.

We have the following asymptotic result.

Theorem 3.3. Under the condition of Theorem 3.1, we have
√

n(̂̃SG,l − SG)
L−→ N

(
0, σ 2

SG,l

)
,
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where

σ 2
SG,1

= 1

[E|X − ϑ |]2 Var
(

2ϑ

E(X)
X̃ − 2ϑ − E(X)

E(X)
X − I {X ≤ ϑ}

f (ϑ)

− E(X) − ϑ

E|X − ϑ | |X − ϑ |
)
,

σ 2
SG,2

= 1

[E|X − ϑ |]2 Var
(
X̃ + 2ϑ − E(X)

E(|X|) (|X̃| − |X|) − I {X ≤ ϑ}
f (ϑ)

− E(X) − ϑ

E|X − ϑ | |X − ϑ |
)
.

Remark 4. Note that if X is a positive random, we have |X| = X and E(|X|) = E(X),
and the assumption M2 also entails that |X̃| = |X|ψ(U) = Xψ(U) = X̃. Then, the asymp-
totic variances σ 2

SG,1
, σ 2

SG,2
also satisfy σ 2

SG,1
= σ 2

SG,2
. If X is a negative random, we have

|X| = −X and E(|X|) = −E(X), and the assumption M2 also entails that |X̃| = |X|ψ(U) =
−Xψ(U) = −X̃. Then, the asymptotic variances σ 2

SG,1
, σ 2

SG,2
still satisfy σ 2

SG,1
= σ 2

SG,2
.

When X is symmetric about ϑ and E(X) = ϑ , if ϑ �= 0, the asymptotic variance
σ 2

SG,1
reduces to σ 2

SG,1
= σ 2

[E|X−ϑ |]2 σ
2
SP,1

, then a consistent estimator of σ 2
SG,1

is obtained as

σ̂ 2
SG,1

= ŝ2
1

[Ê1|X−ϑ |]2 σ̂ 2
SP,1

. For the estimator ̂̃SG,2, the asymptotic variance σ 2
SG,2

also reduces

to σ 2
SG,2

= σ 2

[E|X−ϑ |]2 σ 2
SP,2

, and then a consistent estimator of σ 2
SG,2

is obtained as σ̂ 2
SG,2

=
ŝ2
2

[Ê2|X−ϑ |]2 σ̂ 2
SP,2

. Thus, the proposed α-level asymptotic free test of H∗
0 : f (x +ϑ) = f (ϑ −x)

is |√n̂̃SG,l/σ̂SG,l
| ≥ z1−α/2, l = 1,2. In particular, if ϑ = 0, a consistent estimator of the

asymptotic variance σ 2
SG,2

is defined as σ̂ 2
0,SG,2

= ŝ2
2

[Ê2|X−ϑ |]2 σ̂
2
0,SP,2

. We have the following

theorem.

Theorem 3.4. Under the conditions of Theorem 3.1, if X is symmetric and satisfies ϑ =
E(X), we have:

(i) If ϑ �= 0,
√

nŜG,1/σ̂SG,1

L−→ N(0,1).

(ii)
√

nŜG,2/σ̂SG,2

L−→ N(0,1).

(iii) In particular, if ϑ = 0,
√

nŜG,2/σ̂0,SG,2

L−→ N(0,1).

3.2 The measure SM

An asymptotic free test based on the sample skewness ŜM = n−1∑n
i=1(Xi−X̄)3

[n−1∑n
i=1(Xi−X̄)2]3/2 is proposed

by Gupta (1967) when the i.i.d. sample {X1, . . . ,Xn} are available and have finite population
moments up to the sixth order. For the multiplicative distortion measurement errors consid-
ered in this paper, we proposed an estimator of skewness as

̂̃SM,l = n−1∑n
i=1(X̃i − Ê(X̃i |Ui))

3

[n−1∑n
i=1 ψ̂3

l (Ui)]ŝ3
l

.

Theorem 3.5. Assume that conditions (A1)–(A5) hold, E(X6) < ∞, we have
√

n(̂̃SM,l − SM)
L−→ N

(
0, σ 2

SM

)
, l = 1,2,
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where,

σ 2
SM

= Var
(

ψ3(U)(X − E(X))3

E[ψ3(U)]σ 3 − SM

E[ψ3(U)]ψ
3(U) − 3SM

2σ 2

(
X − E(X)

)2)
.

Remark 5. The asymptotic variance σ 2
SM

is expressed as σ 2
SM

= δψ (6)μX(6)

δ2
ψ(3)σ 6 − S2

M

δψ(6)

δ2
ψ(3)

+
S2

M
9μX(4)

4σ 4 − 3SM
μX(5)

σ 5 + 3
4S2

M , where δψ(d) = E[ψd(U)] and μX(d) = E[(X − E(X))d ].
When X is symmetric with E(X) and E(X6) < ∞, we have SM = 0 and the asymptotic vari-
ance σ 2

SM
reduces to σ 2

SM
= δψ (6)μX(6)

δ2
ψ(3)σ 6 . It is known that when X is symmetric and observed

without measurement errors, the asymptotic variance of ŜM is shown to be μX(6)

σ 6 (Gupta

(1967)). The Cauchy-inequality entails that δψ(6) ≥ δ2
ψ(3), and then σ 2

SM
≥ μX(6)

σ 6 when X is
symmetric. This implies the multiplicative distortion function ψ(U) increases the classical
asymptotic variance of sample skewness.

Note that E{[X̃ − E(X̃|U)]6} = δψ(6)μX(6). When X is symmetric about E(X) and

E(X) �= 0, a consistent estimator of σ 2
SM

is proposed as σ̂ 2
SM,l

= n−1∑n
i=1(X̃i−Ê(X̃i |Ui))

6

{n−1∑n
i=1 ψ̂3

l (Ui)}2 ŝ6
l

, l =
1,2. Thus, a α-level asymptotic free test of H∗

0 : f (x + ϑ) = f (ϑ − x) is |√n̂̃SM,l/σ̂SM,l
| ≥

z1−α/2. If E(X) = 0, the α-level asymptotic free test is |√n̂̃SM,2/σ̂SM,2 | ≥ z1−α/2.

3.3 The measure SQ,δ

The Galton’s measure of skewness (also known as Bowley’s measure of skewness) is known
as SQ,0.25 when δ = 0.25, and the Kelley’s measure of skewness is known as SQ,0.1 when
δ = 0.1. For the multiplicative distortion measurement errors, we propose estimators of SQ,δ

as

̂̃S[l]
Q,δ =

̂̃q[l]
1−δ + ̂̃q[l]

δ − 2 me(X̂[l])̂̃q[l]
1−δ − ̂̃q[l]

δ

, δ ∈ (0,0.5), l = 1,2,

where ̂̃q[l]
δ is the δ-quantile of {X̂[l]

1 , . . . , X̂[l]
n }, l = 1,2.

Theorem 3.6. Assume that conditions (A1)–(A5) hold, if f (ϑ) > 0, f (qδ) > 0 and
f (q1−δ) > 0, we have

√
n
(̂̃S[l]

Q,δ − SQ,δ

) L−→ N
(
0, σ 2

SQ,δ

)
, l = 1,2,

where, let ωδ = q1−δ−ϑ
q1−δ−qδ

, and

σ 2
SQ,δ

= 4δ(1 − δ)

(q1−δ − qδ)2

[
ω2

δ

f 2(qδ)
+ (1 − ωδ)

2

f 2(q1−δ)

]
+ 1

(q1−δ − qδ)2f 2(ϑ)

+ 8δ2ωδ(1 − ωδ)

(q1−δ − qδ)2f (qδ)f (q1−δ)
− 4δωδ

(q1−δ − qδ)2f (qδ)f (ϑ)

− 4δ(1 − ωδ)

(q1−δ − qδ)2f (q1−δ)f (ϑ)
.

Remark 6. Note that estimators ̂̃S[l]
Q,δ of skewness are efficient. In other words, the proposed

estimator ̂̃S[l]
Q,δ eliminate the effect caused by the additive adjusted covariate ψ(U), that is,

the effect of additive errors vanishes.
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When the density function of X is symmetric with E(X) �= 0, we have ωδ = 1
2 , f (qδ) =

f (q1−δ), the asymptotic variance σ 2
SQ,δ

reduces to σ 2
SQ,δ

= 1
(q1−δ−qδ)2 [ 2δ

f 2(qδ)
+ 1

f 2(ϑ)
−

4δ
f (qδ)f (ϑ)

], and a consistent estimator of σ 2
SQ,δ

is proposed as

(
σ̂

[l]
SQ,δ

)2 = 1

(̂̃q[l]
1−δ − ̂̃q[l]

δ )2

[
2δ

f̂ 2
l (̂̃q[l]

δ )
+ 1

f̂ 2
l (me(X̂[l]))

− 4δ

f̂l(̂̃q[l]
δ )f̂l(me(X̂[l]))

]
.

The α-level asymptotic free test of H∗
0: f (x + ϑ) = f (ϑ − x), can be constructed as

|√n̂̃S[l]
Q,δ/σ̂

[l]
SQ,δ

| ≥ z1−α/2, where σ̂
[l]
SQ,δ

=
√

(σ̂
[l]
SQ,δ

)2, l = 1,2. If E(X) = 0, the α-level

asymptotic free test is |√n̂̃S[2]
Q,δ/σ̂

[2]
SQ,δ

| ≥ z1−α/2.

4 Simulation studies

In this section, we present numerical results to evaluate the performance of the proposed
estimators and test statistics. In the following simulation and real data analysis, the Epanech-
nikov kernel K(t) = 0.75(1 − t2)+ is used. To select bandwidth hs , s = 1, . . . ,4, a under-
smoothing bandwidth for hs is needed due to condition (A5). An ad-hoc but reasonable
choice is O(n−1/5) × n−2/15 = O(n−1/3). Then, we use the rule of thumb and the band-
width hs ’s are chosen as h1 = σ̂Un−1/3, h2 = σ̂

X̂[1]n−1/3, h3 = σ̂
X̂[2]n−1/3 and h4 = σ̂X̃n−1/3,

where σ̂U , σ̂
X̂[1] , σ̂

X̂[2] and σ̂X̃ are the sample standard deviation of {Ui, X̂
[1]
i , X̂

[2]
i , X̃i}ni=1,

respectively.

Example 1. In this example, we generate 2000 realization and the sample size is chosen as
n = 100, 300 and 500. The variable U is generated from a uniform distribution U(0,1) and
multiplicative distortion function is chosen as ψ(U) = 1 − 0.5 cos(2πU).

In Table 1, we consider that the variable X ∼ N(−1,1). In this case, E(X) = −1 �= 0, the
estimators ρ̂

[s]
k , s = 1,2 works. We investigate the performances of the benchmark estimator

ρ̂B
k (using the true covariate X in the simulation), the proposed estimator ρ̂

[s]
k , s = 1,2, and

the naive estimator ˆ̃ρk for k = 0.5,1,2,3. We report the means, standard errors, and the 95%
confidence intervals by using the proposed empirical likelihood method, associated with the
lower and upper bounds, the average lengthes and the coverage probabilities. In Table 1, we
see that when the sample size n is 300 or 500, the performances of ρ̂B

0.5, ρ̂
[s]
0.5, s = 1,2 are

better than ρ̂
[s]
k and ρ̂B

k , k = 1,2,3 because the values of mean of ρ̂
[s]
0.5 and ρ̂B

0.5 are close

to zero and the values of MSE are smaller. We find that the performances of ρ̂
[s]
k , s = 1,2

are almost the same as ρ̂B
k when the sample size n gets larger. We see that the empirical

likelihood confidence intervals of ρ̂
[s]
0.5, s = 1,2 and ρ̂B

0.5 show satisfactory performances,

and the coverage probabilities of ρ̂
[s]
0.5, ρ̂B

0.5 are much better than ρ̂
[s]
k and ρ̂B

k , k = 1,2,3,
which indicate that a larger value of k may cause lower coverage probabilities with shorter
average lengthes but has much smaller values of MSE. When the sample size n increases, the
performances of ρ̂

[s]
0.5, s = 1,2 and ρ̂B

0.5 become better both in terms of average lengthes of the
confidence intervals and the coverage probabilities. Generally, when the sample size n gets
larger, such as 300 or 500, the values of MSE of ρ̂

[2]
0.5 are all smaller than those of ρ̂

[1]
0.5. This is

not surprised and coincided with the Remark 2 in Theorem 2.1, the estimator ρ̂
[2]
0.5 performs

better than ρ̂
[1]
0.5 in estimation because |E(X)| = 1, E(|X|) = 1.166 and 1

[E(X)]2 > 1
[E|X|]2

holds true. Besides, the naive estimator ˆ̃ρk fails to recover the symmetry of the underlying
unobserved variable X. The values of mean of ˆ̃ρk all depart from zero, and the confidence
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Table 1 The means (MEAN), standard errors (SE), mean squared errors (MSE) and the 95% confidence intervals

for ρ̂B
k , ρ̂

[1]
k , ρ̂

[2]
k and ˆ̃ρk . “Lower” stands for the lower bound, “Upper” stands for upper bound, “AL” stands

for average length, “P” stands for the coverage probabilities when X ∼ N(−1,1). MSE is in the scale of 10−3

MEAN SE MSE Lower Upper AL P

n = 100 k = 0.5 ρ̂B
k 0.0795 0.1456 27.5361 −0.2577 0.2572 0.5105 94.6%

ρ̂
[1]
k 0.0850 0.1344 25.3149 −0.2486 0.2672 0.5158 95.3%

ρ̂
[2]
k 0.0670 0.1452 25.5766 −0.2713 0.2433 0.5146 94.2%
ˆ̃ρk 0.3165 0.1285 20.8157 −0.0276 0.4664 0.4940 95.1%

k = 1 ρ̂B
k 0.0473 0.1539 25.9349 −0.2485 0.2469 0.4954 91.6%

ρ̂
[1]
k 0.0545 0.1421 23.1571 −0.2387 0.2559 0.4947 94.2%

ρ̂
[2]
k 0.0324 0.1525 24.3222 −0.2632 0.2309 0.4942 92.6%
ˆ̃ρk 0.2948 0.1326 18.5536 −0.0061 0.4609 0.4671 92.7%

k = 2 ρ̂B
k 0.0297 0.1649 28.0782 −0.2306 0.2272 0.4579 87.8%

ρ̂
[1]
k 0.0363 0.1525 24.5767 −0.2201 0.2346 0.4548 89.3%

ρ̂
[2]
k 0.0124 0.1620 26.3909 −0.2465 0.2096 0.4562 87.6%
ˆ̃ρk 0.2730 0.1378 19.0801 0.0122 0.4402 0.4280 89.2%

k = 3 ρ̂B
k 0.0209 0.1649 27.6467 −0.2126 0.2165 0.4292 80.1%

ρ̂
[1]
k 0.0272 0.1538 24.4122 −0.1998 0.2251 0.4249 83.0%

ρ̂
[2]
k 0.0061 0.1602 25.6939 −0.2233 0.2032 0.4265 80.7%
ˆ̃ρk 0.2483 0.1361 18.5477 0.0292 0.4266 0.3974 84.0%

n = 300 k = 0.5 ρ̂B
k 0.0252 0.0801 7.0508 −0.1579 0.1583 0.3162 94.4%

ρ̂
[1]
k 0.0414 0.0779 7.7852 −0.1424 0.1732 0.3156 95.5%

ρ̂
[2]
k 0.0323 0.0796 7.3831 −0.1517 0.1643 0.3160 94.5%
ˆ̃ρk 0.2690 0.0715 5.4458 0.0885 0.3892 0.3006 97.5%

k = 1 ρ̂B
k 0.0151 0.0871 7.8229 −0.1491 0.1499 0.2991 90.2%

ρ̂
[1]
k 0.0299 0.0844 8.0284 −0.1348 0.1636 0.2984 90.6%

ρ̂
[2]
k 0.0200 0.0859 7.7906 −0.1446 0.1539 0.2985 90.4%
ˆ̃ρk 0.2696 0.0759 5.7961 0.1107 0.3885 0.2778 93.2%

k = 2 ρ̂B
k 0.0094 0.0974 9.5877 −0.1353 0.1371 0.2724 82.0%

ρ̂
[1]
k 0.0222 0.0943 9.4000 −0.1222 0.1488 0.2711 82.6%

ρ̂
[2]
k 0.0121 0.0955 9.2653 −0.1327 0.1391 0.2718 82.0%
ˆ̃ρk 0.2612 0.0820 6.7278 0.1231 0.3720 0.2488 87.2%

k = 3 ρ̂B
k 0.0080 0.1056 11.2267 −0.1304 0.1235 0.2539 75.8%

ρ̂
[1]
k 0.0189 0.1035 11.0796 −0.1172 0.1347 0.2520 77.3%

ρ̂
[2]
k 0.0095 0.1052 11.1605 −0.1266 0.1260 0.2526 77.8%
ˆ̃ρk 0.2486 0.0836 7.0114 0.1261 0.3571 0.2310 84.9%

intervals exclude zero when the sample size n is larger or equal to 300. This indicates that
the distorting function ψ(U) ruins the symmetry of the unobserved variable X, and we could
not ignore the multiplicative effect caused by the confounding variable U .

In Table 2, we consider that the variable X ∼ N(0,1). In this case, E(X) = 0, the estimator
ρ̂

[1]
k fails but the estimator ρ̂

[2]
k works. We investigate the performance of ρ̂B

k , ρ̂
[2]
k and ˆ̃ρk for

k = 0.5,1,2,3. Note that X is symmetric about zero, then the naive estimator ˆ̃ρk works
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Table 1 (Continued)

MEAN SE MSE Lower Upper AL P

n = 500 k = 0.5 ρ̂B
k 0.0132 0.0630 4.1481 −0.1251 0.1242 0.2494 94.5%

ρ̂
[1]
k 0.0304 0.0632 4.9321 −0.1070 0.1423 0.2493 95.5%

ρ̂
[2]
k 0.0246 0.0635 4.6453 −0.1137 0.1356 0.2493 95.3%
ˆ̃ρk 0.2618 0.0557 3.2251 0.1254 0.3625 0.2371 96.5%

k = 1 ρ̂B
k 0.0073 0.0690 4.8211 −0.1183 0.1174 0.2357 91.5%

ρ̂
[1]
k 0.0227 0.0689 5.2672 −0.1017 0.1336 0.2354 92.2%

ρ̂
[2]
k 0.0168 0.0693 5.0872 −0.1085 0.1269 0.2354 91.8%
ˆ̃ρk 0.2674 0.0591 3.5070 0.1464 0.3645 0.2181 93.8%

k = 2 ρ̂B
k 0.0037 0.0780 6.1007 −0.1080 0.1060 0.2140 83.8%

ρ̂
[1]
k 0.0167 0.0773 6.2578 −0.0932 0.1200 0.2133 83.7%

ρ̂
[2]
k 0.0108 0.0778 6.1736 −0.0998 0.1137 0.2136 84.4%
ˆ̃ρk 0.2618 0.0640 4.0967 0.1561 0.3508 0.1946 86.3%

k = 3 ρ̂B
k 0.0027 0.0874 7.6495 −0.1011 0.0978 0.1989 76.9%

ρ̂
[1]
k 0.0151 0.0841 7.3065 −0.0883 0.1092 0.1976 74.8%

ρ̂
[2]
k 0.0092 0.0855 7.4030 −0.0946 0.1034 0.1980 74.1%
ˆ̃ρk 0.2494 0.0661 4.3832 0.1526 0.3323 0.1796 80.1%

for testing the symmetry of X about zero. In Table 2, we see that when the sample size
n is 300 or 500, the performances of ρ̂B

0.5, ρ̂
[2]
0.5 and ˆ̃ρ0.5 are better than ρ̂B

k , ρ̂
[2]
k and ˆ̃ρk ,

k = 1,2,3, because the values of mean of ρ̂
[2]
0.5 and ρ̂B

0.5 are close to zero and the values
of MSE are smaller, and coverage probabilities of empirical likelihood confidence intervals
of ρ̂B

0.5, ρ̂
[2]
0.5 and ˆ̃ρk show satisfactory performances and are closer to 95%. Similar to the

simulation results reported in Table 1, a larger value of k causes lower coverage probabilities
with shorter average lengthes even it results in smaller values of MSE. When the sample size
n increases, the performances of ρ̂

[2]
0.5 are close to the benchmark estimator ρ̂B

0.5 both in terms
of the estimation and confidence intervals.

In Table 3, we consider that the variable X ∼ χ2(5) − 5. In this case, E(X) = 0 but X

is asymmetric. The estimator ρ̂
[1]
k also fails and the estimator ρ̂

[2]
k works. We investigate the

performances of ρ̂B
k , ρ̂

[2]
k and ˆ̃ρk for k = 0.5,1,2,3. In Table 3, we see that when the sample

size n is 300 or 500, the performances of ρ̂B
0.5 and ρ̂

[2]
0.5 are better than ρ̂B

k and ρ̂
[2]
k , k =

1,2,3, because those have larger values of mean and lower values of coverage probabilities of
empirical likelihood confidence intervals. Moreover, ρ̂B

0.5 and ρ̂
[2]
0.5 show better performances

and are closer to 95%. Similar to the simulation results reported in Table 1 and Table 2, a
larger value of k leads to lower coverage probabilities although the sample size n increases.
Note that X is asymmetric, then the naive estimator ˆ̃ρk fails and has lager bias compared
with ρ̂B

k and ρ̂
[2]
k . It is seen that the right confidence intervals of ρ̂B

k and ρ̂
[2]
k exclude the

left confidence intervals of ˆ̃ρk when the sample size n is 300 and 500. This implies that the
bias of ˆ̃ρk is non-ignorable, and the distorting function ψ(U) also ruins the asymmetry of the
unobserved variable X.

Example 2. In this example, we generate 2000 realization and the sample size is chosen
as n = 100, 300 and 500. The variable X is designed as X ∼ N(−2,1), X ∼ χ2

5 − 1 (a



Measuring symmetry and asymmetry 385

Table 2 The means (MEAN), standard errors (SE), mean squared errors (MSE) and the 95% confidence intervals

for ρ̂B
k , ρ̂

[1]
k , ρ̂

[2]
k and ˆ̃ρk . “Lower” stands for the lower bound, “Upper” stands for upper bound, “AL” stands

for average length, “P” stands for the coverage probabilities when X ∼ N(0,1). MSE is in the scale of 10−3

MEAN SE MSE Lower Upper AL P

n = 100 k = 0.5 ρ̂B
k 0.0807 0.1419 26.6534 −0.2577 0.2594 0.5173 95.9%

ρ̂
[2]
k 0.0797 0.1470 27.9862 −0.2578 0.2604 0.5183 93.9%
ˆ̃ρk 0.0658 0.1241 19.7466 −0.2524 0.2570 0.5094 96.0%

k = 1 ρ̂B
k 0.0491 0.1513 25.3132 −0.2505 0.2473 0.4979 93.1%

ρ̂
[2]
k 0.0500 0.1543 26.3073 −0.2508 0.2489 0.4998 92.0%
ˆ̃ρk 0.0417 0.1296 18.5500 −0.2439 0.2416 0.4855 96.0%

k = 2 ρ̂B
k 0.0328 0.1610 27.0065 −0.2320 0.2286 0.4609 87.0%

ρ̂
[2]
k 0.0338 0.1653 28.4590 −0.2325 0.2306 0.4632 85.6%
ˆ̃ρk 0.0285 0.1368 19.5254 −0.2236 0.2208 0.4444 91.6%

k = 3 ρ̂B
k 0.0268 0.1664 28.4159 −0.2437 0.2450 0.4887 85.8%

ρ̂
[2]
k 0.0278 0.1717 30.2500 −0.2458 0.2457 0.4915 83.9%
ˆ̃ρk 0.0234 0.1401 20.1806 −0.2369 0.2352 0.4722 91.2%

n = 300 k = 0.5 ρ̂B
k 0.0250 0.0832 7.5550 −0.1591 0.1566 0.3157 95.3%

ρ̂
[2]
k 0.0245 0.0834 7.5687 −0.1601 0.1562 0.3164 95.7%
ˆ̃ρk 0.0190 0.0706 5.3600 −0.1519 0.1551 0.3071 97.2%

k = 1 ρ̂B
k 0.0157 0.0895 8.2707 −0.1502 0.1489 0.2992 91.9%

ρ̂
[2]
k 0.0157 0.0897 8.2952 −0.1512 0.1484 0.2996 91.4%
ˆ̃ρk 0.0143 0.0741 5.7005 −0.1420 0.1460 0.2880 94.2%

k = 2 ρ̂B
k 0.0107 0.1001 10.1389 −0.1369 0.1357 0.2726 85.5%

ρ̂
[2]
k 0.0111 0.1006 10.2472 −0.1379 0.1352 0.2732 84.9%
ˆ̃ρk 0.0104 0.0816 6.7688 −0.1274 0.1317 0.2592 88.4%

k = 3 ρ̂B
k 0.0091 0.1071 11.5617 −0.1429 0.1454 0.2884 83.9%

ρ̂
[2]
k 0.0096 0.1078 11.7203 −0.1437 0.1454 0.2892 83.2%
ˆ̃ρk 0.0088 0.0861 7.4886 −0.1371 0.1352 0.2723 89.9%

n = 500 k = 0.5 ρ̂B
k 0.0168 0.0638 4.3616 −0.1249 0.1244 0.2493 95.3%

ρ̂
[2]
k 0.0164 0.0642 4.3990 −0.1253 0.1242 0.2496 95.7%
ˆ̃ρk 0.0144 0.0545 3.1793 −0.1211 0.1206 0.2418 97.9%

k = 1 ρ̂B
k 0.0098 0.0717 5.2461 −0.1187 0.1172 0.2360 91.9%

ρ̂
[2]
k 0.0091 0.0721 5.2939 −0.1191 0.1172 0.2364 91.9%
ˆ̃ρk 0.0076 0.0604 3.7145 −0.1140 0.1119 0.2259 95.5%

k = 2 ρ̂B
k 0.0062 0.0813 6.6469 −0.1086 0.1051 0.2138 83.3%

ρ̂
[2]
k 0.0056 0.0818 6.7307 −0.1088 0.1052 0.2141 83.4%
ˆ̃ρk 0.0049 0.0666 4.4595 −0.1034 0.0993 0.2028 89.6%

k = 3 ρ̂B
k 0.0044 0.0878 7.7259 −0.1172 0.1091 0.2264 82.7%

ρ̂
[2]
k 0.0040 0.0883 7.8232 −0.1176 0.1092 0.2269 81.7%
ˆ̃ρk 0.0038 0.0704 4.9710 −0.1111 0.1015 0.2126 87.4%
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Table 3 The means (MEAN), standard errors (SE), mean squared errors (MSE) and the 95% confidence intervals

for ρ̂B
k , ρ̂

[1]
k , ρ̂

[2]
k and ˆ̃ρk . “Lower” stands for the lower bound, “Upper” stands for upper bound, “AL” stands

for average length, “P” stands for the coverage probabilities when X ∼ χ2(5) − 5. MSE is in the scale of 10−3

MEAN SE MSE Lower Upper AL P

n = 100 k = 0.5 ρ̂B
k −0.5117 0.1006 22.5682 −0.7046 −0.4486 0.2560 95.3%

ρ̂
[2]
k −0.4344 0.1196 49.9786 −0.6734 −0.3006 0.3727 93.6%
ˆ̃ρk −0.2669 0.1098 16.3878 −0.5186 −0.0897 0.4288 95.4%

k = 1 ρ̂B
k −0.5258 0.1096 20.9914 −0.6937 −0.4136 0.2801 93.3%

ρ̂
[2]
k −0.4619 0.1230 40.2815 −0.6589 −0.2910 0.3678 92.7%
ˆ̃ρk −0.2692 0.1183 15.7163 −0.5081 −0.0807 0.4274 92.7%

k = 2 ρ̂B
k −0.4977 0.1210 22.8350 −0.6720 −0.3538 0.3181 87.4%

ρ̂
[2]
k −0.4512 0.1261 34.6609 −0.6403 −0.2787 0.3616 85.9%
ˆ̃ρk −0.2480 0.1243 16.3481 −0.4740 −0.0655 0.4084 89.4%

k = 3 ρ̂B
k −0.4639 0.1257 24.1410 −0.6442 −0.3130 0.3311 85.2%

ρ̂
[2]
k −0.4281 0.1273 32.3629 −0.6153 −0.2608 0.3544 83.7%
ˆ̃ρk −0.2297 0.1259 16.6221 −0.6228 −0.2717 0.3511 88.8%

n = 300 k = 0.5 ρ̂B
k −0.5896 0.0571 4.3919 −0.6824 −0.5328 0.1495 95.7%

ρ̂
[2]
k −0.5398 0.0680 11.5940 −0.6516 −0.4432 0.2083 95.1%
ˆ̃ρk −0.3167 0.0587 7.7006 −0.4513 −0.1973 0.2539 97.4%

k = 1 ρ̂B
k −0.5897 0.0640 5.0508 −0.6803 −0.5170 0.1632 91.7%

ρ̂
[2]
k −0.5470 0.0692 10.1868 −0.6516 −0.4502 0.2014 90.8%
ˆ̃ρk −0.2296 0.0669 4.6038 −0.4346 −0.1822 0.2524 94.6%

k = 2 ρ̂B
k −0.5553 0.0735 6.4882 −0.6535 −0.4684 0.1851 85.9%

ρ̂
[2]
k −0.5231 0.0748 9.8226 −0.6278 −0.4261 0.2017 84.6%
ˆ̃ρk −0.2689 0.0731 5.4241 −0.3963 −0.1590 0.2372 90.4%

k = 3 ρ̂B
k −0.5202 0.0788 7.4378 −0.6212 −0.4303 0.1909 83.8%

ρ̂
[2]
k −0.4941 0.0786 9.9009 −0.5980 −0.3990 0.1990 83.1%
ˆ̃ρk −0.2482 0.0758 5.8392 −0.3681 −0.1460 0.2221 87.4%

n = 500 k = 0.5 ρ̂B
k −0.6067 0.0445 2.2341 −0.6784 −0.5590 0.1194 95.1%

ρ̂
[2]
k −0.5656 0.0533 6.1683 −0.6518 −0.4940 0.1577 95.2%
ˆ̃ρk −0.3263 0.0467 2.2229 −0.4293 −0.2296 0.1996 97.5%

k = 1 ρ̂B
k −0.6051 0.0498 2.7245 −0.6731 −0.5431 0.1299 91.7%

ρ̂
[2]
k −0.5696 0.0533 5.4387 −0.6484 −0.4931 0.1552 91.9%
ˆ̃ρk −0.3074 0.0515 2.6722 −0.4086 −0.2109 0.1976 94.0%

k = 2 ρ̂B
k −0.5705 0.0579 3.6740 −0.6457 −0.4997 0.1460 83.8%

ρ̂
[2]
k −0.5434 0.0583 5.4013 −0.6238 −0.4674 0.1564 83.1%
ˆ̃ρk −0.2752 0.0574 3.3002 −0.3700 −0.1846 0.1854 90.9%

k = 3 ρ̂B
k −0.5357 0.0628 4.3289 −0.6137 −0.4639 0.1498 82.1%

ρ̂
[2]
k −0.5134 0.0619 5.5886 −0.5939 −0.4392 0.1547 81.0%
ˆ̃ρk −0.2544 0.0602 3.6343 −0.3437 −0.1700 0.1736 84.9%
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centered chi-squared distribution with degree of freedom 5 and mean 4). The multiplicative
distortion function is designed as ψ(U) = 1 − 0.5 cos(2πU), and U is generated from a
uniform distribution U(0,1).

In Table 4, we investigate the performance of the benchmark estimators (using the true
covariate X in the simulation)

ŜP = X̄ − me(X)

[n−1∑n
i=1(Xi − X̄)2]1/2

, ŜG = X̄ − me(X)

n−1∑n
i=1 |Xi − me(X)| ,

ŜM = n−1∑n
i=1(Xi − X̄)3

[n−1∑n
i=1(Xi − X̄)2]3/2

, ŜQ,0.25 = q̂0.75 + q̂0.25 − 2 me(X)

q̂0.75 − q̂0.25
,

the distorted estimators

S̃P = X̃ − me(X̃)

[n−1∑n
i=1(X̃i − X̃)2]1/2

, S̃G = X̃ − me(X̃)

n−1∑n
i=1 |X̃i − me(X̃)| ,

S̃M = n−1∑n
i=1(X̃i − X̃)3

[n−1∑n
i=1(X̃i − X̃)2]3/2

, S̃Q,0.25 = q̃0.75 + q̃0.25 − 2 me(X̃)

q̃0.75 − q̃0.25

and the proposed estimators ̂̃SP , ̂̃SG, ̂̃SM and ̂̃SQ,0.25. Here, me(X) and q̂δ are the me-
dian and δ-quantile of {X1, . . . ,Xn}, and me(X̃) and q̃δ are the median and δ-quantile of
{X̃1, . . . , X̃n}. Note that the true value of (SP , SG,SM,SQ,0.25) are (0,0,0,0) for normal dis-
tribution N(−2,1) and (0.2051,0.2718,1.2649,0.1512) for chi-squared distribution χ2

5 − 1.
In Table 4, it is seen that the distorted estimators S̃P , S̃G, S̃M and S̃Q,0.25 have non-ignorable
bias, which results in large values of MSE compared with benchmark estimators and pro-
posed estimators. It is easily seen that values of MSE for the distorted estimators generally
do not decrease as the sample size n increase, which again implies that the distorted estima-
tors produce non-ignorable bias. Meanwhile, the proposed estimators performs as well as the
benchmark estimators, and the values of MSE become smaller as the sample size n becomes
larger. It is also seen that the estimator ̂̃SM,l performs not well compared with the other three
estimators, and the values of MSE are much larger especial for the chi-squared distribution.

In Table 5 and Table 6, we report the power functions ̂̃SP,l ,
̂̃SG,l ,

̂̃SM,l and ̂̃S[l]
Q,0.25, l = 1,2

based on 2000 realization. Here, we consider the data generating process (DGP) given as
X ∼ (1 − b) ∗ N(−0.5,1) + b ∗ (−χ2

1 ), b = 0.2, . . . ,1. It is easily seen that the density of X

is asymmetric when b �= 0. The sample size n is chosen as n = 100, n = 300 and n = 500.
We find that the power functions of ρ̂

[2]
0.5, ̂̃SP,2 and ̂̃SG,2 are generally better than ρ̂

[1]
0.5

̂̃SP,1

and ̂̃SG,1 in this example. As the sample size n increases to 500, the power functions of these
five estimators increase to one rapidly. It is seen that ρ̂

[l]
0.5 works the best for detecting the

asymmetry of the underlying density function and is the most powerful than other four test

statistics, and ̂̃S[l]
δ,0.25 is the worst when the sample size n is 100 and gets better when the

sample size n is 300 and 500.

5 A real data analysis

In this section, we analyze the baseline data collected from studies A and B of the Mod-
ification of Diet in Renal Disease (MDRD) Study (Rosman et al. (1984)). There are 827
samples in this dataset. The main goal of the original study was to demonstrate that dietary
protein restriction can slow down the decline of the glomerular filtration rate (GFR). Here,
we investigate the symmetry of the unobserved baseline glomerular filtration rate (GFR) and
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Table 4 The means (M), standard errors (SE), mean squared errors (MSE) of proposed estimators (Pl )
̂̃SP,l ,

̂̃SG,l ,
̂̃SM,l ,

̂̃S[l]
Q,0.25, l = 1,2, and benchmark estimators (B) and

distorted estimators (D). MSE is in the scale of 10−3

SP SG SM SQ,0.25

n M SE MSE M SE MSE M SE MSE M SE MSE

N(−2,1) 100 P1 −0.0185 0.0723 5.5792 −0.0237 0.0920 9.0390 0.0010 0.2898 83.9628 −0.0025 0.1322 17.4985
P2 −0.0181 0.0728 5.6391 −0.0231 0.0925 9.0994 0.0001 0.2913 84.8528 −0.0031 0.1329 17.6846
B 0.0027 0.0727 5.3009 0.0035 0.0917 8.4198 0.0059 0.2302 53.0160 0.0040 0.1347 18.1572
D −0.1711 0.0700 34.1925 −0.2207 0.0916 57.1264 −0.6781 0.2517 523.1803 −0.1678 0.1330 45.8475

300 P1 −0.0211 0.0428 2.2848 −0.0268 0.0541 3.6532 0.0004 0.1797 32.3091 −0.0036 0.0766 5.8798
P2 −0.0209 0.0428 2.2772 −0.0265 0.0541 3.6369 −0.0001 0.1798 32.3255 −0.0033 0.0770 5.9403
B 0.0025 0.0426 1.8259 0.0032 0.0535 2.8780 0.0024 0.1391 19.3506 0.0042 0.0764 5.8583
D −0.1760 0.0397 32.5562 −0.2258 0.0519 53.7080 −0.7122 0.1547 531.2605 −0.1755 0.0746 36.3640

500 P1 −0.0219 0.0327 1.5546 −0.0276 0.04213 2.4714 −0.0023 0.1363 18.5970 −0.0043 0.0584 3.4329
P2 −0.0218 0.0329 1.5624 −0.0275 0.0415 2.4824 −0.0027 0.1365 18.6381 −0.0042 0.0584 3.4303
B 0.0011 0.0338 1.1443 0.0014 0.0424 1.8009 −0.0019 0.1056 11.1632 0.0023 0.0597 3.5782
D −0.1750 0.0322 31.6685 −0.2241 0.0420 52.0180 −0.7143 0.1142 523.3961 −0.1720 0.0592 33.0892

χ2
5 − 1 100 P1 0.1946 0.0719 5.2834 0.2620 0.0945 9.0257 0.9945 0.6087 443.5006 0.1406 0.1323 17.6125

P2 0.1954 0.0715 5.2147 0.2629 0.0944 8.9957 1.0009 0.6089 440.3624 0.1405 0.1320 17.5490
B 0.2017 0.0671 4.5243 0.2692 0.0925 8.5681 1.1492 0.3978 171.6255 0.1455 0.1330 17.7233
D 0.2584 0.0587 6.2945 0.3638 0.0879 16.1982 1.5643 0.4893 328.9876 0.2040 0.1302 19.7599

300 P1 0.2084 0.0411 1.7024 0.2778 0.0559 3.1625 1.1553 0.3980 170.3443 0.1463 0.0778 6.0774
P2 0.2086 0.0409 1.6896 0.2780 0.0558 3.1586 1.1578 0.3967 168.8061 0.1462 0.0777 6.0668
B 0.2026 0.0396 1.5793 0.2692 0.0548 3.0140 1.2203 0.2634 71.3390 0.1467 0.0777 6.0565
D 0.2638 0.0353 4.7044 0.3709 0.0533 12.6789 1.6768 0.3384 284.1171 0.2174 0.0774 10.3940

500 P1 0.2121 0.0306 0.9889 0.2821 0.0419 1.8635 1.2089 0.3465 123.1745 0.1500 0.0605 3.6704
P2 0.2121 0.0306 0.9898 0.2821 0.0419 1.8646 1.2101 0.3460 122.6922 0.1499 0.0605 3.6650
B 0.2036 0.0297 0.8891 0.2703 0.0410 1.6836 1.2394 0.2113 45.3061 0.1486 0.0598 3.5921
D 0.2639 0.0268 4.1858 0.3711 0.0402 11.4966 1.7155 0.2981 291.9543 0.2158 0.0609 7.9007
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Table 5 The simulation results for power calculations in Example 2 for l = 1

b ρ̂
[1]
0.5

̂̃SP,1
̂̃SG,1

̂̃SM,1
̂̃S[1]

Q,0.25

n = 100
b = 0.2 0.0585 0.0090 0.0090 0.0345 0.0570
b = 0.4 0.3015 0.0640 0.0640 0.1565 0.0905
b = 0.6 0.9430 0.5625 0.5625 0.6855 0.1845
b = 0.8 1.0000 0.9355 0.9355 0.8075 0.4700
b = 1.0 1.0000 0.9540 0.9540 0.8230 0.5510

n = 300
b = 0.2 0.1170 0.0100 0.0100 0.0365 0.0665
b = 0.4 0.7575 0.3050 0.3050 0.7130 0.0980
b = 0.6 0.9990 0.9875 0.9875 0.9580 0.3730
b = 0.8 1.0000 0.9935 0.9935 0.9725 0.8390
b = 1.0 1.0000 0.9940 0.9940 0.9740 0.8815

n = 500
b = 0.2 0.1315 0.0140 0.0140 0.0540 0.0710
b = 0.4 0.9390 0.5690 0.5690 0.9305 0.1150
b = 0.6 1.0000 0.9990 0.9990 0.9905 0.5765
b = 0.8 1.0000 1.0000 1.0000 0.9910 0.9420
b = 1.0 1.0000 1.0000 1.0000 0.9920 0.9700

Table 6 The simulation results for power calculations in Example 2 for l = 2

b ρ̂
[2]
0.5

̂̃SP,2
̂̃SG,2

̂̃SM,2
̂̃S[2]

Q,0.25

n = 100
b = 0.2 0.0775 0.0620 0.0620 0.0245 0.0645
b = 0.4 0.3165 0.1570 0.1570 0.1565 0.0825
b = 0.6 0.9515 0.7455 0.7455 0.6855 0.1820
b = 0.8 1.0000 0.9985 0.9985 0.8075 0.4540
b = 1.0 1.0000 1.0000 1.0000 0.8230 0.5510

n = 300
b = 0.2 0.1105 0.0665 0.0665 0.0365 0.0665
b = 0.4 0.7705 0.5165 0.5165 0.7130 0.0920
b = 0.6 0.9995 0.9985 0.9985 0.9580 0.3645
b = 0.8 1.0000 1.0000 1.0000 0.9725 0.8275
b = 1.0 1.0000 1.0000 1.0000 0.9740 0.8815

n = 500
b = 0.2 0.1400 0.0770 0.0775 0.0540 0.0690
b = 0.4 0.9325 0.7770 0.7770 0.9305 0.1020
b = 0.6 1.0000 1.0000 1.0000 0.9905 0.5600
b = 0.8 1.0000 1.0000 1.0000 0.9910 0.9425
b = 1.0 1.0000 1.0000 1.0000 0.9920 0.9700

unobserved serum creatinine (SCr) data as an illustration of our method. Assume that the
distorted GFR is X̃1 and the distorted SCr is X̃2. Suggested by Cui et al. (2009), the con-
founding variable U for this data is taken to be the body surface area (BSA), which is defined
as BSA(m2) = 0.007184 ∗ Kg0.425 ∗ Cm0.725.

We first present the patterns of ψ̂1,GFR(u) and ψ̂1,SCr(u) by using (2.2) in Figure 1 un-
der the confounding variable-BSA. Figure 1 indicates that underlying distorting functions
ψGFR(u) and ψSCr(u) are not a constant function, suggesting that the confounding variable-
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Figure 1 The estimated curve of distorting functions ψSCr(u) and ψGFR(u), associated 95% pointwise confi-
dence intervals (dotted lines).

Table 7 The estimation and p-values of estimators ̂̃SP,1, ̂̃SG,1, ̂̃SM,1 and ̂̃S[1]
Q,0.25

̂̃SP,1
̂̃SG,1

̂̃SM,1
̂̃S[1]

Q,0.25

Estimate p-value Estimate p-value Estimate p-value Estimate p-value

SCr 0.0719 0.4319 0.0856 0.4319 0.1619 0.0434 0.0827 0.0860
GFR 0.2733 0.0002 0.3618 0.0002 1.1476 2.0812×10−8 0.2733 4.0810×10−7

BSA definitely makes effect of GFR and SCr in this data. From the original data and the
estimated curves of ψ̂1,GFR(u) and ψ̂1,SCr(u) in Figure 1, there is no negative values of
the distorted GFR (i.e., |X̃1| = X̃1) and the distorted SCr (|X̃2| = X̃2), so the estimators
(ψ̂1,GFR(u), ψ̂1,SCr(u)) and (ψ̂2,GFR(u), ψ̂2,SCr(u)) (by using (2.3) with a common band-
width) satisfy ψ̂1,GFR(u) = ψ̂2,GFR(u) and ψ̂1,SCr(u) = ψ̂2,SCr(u) for this dataset. Figure 1
implies the values of ψ̂1,GFR(u) and ψ̂1,SCr(u) should be positive. Because all the values of
(X̃1, X̃2), X̂

[1]
1 , X̂

[1]
2 and ψ̂1,GFR(u), ψ̂1,SCr(u) are all positive in this dataset, so we have

{X̂[1]
s,i = X̂

[2]
s,i }827

i=1, s = 1,2.

We now use ρ̂
[1]
0.5, ̂̃SP,1, ̂̃SG,1, ̂̃SM,1 and ̂̃S[1]

Q,0.25 to investigate the symmetry of the unob-

served GFR and SCr. The 95% confidence intervals of ρ̂
[1]
0.5 are (−0.4534,−0.3034) for SCr,

and (−0.7583,−0.6583) for GFR. Both two intervals exclude zero and indicate that SCr and

GFR are asymmetric. We also present the values of estimators ̂̃SP,1, ̂̃SG,1, ̂̃SM,1 and ̂̃S[1]
Q,0.25

and associated p-values in Table 7. The plots of the histogram and density function estimate
of original variables X̃s and estimated variables X̂[1]

s , s = 1,2 are presented in Figure 2. The
p-values for GFR and figure in Figure 2 showed that the unobserved GFR is asymmetric.
While, for SCr, the distorted X̃2 in Figure 2 implies asymmetry, but the estimated X̂

[1]
2 shows

a slightly symmetric and also investigated by statistics ̂̃SP,1, ̂̃SG,1 and ̂̃S[1]
Q,0.25. The statistiĉ̃SM,1 and ρ̂

[1]
0.5 show that SCr should be asymmetric. Together with Figure 1 and the perfor-

mances of statistic ̂̃SM,1 and ρ̂
[1]
0.5 presented in Table 7, we prefer to the conclusion that SCr

is asymmetric for this dataset. In Figure 1, when the value of BSA is less than two, the values
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Figure 2 The histograms and density curve estimates for estimated variable X̂.

of distorting functions ψ̂1,GFR(u) and ψ̂1,SCr(u) are less than one. This makes the observed
values GFR (X̃1) and SCr (X̃2) have smaller values. Similarly, when the value of BSA is
larger than two, the distorting functions ψ̂1,GFR(u) and ψ̂1,SCr(u) make the observed values
GFR (X̃1) and SCr (X̃2) have larger values. Together with Figure 2, the distortion functions
ψ̂1,GFR(u) and ψ̂1,SCr(u) make the unobserved GFR and SCr more dispersive. Figure 2 im-
plies the Rayleigh distribution may be fit for the estimated GFR (X̂[1]

1 ) and the estimated SCr

(X̂[1]
2 ) for employing in the field of Nutrition for linking dietary nutrient levels and human

responses, moreover, the parameter in Rayleigh distribution may be used to calculate nutrient
response relationship with estimated GFR and estimated SCr.

6 Discussions and further research

In this article, we start research of how to estimate and test the symmetry of a continuous
variable under the multiplicative distortion measurement errors setting, and the associated
asymptotic results are also investigated. Due to the importance of the symmetry in statistics,
there are huge amount of papers on how to measure and test the symmetry; hence it is impos-
sible for us to transform all the existing methods of the multiplicative distortion measurement
errors setting. Instead of attempting to cover as many papers as we could, we intend to study
relatively important methods in statistics literature on the hypothesis testing of the symmetry.
Testing the symmetry for the model error under the multiplicative distortion measurement
errors setting, such as parametric regression models and semi-parametric regression models,
can be considered in the future work. The research is ongoing.
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