
Bayesian Analysis (2020) 15, Number 4, pp. 1323–1343

Nested Adaptation of MCMC Algorithms

Dao Nguyen∗, Perry de Valpine†, Yves Atchade‡, Daniel Turek§,
Nicholas Michaud¶,‖, and Christopher Paciorek∗∗

Abstract. Markov chain Monte Carlo (MCMC) methods are ubiquitous tools
for simulation-based inference in many fields but designing and identifying good
MCMC samplers is still an open question. This paper introduces a novel MCMC
algorithm, namely, Nested Adaptation MCMC. For sampling variables or blocks
of variables, we use two levels of adaptation where the inner adaptation opti-
mizes the MCMC performance within each sampler, while the outer adaptation
explores the space of valid kernels to find the optimal samplers. We provide a the-
oretical foundation for our approach. To show the generality and usefulness of the
approach, we describe a framework using only standard MCMC samplers as can-
didate samplers and some adaptation schemes for both inner and outer iterations.
In several benchmark problems, we show that our proposed approach substan-
tially outperforms other approaches, including an automatic blocking algorithm,
in terms of MCMC efficiency and computational time.

Keywords: adaptive MCMC, MCMC efficiency, integrated autocorrelation time,
mixing.

1 Introduction

Markov chain Monte Carlo (MCMC) has become a widely used approach for simulation
from an arbitrary distribution of interest, typically a Bayesian posterior distribution,
known as the target distribution. MCMC really represents a family of sampling methods.
Generally speaking, any new sampler that can be shown to preserve the ergodicity of the
Markov chain such that it converges to the target distribution is a member of the family
and can be combined with other samplers as part of a valid MCMC kernel. The key to
MCMC’s success is its simplicity and applicability. In practice, however, it sometimes
needs a lot of non-trivial tuning to work well (Haario et al., 2005).

To deal with this problem, many adaptive MCMC algorithms have been proposed
(Gilks et al., 1998; Haario et al., 2001; Andrieu and Robert, 2001; Sahu et al., 2003).
These allow parameters of the MCMC kernel to be automatically tuned based on pre-
vious samples. This breaks the Markovian property of the chain so has required special
schemes and proofs that the resulting chain will converge to the target distribution
(Andrieu and Moulines, 2003; Atchadé et al., 2005; Andrieu and Atchadé, 2006). Un-

∗Departments of Mathematics, University of Mississippi, Oxford, dxnguyen@olemiss.edu
†Department of Environmental Science, Policy, and Management, University of California, Berkeley
‡Department of Statistics, University of Michigan, Ann Arbor
§Department of Mathematics & Statistics, Williams College, Williamstown
¶Department of Environmental Science, Policy, and Management, University of California, Berkeley
‖Department of Statistics, University of California, Berkeley
∗∗Department of Statistics, University of California, Berkeley

c© 2020 International Society for Bayesian Analysis https://doi.org/10.1214/19-BA1190

https://bayesian.org/resources/bayesian-analysis/
mailto:dxnguyen@olemiss.edu
https://doi.org/10.1214/19-BA1190

1324 Nested Adaptation of MCMC Algorithms

der some weaker and easily verifiable conditions, namely “diminishing adaptation” and
“ containment”, Roberts and Rosenthal (2007) proved ergodicity of adaptive MCMC
and proposed many useful samplers.

It is important to realize, however, that such adaptive MCMC samplers address
only a small aspect of a much larger problem. A typical adaptive MCMC sampler will
approximately optimize performance given the kind of sampler chosen in the first place,
but it will not optimize among the variety of samplers that could have been chosen. For
example, an adaptive random walk Metropolis-Hastings sampler will adapt the scale
of its proposal distribution, but that adaptation won’t reveal whether an altogether
different kind of sampler would be more efficient. In many cases it would, and the
exploration of different sampling strategies often remains a human-driven trial-and-
error affair.

Here we present a method for a higher level of MCMC adaptation. The adaptation
explores a potentially large space of valid MCMC kernels composed of different samplers.
One starts with an arbitrary set of candidate samplers for each dimension or block
of dimensions in the target distribution. The main idea is to iteratively try different
candidates that compose a valid MCMC kernel, run them for a relatively short time,
generate the next set of candidates based on the results thus far, and so on. Since
relative performance of different samplers is specific to each model and even to each
computing environment, it is doubtful whether there is a universally optimal kind of
sampler. Hence we view the choice of efficient samplers for a particular problem as
well-suited to empirical determination via computation.

The goal of computationally exploring valid sampler combinations in search of an
efficient model-specific MCMC kernel raises a number of challenges. First, one must
prove that the samples collected as the algorithm proceeds indeed converge to the target
distribution, even when some of the candidate samplers are internally adaptive, such
as conventional adaptive Metropolis-Hastings samplers. We provide such a proof for a
general framework.

Second, one must determine efficient methods for exploring the very large, discrete
space of valid sampler combinations. This is complicated by a combinatorial explosion,
which is exacerbated by the fact that any multivariate samplers can potentially be
used for arbitrary blocks of model dimensions. Here we take a practical approach to
this problem, setting as our goal only to show basic schemes that can yield substantial
improvements in useful time frames. Future work can aim to develop improvements
within the general framework presented here. We also limit ourselves to relatively simple
candidate samplers, but the framework can accommodate many more choices.

Third, one must determine how to measure the efficiency of a particular MCMC
kernel for each dimension and for the entire model, in order to have a metric to seek
to optimize. As a first step, it is vital to realize that there can be a trade-off between
good mixing and computational speed. When considering adaptation within one kind of
sampler, say adaptive Metropolis-Hastings, one can roughly assume that computational
cost does not depend on the proposal scale, and hence mixing measured by integrated
autocorrelation time, or the related effective sample size, is a sensible measure of effi-
ciency. But when comparing two samplers with very different computational costs, say

D. Nguyen, P. de Valpine, Y. Atchade, D. Turek, N. Michaud, and C. Paciorek 1325

adaptive Metropolis-Hastings and slice samplers, good mixing may or may not be worth
its computational cost. Metropolis-Hastings samplers may mix more slowly than slice
samplers on a per iteration basis, but they do so at higher computational speed because
slice samplers can require many evaluations of model density functions. Thus the greater
number of random walk iterations per unit time could outperform the slice sampler. An
additional issue is that different dimensions of the model may mix at different rates, and
often the slowest-mixing dimensions limit the validity of all results (Turek et al., 2017).
In view of these considerations, we define MCMC efficiency as the effective sample size
per computation time and use that as a metric of performance per dimension. Perfor-
mance of an MCMC kernel across all dimensions is defined as the minimum efficiency
among all dimensions.

The rest of the paper is organized as follows. Section 2 begins with a general theoret-
ical framework for Nested Adaptation MCMC, then extends these methods to a specific
Nested Adaptation algorithm involving block MCMC updating. Section 3 presents an
example algorithm that fits within the framework, and provides some explanations on
its details. Section 4 then outlines some numerical examples comparing the example
algorithm with existing algorithms for a variety of benchmark models. Finally, Section
5 concludes and discusses some future research directions.

2 A general Nested Adaptation MCMC

In this section, we present a general Nested Adaptation MCMC algorithm and give
theoretical results establishing its correctness.

Let X be a state space and π the probability distribution on X that we wish to
sample from. Let I be a countable set (this set indexes the discrete set of MCMC
kernels we wish to choose from). For ι ∈ I, let Θι be a parameter space in some subset
space R

m. For ι ∈ I and θ ∈ Θι, let Pι,θ denote a Markov kernel on X with invariant
distribution π. We set Θ̄ =

⋃
ι∈I{ι} ×Θι the adaptive MCMC parameter space. We

want to build a stochastic process (an adaptive Markov chain) {(Xn, ιn, θn), n ≥ 0}
on X × Θ̄ such that as n → ∞, the distribution of Xn converges to π, and a law of
large numbers holds. We call ι the external adaptation parameter and θ the internal
adaptation parameter.

We will follow the general adaptive MCMC recipe of Roberts and Rosenthal (2009).
Assume that any internal adaptation on Θι is done using a function Hι: Θι ×X → Θι,
and an “internal clock” sequence {γn, n ≥ 0} such that limn→∞ γn = 0. The function
Hι depends on γn and updates parameters for internal adaptation. Also, let {pk, k ≥ 1}
be a sequence of numbers pk ∈ (0, 1) such that limk→∞ pk = 0. pk will be the probability
of performing external adaptation at external iteration k. During the algorithm we will
also keep track of two variables: κn, the number of external adaptations performed up
to step n; and τn, the number of iterations between n and the last time an external
adaptation is performed. These two variables are used to manage the internal clock
based on external iterations, which in most situations can simply be the number of
adaptation steps. We build the stochastic process {(Xn, ιn, θn), n ≥ 0} on X × Θ̄ as
follows.

1326 Nested Adaptation of MCMC Algorithms

1. We start with κ0 = τ0 = 0. We start also with some X0 ∈ X , ι0 ∈ I, and θ0 ∈ Θι0 .

2. At the n-th iteration, given Fn
def
= σ{(Xk, ιk, θk), k ≤ n}, and given κn, τn:

(a) Draw Xn+1 ∼ Pιn,θn(Xn, ·).
(b) Independently of Fn and Xn+1, draw Bn+1 ∼ Bern(pn+1) ∈ {0, 1}.

i. If Bn+1 = 0, there is no external adaptation: ιn+1 = ιn. We update κn

and τn:
κn+1 = κn, τn+1 = τn + 1. (2.1)

Then we perform an internal adaptation: set cn+1 = κn+1 + τn+1, and
compute

θn+1 = θn + γcn+1Hιn(θn, Xn+1). (2.2)

Note that the internal adaptation interval could vary between iterations.

ii. If Bn+1 = 1, then we do an external adaptation: we choose a new ιn+1.
And we choose a new value θn+1 ∈ Θιn+1 based on Fn and Xn+1. Then
we update κn and τn.

κn+1 = κn + 1, τn+1 = 0. (2.3)

For this Nested Adaptation MCMC algorithm to be valid we must show that it satisfies
three assumptions:

1. For each (ι, θ) ∈ Θ̄, Pι,θ has invariant distribution π.

2. (diminishing adaptation):

�n+1
def
= sup

x∈X
‖Pιn,θn(x, ·)− Pιn+1,θn+1(x, ·)‖TV

converges in probability to zero, as n → ∞.

3. (containment): For all ε > 0, the sequence {Mε(ιn, θn, Xn)} is bounded in prob-
ability, where

Mε(ι, θ, x)
def
= inf{n ≥ 1 : ‖Pn

ι,θ(x, ·)− π‖TV ≤ ε}.
Remark 2.1. Here the first assumption holds by construction. We will show that by
the design, our Nested Adaptation algorithm satisfies the diminishing adaptation.

For ι ∈ I, θ, θ′ ∈ Θι, define

Dι(θ, θ′)
def
= sup

x∈X
‖Pι,θ(x, ·)− Pι,θ′(x, ·)‖TV.

Proposition 2.1. Suppose that I is finite, and for any ι ∈ I, the adaptation function
Hι is bounded, and there exists C < ∞ such that

Dι(θ, θ′) ≤ C‖θ − θ′‖.

Then the diminishing adaptation holds.

D. Nguyen, P. de Valpine, Y. Atchade, D. Turek, N. Michaud, and C. Paciorek 1327

Proof. We have

E(�n+1) = pn+1E(�n+1|Bn+1 = 1) + (1− pn+1)E(�n+1|Bn+1 = 0),

≤ 2pn+1 + E(�n+1|Bn+1 = 0),

= 2pn+1 + E [Dιn(θn, θn+1)],

≤ 2pn+1 + CE [‖θn+1 − θn‖],
≤ 2pn+1 + C1γcn+1 ,

where cn+1 = κn+1 + τn+1. It is easy to see that cn → ∞ as n → ∞. The result follows
since limn→∞ pn = limn→∞ γn = 0.

2.1 On the containment assumption

In general, the containment condition is more challenging to check than the diminish-
ing adaptation condition, and this technical assumption might not even be necessary
sometimes (Roberts and Rosenthal, 2007). Since the containment assumption is an
assumption on the mixing time process {Mε(ιn, θn, Xn), n ≥ 0}, adaptive MCMC algo-
rithms for which the Markov kernels Pι,θ have similar sufficiently fast mixing behavior
typically satisfy the containment assumption. This intuition was rigorously established
by Roberts and Rosenthal (2007) which showed that the containment assumption holds
when the family {Pι,θ : (ι, θ) ∈ Θ̄} possesses a certain simultaneous ergodicity prop-
erty (either uniform, geometric, or sub-geometric). This means in a nutshell that all
the Markov kernels Pι,θ have qualitatively the same convergence rate, be it uniform,
geometric or subgeometric. Hence to check the containment assumption, we typically
need to study the convergence rate of each kernel Pι,θ, and verify that all the rates
are within a multiplicative constant of each other. Despite recent advances in Markov
Chain Monte Carlo theory, there is no general theory that can be easily employed to
establish the convergence rate of a given MCMC algorithm. The rate depends as much
on the algorithm, as on the target distribution. In this context, it is clear that verifying
the containment assumption is a mathematically tedious endeavor that is beyond the
scope of this paper. We refer the interested reader to Roberts and Rosenthal (2007);
Andrieu and Thoms (2008); Atchade and Fort (2010); Atchadé et al. (2011) for some
detailed examples.

3 Example algorithms

We present one specific approach as an example of a Nested Adaptation algorithm.
Our approach to “outer adaptation” will be to identify the “worst-mixing dimension”
(i.e., some parameter or latent state of the statistical model) and update the kernel
by assigning different sampler(s) for that dimension. To explain the method, we will
give some terminology for describing our algorithm. In particular, we will define a valid
kernel, MCMC efficiency, and worst-mixing dimension. We will define a set of candidate
samplers for a given dimension, which could include scalar samplers or block samplers.
In either case, a sampler may also have internal adaptation for each parameter or com-
bination. To implement the internal clock of each sampler (cn of the general algorithm),

1328 Nested Adaptation of MCMC Algorithms

we need to formulate all internal adaptation in the framework using 2.2. We use P
(without subscripts) in this section to represent Pι,θ of the general theory, so the kernel
and parameters are implicit.

3.1 Valid kernel

Assume our model of interest is M, which could be represented as a graphical model
where vertices or nodes represent states or data while edges represent dependencies
among them. Here we are using “state” as Bayesian statisticians do to mean any di-
mension of the model to be sampled by MCMC, including model parameters and la-
tent states. We denote the set of all dimensions of the target distribution, as X =
{X1, . . . ,Xm}. Since we will construct a new MCMC kernel as an ordered set of sam-
plers at each outer iteration, it is useful to define requirements for a kernel to be valid.
We require that each kernel, if used on its own, would be a valid MCMC to sample from
the target distribution π(X), X ∈ X (typically defined from Bayes Rule as the condi-
tional distribution of states given the data). This is the case if it satisfies the detailed
balance equation, π = Pπ.

In more detail, we need to ensure that a new MCMC kernel does not omit some
subspace of X from mixing. Denote the kernel P as a sequence of (new choice of cn+1)
samplers Pi, i = 1 . . . j, such that P = PjPj−1 . . . P1. By some abuse of terminology, P
is a valid kernel if each sampler Pi operates on a non-empty subset bi of X , satisfying⋃j

i=1 bi = X .

At iteration n, assume the kernel is P (n) and the samples areXn = (Xn,1, . . . , Xn,m)
where the set of initial values is X0. For each dimension Xk, k = 1, . . . ,m let Xk =
{X0,k, X1,k, . . .} be the scalar chain of samples of Xk.

3.2 Worst mixing state and MCMC efficiency

We define MCMC efficiency for state Xk from a sample of size N from kernel P as
effective sample size per computation time

ωk(N,P) =
N/τk(P)

t(N,P)
,

where t(N,P) is the computation time for kernel P to run N iterations (often t(N,P) ≈
Nt(1, P)) and τk(P) is the integrated autocorrelation time for chain Xk defined as

τk = 1 + 2
∞∑

i=1

cor(X0,k, Xi,k)

(Straatsma et al., 1986). The ratio N/τk is the effective sample size (ESS) for state Xk

(Roberts and Rosenthal, 2001). Note that t(N,P) is computation time for the entire
kernel, not just samplers that update Xk. τk can be interpreted as the number of effective
samples per actual sample. The worst-mixing state is defined as the state with minimum
MCMC efficiency among all states. Let kmin be the index of the worst-mixing state,

D. Nguyen, P. de Valpine, Y. Atchade, D. Turek, N. Michaud, and C. Paciorek 1329

that is
kmin = argmin

k
τ−1
k .

Since the worst mixing dimension will limit the validity of the entire posterior sample
(Thompson, 2010), we define the efficiency of a MCMC algorithm as ωkmin(N,P), the
efficiency of the worst-mixing state of model M.

There are several ways to estimate ESS, but we use effectiveSize function in the
R coda package (Plummer et al., 2006) since this function provides a stable estimation
of ESS. This method, which is based on the spectral density at frequency zero, has been
proven to have the highest convergence rate, thus giving a more accurate and stable
result (Thompson, 2010).

3.3 Candidate samplers

A set of candidate samplers {Pj , j ∈ S} is a list of all possible samplers that could be
used for a parameter of the model M. These may differ depending on the parameter’s
characteristics and role in the model (e.g., whether there is a valid Gibbs sampler, or
whether it is restricted to [0,∞)). In addition to univariate candidate samplers, nodes
can also be sampled by block samplers. Denote |b| the number of elements of b. If

|bi| > 1, P
(n)
i , the sampler applied to block bi at iteration n, is called a block sampler;

otherwise it is a univariate or scalar sampler.

In the examples below we considered up to four univariate candidate samplers and
three kinds of block samplers. The univariate samplers included adaptive Metropolis-
Hastings (AMH), adaptive Metropolis-Hastings on a log scale (AMHLS) for states taking
only positive real values, Gibbs samplers for states with a conjugate prior-posterior
pairing, and slice samplers. The block samplers included adaptive Metropolis-Hastings
with multivariate normal proposals, automated factor slice sampler (Tibbits et al., 2014)
(slice samplers in a set of orthogonal rotated coordinates), and automated factor random
walk (univariate random walks in a set of orthogonal rotated coordinates). These choices
are by no means exhaustive but serve to illustrate the algorithms here.

Block samplers and how to block

Turek et al. (2017) suggested different ways to block the states efficiently: (a) based on
correlation clustering, (b) based on model structure. Here we use the first method.

At each iteration, we use the generated samples to create the empirical posterior
correlation matrix. To stabilize the estimation, all of the samples are used to compute
a correlation matrix ρd×d. This in turn is used to make a distance matrix Dd×d where
Di,j = 1 − |ρi,j | for i �= j and Di,i = 0 for every i, j in 1, . . . , d. To ensure minimum
absolute pairwise correlation between clusters, we construct a hierarchical cluster tree
from the distance matrix D (Everitt et al. (2011) chapter 4). Given a selected height,
we cluster the hierarchical tree into distinct groups of states. Different parts of the tree
may have different optimal heights for forming blocks. Instead of using a global height
to cut the tree, we only choose a block that contains the worst-mixing state from the

1330 Nested Adaptation of MCMC Algorithms

cut and keep the other samplers unchanged. At each outer iteration, if the algorithm
is choosing a new block sampler as part of a new kernel, it will cut the tree at a lower
correlation threshold, thus creating a cluster of nodes with lower posterior correlations.
In our implementation, we use the R function hclust to build the hierarchical clustering
tree with “complete linkage” from the distance matrix D. By construction, the absolute
correlation between states within each group is at least 1 − h for h in [0, 1]. We then
use the R function cutree to choose a block that contains the worst-mixing state.
This process is justified in the sense that the partitioning adapts according to the
model structure through the posterior correlation. The details and validity of the block
sampling in our general framework are provided in Supplement S1 (Nguyen et al., 2019).

3.4 How to choose new samplers

To choose new samplers to compose a new kernel, we determine the worst-mixing state
and choose randomly from candidate samplers to replace whatever sampler was updating
it in the previous kernel while keeping other samplers the same. There are some choices
to make when considering a block sampler. If the worst-mixing parameter is x, and the
new kernel will use a block sampler for x together with one or more parameters y, we
keep the current sampler(s) used for y. Future work can consider other schemes such as
changing group of samplers together based on model structure.

3.5 Internal clock variables

In the Algorithm 1, θ represents the internal adaptation parameter of a particular
sampler and c represents its internal clock. In general, an internal clock variable is
defined as a variable used in a sampler to determine the size of internal adaptation
steps such that any internal adaptation would converge in a typical MCMC setting.
An example of an internal clock variable is a number of internal iterations that have
occurred. To use a sampler in the general framework, we need to establish what are its
internal adaptation and clock variables. A few examples of internal adaptation variables
of different samplers are summarized as follows:

• For adaptive Metropolis-Hastings: proposal scale is used.

• For block adaptive Metropolis-Hastings: proposal scale and covariance matrix are
used.

• For automated factor slice sampler: covariance matrix (or equivalent, i.e. coordi-
nate rotation) is used.

• For automated factor random walk: covariance matrix (ditto) and proposal scales
for each rotated coordinate axis are used.

These internal adaption variables are set to default initial values when its sampler
is first used. After that, they are retained along with internal clock variables so that
whenever we revisit a sampler, we will use the stored values to set up this sampler.

D. Nguyen, P. de Valpine, Y. Atchade, D. Turek, N. Michaud, and C. Paciorek 1331

This setting guarantees the diminishing adaption property, which is essential for the
convergence of the algorithm. Pseudo-code for Nested Adaptation MCMC is given in
Algorithm 1.

Algorithm 1 Nested Adaptation MCMC

Input:
Bayesian model with initial state (including latent variables) X0

{pn, n ∈ N|pn ∈ (0, 1), limn pn = 0}, maximum iteration M
Candidate samplers {Pj , j ∈ S}
Pι0,θ0 := ordered set of initial samplers {P (0)

j }j∈S from Bayesian model
Output:

An ordered set of samplers {Pi∗}i∗∈S with the best MCMC efficiency so far
1: Initialize EFF, EFFbest, n, κ0, τ0, c0 to 0 � Denote MCMC efficiency EFF
2: while (EFF ≥ EFFbest) or (n < M) do

3: Sample N samples from the current sampler set {P (n)
j }j∈S

4: Store internal clocks cn and adaption variables θn for each sampler � Section 3.5
5: Compute EFFk = ωk(N,P) = N/τk(P)

t(N,P)
� k is an index of parameters

6: Identify kmin = argmink τ
−1
k , EFF = EFFkmin � See Section 3.2

7: if (EFF ≥ EFFbest) then

8: Set {Pi∗}i∗∈S = {P (n)
i }i∈S

9: Set EFFbest = EFF
10: else
11: Set {P (n)

i }i∈S = {Pi∗}i∗∈S

12: Draw Bn+1 ∼ Bern(pn+1) ∈ {0, 1}
13: if Bn+1 = 0 then
14: κn+1 = κn, τn+1 = τn + 1, cn+1 = κn+1 + τn+1

15: else
16: κn+1 = κn + 1, τn+1 = 0, cn+1 = κn+1 + τn+1

17: Set P
(n+1)
i = P

(n)
i , i �= kmin, choose P

(n+1)
kmin

from candidate samplers � Section 3.4

18: if (P
(n+1)
kmin

has been used before) then

19: Use cn, θn to set up the sampler P
(n+1)
kmin

20: else
21: Use default internal adaptation value of P

(n+1)
kmin

� Section 3.5

22: Set n = n+ 1

4 Examples

In this section, we evaluate our algorithm on some benchmark examples and compare
them to different MCMC algorithms. In particular, we compare our approach to the
following MCMC algorithms.

• All Scalar algorithm: Every dimension is sampled using an adaptive scalar normal
random walk sampler.

• All Blocked algorithm: All dimensions are sampled in one adaptive multivariate
normal random walk sampler.

1332 Nested Adaptation of MCMC Algorithms

• Default algorithm: Samplers are assigned as follows. When possible, a conjugate
(Gibbs) sampler is used. Otherwise, adaptive random-walk Metropolis-Hastings
samplers are used. These will be block samplers for parameters arising from mul-
tivariate distributions and scalar samplers otherwise.

• Auto Block algorithm: The Auto Block method (Turek et al., 2017) searches block-
ing schemes based on hierarchical clustering from posterior correlations to deter-
mine a highly efficient (but not necessarily optimal) set of blocks that are sam-
pled with multivariate normal random-walk samplers. Thus, Auto Block uses only
either scalar or multivariate adaptive random walk, concentrating more on parti-
tioning the correlation matrix than trying different sampling methods. Note that
the initial sampler of both the Auto Block algorithm and our proposed algorithm
is the All Scalar algorithm.

All experiments were carried out using the NIMBLE package (de Valpine et al., 2017)
for R (R Core Team, 2013) on a cluster using 32 cores of Intel Xeon E5-2680 2.7 Ghz
with 256 GB memory. Models are coded using NIMBLE’s version of the BUGS model
declaration language (Lunn et al., 2000, 2012). All MCMC algorithms are written in
NIMBLE, which provides user-friendly interfaces in R and efficient execution in custom-
generated C++, including matrix operations in the C++ Eigen library (Guennebaud
et al., 2010).

To measure the performance of an MCMC algorithm, we use MCMC efficiency.
MCMC efficiency depends on ESS, estimates of which can have a high variance for a
short Markov chain. This presents a tuning-parameter trade-off for the Nested Adapta-
tion method: Is it better to move cautiously (in sampler space) by running long chains
for each outer adaptation in order to gain an accurate measure of efficiency, or is it
better to move adventurously by running short chains, knowing that some algorithm
decisions about samplers will be based on noisy efficiency comparisons? In the latter
case, the final samplers may be less optimal, but that may be compensated by the
saved computation time. To explore this trade-off, we try our Nested Adaptation algo-
rithm with different sample sizes in each outer adaptation and label results accordingly.
For example, Nested Adaptation 10K will refer to the Nested Adaptation method with
samples of 10,000 per outer iteration.

We present algorithm comparisons in terms of time spent in an adaptation phase,
final MCMC efficiency achieved, and the time required to obtain a fixed effective sample
size (e.g., 10,000). Only Auto Block and Nested Adaptation have adaptation phases.
An important difference is that Auto Block did not come with a proof of valid adaptive
MCMC convergence (it could be modified to work in the current framework, but we
compare to the published version). Therefore, samples from its adaptation phase are
not normally included in the final samples, while the adaptation samples of Nested
Adaptation can be included.

To measure final MCMC efficiency, we conducted a single long run of length N with
the final kernel of each method solely for the purpose of obtaining an accurate ESS
estimate. One would not normally do such a run in a real application. The calculation
of time to obtain a fixed effective sample size incorporates both adaptation time and

D. Nguyen, P. de Valpine, Y. Atchade, D. Turek, N. Michaud, and C. Paciorek 1333

efficiency of the final samplers. For both Nested Adaptation and Auto Block, we placed
them on a similar playing field by assuming for this calculation that samples are not
retained from the adaptation phase, making the results conservative.

For all comparisons, we used 20 independent runs of each method and present the
average results from these runs. To show the variation in runs, we present box-plots of
efficiency in relation to computation time from the 20 runs of Nested Adaptation. The
final (right-most) box-plot in each such figures shows the 20 final efficiency estimates
from larger runs. Not surprisingly, these can be lower than obtained by shorter runs.
These final estimates are reported in the tables.

A public Github repository containing scripts for reproducing our results may be
found at https://github.com/nxdao2000/AutoAdaptMCMC. Some additional experi-
ments are also provided there.

4.1 Linear state space model

First, to illustrate the distinction between the Nested Adaptation algorithm and other
methods, we will use a linear state space model (Durbin and Koopman, 2012) in which
all parameters are fixed. Such a model will allow us to provide a simple assessment of
the performances of the methods for a range of situations, including those in which the
models were true.

Let xt be the latent state at time t, yt be the observed data, and suppose we have
the number of time points T = 50. Let the initial priors be:

a ∼ Uniform(0, 1),

b ∼ N(1, 1),

μ0 ∼ N(0, 1),

and observation density yt ∼ N(bxt, 1) for t = 2, . . . , 50. State transitions are governed
by a first order autoregressive (AR) process

xt ∼ N(axt−1, 1) for t = 2, . . . , 50.

x1 and y1 were randomly generated from simulating x1 ∼ N(μ0, 1), y1 ∼ N(x1, 1)
with μ0 = 0 while xt and yt are subsequently generated using transition density with
the parameter values a = 0.2 and b = 2. These values were arbitrarily chosen to cover
the range observed for the explanatory variables; we desire high efficiency regardless of
model fit, so the particular choice of this simple model is tangential to our main points.

In this relatively simple example, we try our Nested Adaptation algorithm with large
numbers of iterations in each outer adaptation as well as a large number of iterations
for the final efficiency. Specifically, we used samples sizes of 5000, 10000 and 20000 per
outer adaptation and we used N = 100000 for computing final efficiency.

For this example (Table 1) All Scalar sampling produces MCMC efficiency of about
121.8, while the All Blocked algorithm, which consists of a single block sampler of
dimension 53, has MCMC efficiency of approximately 5.2. All Blocked samples all 53

https://github.com/nxdao2000/AutoAdaptMCMC

1334 Nested Adaptation of MCMC Algorithms

Algorithms Adapt time Efficiency Time to 104 effective samples

All Blocked 0.00 52.359 1910
Default 0.00 1198.128 83
All Scalar 0.00 1218.060 82
Auto Block 22.92 1277.639 101
Nested Adaptation 5K 0.9 1796.079 56
Nested Adaptation 10K 1.7 1693.929 61
Nested Adaptation 20K 3.3 1616.752 65

Table 1: Summary results of different MCMC algorithms for the linear state space
model. Runtime is presented as seconds, and efficiency is in units of effective samples
produced per second of algorithm runtime. Time to N effective samples is computed
by N/efficiency for static algorithms and that plus adaptation time for Auto Block and
Nested Adaptation algorithms.

Figure 1: MCMC efficiencies of different methods for linear state space model. The
left panel shows the box-plots of MCMC efficiencies of All Blocked, All Scalar, Auto
Block and Default algorithms computed from 20 replications. The right panel shows the
box-plots of MCMC efficiencies of Nested Adaptation 5K algorithm computed from 20
replications at each outer adaptation. The last (right-most) box-plot is computed from
the chain of 100000 samples generated. The time axis shows the average computational
time of 20 replications.

dimensions jointly, which requires computation time roughly double that of All Scalar
and yields only rather low ESS. The Default algorithm performs similarly to Auto
Block but worse than Nested Adaptation algorithm. Since Auto Block converges to All
Scalar in this case, the Auto Block algorithm performs no better than standard All
Scalar (Figure 1) as would be expected. It is clear that Nested Adaptation method has

D. Nguyen, P. de Valpine, Y. Atchade, D. Turek, N. Michaud, and C. Paciorek 1335

dramatic improvements even when we take into account the adaptation time. Amongst
these Auto methods, Auto Block performs worse than all Nested Adaptation 5K, Nested
Adaptation 10K and Nested Adaptation 20K in both computational time and MCMC
efficiencies. Overall, Nested Adaptation 5K appears to be the most efficient method in
terms of time to 10000 effective samples. One interpretation is that Nested Adaptation
5K trades off well between adaptation time and MCMC efficiency in this model. The
final samplers from Nested Adaptation included an automated factor slice sampler on
block (a, b), an automated factor random walk sampler on block (μ0, x1) and adaptive
random-walk Metropolis-Hastings samplers on other nodes.

Figure 1 illustrates that Nested Adaptation algorithm outperforms the other algo-
rithms. This comes from both the flexibility to trade-off the number of outer adaptations
vs. adaptive time to reach a good sampler as well as the larger space of kernels being ex-
plored. Since MCMC efficiency is highly dependent upon hierarchical model structures,
using scalar and multivariate normal random walks alone, as done by the Auto Block
algorithm, can be quite limiting. Nested Adaptation, can overcome this limitation with
the flexibility to choose different type of samplers. We will see that more strongly in the
next examples, where the models are more complex.

4.2 A random effect model

We consider the “litters” model, which is an original example model provided with the
MCMC package WinBUGS. This model is chosen because of its notoriously slow mixing,
which is due to the strong correlation between parameter pairs. It is desirable to show
how much improvement can be achieved compared to other approaches on this bench-
mark example. The purpose of using this simple example is to establish the potential
utility of the Nested Adaptation approach, while saving more advanced applications for
future work. In this case, we show that our algorithm indeed outperforms by a signif-
icant margin the other approaches. This model’s specification is given following Deely
and Lindley (1981) and Kass and Steffey (1989) as follows.

Suppose we observe the data in i groups. In each group, the data yij , j = {1, . . . , n}
are conditionally independent given the parameters pij , with the observation density

yij ∼ Bin(nij , pij).

In addition, assume that pij for fixed i are conditionally independent given the “hyper-
parameters” αi, βi, with conjugate density

pij ∼ Beta(αi, βi).

Assume that αj , βj follow prior densities,

α1 ∼ Gamma(1, 0.001),

β1 ∼ Gamma(1, 0.001),

α2 ∼ Uniform(0, 100),

β2 ∼ Uniform(0, 50).

1336 Nested Adaptation of MCMC Algorithms

Algorithms Adapt time Efficiency Time to 104 effective samples

All Blocked 0.00 0.5855 17079
Default 0.00 1.8385 5439
All Scalar 0.00 1.6870 5928
Auto Block 21.97 12.1205 847
Nested Adaptation 50K 4.09 16.4532 612
Nested Adaptation 70K 5.95 18.0358 560
Nested Adaptation 100K 8.34 17.6278 576

Table 2: Summary results of different MCMC algorithms for the litters model. Runtime
is presented as seconds, and efficiency is in units of effective samples produced per second
of algorithm runtime. Time to N effective samples is computed by N/efficiency for
static algorithms and that plus adaptation time for Auto Block and Nested Adaptation
algorithms.

Following the setup of Rue and Held (2005) as discussed in Turek et al. (2017),
we could jointly sample the top-level parameters and conjugate latent states as the
beta-binomial conjugacy relationships allow the use of what Turek et al. (2017) call
cross-level sampling, but, for demonstration purposes, we do not include this here.

Since the litters model mixes poorly, we run a large number of iterations (i.e. N =
300000) to produce stable estimates of final MCMC efficiency. We start both Auto
Block and Auto Adapt algorithms with All Scalar and adaptively explore the space of
all given candidate samplers. We use Nested Adaptation with either 50000, 70000 or
100000 iterations per outer adaptation.

Results (Table 2) show that Auto Block generates samples with MCMC efficiency
about seven-fold, six-fold and twenty-fold that of the All Scalar, Default and All Blocked
methods, respectively. We can also see that as the outer adaptation sample size in-
creases, the performance of Nested Adaptation improves. Final MCMC efficiencies of
Nested Adaptation 50K, Nested Adaptation 70K and Nested Adaptation 100K are
135%, 148% and 145% of MCMC efficiency of Auto Block, respectively. In addition,
the adaptation time for all cases of Nested Adaptation are much shorter than for Auto
Block. Combining adaptation time and final efficiency into the resulting time to 10000
effective samples, we see that in this case, larger samples in each outer iteration are
worth their computational cost. In this example, the final samplers from Nested Adap-
tation included automated factor random walk samplers on blocks (α1, β1) and (α2,
β2), a slice sampler on p1,16 and adaptive Metropolis-Hastings samplers on all other
nodes.

Figure 2 shows the box-plots computed from 20 independent runs on the litters
model of All Blocked, All Scalar, Auto Block, Default and Nested Adaptation 50K
algorithms. The left panel of the figure confirms that MCMC efficiency of Auto Block
is well dominated that of other static adaptive algorithms. The right panel of the figure
shows the MCMC efficiency of Nested Adaptation 50K gradually improves with time.
The right-most box-plot verifies that the MCMC efficiency of selected samplers from
Nested Adaptation algorithm (computed from large samples) is better than that of

D. Nguyen, P. de Valpine, Y. Atchade, D. Turek, N. Michaud, and C. Paciorek 1337

Figure 2: MCMC efficiencies of different methods for litters model. The left panel shows
the box-plots of MCMC efficiencies of All Blocked, All Scalar, Auto Block and De-
fault algorithms computed from 20 replications. The right panel shows the box-plots of
MCMC efficiencies of Nested Adaptation 50K algorithm computed from 20 replications
at each outer adaptation. The last (right-most) box-plot is computed from the chain of
300000 samples generated. The time axis shows the average computational time of 20
replications.

Auto Block algorithm. Last but not least, Nested Adaptation algorithms are much
more efficient than Auto Block in the sense that we can keep every sample while Auto
Block algorithm throws away most of the samples.

4.3 Spatial model

In this section, we consider a hierarchical spatial model as the final example. We use
the classical scallops dataset for this model. This dataset is chosen since we want to
compare our approach with other standard approaches in the presence of spatial depen-
dence. This data collects observations of scallop abundance at 148 locations from the
New York to New Jersey coastline in 1993. It was surveyed by the Northeast Fisheries
Science Center of the National Marine Fisheries Service and made publicly available
at http://www.biostat.umn.edu/~brad/data/myscallops.txt. It has been analyzed
many times, such as Ecker and Heltshe (1994); Ecker and Gelfand (1997); Banerjee
et al. (2004) and references therein. Following Banerjee et al., assume the log-abundance
g = (g1, . . . , gN) follows a multivariate normal distribution with mean μ and covariance
matrix Σ, defined by covariances that decay exponentially as a function of distance.
Specifically, let yi be measured scallop abundance at site i, di,j be the distance between

http://www.biostat.umn.edu/~{}brad/data/myscallops.txt

1338 Nested Adaptation of MCMC Algorithms

Algorithms Adapt time Efficiency Time to 104 effective samples

All Blocked 0.00 0.0100 1000000
Default 0.00 0.0020 5000000
All Scalar 0.00 0.1150 86956
Auto Block 19094.89 0.3565 47145
Nested Adaptation 5K 2967.55 0.4420 25592
Nested Adaptation 10K 6221.61 0.4565 28127
Nested Adaptation 20K 11278.78 0.4948 31488

Table 3: Summary results of different MCMC algorithms for spatial model. Runtime is
presented as seconds, and efficiency is in units of effective samples produced per second
of algorithm runtime. Time to N effective samples is computed by N/efficiency for
static algorithms and that plus adaptation time for Auto Block and Nested Adaptation
algorithms.

sites i and j, and ρ be a valid correlation. Then

g ∼ N(μ,Σ) ,

where each component Σij = σ2exp(−di,j/ρ).

We model observations as yi ∼ Poisson(exp(gi)). Priors for σ and ρ are Uniform over
a large range of interest. The parameters in the posterior distribution are expected to
be correlated as the covariance structure induces a trade-off between σ and ρ. This can
be sampled well by Auto Block algorithm, and we would like to show that our approach
can achieve even higher efficiency with lower computational cost of adaptation.

This spatial model, with 858 parameters, is computationally expensive to estimate.
Therefore, we will use Nested Adaptation 5K, Nested Adaptation 10K and Nested Adap-
tation 20K algorithms for comparison and run N = 50000 for estimating final efficiency.
In this case, the typical final samplers from Nested Adaptation included an automated
factor random walk sampler on block (σ, ρ), adaptive random walk samplers on blocks
(μ, g34, g66, g148) and (g39, g52), an automated factor slice sampler on block (g11, g12,
g33, g48, g92), slice samplers on g54, g65, and g68, and adaptive random-walk Metropolis-
Hastings samplers on the rest.

As can be seen from Table 3, All Blocked and Default algorithms mix very poorly,
resulting in extremely low efficiencies of 0.01 and 0.002, respectively. The All Scalar
algorithm, while achieving higher ESS, runs slowly because large matrix calculations
are needed for every univariate sampler. The Auto Block algorithm, on the other hand,
selects an optimal threshold to cut the entire hierarchical clustering tree into differ-
ent groups, increasing the ESS about 3 times. With a few small blocks, the compu-
tation cost of Auto Block is somewhat cheaper than All Scalar algorithm. As a re-
sult, the efficiency mean is about 3.5 times that of All Scalar. Meanwhile, our Nested
Adaptation 5K, 10K and 20K algorithms perform best. It should be noted that the
Nested Adaptation algorithm can achieve good mixing with adaptation times that
are only 15.5%, 32.5% and 59% compared to the adaptation time of Auto Block.
In Figure 3, while the left panel shows a distinction between Auto Block and other

D. Nguyen, P. de Valpine, Y. Atchade, D. Turek, N. Michaud, and C. Paciorek 1339

Figure 3: MCMC efficiencies of different methods for spatial model. The left panel
shows the box-plots of MCMC efficiencies of All Blocked, All Scalar, Auto Block and
Default algorithms computed from 20 replications. The right panel shows the box-plots
of MCMC efficiencies of Nested Adaptation 5K algorithm computed from 20 replications
at each outer adaptation. The last (right-most) box-plot is computed from the chain
of 10000 samples generated. The time axis shows the average computational time of 20
replications.

static algorithms, the right panel shows that Nested Adaptation 20K surpasses Auto
Block in just a few outer iterations, indicating substantial improvements in some mod-
els.

5 Discussion

We have proposed a general Nested Adaptation MCMC algorithm. Our algorithm tra-
verses a space of valid MCMC kernels to find an efficient algorithm automatically. There
is only one previous approach, namely Auto Block sampling, of this kind that we are
aware of. We have shown that our approach can substantially outperform Auto Block in
some cases, and that both outperform simple static approaches. Using some benchmark
models, we observe that our approach can yield improvements, which can be substantial
compared to the Default method.

The comparisons presented have deliberately used fairly simple samplers as options
for Nested Adaptation in order to avoid comparisons among vastly different computa-
tional implementations. A major feature of our framework is that it can incorporate
almost any sampler as a candidate and almost any strategy for choosing new kernels
from compositions of samplers based on results so far. Samplers to be explored in the

1340 Nested Adaptation of MCMC Algorithms

future could include auxiliary variable algorithms such as slice sampling or derivative-
based sampling algorithms such as Hamiltonian Monte Carlo (Duane et al., 1987). Now
that the basic framework is established and shown to be useful in simple cases, it merits
extension to more advanced cases.

The Nested Adaptation method can be viewed as a generalization of the Auto Block
method. It is more general in the sense that it can use more kinds of samplers and
explore the space of samplers more generally than the correlation-clustering of Auto
Block. Thus, our framework can be considered to provide a broad class of automated
kernel construction algorithms that use a wide range of sampling algorithm as compo-
nents.

If block sampling is included in the space of the candidate samplers, choosing optimal
blocks is important and can greatly increase the efficiency of the algorithm. For this
reason, we extended the cutting of a hierarchical cluster tree to allow different cut heights
on different branches (different parts of the model). This differs from Auto Block, which
forms all blocks by cutting the entire tree at the same height. We also have different
multivariate adaptive sampling other than random walk normal distribution such as
automated factor slice sampler and automated factor random walk sampler. With these
extensions, the final efficiency achieved by our algorithm specifically among blocking
schemes is often substantially better and is found in a shorter time.

Beyond hierarchical clustering, there are other approaches one might consider to
find efficient blocking schemes. One such approach would be to use the structure of
the graph instead of posterior correlations to form blocks. This would allow conser-
vation of calculations that are shared by some parts of the graph, whether or not
they are correlated. Another future direction could be to improve how a new kernel
is determined from previous results, essentially to determine an effective strategy for
exploring the very high-dimensional kernel space. Finally, the trade-off between com-
putational cost and the accuracy of effective sample size estimates is worth further
exploration.

Development of Nested Adaptation MCMC has also raised several theoretical ques-
tions for future work. First, similarly to other adaptive MCMC methods, can more
general conditions of validity be proven? Second, the estimation of effective sample size
from a chain generated using Nested Adaptation is difficult because the properties of
the kernel will have changed during the course of sampling. Methods for estimating
effective sample size typically don’t consider such a situation. Third, what are good
choices for the external and internal adaptation schedules (e.g. γn and pk in Section 2)?
Fourth, how can we disentangle the contribution of each sampler to mixing achieved by
a kernel comprising multiple samplers? Doing so could enable better moves in kernel
space during outer adaptation. Finally, what are good strategies for parallelization of
Nested Adaptation?

Supplementary Material

Nested adaptation of MCMC algorithms: Appendix A (DOI: 10.1214/19-BA1190SUPP;
.pdf).

https://doi.org/10.1214/19-BA1190SUPP

D. Nguyen, P. de Valpine, Y. Atchade, D. Turek, N. Michaud, and C. Paciorek 1341

References
Andrieu, C. and Atchadé, Y. F. (2006). “On the efficiency of adaptive MCMC algo-
rithms.” In Proceedings of the 1st International Conference on Performance Eval-
uation Methodolgies and Tools, 43. ACM. MR2350572. doi: https://doi.org/10.
1214/ECP.v12-1320. 1323

Andrieu, C. and Moulines, E. (2003). “Ergodicity of some adaptive Markov chain Monte
Carlo algorithm.” Technical report. 1323

Andrieu, C. and Robert, C. P. (2001). “Controlled MCMC for optimal sampling.”
Preprint . MR0784226. 1323

Andrieu, C. and Thoms, J. (2008). “A tutorial on adaptive MCMC.” Statistics
and Computing , 18(4): 343–373. MR2461882. doi: https://doi.org/10.1007/

s11222-008-9110-y. 1327

Atchade, Y. and Fort, G. (2010). “Limit theorems for some adaptive MCMC algorithms
with sub-geometric kernels.” Bernoulli , 16(1): 116–154. MR2648752. doi: https://
doi.org/10.3150/09-BEJ199. 1327

Atchadé, Y., Fort, G., Moulines, E., and Priouret, P. (2011). “Adaptive Markov chain
Monte Carlo: theory and methods.” In Bayesian time series models, 32–51. Cam-
bridge Univ. Press, Cambridge. MR2894232. 1327

Atchadé, Y. F., Rosenthal, J. S., et al. (2005). “On adaptive Markov chain Monte
Carlo algorithms.” Bernoulli , 11(5): 815–828. MR2172842. doi: https://doi.org/
10.3150/bj/1130077595. 1323

Banerjee, S., Carlin, B. P., and Gelfand, A. E. (2004). Hierarchical Modeling and Anal-
ysis for Spatial Data. Chapman and Hall/CRC. MR3362184. 1337

de Valpine, P., Turek, D., Paciorek, C. J., Anderson-Bergman, C., Lang, D. T., and
Bodik, R. (2017). “Programming with models: writing statistical algorithms for gen-
eral model structures with NIMBLE.” Journal of Computational and Graphical Statis-
tics, 26(2): 403–413. MR3640196. doi: https://doi.org/10.1080/10618600.2016.
1172487. 1332

Deely, J. and Lindley, D. (1981). “Bayes empirical bayes.” Journal of the American
Statistical Association, 76(376): 833–841. MR0650894. 1335

Duane, S., Kennedy, A. D., Pendleton, B. J., and Roweth, D. (1987). “Hybrid Monte
Carlo.” Physics Letters B , 195(2): 216–222. MR3960671. 1340

Durbin, J. and Koopman, S. J. (2012). Time Series Analysis by State Space Methods,
volume 38. Oxford University Press. MR3014996. doi: https://doi.org/10.1093/
acprof:oso/9780199641178.001.0001. 1333

Ecker, M. and Heltshe, J. (1994). “Geostatistical estimates of scallop abundance.” Case
Studies in Biometry , 107–124. 1337

Ecker, M. D. and Gelfand, A. E. (1997). “Bayesian variogram modeling for an isotropic

https://www.ams.org/mathscinet-getitem?mr=2350572
https://doi.org/10.1214/ECP.v12-1320
https://doi.org/10.1214/ECP.v12-1320
https://www.ams.org/mathscinet-getitem?mr=0784226
https://www.ams.org/mathscinet-getitem?mr=2461882
https://doi.org/10.1007/s11222-008-9110-y
https://doi.org/10.1007/s11222-008-9110-y
https://www.ams.org/mathscinet-getitem?mr=2648752
https://doi.org/10.3150/09-BEJ199
https://doi.org/10.3150/09-BEJ199
https://www.ams.org/mathscinet-getitem?mr=2894232
https://www.ams.org/mathscinet-getitem?mr=2172842
https://doi.org/10.3150/bj/1130077595
https://doi.org/10.3150/bj/1130077595
https://www.ams.org/mathscinet-getitem?mr=3362184
https://www.ams.org/mathscinet-getitem?mr=3640196
https://doi.org/10.1080/10618600.2016.1172487
https://doi.org/10.1080/10618600.2016.1172487
https://www.ams.org/mathscinet-getitem?mr=0650894
https://www.ams.org/mathscinet-getitem?mr=3960671
https://www.ams.org/mathscinet-getitem?mr=3014996
https://doi.org/10.1093/acprof:oso/9780199641178.001.0001
https://doi.org/10.1093/acprof:oso/9780199641178.001.0001

1342 Nested Adaptation of MCMC Algorithms

spatial process.” Journal of Agricultural, Biological, and Environmental Statistics ,
347–369. MR1817044. doi: https://doi.org/10.2307/1400508. 1337

Everitt, B. S., Landau, S., Leese, M., and Stahl, D. (2011). “Hierarchical clustering.”
Cluster Analysis, 5th Edition, 71–110. MR3155074. doi: https://doi.org/10.1002/
9780470977811. 1329

Gilks, W. R., Roberts, G. O., and Sahu, S. K. (1998). “Adaptive Markov chain
Monte Carlo through regeneration.” Journal of the American Statistical Association,
93(443): 1045–1054. MR1649199. doi: https://doi.org/10.2307/2669848. 1323

Guennebaud, G., Jacob, B., et al. (2010). “Eigen.” URL: http://eigen.tuxfamily.
org. 1332

Haario, H., Saksman, E., and Tamminen, J. (2001). “An adaptive Metropolis algo-
rithm.” Bernoulli , 223–242. MR1828504. doi: https://doi.org/10.2307/3318737.
1323

Haario, H., Saksman, E., and Tamminen, J. (2005). “Component-wise adaptation for
high dimensional MCMC.” Computational Statistics, 20(2): 265–273. MR2323976.
doi: https://doi.org/10.1007/BF02789703. 1323

Kass, R. E. and Steffey, D. (1989). “Approximate Bayesian inference in conditionally
independent hierarchical models (parametric empirical Bayes models).” Journal of
the American Statistical Association, 84(407): 717–726. MR1132587. 1335

Lunn, D., Jackson, C., Best, N., Thomas, A., and Spiegelhalter, D. (2012). The BUGS
Book: A Practical Introduction to Bayesian Analysis . CRC Press. 1332

Lunn, D. J., Thomas, A., Best, N., and Spiegelhalter, D. (2000). “WinBUGS-a Bayesian
modelling framework: concepts, structure, and extensibility.” Statistics and Comput-
ing , 10(4): 325–337. 1332

Nguyen, D., de Valpine, P., Atchade, Y., Turek, D., Michaud, N., and Paciorek, C.
(2019). “Nested adaptation of MCMC algorithms: Appendix A.” Bayesian Analysis.
doi: https://doi.org/10.1214/19-BA1190SUPP. 1330

Plummer, M., Best, N., Cowles, K., and Vines, K. (2006). “CODA: convergence diag-
nosis and output analysis for MCMC.” R News, 6(1): 7–11. 1329

R Core Team (2013). “R: A Language and Environment for Statistical Computing.”
URL: http://www.R-project.org/. 1332

Roberts, G. O. and Rosenthal, J. S. (2001). “Optimal scaling for various Metropolis-
Hastings algorithms.” Statistical Science, 16(4): 351–367. MR1888450. doi: https://
doi.org/10.1214/ss/1015346320. 1328

Roberts, G. O. and Rosenthal, J. S. (2007). “Coupling and ergodicity of adaptive
Markov chain Monte Carlo algorithms.” Journal of Applied Probability , 44(2): 458–
475. MR2340211. doi: https://doi.org/10.1239/jap/1183667414. 1324, 1327

Roberts, G. O. and Rosenthal, J. S. (2009). “Examples of adaptive MCMC.” Journal of

https://www.ams.org/mathscinet-getitem?mr=1817044
https://doi.org/10.2307/1400508
https://www.ams.org/mathscinet-getitem?mr=3155074
https://doi.org/10.1002/9780470977811
https://doi.org/10.1002/9780470977811
https://www.ams.org/mathscinet-getitem?mr=1649199
https://doi.org/10.2307/2669848
http://eigen.tuxfamily.org
http://eigen.tuxfamily.org
https://www.ams.org/mathscinet-getitem?mr=1828504
https://doi.org/10.2307/3318737
https://www.ams.org/mathscinet-getitem?mr=2323976
https://doi.org/10.1007/BF02789703
https://www.ams.org/mathscinet-getitem?mr=1132587
https://doi.org/10.1214/19-BA1190SUPP
http://www.R-project.org/
https://www.ams.org/mathscinet-getitem?mr=1888450
https://doi.org/10.1214/ss/1015346320
https://doi.org/10.1214/ss/1015346320
https://www.ams.org/mathscinet-getitem?mr=2340211
https://doi.org/10.1239/jap/1183667414

D. Nguyen, P. de Valpine, Y. Atchade, D. Turek, N. Michaud, and C. Paciorek 1343

Computational and Graphical Statistics, 18(2): 349–367. MR2749836. doi: https://
doi.org/10.1198/jcgs.2009.06134. 1325

Rue, H. and Held, L. (2005). Gaussian Markov Random Fields: Theory and Appli-
cations. CRC Press. MR2130347. doi: https://doi.org/10.1201/9780203492024.
1336

Sahu, S. K., Zhigljavsky, A. A., et al. (2003). “Self-regenerative Markov chain Monte
Carlo with adaptation.” Bernoulli , 9(3): 395–422. MR1997490. doi: https://doi.
org/10.3150/bj/1065444811. 1323

Straatsma, T., Berendsen, H., and Stam, A. (1986). “Estimation of statistical errors in
molecular simulation calculations.” Molecular Physics, 57(1): 89–95. 1328

Thompson, M. B. (2010). “Graphical comparison of MCMC performance.” arXiv
preprint arXiv:1011.4457. 1329

Tibbits, M. M., Groendyke, C., Haran, M., and Liechty, J. C. (2014). “Automated factor
slice sampling.” Journal of Computational and Graphical Statistics, 23(2): 543–563.
MR3215824. doi: https://doi.org/10.1080/10618600.2013.791193. 1329

Turek, D., de Valpine, P., Paciorek, C. J., and Anderson-Bergman, C. (2017). “Au-
tomated parameter blocking for efficient Markov chain Monte Carlo sampling.”
Bayesian Analysis, 12(2): 465–490. 1325, 1329, 1332, 1336

Acknowledgments

This work was funded in part by a grant from the U.S. National Science Foundation SI2-SSI

program (ACI-1550488).

https://www.ams.org/mathscinet-getitem?mr=2749836
https://doi.org/10.1198/jcgs.2009.06134
https://doi.org/10.1198/jcgs.2009.06134
https://www.ams.org/mathscinet-getitem?mr=2130347
https://doi.org/10.1201/9780203492024
https://www.ams.org/mathscinet-getitem?mr=1997490
https://doi.org/10.3150/bj/1065444811
https://doi.org/10.3150/bj/1065444811
https://arxiv.org/abs/1011.4457
https://www.ams.org/mathscinet-getitem?mr=3215824
https://doi.org/10.1080/10618600.2013.791193

	Introduction
	A general Nested Adaptation MCMC
	On the containment assumption

	Example algorithms
	Valid kernel
	Worst mixing state and MCMC efficiency
	Candidate samplers
	Block samplers and how to block

	How to choose new samplers
	Internal clock variables

	Examples
	Linear state space model
	A random effect model
	Spatial model

	Discussion
	Supplementary Material
	References

