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A New Bayesian Single Index Model with or
without Covariates Missing at Random

Kumaresh Dhara∗, Stuart Lipsitz†, Debdeep Pati‡, and Debajyoti Sinha§

Abstract. For many biomedical, environmental, and economic studies, the single
index model provides a practical dimension reaction as well as a good physical
interpretation of the unknown nonlinear relationship between the response and
its multiple predictors. However, widespread uses of existing Bayesian analysis
for such models are lacking in practice due to some major impediments, including
slow mixing of the Markov Chain Monte Carlo (MCMC), the inability to deal with
missing covariates and a lack of theoretical justification of the rate of convergence
of Bayesian estimates. We present a new Bayesian single index model with an
associated MCMC algorithm that incorporates an efficient Metropolis–Hastings
(MH) step for the conditional distribution of the index vector. Our method leads
to a model with good interpretations and prediction, implementable Bayesian in-
ference, fast convergence of the MCMC and a first-time extension to accommodate
missing covariates. We also obtain, for the first time, the set of sufficient conditions
for obtaining the optimal rate of posterior convergence of the overall regression
function. We illustrate the practical advantages of our method and computational
tool via reanalysis of an environmental study.

MSC 2010 subject classifications: Primary 62H12; secondary 62G08.

Keywords: Markov Chain Monte Carlo, missing covariates, Gaussian process,
mode aligned proposal density, importance sampling.

1 Introduction

For many practical studies, including the environmental study (Chambers, 1983) of
Ozone concentration (response) with meteorological covariates, the popular linear model-
based analysis is inadequate for inference and prediction when the usual assumptions of
linear regression model fail. The Single Index Model (SIM) (Stoker, 1986) provides
a simple and interpretable framework for understanding a complex, nonlinear rela-
tionship between a response variable Yi and its p > 1 dimensional covariate vector
Xi = (Xi1, · · · , Xip). The conditional expectation of Yi given Xi under the SIM is only
an unknown univariate function of the scalar index Zi = αTXi =

∑p
j=1 αjXij , which

is an unknown linear projection of the covariate vector Xi with unknown index vector
α = (α1, α2, · · · , αp). A SIM clearly offers a practical compromise between a completely
nonparametric multiple regression and a fully parametric linear regression because it
accommodates both nonlinear main effects and higher-order interactions. It also offers
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clear physical interpretations of the index Z = αTX and relative importance of the pre-
dictor effects via the magnitudes of the index parameters (α1, · · · , αp). These practical
features of SIM are highly desirable for some biomedical, environmental and economet-
ric studies dealing with the unknown nonlinear relationship between the response and
predictors.

There are some great reviews on the recent rapid development of the frequentist
SIM literature (Antoniadis et al., 2004; Hristache et al., 2001). These existing methods
are essentially of three categories: (a) average derivative method (Stoker, 1986; Powell
et al., 1989), (b) M-estimation (Ichimura, 1993; Hardle et al., 1993; Xia et al., 2002; Xia,
2006) and (c) sliced inverse regression (Li and Duan, 1989; Li, 1991). Average deriva-
tive methods require highly restrictive and hard to verify (in practice) conditions to en-
sure the consistency of the estimator of α. M-estimation approaches usually have good
asymptotic properties. However, these methods often lead to difficult high-dimensional
optimization. The sliced inverse regression methods have only limited applications in
practice since they require the distributions of Xi to be elliptically symmetric.

In existing frequentist literature on SIM, the overwhelming emphasis has been on
good empirical and asymptotic properties of the point estimates of the index parameter
α and the link function f(·). The usual frequentist approaches to characterize uncer-
tainty are based on either an asymptotic approximation or computationally intensive
resampling methods. These methods can break down in practice even with a moderate
number of covariates. However, Bayesian methods provide a realistic evaluation of the
uncertainty of the estimates as well as of the predictions of future responses for many
biomedical and other applications. Most of the existing Bayesian approaches for SIM
use some basis representation such as splines (Antoniadis et al., 2004; Wang, 2009) and
wavelets (Park et al., 2005) of f(·), along with a multivariate prior density on the coef-
ficients of the chosen basis representation of f(·). For these methods, selections of the
number of basis functions and the location of the knots for f(·) are subjective and pose
computational difficulties. Even reversible jump Markov Chain Monte Carlo algorithms
involving movable knots (Wang, 2009) suffer from computationally expensive variable
dimensional iterations. Alternatives to the methods with basis representation of f in-
clude methods using a Gaussian process prior (Choi et al., 2011; Gramacy and Lian,
2012) on f(·). Each iteration of the Markov Chain Monte Carlo (MCMC) algorithm
for such methods needs the inversion of a new (n × n) dimensional covariance matrix
for f(zi), since the kernel matrix is a function of the index vector α, where zi = αTxi

for i = 1, 2, · · · , n. This makes the algorithm computationally intensive even when the
sample size n is moderately large. In Section 2, we propose the new Bayesian SIM using
the Ornstein–Uhlenbeck (OU) process prior f(·) with a covariance function that helps
us avoid the numerical inversion of the (n× n) covariance matrix within MCMC.

In Section 3, we present a novel and convenient method to generate from the pos-
terior distributions of the parameters of the SIM. For all existing Bayesian methods, a
major challenge is to generate samples from the conditional posterior distribution of the
index vector α. In general, for the Metropolis–Hastings (MH) step to simulate α within
each MCMC iteration, no obvious choice of a proposal density can ensure reasonable
acceptance rate and autocorrelation of the posterior samples of α. In this paper, we
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devise a proposal density based on aligning the mode of the proposal density with that
of the target conditional posterior density of α. Our proposal density facilitates a much
higher acceptance rate of the MH step for simulating α compared to the acceptance
rates for existing methods.

In Section 4, we also present a theoretical justification for our Bayesian method. We
provide the minimal regularity conditions required to ensure the optimal convergence
rate of the estimate of the overall mean regression function, g(x) = f(αTx). We provide
these conditions for the OU process prior (recommended by us) as well as for the
Gaussian process (GP) prior with square exponential covariance kernel. These minimal
regularity conditions about our GP prior on the unknown f(·) are easy to ensure in
practice and help us determine the prior for f(·) to achieve the optimal convergence
rate of the Bayesian estimates of mean response.

Like numerous other biomedical studies, our environmental study example has ob-
servations with some missing covariates. To the best of our knowledge, there are very
few existing frequentist methods and no Bayesian methods for SIM that accommodate
missing covariates. These inverse probability weighted, estimating equations-based fre-
quentist approaches (Xue, 2013; Guo et al., 2015; Li and Yang, 2016) essentially do
not use observations with missing covariates. Their other major weaknesses include a
difficult to estimate finite sample variance of the estimated α even while using boot-
strap, high dependence of the performance of the estimates of f(·) on the choice of
the bandwidth of the kernel smoothing and computational difficulty associated with
the empirical likelihood method. Related important work of Niu et al. (2017), however,
focuses only on statistical tests for the parametric single index model. To address these
weaknesses, in Section 5, we develop a novel and computationally efficient Bayesian SIM
approach to handle Missing-At-Random (MAR) covariates using post-MCMC impor-
tance sampling weights. In Section 6, we present simulation studies to demonstrate the
finite sample properties of our Bayesian methods and their comparisons with estimates
from some competing methods for whom the software is publicly available.

In Section 7, we present the reanalysis of air quality study (Chambers, 1983) to
illustrate the practical advantages of our Bayesian method compared to other existing
competitors. Section 8 presents some concluding remarks and discussions about various
further extensions and relationships among different approaches.

2 Bayesian Method for SIM

We denote observed data as Dn = {(yi, xi) : i = 1, 2, · · · , n}, where (yi, xi) is the
observed values of the response Yi ∈ R and corresponding p-dimensional predictors
Xi ∈ Rp for i = 1, . . . , n independent subjects. Without loss of generality, we assume
that the covariates are scaled so that Xi ∈ [0, 1]p. We assume the single-index model

Yi = f(αTXi) + εi , (2.1)

with independent errors εi ∼ N(0, σ2), unknown index parameter α = (α1, · · · , αp) and
an unknown nonlinear univariate link-function f(·). Some generalizations of SIM such
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as projection pursuit regression (PPR) (Friedman et al., 2001) aim to find appropriate
multiple projections and link functions of multidimensional Xi to model Yi. However,
the models obtained from PPR are hard to interpret because each component of Xi can
affect E[Yi|Xi] via multiple link functions. To ensure identifiability of the model in (2.1),
we further need α ∈ S

+
p−1 = {α : α2

1 + α2
2 + · · ·+ α2

p = 1, α1 > 0} (Lin and Kulasekera,
2007). This restriction on α poses challenges for the specification of prior of the index
vector α and for the subsequent Bayesian posterior computation. To address this chal-
lenge, we specify a Πθ for the one-to-one polar transformation θ (Park et al., 2005),

where α1 = sin(θ1), α2 = sin(θ2) cos(θ1), · · · , αp−1 = sin(θp−1)
∏p−2

j=1 cos(θj), αp =∏p−1
j=1 cos(θj) for θj ∈ [0, π] for all j = 1, . . . , p − 1 to ensure α ∈ S

+
p−1. A prior Πα

for α corresponds to a specific prior Πθ for θ. In spite α = α(θ) being a function of θ, we
sometime suppress this relation in the notation α for the brevity. We assume that the
joint prior Π(Λ) of the parameters Λ = (f, θ, σ, κ) of our Bayesian single index model
of (2.1) is

Π(Λ) = Π(f, θ, σ, κ) ∝ Πf |α(θ),κ ×Πθ ×Πσ ×Πκ , (2.2)

where Πf |α(θ),κ = Πf |θ,κ is the conditional nonparametric prior for the link-function
f(·), given θ and the hyperparameter κ with corresponding hyper-prior Πκ. Also, Πθ

and Πσ are marginal priors for θ and σ, respectively. Conditional on α, we require the
prior Πf |α,κ to be supported on C[−√

p,
√
p], the space of all continuous functions on

[−√
p,
√
p], because a conditional prior on the function space {f : t �→ f(t), t = αTx}

for a fixed α needs the restriction of the domain |t| ≤ ‖α‖ ‖x‖ ≤ √
p because ||α|| = 1.

A practical choice for the prior model of a nonparametric link function is f(·), which is
the Gaussian process prior GP(μ, cκ) indexed by the user-specified prior mean function
μ : R → R and the positive definite covariance kernel cκ : [−√

p,
√
p]× [−√

p,
√
p] → R,

known except the hyper-parameter κ that controls the smoothness of the realizations
(sample paths) of GP(μ, cκ). The choice of the covariance kernel cκ is vital for controlling
the sample paths of the GP(μ, cκ). We opt for the Ornstein–Uhlenbeck (OU) process
with the covariance kernel given by cκ(t1, t2) = e−κ|t1−t2|. The OU process is often a
popular and appropriate choice, and this cκ(t1, t2) is a special case of the more general
Matérn family of covariance kernels

c(t1, t2) = τ2
1

Γ(ν)2ν−1

(
√
2ν

√
κ |t1 − t2|

)ν

Kν

(
√
2ν

√
κ |t1 − t2|

)
, (2.3)

where Γ(·) is the gamma function, Kν is the modified Bessel function of the second kind,
ν and κ are the smoothness and bandwidth parameters and τ controls the signal-to-
noise ratio. The OU process corresponds to (ν = 0.5, τ = 1) in (2.3). Even though the
OU stochastic process used as a prior for f(·) has only one unknown hyper-parameter
κ, we use the notation Πf |α,κ for the prior f(·) because the evaluation of the posterior
distribution involves the joint multivariate prior density of f(·) evaluated at a finite
number of values which are functions of only (α, κ) (explained in the following section).
We use the prior Πκ for κ to be a discrete uniform on a set J = {a : Πκ(a) > 0}
of equally spaced grid points in the interval [κmin, κmax]. This very convenient and
practical prior is capable of approximating any continuous prior density for κ to any
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acceptable level via appropriately choosing the number and gaps of the grid points in J .
For the prior Πσ of σ2, we use the Inverse-Gamma prior IG(γ1, γ2) density with shape
γ1 and scale γ2 for σ2. This big enough class can also accommodate any reasonable
prior opinion about σ2, and it is also a convenient prior since it is conjugate under the
Bayesian SIM model of (2.1).

3 Sampling from Posterior Distribution

Based on the joint prior Π(Λ) in (2.2) and SIM model in (2.1), the joint posterior
p(Λ|Dn) given observed data Dn is

p(Λ|Dn) ∝ φn(y; f , σ
2I)×Π(Λ) ∝ φn(y; f , σ

2I) Πf |α,κ Πκ Πθ Πσ , (3.1)

where y = (y1, y2, · · · , yn), φn(y;μ,Σ) is the n-variate normal density with mean-vector
μ, and covariance matrix Σ evaluated at y. It is important to note that the joint posterior
in (3.1) involves the unknown link function f(·) only through f = (f(t1), · · · , f(tN )),
values of f(·) only at N ≤ n distinct ordered values t1 < · · · < tN of {αTx1, · · · , αTxn}.
The OU process prior for f(·) with unknown inverse bandwidth parameter κ implies
that the multivariate prior density Πf |α,κ is essentially a N -variate normal density
φN (f ; 0,Σθ,κ) evaluated at the N ≤ n-dimensional vector f = (f(t1), · · · , f(tN )) with
known mean (μ(t1), · · · , μ(tN )) and the covariance matrix (Σα,κ)j,k = e−κ|tj−tk|. In
general, we recommend μ(tj) = 0 for j = 1, 2, · · · , N . This covariance matrix Σα,κ is
a function of both α (hence its polar transformation θ) and κ. One distinct advantage
of using the OU process over other choices of Gaussian processes is that Σ−1

α,κ is a
tridiagonal matrix with closed-form expression

Σ−1
α,κ =

⎡
⎢⎢⎢⎢⎢⎣

s1 −q1
−q1 s2 −q2

. . .
. . .

. . .

−qN−2 sN−1 −qN−1

−qN−1 sN

⎤
⎥⎥⎥⎥⎥⎦ ,

where (Σ−1
α,κ)i,j = 0 for j /∈ {i + 1, i, i − 1}, upper and lower subdiagonals are qi =

ri/(1 − r2i ) with ri = exp{−κ(ti+1 − ti)} for 1 ≤ i ≤ N − 1, and diagonal entries are
si = 1+ riqi + ri−1qi−1 for i = 1, · · · , N . The determinant dN of the tridiagonal matrix
Σ−1

α,κ (and hence the determinant of Σα,κ) is also evaluated via the sequential formula
dm = smdm−1 − q2m−1dm−2 with d1 = s1 and d0 = 1. These help the implementation of
the MCMC algorithm via avoiding the numerical inversion and direct computation of
the determinant of any potentially high-dimensional covariance matrix at each iteration.
The resulting conditional posteriors for the MCMC algorithm are the following:

f | σ2, κ, θ,Dn ∼ φn

{
f ; (Σ−1

θ,κ + σ−2In)
−1y/σ2, (Σ−1

θ,κ + σ−2In)
−1

}
,(3.2)

σ2 | f , κ, θ,Dn ∼ IG

(
n+ γ1

2
,
‖y − f‖2 + γ2

2

)
, (3.3)
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P (κ = κ(t) | σ2, f , θ,Dn) =
exp

{
− f ′Σ−1

θ,κ(t)f/2
}

∑
s∈J exp

{
− f ′Σ−1

θ,κ(s)f/2
} for t ∈ J , (3.4)

p(θ|σ2, κ, f , Dn) ∝ |Σθ,κ|−1/2e−f ′Σ−1
θ,κf/2Πθ(θ), (3.5)

where Πθ(θ) is the prior for the one-one polar transformation θ of α (as explained
earlier), φn(.;μ,B) is the n-variate normal density with mean μ and variance matrix
B and J is the discrete support of the prior of κ. For the sake of brevity, the above
conditional posteriors are given for the case N = n when all the values of αTxi are
distinct. We again emphasize that the conditional posterior distributions in (3.2)–(3.4)
are straightforward to sample from because we have a closed-form expression for Σ−1

θ,κ

and a sequential formula for its determinant.

However, for any choice of prior Πθ(θ), sampling θ from the conditional density of
(3.5) is not straightforward in spite of the available expressions for Σ−1

θ,κ and |Σθ,κ|−1/2.
Hence, we use a Metropolis–Hastings (MH) step within MCMC iteration to sample θ
from the target density in (3.5). For this MH step, our independent proposal densities
Pj of θj for j = 1, · · · , p − 1 are rescaled Beta densities with common support [0, π],
that is Pj(θj) = B(θj/π; cj , dj)/π, where B(u; c, d) ∝ uc−1(1−u)d−1 is the Beta density
with parameters (c, d). To assure an appropriate proposal density Pj(θj) with good

acceptance rate for the MH step, we choose dj to satisfy θ̂j,MAP = (πcjdj)/{(cj +

dj)
2(cj+dj+1)} for fixed value of cj , where θ̂MAP = (θ̂1,MAP, · · · , θ̂p,MAP) is the maxima

of the target density in (3.5). We call this θ̂MAP, as the conditional maximum a posteriori
(MAP) of θ. As the support of θ in (3.5) is closed and bounded, we initially fix a set of

grid points G, and take θ̂MAP = arg maxθr∈G p(θr|σ2, κ, f , D) where p(θr|σ2, κ, f , D) is
the conditional posterior density of θ evaluated at θr. The approximation of the mode
by θ̂MAP is improved by making the grid points in G finer. An alternative procedure for
computing θ̂MAP is to use any built-in optimization algorithm available in R or MATLAB.
Increasing the value of cj results in lowering the variance, if dj is kept fixed. We decide
the value of cj based on the desired variance of the proposal density. For simplicity, we
fix all the values of cj = c for j = 1, 2, · · · , p− 1.

Alternatively, sampling θ from (3.5) and f from (3.2) within each MCMC iteration
results in highly autocorrelated posterior samples since f and θ are highly correlated in
the posterior. To circumvent this problem, we modify the MH step for sampling θ by
adapting the method of Murray and Adams (2010), using surrogate data h. We describe
the MCMC algorithm as follows:

A possible choice of Sθ is τ2I where τ2 is a fixed, say, τ2 = 0.1. In the above
expressions, Rθ = (Σ−1

θ + S−1
θ )−1, mθ,h = RθS

−1
θ h, ΔR is the Cholesky decomposition

of matrix R with R = ΔRΔ
T

R. The transition kernels used for computing the acceptance

probability of new θ̃ based on past sample θ(t) are q(θ(t); θ̃) =
∏p−1

j=1 Pj(θ
(t)
j |c̃j , d̃j) and

q(θ̃; θ(t)) =
∏p−1

j=1 Pj(θ̃j |c(t)j , d
(t)
j ). Here, (c̃j , d̃j) are the parameters for the proposal

density used for generating θ̃ and (c
(t)
j , d

(t)
j ) are the parameters for the proposal density

used in previous iteration number T .
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Algorithm 1 Simultaneous update of (θ, f)

1: Start with (θ(t), f (t)), at iteration t
2: Simulate surrogate data h from φn(·; f (t), Sθ(t))
3: Compute the latent variable η = Δ−1

R
θ(t)

(f (t) −mθ(t),h)

4: Generate θ̃ from the proposal density P1 × P2 × · · · Pp−1

5: Compute the new proposal f̃ = mθ̃,h +ΔRθ̃
η

6: Draw u ∼ U(0, 1)

7: If u <
L(f̃)φn(h;0,Σθ̃,κ+Sθ̃)πθ(θ̃)q(θ

(t);θ̃)

L(f (t))φ(h;0,Σ
θ(t),κ

+S
θ(t)

)πθ(θ(t))q(θ̃;θ(t))
then (θ(t+1), f (t+1)) = (θ̃, f̃)

8: Else (θ(t+1), f (t+1)) = (θ(t), f (t))

4 Theoretical Results

The semiparametric Bayesian estimator of the regression function g(x) = f(αTx) in Choi
et al. (2011) has been shown to possess posterior consistency. However, the theory and
associated conditions for obtaining a desirable convergence rate of the posterior estimate
of g(x) are not available yet. Even though we do not evaluate the convergence rates of
the Bayesian estimates of f(·) and α separately, our theoretical result describes how
the convergence rate of the Bayesian estimate of regression g(x) to the true regression
function g0(x) depends on the sample size n and the roughness β of the true link function
f0(·). This result also shows that the asymptotic performance of our Bayesian estimate
of g(x) at the observed covariate values x1, . . . , xn is optimal as long as the roughness
of the sample path of the prior process of the unknown f(·) is not too high compared to
the sample-size n. We also show that this desirable result holds even when the roughness
β of the true f0(·) is not very high (i.e., f0 is less than twice differentiable).

Let C[0, 1]p and C
β [0, 1]p, respectively, denote the space of continuous functions and

the Hölder space of β-smooth functions f : [0, 1]p → R, endowed with the supremum
norm ‖f‖∞ = supt∈[0,1]p |f(t)|. For β > 0, the Hölder space C

β [0, 1]p consists of func-
tions f ∈ C[0, 1]p that have bounded mixed partial derivatives up to order 
β�, with the
partial derivatives of order 
β� being Lipschitz continuous of order β−
β�. The Sobolev
space H

β [0, 1]p is the set of functions f : [0, 1]p → R that are restrictions of a function

f : Rp → R with Fourier transform f̂(λ) satisfying ‖f‖2β :=
∫
(1+‖λ‖2)β

∣∣∣f̂(λ)∣∣∣2 dλ < ∞
where ‖f‖β is the Sobolev norm of f . Roughly speaking, for integer β, a function belongs

to H
β if it has partial derivatives up to order β that are all square-integrable.

For the sake of brevity, we consider a special case of the Bayesian SIM model de-
scribed in (2.1) with σ2 = 1 for our theoretical development. Let the true data gen-
erating parameters be (f0(·), α0). We now state the main result on posterior contrac-
tion in estimating g0(x) = f0(α

T
0x) with respect to the empirical L2 norm given by

‖g − g0‖22,n = (1/n)
∑n

i=1{g(xi) − g0(xi)}2. In particular, we would like to find the
minimum possible sequence of positive numbers εn converging to 0 such that

E0P(‖g − g0‖2,n ≤ Mεn | Dn) → 1 (4.1)
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for a suitably large positive number M , where E0 denotes expectation under the true
data generation mechanism and Dn = (y, X) is the observed data indexed by sample
size n. Assuming g0 ∈ C

β [0, 1]p and recognizing that g0 is essentially concentrated on a
subspace with dimension 1, the optimal (in a minimax sense) rate for estimating g0 is
much faster (εn = n−β/(2β+1)) instead of εn = n−β/(2β+p), the minimax rate of estimat-
ing a p-variable function with smoothness β. We investigate the concentration rates for
two different choices of prior on the link function f0. Theorem 1 presents the concentra-
tion rate when the prior density on f0 is a OU process, i.e., the (i, j)th element of the

covariance matrix is cij = e−κ|αTxi−αTxj |. Theorem 2 provides the concentration rate
when the prior density on f0 is a Gaussian process with square exponential covariance
kernel, i.e., the (i, j)th element of the covariance matrix is cij = e−κ(αTxi−αTxj)

2

.

Theorem 1. If f0 ∈ C
β [0, 1] ∩ H

β [0, 1] and prior on f0 is an OU process, then (4.1)
is satisfied with εn = n−β/(2β+1)(log n)t for some t > 0 and for OU process inverse
bandwidth parameter

√
κ ≡ n(1−2β)/(2β+1).

Theorem 2. If f0 ∈ C
β [0, 1] and prior on f0 is a Gaussian process with a square

exponential covariance kernel, then (4.1) is satisfied with εn = n−β/(2β+1)(logn)t for
some t > 0 and for inverse bandwidth parameter

√
κ ≡ n1/(2β+1).

Theorem 1 shows that we achieve the optimal rate of convergence of the posterior
around true mean g0(x) if the square root of inverse bandwidth parameter

√
κ of the

OU process prior is taken to be of order n(1−2β)/(2β+1). It is interesting to note that for
β < 1/2 (i.e., when the true function f0 is not even differentiable), we need κ of the OU
process prior to go to infinity to achieve the optimal rate of convergence. However, when
β > 1/2, we need κ to go to 0 to ensure the optimal convergence rate. Such conditions
are required since the OU process has extremely rough sample paths. However, for the
Gaussian prior, Theorem 2 shows that irrespective of the smoothness of f0, we need to
ensure that κ of the Gaussian process goes to infinity to ensure the optimal concentration
rate of the posterior. This is expected since the sample paths of a Gaussian process with
square exponential covariance kernel are smooth. Therefore, to ensure that the posterior
estimate of f converges to f0 at an optimal rate, we need to ensure that κ goes to infinity.
The proofs of Theorem 1 and 2 are provided in Supplementary Materials (Appendix
B, Dhara et al., 2019).

5 Analysis with Missing-At-Random Covariates

To the best of our knowledge, our paper presents the first extension of the Bayesian
single-index model to accommodate covariates that are missing at random (Little and
Rubin, 2014). By an abuse of notation, the entire data Dn is expressed as Dn = D1∪D2,
where D1 and D2 contain all the observed data from subjects respectively in S1 and S2.
Here, S1 and S2 are respectively the set of subjects with no missing covariates and the set
of subjects with at least 1 missing covariate. We also use the notation Xci = (Xim, xio)
to denote the “complete” covariate vector from each subject i ∈ S2, where Xim denotes
the unknown missing covariates and xio denotes the observed parts of the covariates.
For each subject i ∈ S1, we have Xci = xi0 with Xim being an empty vector. We assume



K. Dhara, S. Lipsitz, D. Pati, and D. Sinha 767

that Xci has the joint density gX(· | γ) independently for i = 1, · · · , n. It is reasonable
and conventional in missing-data literature (Little and Rubin, 2014) to assume that γ
shares no parameters with the set of parameters Λ = (f, θ, σ, κ) associated with the
regression model (2.1) and its prior Πγ is independent of the joint prior Π(Λ) in (2.2).

Now, the joint posterior based on the entire observed data Dn is

p(Λ, γ | Dn) ∝ L1(D1 | Λ, γ)× L2(D2 | Λ, γ)×Π(Λ)×Πγ(γ), (5.1)

where the likelihood based on D1 is

L1(D1 | Λ) ∝
∏
i∈S1

φ(yi − f(αTxio); 0, σ) gX(xio | γ) ,

the likelihood based on D2 is

L2(D2 | Λ) ∝
∏
i∈S2

∫
{φ(yi − f(αTXic); 0, σ) gX(Xim, xio | γ)} dXim , (5.2)

and Πγ(γ) is the prior distribution of γ based on the fully observed covariates xio for the
subjects i ∈ S1. For L2 in (5.2), each integral is computed over the sample space of all
missing covariates of the subject i ∈ S2. For example, in our analysis of the air-quality
study, we assume gX(· | γ) to be the multivariate Gaussian density φp(x;μ,Σ) with the
popular and conjugate Normal-inverse-Wishart prior π(γ) for γ = (μ,Σ), even though
other multivariate distributions can also be accommodated similarly. In this case, the
integration of (5.2) has a closed-form expression. Bayesian estimates from (5.1) need
Monte Carlo integration with respect to the joint posterior of p(Λ, γ | Dn). To address
this challenge, we propose the following method weighted Mote Carlo integration. Note
that equation (5.1) can also be expressed as

p(Λ, γ | Dn) ∝ p(Λ|D1)L2(D2|λ, γ)p1(γ|D1), (5.3)

where p(Λ|D1) is the posterior of (3.1) based on D1 instead of the whole data Dn;
p1(γ|D1) ∝ {

∏
i∈S1

φp(xi|γ)}Πγ(γ) is the posterior of γ based on fully observed covari-
ates xio from D1. For the weighted Monte Carlo integration using weighted samples
(instead of usual identically distributed samples from standard MCMC) (Λ∗,Γ∗), we
first obtain Λ∗ from p(Λ|D1) using the MCMC method described in Section 3. Then we
independently sample γ∗ from the posterior density Πγ(γ | D1). For example, using the
usual conjugate Normal-inverse-Wishart prior Π(μ,Σ) of γ = (μ,Σ) for our analysis,
this p1(μ,Σ|D1) has the corresponding Normal-inverse-Wishart posterior density. We
then compute the sampling weight w∗ of (Λ∗, γ∗) to be proportional to L2(D2 | Λ∗)
using integration of Xim for all subjects i ∈ S2. We note that, in our case, with the mul-
tivariate normal density for gX(Xim, xio|γ), the Xim given (xi0, γ

∗) has the multivariate
normal distribution with a mean and covariance matrix that are known functions of xio

and γ∗. Unlike our case of multivariate normal density for gX(Xim, xio|γ), one may
need to perform a Monte Carlo integration for L2(D2 | Λ∗) via generating the missing
observations Xim from the conditional density of Xim given (xi0, γ

∗). Finally, to obtain
the Bayesian estimates, we use the samples (Λ∗,Γ∗) with the corresponding sampling
weights w∗.
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6 Simulation Studies

Throughout our simulation studies, we use the OU process Πf |α,κ as a prior of the link
function f(·), with hyper-parameter κ assigned a discrete uniform prior on the interval
[0.5, 2] with grid size 0.05. The prior distribution for error variance σ2 is inverse gamma
with shape parameter 2 and rate parameter 0.01. For evaluating the approximate mode
of the conditional posterior of θ within MH steps, we use grid size 0.05 for each θj . We
fix each cj at 5,000. We estimated dj using the method described in Section 3. For each
Bayesian analysis based on our and other competing Bayesian methods, we use 3,000
MCMC samples after discarding the first 2,000 for burn-in.

In our simulation study 1, we investigate the performance of our Bayesian estimates
based on the SIM of (2.1) (BSIM in short) for different sample sizes (n = 50, 100), forms
of true link functions and values of the error standard deviations σ ∈ {0.01, 0.5}. Two
different true link functions f0 considered here are quadratic with f1(z) = z + z2 and
exponential with f2(z) = ez. True index parameter α0 = (1, 1, 1)/

√
3 corresponds to

true θ0 = (0.61547, 0.7854) in polar coordinates. We use 50 replicates of the datasets
for each combination of true f0, σ and n to approximate the sampling distribution of
the estimates. We begin with the performance of the estimates when the true data gen-
erating simulation models are (2.1) with N(0, σ2) error distributions. The approximate
sampling coverage probability of interval estimates and mean acceptance rate of the
Metropolis–Hastings (MH) step are reported in Table 1.

n σ True f Coverage for θ1 Coverage for θ2 Acceptance Rate

50

0.01 Exponential 98% 98% 23.52%
0.01 Quadratic 100% 100% 19.73%
0.1 Exponential 98% 98% 16.12%
0.1 Quadratic 100% 94% 16.38%
0.5 Exponential 70% 78% 16.13%
0.5 Quadratic 100% 94% 16.85%

100

0.01 Exponential 100% 100% 16.41%
0.01 Quadratic 98% 96% 16.39%
0.1 Exponential 100% 98% 16.63%
0.1 Quadratic 100% 98% 16.07%
0.5 Exponential 88% 86% 15.83%
0.5 Quadratic 94% 64% 16.95%

Table 1: Approximate coverage probabilities of BSIM-based interval estimates and ac-
ceptance rates for the MH step of θ = (θ1, θ2) for different sample sizes n, error standard
deviation σ and forms of true link f , assuming that the true model is SIM. The (ap-
proximate) coverage probabilities are based on 50 replications of the simulated datasets.
The acceptance rate of the MH algorithm is the proportion of times (out of final 3,000
iterations of MCMC) the MH step of θ accepts a new value.

For both forms of true link function f , the average MH acceptance rates of θ are close
to 16%. The approximate coverage probabilities of the interval estimates are smaller
when the true link function is exponential (f2) compared to when it is quadratic (f1). As
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expected, an increase in error standard deviation σ also lowers the coverage probabilities
irrespective of the form of true f(·). The coverage probability is substantially smaller
because the signal-to-noise ratio (the standard deviation of f(Z) divided by σ) when
σ = 0.5 is 1/5 times the signal-to-noise ratio when σ = 0.1.

Next, in simulation study 2, we compare our BSIM estimates of θ with the estimates
from two competing methods: (1) method of Choi et al. (2011) (referred to as Choi-
SIM henceforth) and (2) method of first-step projection pursuit regression (PPR). For
brevity, we provide the details of simulation study 2 in the Supplementary Materials
(Appendix A, Dhara et al., 2019). We have shown that the proposed BSIM method is
superior to both Choi-SIM and PPR when the true model is the SIM of (2.1).

In simulation study 3, we compare our BSIM method with two the frequentist meth-
ods implemented in the R package MAVE, namely, (1) the kernel-based sliced inverse
regression (KSIR in short) method of Li (1991) and (2) the method of central dimen-
sion reduction using outer product gradient (CSOPG in short) of Xia (2006). We also
compare our method with two competing Bayesian methods, both implemented using
MCMC methods, namely (1) the Bayesian method of Antoniadis et al. (2004) abbre-
viated as Antoniadis-SIM, and (2) the Bayesian method of Gramacy and Lian (2012)
abbreviated as Gramacy-SIM (R package tgp). In order to have a fair comparison among
Bayesian and frequentist methods for different n, σ and forms of true f , we compare
the competing methods using the median sum of square errors (based on 50 replicates)
of the estimates α̂ of index vector α. MCMC chains for Gramacy-SIM had a problem
of slow mixing of the MCMC and needed a reasonable estimate of the covariance ma-
trix for α to ensure good mixing of MCMC. So, we have used a pilot run with a small
number of iterations to compute the variance matrix for α and then used that estimate
to run the final set of MCMC. For a fair comparison, we also normalized the final es-
timates α̂ from Gramacy-SIM because of the norm of the initial α̂ from Gramacy-SIM
may not be 1. Based on the MSSE values from different methods presented in Table 2
for different choices of n and σ, BSIM-based estimates perform similar to CSOPG and
Antoniadis-SIM based estimates when σ is small. For larger σ, CSOPG and Antoniadis-
SIM perform as well as BSIM. Even though KSIR and Gramacy-SIM perform similar
to BSIM when σ is smaller, for higher values of σ, BSIM performs better than both of
them.

In simulation study 4, we also compare the MSSE of α̂ from our BSIM with those
from competing methods when the true underlying distribution of error εi is a mixture of
two normal densities 0.95 N(0, σ2)+0.05 N(0, (3σ)2) instead of the normal distribution
assumed for SIM. In Table 3, the MSSE values from different methods are presented
for two sample sizes and 3 different values of σ. Similar to previous simulation study 3,
α̂ from BSIM performs better than those from KSIR and Gramacy-SIM. When σ is
smaller, BSIM performs better than CSOPG and Antoniadis-SIM. However, for a larger
value of σ, BSIM does not outperform CSOPG and Antoniadis-SIM as far the MSSE
of α̂ is concerned.

Our simulation study 5 investigates the performance of the extension of our BSIM
method to deal with missing-at-random (MAR) covariates, under link functions f1 and
f2, sample sizes n = 50 and 100 and error standard deviations σ ∈ {0.01, 0.1, 0.5}.
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n σ True f CSOPG KSIR BSIM Antoniadis-SIM Gramacy-SIM

50

0.01 Exponential 0.0004 0.0016 0.0004 0.0014 0.0079
0.01 Quadratic 0.0009 0.0718 0.0003 0.0007 0.0079
0.1 Exponential 0.0010 0.0019 0.0011 0.0010 0.0092
0.1 Quadratic 0.0013 0.0795 0.0005 0.0013 0.0091
0.3 Exponential 0.0045 0.0053 0.0053 0.0023 0.0086
0.3 Quadratic 0.0022 0.0894 0.0043 0.0053 0.0084

100

0.01 Exponential 0.0001 0.0004 0.0002 0.0006 0.0082
0.01 Quadratic 0.0002 0.0387 0.0002 0.0005 0.0080
0.1 Exponential 0.0003 0.0006 0.0006 0.0006 0.0086
0.1 Quadratic 0.0004 0.0424 0.0007 0.0008 0.0088
0.3 Exponential 0.0015 0.0019 0.0068 0.0014 0.0082
0.3 Quadratic 0.0014 0.0352 0.0067 0.0021 0.0087

Table 2: Comparison of MSSE of estimates of α from CSOPG, KSIR, BSIM, Antoniadis-
SIM and Gramacy-SIM methods for different sample sizes, true link functions f and
error standard deviations σ.

n σ True f CSOPG KSIR BSIM Antoniadis-SIM Gramacy-SIM

50

0.01 Exponential 0.0005 0.0015 0.0003 0.0015 0.0080
0.01 Quadratic 0.0009 0.0657 0.0003 0.0015 0.0080
0.1 Exponential 0.0010 0.0019 0.0012 0.0012 0.0086
0.1 Quadratic 0.0013 0.0921 0.0008 0.0015 0.0077
0.3 Exponential 0.0056 0.0071 0.0084 0.0033 0.0114
0.3 Quadratic 0.0022 0.0868 0.0052 0.0071 0.0088

100

0.01 Exponential 0.0001 0.0003 0.0002 0.0006 0.0082
0.01 Quadratic 0.0002 0.0407 0.0002 0.0009 0.0080
0.1 Exponential 0.0004 0.0008 0.0007 0.0007 0.0092
0.1 Quadratic 0.0004 0.0378 0.0008 0.0014 0.0083
0.3 Exponential 0.0015 0.0029 0.0089 0.0013 0.0084
0.3 Quadratic 0.0012 0.0448 0.0077 0.0031 0.0084

Table 3: Comparison of the median of the sum of square error (MSSE) of α̂ from
CSOPG, KSIR, BSIM, Antoniadis-SIM and Gramacy-SIM methods with the true error
distribution 0.95N(0, σ2)+0.05N(0, (3σ)2).

Each of the 50 replicated datasets for each combination of (f, n, σ) has only variable
X1 potentially missing-at-random (MAR) with probability p1j that does not depend
on X1. For the results in Table 4, we use p1j = 1/(1 + e4+2x2i+3x3i+yi), which results
in about 23% of observations with X1 MAR. For the results in Table 5, we use p1j =
1/(1+e2+2x2i+3x3i+yi) which results in approximately 40% observations with X1 MAR.
In these two tables, we compare the BSIM method using only completely observed data
D1 with our proposed BSIM extension for MAR covariates using full data D = D1∪D2.
The comparisons of these two competing Bayesian methods are based on the average
widths of the Bayesian interval estimates of θ parameters. Not unexpectedly, we obtain
narrower 95% credible intervals when we use BSIM extension for available data D =
D1∪D2= instead of using BSIM only onD1. These two tables also present the percentage
of improvement in average widths of the interval estimates for using BSIM extension for
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Length of Interval Percentage
Using only D1 Using D1 ∪D2 Improvement

n σ True f θ1 θ2 θ1 θ2 θ1 θ2

50

0.01 Exponential 0.0889 0.0945 0.0845 0.0939 1.98% 1.35%
0.01 Quadratic 0.0800 0.0859 0.0784 0.0834 0.51% 0.89%
0.1 Exponential 0.1184 0.1180 0.1134 0.1120 2.62% 1.57%
0.1 Quadratic 0.1027 0.1076 0.1007 0.1078 0.81% 0.24%
0.5 Exponential 0.4801 0.4194 0.4710 0.4220 1.02% 0.28%
0.5 Quadratic 0.4020 0.3810 0.3910 0.3754 2.74% 1.47%

100

0.01 Exponential 0.0648 0.0760 0.0609 0.0676 6.35% 6.23%
0.01 Quadratic 0.0651 0.0731 0.0556 0.0565 13.66% 18.03%
0.1 Exponential 0.0979 0.1084 0.0932 0.0968 5.28% 5.13%
0.1 Quadratic 0.0929 0.1062 0.0840 0.0888 11.15% 9.95%
0.5 Exponential 0.3579 0.3643 0.3045 0.2964 11.98% 7.24%
0.5 Quadratic 0.3601 0.3141 0.2990 0.2440 15.17% 15.56%

Table 4: Comparison of the average length of the 95% Bayesian credible intervals from
the complete part of the data (D1) with average length of the 95% credible intervals
from the whole data D = D1 ∪ D2, where D2 is the part with missing observations.
The percentage improvement in the length of the interval is reported in the last two
columns. In this simulation, 20% of the observations have X1 missing.

Length of Interval Percentage
Using only D1 Using D1 ∪D2 Improvement

n σ True f θ1 θ2 θ1 θ2 θ1 θ2

50

0.01 Exponential 0.0954 0.0989 0.0894 0.0897 6.30% 9.27%
0.01 Quadratic 0.0940 0.0921 0.0818 0.0799 12.92% 13.25%
0.1 Exponential 0.1101 0.1115 0.1039 0.1057 5.57% 5.22%
0.1 Quadratic 0.1111 0.1057 0.1010 0.0956 9.10% 9.62%
0.5 Exponential 0.4671 0.3573 0.3341 0.2771 28.48% 22.44%
0.5 Quadratic 0.2498 0.2544 0.2297 0.2197 8.04% 13.65%

100

0.01 Exponential 0.0684 0.0790 0.0504 0.0498 26.34% 36.85%
0.01 Quadratic 0.0668 0.0739 0.0151 0.0157 77.28% 78.82%
0.1 Exponential 0.0954 0.1033 0.0779 0.0778 18.37% 24.69%
0.1 Quadratic 0.0907 0.0990 0.0617 0.0621 31.93% 37.36%
0.5 Exponential 0.4049 0.3634 0.2533 0.2180 37.43% 40.01%
0.5 Quadratic 0.3440 0.2856 0.2585 0.2094 24.84% 26.69%

Table 5: Comparison of the average lengths of the 95% credible intervals from the
complete part of the data (D1) and the 95% credible interval estimated after taking
into account the missing part of the data(D2). D stands for the whole dataset given by
D = D1 ∪D2. The percentage improvement in the length of the interval is reported in
last two columns. Here, 40% of observations have X1 missing.



772 Bayesian Single Index Model

MAR covariates, and comparison of these two tables show that improvements in widths
are more for Table 5 with a higher proportion of observations with missing covariates.
It is important to note that even though our simulation model allows only the X1 to be
MAR, the lengths of the credible intervals for both the parameters θ1 and θ2 improve
when using the missing data extension of BSIM. This may be due to the strong posterior
dependence of the parameters θ1 and θ2. The improvements in the widths of interval
estimates also increase with the increase in error standard deviation (σ).

In our simulation study 6, we compare our proposed BSIM extension method to MAR
covariates with the inverse probability weighted outer product gradient (OPG) method
(called NOPG in short), described in Guo et al. (2014) and based on the estimates α̂
of the index vector. Guo et al. (2014) suggested either a kernel-based, nonparametric
method or logistic regression to find the probability weights. We use the nonparametric,
kernel-based methods to compute the probability weights because the logistic regression-
based approach run into numerical issues when the sample size n is 50 (small). We use
the median of the sum of square error (MSSE) of α̂ to compare our Bayesian method
with Guo et al. (2014)’s NOPG method. The results are tabulated in Table 6. Based
on these results, our proposed Bayesian method either performs equally well or better
when the error standard deviation σ is small. However, for higher values of σ, NOPG
performs better than the proposed method in terms of MSSE of α̂. However, it is worth
noting that computing the 95% confidence interval of α and f(αTX) are computationally
difficult for the NOPG method in spite of the asymptotic results in Guo et al. (2014). In
comparison, the extension of the Bayesian method to the MAR covariate provides the
posterior credible intervals for the parameters of interest, making the Bayesian method
more useful in practice.

20% Missing 40% Missing
n σ True f BSIM NOPG BSIM NOPG

50

0.01 Exponential 0.0003 0.0008 0.0006 0.0007
0.01 Quadratic 0.0003 0.0002 0.0005 0.0002
0.1 Exponential 0.0007 0.0006 0.0011 0.0006
0.1 Quadratic 0.0005 0.0003 0.0009 0.0002
0.5 Exponential 0.0109 0.0047 0.0171 0.0053
0.5 Quadratic 0.0093 0.0033 0.0092 0.0048

100

0.01 Exponential 0.0002 0.0002 0.0006 0.0002
0.01 Quadratic 0.0003 0.0001 0.0001 0.0001
0.1 Exponential 0.00038 0.0002 0.0007 0.0002
0.1 Quadratic 0.0006 0.0001 0.0022 0.0001
0.5 Exponential 0.0086 0.0014 0.0083 0.0013
0.5 Quadratic 0.0102 0.0016 0.0089 0.0011

Table 6: Comparison of the median of sum of square error (MSSE) of α̂ between the
proposed method to deal with missing data and method described in Guo et al. (2014).

In simulation study 7, we investigate the 95% coverage probabilities using the com-
plete data (D1), and how it changes when including the data with missing covariates
(D2). We keep the same tuning parameters used in previous simulation scenarios. The
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Coverage Probabilities
Using D1 Using D = D1 ∪D2

n σ True f θ1 θ2 θ1 θ2

50

0.01 Exponential 90% 92% 92% 92%
0.01 Quadratic 100% 96% 100% 98%
0.1 Exponential 86% 86% 88% 86%
0.1 Quadratic 100% 96% 98% 94%

100

0.01 Exponential 100% 98% 100% 98%
0.01 Quadratic 100% 100% 94% 86%
0.1 Exponential 96% 100% 96% 96%
0.1 Quadratic 100% 98% 96% 78%

Table 7: 95% Coverage probability of θ1, θ2 when only D1 or both D1, D2 are used. In
this simulation, 20% of the observations have X1 missing.

Coverage Probabilities
Using D1 Using D = D1 ∪D2

n σ True f θ1 θ2 θ1 θ2

50

0.01 Exponential 86% 86% 86% 84%
0.01 Quadratic 98% 94% 94% 78%
0.1 Exponential 84% 80% 84% 78%
0.1 Quadratic 90% 90% 90% 84%

100

0.01 Exponential 100% 96% 82% 56%
0.01 Quadratic 100% 100% 44% 28%
0.1 Exponential 92% 90% 90% 70%
0.1 Quadratic 100% 100% 72% 42%

Table 8: 95% Coverage probability of θ1, θ2 when only D1 or both D1 and D2 are used.
In this simulation, 40% of the observations have X1 missing.

results, when 20% of the observations have X1 missing, are in Table 7. For 40% of
observations having X1 missing, the results are summarized in Table 8. We observe
that when using D = D1 ∪D2, the coverage probability drops compared to when only
D1 is used for inference. Moreover, when the percentage of missing data is higher, the
coverage probability decreases.

We also compare the predictive performance of the proposed method with other ex-
isting methods (CSOPG, KSIR, Antoniadis-SIM and Gramacy-SIM). These results are
based on simulation study 8. Here, we fixed the sample size of the overall data and use
80% of the data for training the model. The remaining 20% of the data is used to evalu-
ate the predictive performance of the fitted model. This method is replicated 50 times.
The median of the mean absolute errors of the predictions ( 1

ntest

∑n
i=1 |f0(αT

0x
test
i ) −

f̂(α̂Txtest
i |) are reported in Table 9. Here, xtest

i denotes the covariate of the ith subject
in the test set. ntest denotes the number of observations in the test set. When using
Bayesian methods, namely Antoniadis-SIM, Gramacy-SIM and BSIM, we use a pos-
terior predictive median for each subject as a final prediction. We observe that the
proposed method outperforms the existing methods when the error variance is small
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n σ True f CSOPG KSIR BSIM Antoniadis-SIM Gramacy-SIM

50

0.01 Exponential 0.2087 0.2175 0.0805 0.6255 0.2584
0.01 Quadratic 0.3357 0.5879 0.0721 1.0112 0.1313
0.1 Exponential 0.2423 0.2623 0.1491 1.0053 0.3543
0.1 Quadratic 0.3409 0.6249 0.1552 0.9643 0.2671
0.3 Exponential 0.3476 0.3718 0.3591 1.1358 0.3858
0.3 Quadratic 0.4116 0.5909 0.3764 0.9607 0.3946
0.5 Exponential 0.5476 0.5395 0.6615 0.8733 0.6335
0.5 Quadratic 0.5510 0.7419 0.5966 1.1024 0.5966

100

0.01 Exponential 0.2382 0.2560 0.0905 0.4656 0.0913
0.01 Quadratic 0.3590 0.4502 0.1021 0.7287 0.0939
0.1 Exponential 0.2564 0.2592 0.1302 0.5034 0.1203
0.1 Quadratic 0.3569 0.4346 0.1817 0.7238 0.1769
0.3 Exponential 0.3608 0.3590 0.3850 0.5038 0.2206
0.3 Quadratic 0.4148 0.6092 0.3625 0.8967 0.3638
0.5 Exponential 0.5013 0.5080 0.6109 0.6637 0.4832
0.5 Quadratic 0.5000 0.6223 0.5609 0.9140 0.5184

Table 9: Comparison of predictive performance of the existing methods (CSOPG, KSIR,
Antoniadis et al. (2004), Gramacy and Lian (2012) and the proposed method (BSIM).
We report the median of the mean absolute errors of prediction based on 50 replicates.
80% of the data was used to train the models and the rest 20% was used for evaluating
prediction performance.

(σ = 0.01, 0.1, 0.3). When the error variance is large, the proposed method has compa-
rable performance to existing methods.

7 Analysis of Air Quality Data

We illustrate our method via reanalysis of the air quality study (Chambers, 1983), which
was the motivating study for many major methodological developments in SIM litera-
ture (Hristache et al., 2001; Antoniadis et al., 2004; Choi et al., 2011). The full dataset,
available via the datasets package in R, contains the logarithm of daily concentration
(response) as well as three predictors (covariates) including the solar radiation, wind
speed and temperature of New York City for 153 days from May to September 1973.
Out of these 153 samples, there are 42 data points with at least one covariate or re-
sponse missing. We first use the frequentist diagnostic described in Guo et al. (2016)
to check whether a SIM is appropriate for modeling the response as a function of three
covariates. The observed test-statistic of TDEE = 5.77 results in a small p-value, indi-
cating that it is reasonable to use a SIM. We also provide an exploratory assessment of
the adequacy of our Bayesian SIM using the empirical cumulative distribution function
(cdf) C(t) = 1

n

∑n
i=1 I(yi ≤ t) versus the fitted cdf M(t) = 1

n

∑n
i=1 Φ((t− ŷi)/σ̂), where

I(·) denotes the indicator function, Φ(·) denotes the standard normal cumulative distri-
bution function, ŷi and σ̂ denote the Bayesian estimates of E[Yi|Xi] = f(αTXi) and σ,
respectively (computed via MCMC samples from the joint posterior). Validity of (2.1)
is supported by the agreement between C(t) and M(t) across the range of observed



K. Dhara, S. Lipsitz, D. Pati, and D. Sinha 775

Figure 1: Model diagnostics to check whether a Bayesian SIM is appropriate for the air-
quality study. The solid blue curve is the empirical cumulative distribution C(t) of the
observed response, and the red dashed line represents the fitted cumulative distribution
function M(t) under SIM. These two curves are almost indistinguishable, indicating the
adequacy of Bayesian SIM for the air-quality study.

responses, t. In Figure 1, we plotted C(t) as the solid blue curve and M(t) as the red
dashed curve. The plot reveals that these two curves are nearly identical over the range
of all observed responses, indicating that a SIM is appropriate for this study across all
observed response values.

Compared to previous methods that do not handle missing data, we first analyze
using 111 data points used by previous methods. For our Bayesian method, the hyper-
parameters of beta proposal density are c1 = c2 = 5000 for both coordinates of θ. The
prior distribution on error variance σ2 is inverse gamma with shape parameter 15 and
rate parameter 0.06, corresponding to the prior guess of around 0.02 for σ (because the
true σ is typically believed to be small for such a semiparametric regression model).
The link function f(·) is assigned an OU process prior with the hyper-parameter κ hav-
ing uniform hyper-prior on a support of grid of points in [0.1, 3] with a common grid
interval width 0.05. Similar to the simulation studies, we use 3,000 MCMC iterations
(after discarding the first 2,000 iterations for burn-in) to compute the Monte Carlo ap-
proximation of the Bayesian estimates and posterior standard deviations of (α1, α2, α3).
Table 10 presents the point estimates of α, obtained from our method as well as three
other competing methods.

As is apparent from Table 10, the values of point estimates of α from our Bayesian
methods are close to the corresponding estimates obtained from existing methodologies.
Unlike the method of Choi et al. (2011), we also provide the posterior standard devia-
tions (a measure of uncertainty in Bayesian estimates) of α1, α2, α3, and these posteriors
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Method Point Estimate Standard Deviation
Hristache et al. (2001) (0.0407, 0.5263, -0.8493) (0.0821, 0.1469, 0.0886)
Antoniadis et al. (2004) (0.0817, 0.5565, -0.8103) (0.0677, 0.1248, 0.0832)
Choi et al. (2011) (0.0295, 0.5714, -0.8202) -
BSIM with D1 (0.0506, 0.4859, -0.8725) (0.0006, 0.012, 0.006)
BSIM with D = D1 ∪D2 (0.0506, 0.4863, -0.8722) (0.0006, 0.012, 0.006)

Table 10: Estimates of index vector α obtained from five competing analysis methods.
The estimates reported here correspond to solar radiation, wind speed and temperature,
respectively.

standard deviations are substantially smaller than the standard errors for competing
frequentist estimates. This reanalysis demonstrates the feasibility and advantages of our
method compared to existing SIM tools in terms of ease of computation, convergence
rate and small autocorrelations among MCMC samples, as well as the ability to handle
missing covariates.

In Figure 2, we overlay four estimates of the link function f(z) versus index z ob-
tained from three previous methods (Hristache et al., 2001; Antoniadis et al., 2004; Choi
et al., 2011) and our Bayesian method. For three existing methods, only the estimates
of α have been provided without any explicit estimate of f(·). To make all four meth-
ods comparable, we estimate the function f(·) for these three methods using smoothing

Figure 2: Plots of the estimated f(z) versus index z obtained from our Bayesian and
competing methods. The scatterplots are observed yi versus estimated αTxi from our
Bayesian method. Estimated f(·) obtained from our Bayesian methods is similar to the
Bayesian estimates from Antoniadis et al. (2004) and Choi et al. (2011), but all Bayesian
estimates are different from the frequentist estimate from Hristache et al. (2001).
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splines on the estimated αTxi. Estimated f(·) from our Bayesian method is very similar
to the estimates from other two existing Bayesian methods of Choi et al. (2011) and
Antoniadis et al. (2004). The frequentist estimate of f(·) (Hristache et al., 2001) appears
to be somewhat different from the estimates from all three Bayesian methods.

As mentioned earlier, the air-quality study has 5 observations with covariate solar
radiation missing. The point estimate of α obtained from our proposed missing covariate
method (last line of Table 10) is very close to the point estimate obtained from analysis
using only the completely observed data points. Since only 4.5% of the samples have
missing covariates, the method accommodating the missing covariate mechanism did not
result in a substantial change in the values of the Bayesian point estimates. Table 10
shows the posterior standard deviations of the index vector α with and without using
the observations with missing covariates in the analysis (last two rows of Table 10). Since
only a small part of the sample has missing covariates, the posterior standard deviations
did not change substantially after incorporating the data points with missing covariates.

We also evaluate the performance of our proposed method for predictions. For this
evaluation, we have ignored the 5 observations with missing covariates and used only
the remaining 111 observations. We use a 5-fold, cross-validation of the data to provide
the mean sum of squares of error for the proposed method and compare it with existing
methods. Our Bayesian method has used the proposal density with the tuning param-
eters c1 = c2 = 175. The results are provided in Table 11. BSIM performs better than
Choi-SIM and is comparable with Antoniadis-SIM. Gramacy-SIM has better prediction
performance than BSIM. However, Gramacy-SIM does not estimate the index vector
α as precisely as BSIM. Hence, BSIM provides a precise estimate of the index vector
without compromising the predictive performance.

CSOPG KSIR HJS Antoniadis-SIM Gramacy-SIM BSIM Choi-SIM
0.3933 0.3896 0.3401 0.4587 0.3973 0.4539 0.6985

Table 11: Comparison of median of mean absolute error of prediction based on 5-fold
cross-validation. We compare our proposed method (BSIM) with CSOPG, KSIR, An-
toniadis et al. (2004), Choi et al. (2011), Gramacy and Lian (2012), Hristache et al.
(2001). The table shows that the performance of the proposed method is comparable
to the existing Bayesian methods.

8 Conclusion

It is straightforward to extend our method to other priors on f(·), including a Gaussian
process with other types of covariance kernels. However, these extensions may come at
an additional cost of computation owing to the lack of closed-form expressions of the
inverse and determinant of the correlation matrix.

Even though our data example has only one covariate missing, it is straightforward
to extend our approach to more than one and even discrete valued covariates subject to
missing-at-random. Even though it is beyond the scope of this paper, our computational
method can be extended to handle even nonignorable missing mechanisms. We found
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that via incorporating observation with missing covariates in data analysis, we can
improve the precision/width of the Bayesian estimates, but with some potential bias
trade-off.

For the first time in the Bayesian single index model framework, we provide theoret-
ical guarantees in terms of posterior convergence rates of the overall regression function
g(x) = f(αTx). The rate is optimal as long as the inverse bandwidth parameter is cho-
sen appropriately. An immediate followup of our theoretical result is to show that the
marginal posterior of the index vector α converges at a parametric rate.

We intend to extend our Bayesian methods to the partial linear SIM with regression
function (conditional mean response) E(Y | X,Z) = αT

1Z+f(αT
2X), where X and Z are

two covariate vectors with Z having a linear effect and X having a nonlinear effect on
the mean response. An important future research direction is toward modeling different
quantiles of responses using Bayesian single index models. The fundamental challenge
here is to obtain an appropriate stochastic model of the response that allows flexible
skewness.

Supplementary Material

Supplementary material for “A New Bayesian Single Index Model with or without Co-
variates Missing at Random” (DOI: 10.1214/19-BA1170SUPPa; .pdf).

Supplementary material for “A New Bayesian Single Index Model with or without Co-
variates Missing at Random” (DOI: 10.1214/19-BA1170SUPPb; .zip).
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