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Bayesian Bootstraps for Massive Data

Andrés F. Barrientos∗ and Vı́ctor Peña†

Abstract. In this article, we present data-subsetting algorithms that allow for
the approximate and scalable implementation of the Bayesian bootstrap. They are
analogous to two existing algorithms in the frequentist literature: the bag of little
bootstraps (Kleiner et al., 2014) and the subsampled double bootstrap (Sengupta
et al., 2016). Our algorithms have appealing theoretical and computational prop-
erties that are comparable to those of their frequentist counterparts. Additionally,
we provide a strategy for performing lossless inference for a class of functionals of
the Bayesian bootstrap and briefly introduce extensions to the Dirichlet Process.
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1 Introduction

Massive datasets are increasingly common in statistical applications, mainly because
current computational technologies are capable of efficiently recording and storing large
datasets. As a consequence, there is an increasing demand for statistical methods that
can analyze large volumes of data. Quite often, a single computer cannot store big
datasets into its internal memory, and statistical analyses can only be performed in
smaller subsets of the original data. In such cases, we must use algorithms that com-
bine statistical outputs from subsets to approximate the results we would obtain if we
analyzed the full dataset at once.

In the frequentist literature, two scalable adaptations of the bootstrap have been
proposed: the bag of little bootstraps (BLB; Kleiner et al., 2014) and the subsampled
double bootstrap (SDB; Sengupta et al., 2016). These adaptations are based on data-
subsetting. The BLB proceeds by splitting the data into subsets, bootstrapping within
each subset, and averaging the summaries of the “little” bootstraps to get a global as-
sessment of an estimator. To resemble the “big” bootstrap (i.e., the bootstrap based
on the full dataset), the little bootstraps need to be rescaled. The rescaling is achieved
by modifying the parameters of the corresponding multinomial distribution to avoid
extra computational cost. The SDB is an alternative to the BLB. The SDB proceeds
by drawing random subsets from the entire dataset, running a rescaled bootstrap of
size one within each subset, computing the root function for each rescaled bootstrap,
and finally computing a summary of the bootstrapped values to obtain a global assess-
ment of the estimator. As shown in Kleiner et al. (2014) and Sengupta et al. (2016),
the BLB and SDB are computationally efficient and provide adequate assessments of
uncertainty.
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In this paper, we develop data-subsetting methods for the Bayesian bootstrap (BB)

that are analogous to the BLB and the SDB. We will refer to these adaptations as the

bag of little Bayesian bootstraps (BLBB) and the subsampled double Bayesian boot-

strap (SDBB), respectively. The BB is a nonparametric model for probability measures

proposed by Rubin (1981) as a Bayesian analogue to the bootstrap (Efron, 1979). As

discussed in Lyddon et al. (2019, page 1), the BB represents a useful modeling technique

to perform general Bayes updating, which “is a way of updating prior belief distribu-

tions that does not need the construction of a global probability model.” For massive

datasets, the BB is an appealing procedure for two main reasons: (1) it can accommo-

date complex features that are inherent to big data and (2) its implementation does

not rely on recursive sampling algorithms, which are usually computationally expen-

sive (e.g., Markov Chain Monte Carlo methods). In addition to the BLBB and SDBB,

we present a strategy for performing lossless inference for a class of functionals of the

BB. As a natural extension, we generalize our data-subsetting strategies to Dirichlet

Processes (DP).

Our methods complement the growing literature on scalable Bayesian methods.

Taddy et al. (2015, 2016) advocate for the use of the BB in massive datasets and ap-

proximate the distribution of certain functionals through Taylor series expansions and

empirical Bayes procedures. Unlike these approaches, our proposal is based on data-

subsetting. Most data-subsetting procedures consist of three steps: (1) the dataset is

divided into subsets; (2) for each subset, a rescaled posterior distribution (subposterior)

resembling the full posterior (i.e., the posterior distribution obtained by conditioning

on the whole dataset) is obtained; and (3) the subposteriors are combined to either

approximate the full posterior or a posterior summary of interest (e.g., a posterior vari-

ance). Methods based on subposteriors can be classified into two categories: methods

that rescale the prior (see e.g., Wang and Dunson, 2013; Neiswanger et al., 2014; Wang

et al., 2015; Scott et al., 2016) and methods that rescale the likelihood (see e.g. Minsker

et al., 2017; Srivastava et al., 2018, 2015; Li et al., 2017). Particularly, there are some

similarities between the method proposed in Li et al. (2017) and the BLBB: both meth-

ods focus on summaries of the posterior (not on the full posterior itself) and use the

same rule to combine them. The methodology proposed in Li et al. (2017) applies to a

large class of models; however, its theoretical guarantees are proved under assumptions

(e.g., Assumption 3) that are not verifiable for the BB.

The article is organized as follows. In Section 2, we introduce and define the BB.

Then, we describe the BLBB, the SDBB, and a strategy to perform lossless infer-

ence. Section 2 ends with a discussion of extensions for the DP. In Section 3, we il-

lustrate the performance of our methods in simulation studies. In Section 4.1, we ap-

ply the BLBB and SDBB to model U.S. federal employees’ wages from a subset of

the Office of Personnel Management’s datafile. In Section 4.2, we use our methods to

model whether or not households in the American Community Survey are paying for a

fire/hazard/flood insurance. The paper concludes with a discussion and directions for

future work.
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2 Data-subsetting strategies for the Bayesian bootstrap

Throughout, we assume that the observations Xn = {X1, X2, . . . , Xn}, Xi ∈ R
p, are

independent and identically distributed given a probability measure P , which represents
the data-generating mechanism. The BB is a probability model for P given the data Xn

which admits the stochastic representation

P BB

n (·) =
n∑

i=1

WiδXi(·), (1)

where (W1, . . . ,Wn) ∼ Dirichlet(1, . . . , 1). The BB defines a distribution on probability
measures which bypasses the traditional prior to posterior update, and it is nonpara-
metric in the sense that no assumptions are made on the data-generating mechanism P
beyond conditional independence of the data given P (Taddy et al., 2016). Additionally,
the stochastic representation above allows us to obtain draws from P BB

n directly without
resorting to Markov Chain Monte Carlo methods. However, when n is massive and the
full dataset cannot be loaded into memory, the BB cannot be easily implemented and
approximations are needed (such as the ones presented in this article).

Several papers investigate the theoretical properties and methodological uses of the
BB. From a theoretical point of view, various authors have studied its first and second-
order asymptotic properties (Lo, 1987; Weng, 1989), proposed extensions and variations
(Lo, 1991; Kim and Lee, 2003; Ishwaran et al., 2009), and provided distributional charac-
terizations of functionals of P BB

n (Gasparini, 1995; Choudhuri, 1998; Cifarelli and Melilli,
2000). The connections between the BB and other processes have also been an object of
study. In relation to Dirichlet processes, the BB is a limiting case of the posterior dis-
tribution of a DP (as the concentration parameter of the DP goes to zero, it converges
weakly to the BB), so we can interpret it as a “noninformative” limit of the DP (Lo,
1987; Muliere and Secchi, 1996; Gasparini, 1995).

There are numerous applied and methodological contributions that use the BB as a
building block. For example, it has been used in areas such as censored data (Lo, 1993;
James, 1997), finite population (Lo, 1988), quantile regression (Hahn, 1997), quantile
estimation (Meeden, 1993), multivariate regression (Heckelei and Mittelhammer, 2003),
receiver operating characteristic curve estimation (Gu et al., 2008), predictive modeling
(Clyde and Lee, 2001; Fushiki, 2010), synthetic data (Dong et al., 2014), tree-based
modeling (Taddy et al., 2015), high-dimensional inverse covariance matrix estimation
(Datta and Ghosh, 2014), causal studies (Graham et al., 2016), multiple imputation
(Rubin and Schenker, 1986; Siddique and Belin, 2008; Zhou et al., 2016), among others.

In addition to the above-mentioned favorable properties, the BB also has some poten-
tially unappealing features. For example, P BB

n is almost surely discrete, and its support
is limited to the observed data Xn. At this point, we would like to stress that the goal of
the article is not to provide an extensive discussion of the advantages and shortcomings
of the BB, but rather to provide methodological tools to implement the model when n
is massive.

Let πP (·|Xn) be the posterior distribution of P given Xn, which has a stochastic
representation as in Expression (1). We assume that the goal is to make posterior
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inferences about a functional of P denote by φ. We use the notation πφ(·|Xn) for the
posterior distribution of φ(P ). In the following subsections, we introduce methods for
approximating ξ{πφ(·|Xn)}, where ξ is a summary of interest (e.g., mean, variance,
length of credible intervals).

2.1 Bag of little Bayesian bootstraps

The BLBB is an adaptation of the bag of little bootstraps proposed by Kleiner et al.
(2014). This procedure provides an approximation of ξ{πφ(·|Xn)} when n is large, and it
comprises three steps: divide, rescale, and combine. In the first step, we randomly split
the dataset into subsets of size b such that each subset can be stored in the internal
memory of the computer. We define these subsets by generating a random partition
I1,b,n, . . . , In/b,b,n of the set {1, . . . , n}, where |Ij,b,n| = b. For ease of exposition, we
assume that n is a multiple of b. In the second step, we compute a rescaled version of the
posterior distribution of φ(P ) for each dataset Xj,b,n = {Xi}i∈Ij,b,n

, j = 1, . . . , n/b. In
the third step, we combine the summaries found with the rescaled posteriors to obtain
an approximation of ξ{πφ(·|Xn)}.

The purpose of rescaling is to define a posterior distribution that resembles the one
we would obtain with the full dataset. Without rescaling, the next step after partitioning
the dataset would be to compute ξ{πφ(·|Xj,b,n)}, j = 1, . . . , n/b, and then combine
these summaries using, for example, the average; that is, to approximate ξ{πφ(·|Xn)}
by b/n

∑n/b
j=1 ξ{πφ(·|Xj,b,n)}. This strategy could work if the ξ{πφ(·|Xj,b,n)} provided a

reasonable approximation of ξ{πφ(·|Xn)}. Unfortunately, this is often not the case. For
example, if ξ is the variance of πφ(·|Xn), then we expect ξ{πφ(·|Xn)} < ξ{πφ(·|Xj,b,n)},
which in turn implies that ξ{πφ(·|Xn)} < b/n

∑n/b
j=1 ξ{πφ(·|Xj,b,n)}. For this reason, we

rescale the posterior distributions within each subset by following a standard strategy
employed in several data-splitting based procedures (e.g., Kleiner et al., 2014; Minsker
et al., 2017; Srivastava et al., 2015). Each subset Xj,b,n is replicated n/b times such that
the replicated dataset contains n instead of b data points. Then, we obtain the posterior
distribution associated with the replicated dataset, which we refer to as the “rescaled
posterior distribution.”

For a functional φ(P ), the rescaled posterior distribution of φ(P ) given Xj,b,n is
defined as πBLBB

φ (·|Xj,b,n) = πφ(·|X ∗
j,b,n), where X ∗

j,b,n denotes the dataset Xj,b,n replicated
n/b times, so we have a new sample of size n. Note that rescaling πBLBB

φ (·|Xj,b,n) can be
achieved by rescaling the posterior distribution of P given Xj,b,n. The rescaled posterior
distribution of P given Xj,b,n is denoted πBLBB

P (·|Xj,b,n) = πP (·|X ∗
j,b,n). In this case, the

distribution πBLBB

P (·|Xj,b,n) also has a stochastic representation of the form

P BLBB

j,b,n(·) =
∑

i∈I∗
j,b,n

Wi,jδXi(·)
d
=

∑
i∈Ij,b,n

W ∗
i,jδXi(·), (2)

where (Wi,j)i∈I∗
j,b,n

∼ Dirichlet(1, . . . , 1), (W ∗
i,j)i∈Ij,b,n

∼ Dirichlet(n/b, . . . , n/b),
d
=

denotes equality in distribution, and I∗
j,b,n denotes the subset Ij,b,n replicated n/b times.

The process in Expression (2) belongs to the class of BB clones proposed in Lo (1991).
With this stochastic representation, we have φ(P BLBB

j,b,n)|Xj,b,n ∼ πBLBB

φ (·|Xj,b,n). Although
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we compute the rescaled posterior using a replicated dataset of size n, the computational
cost of drawing from πBLBB

φ (·|Xj,b,n) is the same as of a BB with sample size equal to b.

Thus, we propose approximating ξ{πφ(·|Xn)} by b/n
∑n/b

j=1 ξ{πBLBB

φ (·|Xj,b,n)}.
We provide theoretical guarantees for approximating summaries of φT (P

BB
n ,Pn) =√

n(T (P BB
n ) − T (Pn)) by summaries of φT (P

BLBB

j,b,n,Pj,b,n) =
√
n(T (P BLBB

j,b,n) − T (Pj,b,n)),
where T is a functional and, Pn and Pj,b,n are the empirical measures associated with
Xn and Xj,b,n, respectively. Since E[P BB

n |Xn] = Pn and E[P BLBB

j,b,n|Xj,b,n] = Pj,b,n, we can
think of T (Pn) and T (Pj,b,n) as measures of central tendency for the distribution of
T (P BB

n )|Xn and T (P BLBB

j,b,n)|Xj,b,n, respectively. The functional φT can be used to quantify
uncertainty (e.g., estimate the length of intervals and measures of dispersion) asso-
ciated with the functional T . The study of the asymptotic properties of φT (P

BB
n ,Pn)

and φT (P
BLBB

j,b,n,Pj,b,n) requires understanding the asymptotic behavior of the processes√
n(P BB

n − Pn) and
√
n(P BLBB

j,b,n − Pj,b,n). These processes belong to the class of weighted
bootstrap empirical processes studied in Section 3.6.2 of van der Vaart and Wellner
(1996). The connection with weighted bootstrap empirical processes and an assumption

on the differentiability of T allow us to prove that b/n
∑n/b

j=1 ξ{πBLBB

φT
(·|Xj,b,n)} suitably

approximates ξ{πφT
(·|Xn)}, where πBLBB

φT
(·|Xj,b,n) and πφT

(·|Xn) denote the distributions
of φT (P

BLBB

j,b,n,Pj,b,n)|Xj,b,n and φT (P
BB
n ,Pn)|Xn, respectively. The proof of this result is

similar to the proof of Theorem 1 in Kleiner et al. (2014), and it also relies on the
assumption that T is Hadamard differentiable at P0 (the data generation mechanism)
and the existence of a P0-Donsker class. The specific statement of our result and its
proof can be found in Theorem 1 in the supplementary material (Barrientos and Peña,
2019). We show that even if we use s instead of n/b subsets (s < n/b), the average
s−1

∑s
j=1 ξ{πBLBB

φT
(·|Xj,b,n)} can provide a reasonable approximation of ξ{πφT

(·|Xn)}.
Figure 1 describes the resulting Monte Carlo algorithm for the BLBB.

2.2 Subsampled double Bayesian bootstrap

The SDBB is the Bayesian analogue to the subsampled double bootstrap for massive
data proposed by Sengupta et al. (2016), which also provides an approximation of
ξ{πφ(·|Xn)}. In Sengupta et al. (2016), the authors claim that the SDB outperforms
the BLB in some scenarios with limited time budget, especially when it is only possible
to run s < n/b little bootstraps. Therefore, we would expect the same phenomenon to
occur with the BLBB and SDBB.

Theorem 1 in the supplementary material shows that s−1
∑s

j=1 ξ{πBLBB

φT
(·|Xj,b,n)}

can provide a reasonable approximation of ξ{πφT
(·|Xn)}. However, the BLBB could

be outperformed by the SDBB because the little Bayesian bootstraps only consider
a unique partition of the dataset and, if the computational budget is limited, only a
fraction of the dataset contributes to the analysis. We refer to this fraction as sample
coverage, a term we borrow from Sengupta et al. (2016).

The SDBB is a procedure that ensures a higher sample coverage compared to the
BLBB and does not require using a partition of the dataset. Instead, this procedure uses
random subsets of Xn. Let Xb,n = {XR1 , . . . , XRb

} be representing the random subset,
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Figure 1: Monte Carlo algorithms for the BLBB (left) and SDBB (right).

where b ∈ N is such that Xb,n can be stored in the internal memory of the computer,
R = (R1, . . . , Rb) ∼ U(Pn

b ), and U(Pn
b ) stands for the uniform distribution defined

on the permutations of size b of the elements {1, . . . , n}. The SDBB runs a very little
Bayesian bootstrap of size 1 for each drawn subset, so it has higher sample coverage
than the BLBB. The use of subsets of Xn also requires a rescaling strategy, and we use
the same one that was used for the BLBB. We approximate the posterior distribution
of P given Xn by πSDBB

P (·|Xn), where π
SDBB

P (·|Xn) is the distribution induced by the SDBB
process. We define the SDBB process as

P SDBB

b,n (·) =
∑
i∈I∗

b

WiδXRi
(·) d

=

b∑
i=1

W ∗
i δXRi

(·),

where (Wi)i∈I∗
b
∼ Dirichlet(1, . . . , 1), (W ∗

i )
b
i=1 ∼ Dirichlet(n/b, . . . , n/b), and I∗

b de-
notes the subset {1, . . . , b} replicated n/b times. Let πSDBB

φ (·|Xn) be the distribution of
φ(P SDBB

b,n )|Xn. Our proposal is to approximate ξ{πφ(·|Xn)} by ξ{πSDBB

φ (·|Xn)}. We pro-

vide theoretical support for functionals of the form φT (P
BB
n , E[P BB

n |Xn]) =
√
n(T (P BB

n )−
T (Pn)) (this is similar to the theoretical results in Section 2.1), where T is a functional
conditions under which ξ{πSDBB

φT
(·|Xn)} approximates ξ{πφT

(·|Xn)}, where πSDBB

φT
(·|Xn) is

the distribution of the functional φT (P
SDBB

b,n , E[P SDBB

b,n |Xn, R]) =
√
n(T (P SDBB

b,n )−(E[P SDBB

b,n |Xn, R]))

given Xn, with E[P SDBB

b,n |Xn, R] = b−1
∑b

i=1 δXRi
. The technical conditions assumed for

T and P0 in Theorem 2 are similar to those assumed for the BLBB. Theorem 2 is the
counterpart of Theorem 1 in Sengupta et al. (2016). Figure 1 describes the Monte Carlo
algorithm for running the SDBB.
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2.3 Lossless inference for the Bayesian bootstrap

For a certain class of functionals, we can perform exact (lossless) inference for the BB
after splitting the data. This strategy is based on decomposing the Dirichlet weights
into Gamma random variables, and it is similar in spirit to the strategy devised for
bagging in Lee and Clyde (2004). The functionals for which lossless inference can be
performed are of the form φ(P BB

n ) = g
(∫

ρ(x)P BB
n (dx)

)
where g is a measurable function,∫

ρ(x)P BB
n (dx) =

(∫
ρ1(x)P

BB
n (dx), . . . ,

∫
ρk(x)P

BB
n (dx)

)
, ρ = (ρ1, ρ2, . . . , ρk), and ρl

is a function defined on the sample space. This class of functionals clearly contains
moments and expectations of transformations, but it also contains other functionals
such as weighted least squares estimators (as we show in the example below) or the
instrumental variables estimator presented in Section 2 in Chamberlain and Imbens
(2003) (see the supplementary material for further details).

Example 1 (Weighted least squares). Let Yi ∈ R be the outcome and Ui ∈ R
p+1 be

covariates, and assume that we want to model E[Yi|Ui] using a linear combination of

the predictors. If the pairs are (Yi, Ui)|P iid∼ P and P given the data is the BB, then we
can define the least squares functional (which, in this case, has a posterior distribution):

φ(P BB

n ) = βBB

lm,n = argmin
β∈Rp+1

n∑
i=1

Wi(Yi − U�
i β)2.

This functional has been used, for instance, in Clyde and Lee (2001) and Taddy et al.
(2016). We can rewrite

βBB

lm,n =

(
n∑

i=1

WiUiU
�
i

)−1 (
n∑

i=1

WiUiYi

)
,

=

(∫
ρ1(x)P

BB

n (dx)

)−1 (∫
ρ2(x)P

BB

n (dx)

)
,

= g

(∫
ρ(x)P BB

n (dx)

)
,

where x = (y, u), y ∈ R, u ∈ R
p+1, ρ1(x) = uu�, ρ2(x) = uy, g(M, v) = M−1v, M is a

(p+1)× (p+1)-dimensional matrix, and v is a (p+1)-dimensional vector. Thus, βBB

lm,n

is included in the class of functionals for which lossless inference can be performed.

The algorithm requires processing all the n/b subsets, so it can be significantly
slower than the BLBB or SDBB. A figure that summarizes the Monte Carlo algorithm
for performing lossless inference can be found in the supplementary material.

2.4 Extension to the Dirichlet Process

In the subsection, we extend the results in previous subsections for the Dirichlet process

(DP), which we denote Xi|P iid∼ P , i = 1, . . . , n, with P ∼ DP(α,H). The hyperparam-
eters of the DP are the base measure H and the concentration parameter α > 0. The
base measure H is the prior expectation of P , whereas α controls how concentrated P
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is around H. The DP has the following explicit stochastic representation (Sethuraman,
1994)

P DP(·) =
∞∑
k=1

Vk

k−1∏
l=1

(1− Vl) δAk
(·), Vk

iid∼ Beta(1, α), Ak
iid∼ H,

and it is a conjugate model:

P |Xn ∼ DP

(
α+ n,

α

α+ n
H +

n

α+ n
Pn

)
,

where Pn is the empirical probability measure. Pitman (1996) shows that the posterior
above can be represented as

P DP

n (·) = RnP
DP(·) + (1−Rn)P

BB

n (·), Rn ∼ Beta(α, n). (3)

The random weight Rn, the prior measure P DP of the DP, and the BB P BB
n are indepen-

dent given the data. For large n, the posterior measure of the DP is very close to the
BB: if the same random P BB

n is to be used for an analysis with the BB and the DP,

P[dTV(P
BB

n , P DP

n ) > ε] = P[Rn sup
A

|P BB

n (A)− P DP

n (A)| > ε] ≤ P[Rn ≥ ε].

For instance, if 0 < ε < 1 and 0 < α ≤ 1, the inequality above implies that P[dTV(P
BB
n ,

P DP
n ) > ε] ≤ (1− ε)(n+1).

From a more theoretical perspective, the representation in Equation (3) allows us
to define an analogue of the BLBB and SDBB

P BLDP

j,b,n = RnP
DP(·) + (1−Rn)P

BLBB

j,b,n(·) and P SDDP

b,n = RnP
DP(·) + (1−Rn)P

SDBB

b,n (·),
where BLDP and SDDP stand for bag of little Dirichlet processes and subsampled
double Dirichlet process, respectively, and Rn ∼ Beta(α, n). The Bernstein-von Mises
results for the Dirichlet process that are available in the literature (see e.g., Lo, 1983;
James, 2008; Varron, 2014; Castillo and Nickl, 2014) allow us to show that the asymp-
totic behavior of

√
n(P BLDP

j,b,n −E[P BLDP

j,b,n|Xj,b,n]) and
√
n(P SDDP

b,n −E[P SDDP

b,n |Xn]) is the same

as that of
√
n(P DP

n − E[P DP
n |Xn]), which is a parallel of the results found in the pre-

vious subsections (a proof can be found in the supplementary material). In order to
have the same theoretical guarantees for a functional φT (P

BB
n ,Pn) (as described in pre-

vious subsections), the next step would be invoking the functional delta theorem. We
finalize this subsection by noting that for the class of functionals that was defined in
Subsection 2.3, one can perform lossless inference for the Dirichlet-Multinomial process
(Kingman, 1975; Pitman, 1995), which is an approximation to the Dirichlet Process
(Ishwaran and Zarepour, 2002; Muliere and Secchi, 1996). The details can be found in
the supplementary material.

3 Numerical experiments

We compare the performance of the BLBB and SDBB in approximating posterior means
and standard deviations, as well as the length of 95% credible interval of functionals of
the BB in linear, logistic, and mixed-effects regression. The sample sizes of the datasets
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are always equal to 10,000. We simulate data from the following models:

– Linear regression: Yi = U�
i β0 + εi,

– Logistic regression: Yi ∼ Bernoulli(pi), pi = (1 + exp(−0.01U�
i β0 + 0.25))−1,

– Mixed-effects regression: Yij = αj + U�
ijβ0 + εi, j = 1, 2, 3,

where i = 1, . . . , n, Yi is the outcome, Ui denotes a (p+1)-dimensional vector containing
the predictors, and β0 = (β0,0, . . . , βp,0)

� = (1, 1, . . . , 1). The first component of Ui

is equal to 1 (acting as an intercept) and the remaining elements are independent and
identically distributed as a Student-t with 3 degrees of freedom. In the linear model,
the errors εis are simulated from a Skew Normal distribution with location parameter
−0.71, scale 1, and slant 2, which has mean 0 and is asymmetric. In the mixed model,
we draw the random the effect αj and error εi from a Skew Normal distribution with
location parameter −0.71, scale 1, and slant 2 and from a Student-t with 3 degrees of
freedom, respectively. Finally, in linear regression, p is taken to be 100, whereas in the
case of logistic and mixed-effect regression p is equal to 25.

Throughout, we model the data as (Yi, Ui)|P iid∼ P and P given the data using
P BB
n . We focus on the following 3 functionals that induce posterior distributions for the

regression coefficients:

– Linear regression: the weighted least squares estimator (see, for example, Clyde
and Lee, 2001 and Taddy et al., 2016),

βBB

lm,n =

(
n∑

i=1

WiUiU
�
i

)−1 (
n∑

i=1

WiUiY

)
, (4)

– Logistic regression: the robust estimator, (see, for instance, Carroll and Pederson,
1993),

βBB

lg,n = argmax
β∈Rp

n∑
i=1

Wi

[
− log(1 + exp(U�

i β)) + YiU
�
i β

]
, (5)

– Mixed-effects regression: the weighted estimator,

βBB

mx,n =

(
n∑

i=1

WiU
�
i V̂Ui

)−1 (
n∑

i=1

WiU
�
i V̂Yi

)
, (6)

where Ui = (Ui,1, Ui,2, Ui,3)
�, Yi = (Yi,1, Yi,2, Yi,3)

�, and V̂ is the maximum
likelihood estimator of the covariance matrix derived from the marginal likelihood
of a mixed-effects model with random intercept and under Gaussian assumptions.
Welsh and Richardson (1997) and Jacqmin-Gadda et al. (2007) discuss and assess
the robustness of these type of functionals.
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Now, we explain how the length of credible intervals, standard deviations, and mean
for βBB

lm,n = T (P BB
n ) are computed, using the notation introduced in Section 2 (the sum-

maries for βBB

lg,n and βBB

mx,n are computed using the same procedure). In the simulation
studies,

φT (P
BB

n ,Pn) = (T (P BB

n )− T (Pn)) = (βBB

lm,n − β̂lm,n),

where T (P BB
n ) = βBB

lm,n and T (Pn) = β̂lm,n. We use the notation ξl,1, ξl,2, and ξl,3 for the
2.5th and 97.5th percentiles, and standard deviation of the l-th marginal distribution
of a (p+ 1)-dimensional distribution. Thus, we define

ξBB

l,k = ξl,k{πφT
(·|Xn)},

ξBLBB

l,k = b/n

n/b∑
j=1

ξl,k{πBLBB

φT
(·|Xj,b,n)},

ξSDBB

l,k = ξl,k{πSDBB

φT
(·|Xn)},

where ξBLBB

l,k and ξSDBB

l,k are computed using the algorithms displayed in Figure 1. With
these summaries, we can compute the average relative errors of lengths of 95% credible
intervals and posterior standard deviations. For example, for the BLBB, we can compute
the average relative error as

(p+ 1)−1

p∑
l=0

∣∣∣(ξ̃BLBB

l,2 − ξ̃BLBB

l,1 )/(ξ̃l,2 − ξ̃l,1)− 1
∣∣∣ , (7)

and the same computation can be carried out for the SDBB by substituting ξ̃BLBB

l,1 and

ξ̃BLBB

l,2 by ξ̃SDBB

l,1 and ξ̃SDBB

l,2 . For the posterior mean, we define

ξBB

4 = E[T (P BB

n )|Xn] = E[βBB

lm,n|Xn],

ξBLBB

4 = b/n

n/b∑
j=1

E[T (P BLBB

j,b,n)|Xj,b,n] = b/n

n/b∑
j=1

E[βBLBB

lm,n|Xj,b,n],

ξSDBB

4 = E[T (P SDBB

b,n )|Xn] = E[βSDBB

lm,n|Xn],

and quantify the bias by computing the absolute errors

‖ξBB

4 − ξBLBB

4 ‖1 and ‖ξBB

4 − ξSDBB

4 ‖1 (8)

for the BLBB and SDBB, respectively. We use the errors in (7) and (8) to assess the
performance of the methods. We compare the results found after 1,000 samples from
the BB (run on the full dataset), and the results shown are averages over 100 simu-
lated datasets. In the case of the BLBB, the number of bootstrap samples within each
subgroup is equal to 100. On the other hand, the SDBB is run until 1,000 samples are
drawn. For both methods, we set b = nγ , γ = 0.6, 0.7, and 0.8.

Given that the BLBB and SDBB have asymptotic guarantees (which are proved in
Theorems 1 and 2 in the supplementary material), we compare the performance of the
BLBB and SDBB with two procedures based on the asymptotic distributions of T (Pn)



A. F. Barrientos and V. Peña 373

and T (Pj,b,n). The first procedure uses an estimate of mean and variance of the asymp-
totic normal distribution of T (Pn) to compute the summaries of interest. We refer to this
method based on asymptotic normality as AN. The second one relies on data-subsetting
and, for each j = 1, . . . , n/b, uses an estimate of mean and variance (re-scaled by a fac-
tor of b/n) of the asymptotic normal distribution of T (Pj,b,n) to compute an aggregated
estimation of the corresponding summaries. We aggregate estimates using the average
over j = 1, . . . , n/b. We refer to this method as ANS. The summaries computed under
AN and ANS are compared to ξBB

l,k, k = 1, 2, 3, and ξBB
4 using (7) and (8). The estimated

mean and variances of these asymptotic distributions as well as the functionals (4) and
(5), and the variance V̂ in (6) are computed using the statistical software R (R Core
Team, 2015). For linear and logistic regression, we used the function lm and glm in the
stats package; for mixed-effects regression, we used the function lme in library nlme

(Pinheiro et al., 2018). The simulations were performed on a computer with Intel(R)
Xeon(R) CPU E5-2680 v3 @ 2.50GHz processor and 16 GB RAM and running R version
3.3.2. We acknowledge that the results are contingent on our computing infrastructure
and coding abilities. Section 3.1 below explains the results of the simulation studies and
Section 3.2 contains a discussion on the computational overhead of the methods.

3.1 Monte Carlo results

In this subsection, we discuss and compare the Monte Carlo results obtained with the
BB to those obtained with the BLBB, SDBB, ANS, and AN. Table 1 displays the
average relative and absolute errors associated with the summaries.

In our simulations, ANS is outperformed by the BLBB and SDBB, but AN out-
performs both of our methods. The good performance of AN is in agreement with our
theoretical results which assert that, under appropriate regularity conditions, the pos-
terior distribution of functionals of P BB

n will be approximately normal when the sample
size is large enough. However, AN requires storing the full dataset in the internal mem-
ory, which is unfeasible in realistic applications with massive data. In other words, we
propose to use the BLBB and SDBB when the data cannot be stored into the internal
memory of a single computer, so AN is not a direct competitor.

As expected, Table 1 shows that the performance of the proposed methods depends
on the functional of interest. In linear and mixed-effects regression the errors are rather
small, whereas in logistic regression the errors tend to be higher. For the functionals
considered in this simulation study, we observe that the performance of the BLBB
and SDBB suffers in scenarios where the functional of interest does not have a closed-
form expression, such as logistic regression. Nonetheless, regardless of the functional,
the BLBB and SDBB approximate the summaries of the BB better as the size of the
subsets b = nγ increases, so we encourage users to use subsets as large as possible.
Another component that can affect the quality of the approximation is the number of
bootstrap samples used to compute the summaries. We recommend setting this number
as large as possible.

While the bias of the SDBB is smaller than the bias of the BLBB in approximating
posterior means, the BLBB is better than the SDBB in approximating credible interval
lengths and posterior standard deviations. The bias of the BLBB can be attributed to
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Model Summary γ BLBB SDBB ANS AN

Linear

CIL
.6 .043 .088 .375 .046
.7 .045 .062 .140 .046
.8 .053 .048 .073 .046

SD
.6 .054 .070 .368 .038
.7 .041 .047 .134 .038
.8 .034 .035 .066 .038

Mean
.6 .003 .001 .003 <.001
.7 .001 .001 .001 <.001
.8 .001 .001 .001 <.001

Mixed

CIL
.6 .089 .107 .120 .063
.7 .069 .093 .104 .063
.8 .064 .056 .091 .063

SD
.6 .086 .088 .123 .064
.7 .064 .078 .107 .064
.8 .049 .051 .093 .064

Mean
.6 .002 .001 .002 <.001
.7 .002 .001 .002 <.001
.8 .001 .001 .002 <.001

Logistic

CIL
.6 .130 .208 .254 .022
.7 .037 .093 .102 .022
.8 .033 .050 .050 .022

SD
.6 .172 .196 .252 .020
.7 .075 .087 .101 .020
.8 .047 .047 .048 .020

Mean
.6 .470 .261 .464 .034
.7 .235 .172 .244 .034
.8 .175 .113 .164 .034

Table 1: Average relative and absolute errors of approximate posterior summaries for
the functionals in (4)-(6). The average errors are computed over 100 simulated datasets
and (p+1) regression coefficients. Relative errors are reported for CIL and SD; absolute
errors are reported for Mean. CIL and SD stand for credible interval length and posterior
standard deviation.

the fact that it only considers a single partition of the dataset, which can be avoided
by averaging over several random subsets (so the SDBB avoids this issue). However,
the use of several random subsets adds an additional source of randomness that leads
to wider credible intervals and larger standard deviations. Fortunately, as pointed out
above, these differences are less worrisome as the size of the subsets increases.

3.2 Computational considerations

We compare the relative error of our methods with respect to 1,000 posterior draws from
the BB (run on the full dataset), and we average our results over 100 simulated datasets.
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In the case of the BLBB, the number of bootstrap samples within each subgroup equals
100, and the algorithm is run for 20 seconds (if all the subgroups are processed before
20 seconds, the algorithm stops). On the other hand, the SDBB runs for 20 seconds
(unless 1,000 samples are sampled before 20 seconds, in which case the algorithm stops).
For both methods, the subsets are processed sequentially using a single core. Figure 2
displays the results found for linear and logistic regression and credible interval lengths
using γ = 0.8. Due to the similarity of conclusions, we do not present the results for
mixed-effects regression and other values of γ.

Figure 2: Average relative errors and processing times associated with the length of
credible intervals for βBB

lm,n and βBB

lg,n. The vertical green dashed line indicates when
the SDBB has generated the 100th draw. The black line represents how fast the BB
approximates the interval lengths based on 1,000 draws.

Figure 2 shows that the SDBB provides faster outputs than the BLBB if we do not
wait until having 100 simulations to compute summaries of the posterior distribution.
If we wait, the BLBB is faster than the SDBB. This phenomenon occurs because each
iteration of the SDBB requires computing the functional twice, whereas the BLBB
only computes the functional once. If we wait, the SDBB produces outputs just after
the BLBB has processed the second subset. We recommend waiting until having some
minimum number of samples because, otherwise, the estimates might not be reliable
(in the sense that they will have high variance). Indeed, the figure shows that while the
SDBB can produce outputs very quickly, reporting inferences with very few samples
can have high relative error.

The computational cost of loading subsets of a massive dataset into memory is not
always negligible and can play a crucial role in the performance of the proposed methods,
particularly for the SDBB. If b is large enough, each subset takes a considerable amount
of time to be loaded into memory, which can make the SDBB slower than the BLBB.
More precisely, if we consider the same settings used in the simulation studies, the
BLBB only has to load n/b subsets, while the SDBB needs to load 1,000 subsets into
memory. Hence, the use of the SDBB is limited to scenarios where, according to the
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Size of subgroup Batch Processing Combining Full BB

n0.6 10 6 0.02 569
100 96 0.46 966

n0.7 10 22 0.02 2203
100 152 0.22 1526

n0.8 10 38 0.01 3865
100 385 0.18 3854

Table 2: Average computation times (in seconds) for lossless inference for βBB

lm,n and
using different subgroup and batch sizes.

available computational resources, the value of b is not too large or the data transfer
rate is not too low.

Although the BLBB and SDBB do not start reporting results at the same time
(which depends on the size of b and whether or not we impose a condition of having at
least 100 draws from the SDBB), both provide results that stabilize rather quickly: in
Figure 2, the relative errors tend to stabilize before the n/b subsets for the BLBB and
the 1,000 subsets for the SDBB have been processed. This is appealing in scenarios with
limited access to computational resources. Even if the user can load the full dataset into
memory, our methods will stabilize faster and might output better results than the BB.
ANS is a valid alternative in this context, but users have to be willing to accept higher
relative errors.

We conclude this section discussing some computational aspects related to the loss-
less procedure presented in Section 2.3. While it is possible to perform lossless inference
for βBB

lm,n, it is significantly slower than the BLBB and SDBB. In our simulations, the
BLBB and SDBB can produce excellent approximations in 20 seconds. Table 2 shows
computing times for the lossless method with different subgroup sizes and number of
bootstrap samples that are drawn at a time from the subgroups (referred to as “batch”
in the table). We show the average time spent sampling from the subsets (processing)
and the time it takes to combine the results once all the samples are drawn (combin-
ing). The last column is an estimate of how long the procedure would take to generate
1,000 samples using the lossless method. We observe that smaller subgroups and big-
ger batches are preferable, but in any case the time it takes to generate 1,000 samples
is significantly larger than the time that it takes to produce them using the BLBB
and SDBB (and recall that, in this context, the BLBB and SDBB provide very good
approximations, so the benefit of using a lossless method is minimal).

4 Applications with real-life datasets

In this section, we apply the BLBB and SDBB to 2 different datasets. The first one is
the Office of Personnel Management’s Central Personnel Data File (https://www.opm.
gov/), which we refer to as the OPM dataset from now on. The OPM dataset is confiden-
tial and housed by the Protected Research Data Network at Duke University https://

oit.duke.edu/what-we-do/services/protected-network. We consider two subsets

https://www.opm.gov/
https://www.opm.gov/
https://oit.duke.edu/what-we-do/services/protected-network
https://oit.duke.edu/what-we-do/services/protected-network
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of the data: i) a subset comprising employees that worked during 2011 and is referred
to as OPM-2011, and ii) a subset comprising employees that worked without any inter-
ruption during ten years starting in 2002, which we refer to as OPM-10Y. The second
dataset includes public microdata files from the American Community Survey 2012
(ACS-2012), which can be downloaded from the United States Bureau of the Census
(http://www2.census.gov/acs2012_1yr/pums/).

We study the performance of the BLBB and SDBB in approximating functionals
of the posterior distribution of regression coefficients. We compare their 95% credible
intervals, posterior standard deviations, and posterior means (as we did in Section 3).
We approximate 95% credible intervals using ξBLBB

l,4 ± (ξBLBB

l,2 − ξBLBB

l,1 )/2 and ξSDBB

l,4 ± (ξSDBB

l,2 −
ξSDBB

l,1 )/2.

We also compare the BLBB and SDBB to the asymptotic methods ANS and AN,
which were defined in Section 3. For the OPM-2011 dataset, we focus on estimating
coefficients from linear regression, i.e., βBB

lm,n (an analogous comparison for the τ -quantile
regression estimator proposed in Chamberlain and Imbens (2003) can be found in the
supplementary material). For the OPM-10Y dataset, we use mixed-effects regression
and aim to approximate summaries of the distribution of βBB

mx,n. For the ACS-2012
dataset, we estimate coefficients of a logistic regression model, which we denote βBB

lg,n.

4.1 Office of Personnel Management

The OPM dataset comprises about 3.5 million employees and 29 variables recorded
over 24 years. This dataset contains personnel records from employees that served in
the federal U. S. government, including demographic variables (e.g., race, gender, and
age) and relevant information related to their wages and careers (such as educational
level). Our response variable is the natural logarithm of the wages, and the predictors
correspond to the variables whose effect is of interest (e.g., gender or race) along with
other variables that are used to control for potential confounding factors (e.g., age and
education level). In order to assess wage gaps between the levels of a feature of interest
(e.g., between men and women or between races), researchers have run regression models
and interpreted their coefficients (see Bolton and de Figueiredo, 2016b,a; Barrientos
et al., 2018). When those inferences cannot rely on parametric assumptions, uncertainty
about the coefficients can be measured using nonparametric methods such as the BB.

For illustrative purposes, we use 2 random samples of 50,000 and 200,000 full-time
employees from the OPM-2011 dataset, and 2 random samples of size 10,000 and 40,000
from the OPM-10Y dataset. We include gender, race, educational level, and age as
predictors. The levels for gender are male and female, whereas the levels for race are
white, American indian/Alaskan native, Asian or pacific islander, black, and hispanic.
Age and educational level are treated as numerical variables, and we include both linear
and quadratic effects on the age of the employees. The datasets contain 22 different
educational categories. For ease of interpretation, we collapse the categories into a single
continuous measure of the years of education attained by an individual past high school.
Race is treated as a categorical variable, and the baseline cannot be disclosed because
the dataset is confidential. For the OPM-10Y, we add a predictor representing the year
at which the observation was collected. The regression coefficient βBB

mx,n is computed

http://www2.census.gov/acs2012_1yr/pums/
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using Expression (6) where V̂ is computed using a mixed-effects model with a random
intercept and slope for year, and assuming that each employee represents a level of the
grouping factor.

We compare the results obtained with the BLBB, SDBB, ANS, and AN with those
obtained after drawing 1,000 samples from the BB ran on the full dataset. The analysis
was performed on a computer with a Intel(R) Xeon(R) CPU E5-2699 v8 @ 2.20GHz
processor and 236 GB RAM (running R version 3.3.3). We consider b = nγ with γ = 0.6,
0.7, and 0.8.

OPM-2011

A table containing the relative and absolute errors associated with βBB

lm,n can be found
in the supplementary material. The relative errors for interval lengths and standard
deviations are rather small (less than 0.05) with all methods. The biases (absolute
errors) are also small (less than 0.015). In practice, the BLBB and ANS can give biased
results, depending on the partition. In almost all of the cases, the BLBB and SDBB
produced errors that are smaller or equal than the errors of ANS and AN.

In this application, the BLBB and SDBB provide satisfactory results for the values of
n and γ we considered, and the effect of increasing n and γ is not particularly noticeable.
On the other hand, the asymptotic methods improve their performance when n and γ
are increased. Figure 3 displays credible intervals for coefficients associated with race.
All the methods provide satisfactory approximations.

OPM-10Y

Table 3 contains the relative and absolute errors associated with βBB

mx,n. The errors are
rather large for n = 10,000 and γ = 0.6. However, as n or γ increase, the BLBB and
SDBB are better approximations of the BB. For n = 40,000 and γ = 0.8, the errors
are fairly small. For this specific dataset, none of the methods outperforms the others,
but we observe some patterns. For example, for γ = 0.6, the BLBB assesses uncertainty
better than the SDBB, and for n = 10,000, the bias associated with SDBB is smaller
than the bias of the BLBB.

The relative errors for interval lengths and standard deviations are quite large with
the asymptotic methods if we use the asymptotic estimator of the variance proposed
in Jacqmin-Gadda et al. (2007). We also consider the sandwich estimator proposed in
Liang and Zeger (1986), which is implemented in the R function vcovCR.lme of the
library clubSandwich (Pustejovsky, 2018). The results with the sandwich estimator
are labeled ANS-Sand and AN-Sand. Table 3 also contains the relative and absolute
errors associated with these asymptotic methods. The errors associated with ANS-Sand
are similar to the errors found with the BLBB.

Figure 3 displays credible intervals for coefficients associated with different levels of
race. Again, we observe that increasing n or γ improves the quality of the approximation.
For n = 40,000, we do not observe big discrepancies between the credible intervals based
on the BB and the BLBB, SDBB, or ANS-Sand; however, the intervals with ANS tend to
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n Summary γ BLBB SDBB ANS AN ANS-Sand AN-Sand

10,000

CIL
.6 .190 .307 .365 .259 .194 .009
.7 .107 .128 .216 .259 .100 .009
.8 .095 .044 .240 .259 .088 .009

SD
.6 .197 .249 .370 .259 .198 .011
.7 .100 .118 .218 .259 .100 .011
.8 .087 .033 .240 .259 .084 .011

Mean
.6 .204 .162 .204 .002 .204 .002
.7 .055 .053 .054 .002 .054 .002
.8 .024 .012 .023 .002 .023 .002

40,000

CIL
.6 .077 .105 .197 .269 .075 .009
.7 .076 .024 .242 .269 .072 .009
.8 .022 .027 .259 .269 .019 .009

SD
.6 .067 .079 .199 .267 .068 .007
.7 .067 .036 .239 .267 .064 .007
.8 .010 .014 .257 .267 .011 .007

Mean
.6 .055 .062 .054 <0.001 .054 <0.001
.7 .008 .013 .008 <0.001 .008 <0.001
.8 .011 .004 .011 <0.001 .011 <0.001

Table 3: Average relative and absolute errors of approximate posterior summaries for
βBB

mx,n, OMP-10Y dataset. The average errors are computed over all regression coeffi-
cients. Relative errors are reported for CIL and SD; absolute errors are reported for
Mean. CIL and SD stand for credible interval length and posterior standard deviation.

be too narrow. Additionally, in Figure 3 we observe that the most problematic coefficient
is the first one (represented as β1 in the figure), which is associated with a category with
a small observed frequency (2%). If a variable has some levels that are highly infrequent,
approximating their coefficients via subsetting can be problematic: for example, some
of the subsets might have extremely small frequencies for some levels, and some levels
might not be observed at all.

In this specific context (OPM dataset, linear and mixed-effect regressions), our gen-
eral recommendation to take subset sizes as large as possible leads to reasonable per-
formance of the BLBB and the SDBB.

4.2 American Community Survey

The ACS-2012 dataset contains records of 1,477,091 households in the United States
collected in 2012. The data were collected with the goal of making inferences about
population demographics and housing characteristics. In this application, we only use
the information at the household level and not at the individual level, and we model
a binary outcome (response variable) that indicates whether or not the household is
paying for a fire/hazard/flood insurance. We regress our binary outcome on a set of
numerical and categorical predictors. As numerical predictors, we consider number of
people living in the household, number of bedrooms, number of rooms, number of ve-
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Figure 3: Credible intervals for regression coefficients, two different values of n, and
γ ∈ {0.7, 0.8}. The first and second columns display intervals associated with the levels
of the predictor race from the OPM-2011 and OPM-10Y datasets, respectively. The
third column displays intervals associated with the levels of the predictor indicating
how long the families lived in the household, ACS-2012 dataset.
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hicles, and household income (in the past 12 months). The categorical predictors are
lot size, yearly food stamp/Supplemental Nutrition Assistance Program (SNAP) recip-
iency, house heating fuel, presence and age of children, and a discretized variable that
indicates how long the families lived in the household. This set of predictors leads to a
regression with 21 coefficients.

We use two subsets of the ACS-2012 dataset of n = 50,000 and 200,000 complete
cases records that correspond to households that are located in the Northeast of the
United States and are not rentals. We estimate the posterior mean and standard devi-
ation, quantiles (2.5% and 97.5%), and lengths of the resulting 95% credible intervals
for βBB

lg,n. We compare the results obtained with the BLBB, SDBB, and the asymptotic
methods ANS and AN with those obtained from running 1,000 samples from the BB
ran on the full dataset.

Table 4 contains the relative and absolute errors associated with βBB

lg,n. The errors
are moderately small (<0.09) even for n = 10,000 and γ = 0.6. We also observe that, as
either n or γ increase, the BLBB and SDBB provide better results. In this application, we
cannot conclude that the BLBB or SDBB uniformly outperforms the other; for γ = 0.6,
the BLBB is better at assessing uncertainty than the SDBB, whereas for n = 50,000,
the bias associated with SDBB is smaller than the bias of the BLBB. These patterns
were also observed in the OPM-10Y dataset, where we used a mixed-effects model (see

n Summary γ BLBB SDBB ANS AN

50,000

CIL
.6 .033 .087 .844 .378
.7 .034 .027 .286 .378
.8 .045 .029 .301 .378

SD
.6 .056 .082 .850 .374
.7 .021 .026 .282 .374
.8 .026 .024 .297 .374

Mean
.6 .491 .414 .480 .010
.7 .191 .168 .173 .010
.8 .080 .069 .060 .010

200,000

CIL
.6 .020 .045 .307 .280
.7 .034 .033 .218 .280
.8 .036 .032 .240 .280

SD
.6 .029 .041 .298 .271
.7 .018 .023 .210 .271
.8 .022 .027 .232 .271

Mean
.6 .089 .118 .087 .009
.7 .024 .063 .024 .009
.8 .016 .021 .015 .009

Table 4: Average relative and absolute errors of approximate posterior summaries for
βBB

lg,n, ACS-2012 dataset. The average errors are computed over all regression coefficients.
Relative errors are reported for CIL and SD; absolute errors are reported for Mean. CIL
and SD stand for credible interval length and posterior standard deviation.
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Section 4.1). The relative errors for estimating interval lengths and standard deviations
with the ANS and AN are large. The errors decrease as n increases, but they are never
smaller than the errors of the BLBB and SDBB. The bias (absolute error) associated
with AN is very small, whereas the bias associated with ANS is similar to the bias of
the BLBB. This is not surprising because we are using the same partition with both
methods (BLBB and ANS).

Figure 3 displays credible intervals for the coefficients of the variable that indicates
how long the families lived in the household. We choose to show these intervals because
the observed frequencies of some of the levels are low, so they are particularly hard to
estimate with subsetting methods. ANS is more sensitive to this specific issue (which
is even worse when b is small) than the BLBB and SDBB. In general, we observe that
ANS tends to output intervals that are too wide.

5 Discussion

We have presented the BLBB and SDBB as two data-subsetting procedures to approx-
imate the BB. The BLBB and SDBB are analogous to the BLB (Kleiner et al., 2014)
and SDB (Sengupta et al., 2016). The proposed procedures have theoretical and compu-
tational properties that are comparable to those of their frequentist counterparts. The
performance of the methods has been illustrated and compared in simulation studies
and real datasets. Although both the BLBB and SDBB are computationally efficient,
the BLBB is preferable in scenarios where the computational cost of loading the subsets
into memory is high. A similar conclusion can be drawn if the BLB and SDB are com-
pared in an analogous setting. We observe that the BLBB approximates the uncertainty
of the BB better than the SDBB, whereas the SDBB provides better approximations of
point estimates than the BLBB. If the subsets can be loaded into memory reasonably
fast and the functional of interest can be computed quickly, we recommend running
rescaled bootstraps for some subsets to check if the posterior distributions of the func-
tionals are similar. If they are, the SDBB will approximate the uncertainty as well as the
BLBB does but with less bias; if they are not, the SDBB will overestimate uncertainty
estimates and we recommend using the BLBB.

The performance of the methods depends on the size of the subsets and the functional
of interest. In general, we observe that increasing subset sizes improves the approxima-
tion. This relationship between the quality of the approximation and subset size is not
particular to our procedures; in fact, it is a common issue of data-subsetting methods.
In addition to the BLBB and SDBB, we provide a strategy for performing lossless in-
ference for functionals that can be expressed as functions of expectations with respect
to the probability measure of the BB. This class is larger than one would expect at
first glance: it includes, for instance, the weighted least squares estimator used in Clyde
and Lee (2001) and Taddy et al. (2016), as well as the instrumental variables estimator
introduced in Section 2 of Chamberlain and Imbens (2003).

Future work can extend our contribution. For example, it would be useful to deter-
mine which functionals are best estimated by the BLBB or SDBB (beyond empirical
investigations), so that we can select and combine the methods as needed depending on
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the functionals we want to estimate. It would also be interesting to find strategies for
determining when the sample size is big enough so that asymptotic methods (such as
ANS, as defined in Section 3) can be used to our advantage. Another interesting direc-
tion for further research would be designing data-subsetting strategies for datasets that
have categorical variables with low observed frequency levels, which is an important
practical issue, as we argue in Section 4.1.

Supplementary Material

Supplementary material: Bayesian Bootstraps for Massive Data
(DOI: 10.1214/19-BA1155SUPP; .pdf). The supplementary material has 6 sections: the
first provides theoretical results for the processes proposed in Sections 2.1, 2.2, and 2.3;
the second has a figure which details the Monte Carlo algorithm for performing lossless
inference for the class of functionals described in Section 2.3; the third contains a scheme
for lossless simulation for the example in Section 2.3 in Chamberlain and Imbens (2003);
the fourth part explains how to perform lossless inference for the Dirichlet-Multinomial
process; the fifth includes a table with relative and absolute errors related to the linear
regression coefficients estimated from the OPM-2011 dataset in Section 4.1; Finally,
the sixth assesses the performance of the BLBB, SDBB, ANS, and AN approximating
coefficients of a quantile regression fitted to the OPM-2011 dataset.
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