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We consider N independent stochastic processes (Xi(t), t ∈ [0, T ]),
i = 1, . . . ,N , defined by a one-dimensional stochastic differential equation,
which are continuously observed throughout a time interval [0, T ] where T

is fixed. We study nonparametric estimation of the drift function on a given
subset A of R. Projection estimators are defined on finite dimensional subsets
of L2(A,dx). We stress that the set A may be compact or not and the diffu-
sion coefficient may be bounded or not. A data-driven procedure to select the
dimension of the projection space is proposed where the dimension is chosen
within a random collection of models. Upper bounds of risks are obtained,
the assumptions are discussed and simulation experiments are reported.

1. Introduction. Consider N independent stochastic processes (Xi(t), t ∈ [0, T ]), i =
1, . . . ,N with dynamics ruled by the following one-dimensional stochastic differential equa-
tion:

(1.1) dXi(t) = b
(
Xi(t)

)
dt + σ

(
Xi(t)

)
dWi(t), Xi(0) = x0, i = 1, . . . ,N,

where x0 ∈ R is known, (W1, . . . ,WN) are independent standard Brownian motions. The
drift function b : R → R is unknown and our aim is to study nonparametric estimation of
b from the continuous observation of the N sample paths throughout a fixed time inter-
val [0, T ]. This problem is typically part of functional data analysis which is devoted to
analysis of samples of infinite dimensional data (see, e.g., Ramsay and Silverman (2007),
Wang, Chiou and Mueller (2016)). In econometrics, authors also refer to panel or longitu-
dinal data analysis where data from a sample of individuals are collected over time (see,
e.g., Hsiao (2003)). In most cases, functional data are modeled with parametric approaches,
often using mixed effects nonlinear models. In particular, several recent contributions con-
cern i.i.d. parametric models of stochastic differential equations with mixed effects (see,
e.g., Ditlevsen and De Gaetano (2005), Overgaard et al. (2005), Picchini, De Gaetano and
Ditlevsen (2010), Picchini and Ditlevsen (2011), Comte, Genon-Catalot and Samson (2013),
Delattre and Lavielle (2013), Delattre, Genon-Catalot and Samson (2013), Dion and Genon-
Catalot (2016), Delattre, Genon-Catalot and Larédo (2018)). Note that i.i.d. samples of
stochastic differential equations have been used recently for multiclass classification of diffu-
sions (see Denis, Dion and Martinez (2018)). However, the need of flexibility to deal with the
information contained in functional data analysis make it preferable to use a nonparametric
approach.

Drift estimation for one-dimensional diffusion processes has been widely investigated
since the 1980s. Whether by a parametric or a nonparametric approach, authors have fo-
cused on estimation from one trajectory observed on a time interval [0, T ] with continuous
or discrete sampling. An asymptotic framework is standardly chosen for the study: either T is
fixed and the diffusion coefficient tends to 0, or T tends to infinity and ergodicity assumptions
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on the model are generally required. Moreover, when nonparametric estimation is performed
by projection methods, the drift function is generally estimated on a fixed compact subset of
R. Nevertheless, when practical implementation is done, the compact set is chosen equal to
the random data range which contradicts the theoretical results (see, for reference books, e.g.,
Kutoyants (1984, 2004), Iacus (2008), Kessler, Lindner and Sørensen (2012)).

In our context, ergodicity is not required for Model (1.1), T is fixed and the asymptotic
framework is N tends to infinity. The diffusion coefficient σ is supposed to be known as it
is identified from a continuous observation of the sample paths. Here, we emphasize that it
is possible by empirical estimators to estimate the mean and the covariance operator of the
diffusion. But, it is not easy to deduce “good” estimators of the drift from these estimators.
This is precisely the reason why we propose here an elaborate method to estimate the drift
function.

To that aim, we fix a subset A of R and consider the estimation of bA := b1A by a pro-
jection method on finite dimensional subspaces of L2(A,dx). The set A may be compact
or not and the drift function bA need not be square-integrable. When A = R+ or R, we
consider subspaces of L2(A,dx) generated respectively by the Laguerre functions or the
Hermite functions. These subspaces have been recently used for nonparametric density or
regression function estimation (see, e.g., Comte and Genon-Catalot (2018, 2019, 2020)). We
propose nonparametric projection estimators of bA and evaluate risk bounds for their L2-risk.
This risk is defined either as the expectation of an empirical norm or as the expectation of a
L2(A,fT (x) dx)-norm where the density fT (x) is equal to T −1 ∫ T

0 dt pt (x0, x) and pt(x, y)

is the transition density of the diffusion model. A data-driven procedure is proposed to select
the dimension of the projection space. Due to the noncompacity of the set A, specific bounds
for the risks are obtained.

In two previous papers (Comte and Genon-Catalot (2019, 2020)), we have studied the
nonparametric estimation of the regression function in the classical regression model where
observations (Xi, Yi) are i.i.d. and satisfy Yi = b(Xi)+σ(Xi)εi , with noise variables εi i.i.d.
such that E(εi) = 0, E(ε2

i ) = 1 and independent of the Xi’s. The common features between
these two papers and the present one are that we estimate the function b (regression or drift
function) on a possibly noncompact set A, by a projection method on subspaces of L2(A,dx),
relying on a least-squares contrast, without assuming that b ∈ L2(A,dx) and that both func-
tions b and σ may be unbounded. Thus, although the model, the methodology, proofs and
results are quite distinct, we can point useful analogies, which we use to substantially shorten
the technical part of the present work. First, the noncompacity of the estimation set imposes
a restriction on the choice of dimensions for the projection spaces involving the inverse of a
matrix depending on the projection basis (Conditions (2.14)–(2.18)). Such a condition was
first introduced in the regression framework by Cohen et al. (2013) to obtain stability and
accuracy of the least-squares approximations in case of a general reconstruction set. Second,
to be able to study properly the risk of the estimator of b, a trimming of the projection estima-
tor is required involving the inversion of a random matrix (Definition (2.15)). Third, for the
adaptive procedure, the data-driven dimension is chosen within a random set, also related to
the stability condition. This is why some parts of proofs and technical lemmas are borrowed
from our two previous papers when there is no need to reproduce proofs. We were careful to
choose similar notation to ease the reading.

In Section 2, the projection estimators are defined and their risks are studied on a fixed
projection space, assumptions and rates of convergence are discussed. Section 3 concerns the
adaptive procedure. The case where σ is bounded on A is easier. The penalty term has the
usual form and depends on σ only through a single upper bound, ‖σ1A‖∞. For unbounded
σ , the study is complicated by the fact that the penalty has an unusual form and is random.
A short recap on the Laguerre and Hermite bases is given in Section 4 and numerical simula-
tions illustrate the estimations method. Section 5 gives some concluding remarks. Section 6
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contains proofs. A Chernoff-type inequality for random matrices (see Tropp (2012)) used in
proofs is recalled in Section 7.

2. Projection estimators of the drift on a fixed space.

2.1. Assumptions. We consider the usual assumptions ensuring that equation (1.1) ad-
mits a unique strong solution adapted to the filtration (Ft = σ(Wi(s), s ≤ t, i = 1, . . . ,N),

t ≥ 0):

• Either (H1): The functions x �→ b(x) is C1 and x �→ σ(x) is C2 on R, and both have
linear growth.

• Or (H2): The function x �→ b(x) is Lipschitz and the function x �→ σ(x) is Hölder
with exponent α ∈ [1/2,1]. This implies that both b and σ have linear growth.

Thus

(2.1) ∃K > 0,∀x ∈ R, b2(x) + σ 2(x) ≤ K
(
1 + x2)

.

Assumption (H1) is standard and Assumption (H2) is fulfilled, for example, by σ(x) = √
x+

(Cox–Ingersoll–Ross process). Under (H1) or (H2), the Markov process (Xi(t)) admits a
transition density pt(x, y) jointly continuous in (t, x, y) on R+ × (l, r) × (l, r) where (l, r)

is the state space of (1.1) (see, e.g., Rogers and Williams (1990), Chapter V, Section 7).
Moreover, as the initial condition x0 is deterministic,

(2.2) ∀k ≥ 0,∀t ≥ 0 sup
0≤u≤t

E
(
X1(u)

)2k = sup
0≤u≤t

∫
y2kpu(x0, y) dy < +∞.

The following density which is well defined plays an important role in the sequel:

(2.3) fT (y) = 1

T

∫ T

0
pu(x0, y) du.

By (2.2), fT has moments of any order. From assumptions (H1) or (H2) and (2.2), we have,
for all k,

(2.4)
1

T
E

[∫ T

0

(
b2k(X1(u)

) + σ 2k(X1(u)
))

du

]
=

∫ (
b2k(y) + σ 2k(y)

)
fT (y) dy < +∞.

2.2. Definition of projection estimators. The following notation is used below. For h a
function, we denote ‖h‖ the L2-norm of L2(A,dx), ‖h‖fT

the L2-norm of L2(A,fT (x) dx)

and set hA = h1A and ‖h‖∞ = supx∈A |h(x)| for the sup-norm on A. The Euclidean norm in
Rm is denoted by ‖ · ‖2,m.

To define nonparametric estimators of the drift function b, we proceed by a projection
method. Consider a set A ⊂ R and a family (Sm,m ≥ 0) of finite-dimensional subspaces of
L2(A,dx), where each Sm is endowed with an orthonormal basis (ϕj , j = 0, . . . ,m − 1) of
A-supported functions and we estimate bA := b1A. It is possible to choose a basis of Sm that
depends on m but for simplicity, we omit this dependence in the notation. We assume that the
basis functions ϕj are bounded so that Sm ⊂ L2(A,fT (x) dx).

Then, for t : R→R a function, we introduce the contrast

(2.5) γN(t) = 1

NT

N∑
i=1

(∫ T

0
t2(

Xi(u)
)
du − 2

∫ T

0
t
(
Xi(u)

)
dXi(u)

)
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and note that, for any bounded t , as E
∫ T

0 t2(X1(u))σ 2(X1(u)) du < +∞,

EγN(t) = 1

T
E

∫ T

0

[
t
(
X1(u)

) − b
(
X1(u)

)]2
du − 1

T
E

∫ T

0
b2(

X1(u)
)
du

=
∫ (

t (y) − b(y)
)2

fT (y) dy −
∫

b2(y)fT (y) dy.

This property justifies the definition of a collection of estimators b̂m,m ≥ 0 of bA := b1A by
setting

(2.6) b̂m = arg min
t∈Sm

γN(t).

Thus, for each m,

(2.7) b̂m =
m−1∑
j=0

θ̂j ϕj ,

where the vector of coefficients θ̂(m) = (θ̂0, . . . , θ̂m−1)
′ can be easily computed. Indeed, define

the m × 1-vector

(2.8) Ẑm =
(

1

NT

N∑
i=1

∫ T

0
ϕj

(
Xi(u)

)
dXi(u)

)
j=0,...,m−1

and the m × m-matrix

(2.9) �̂m =
(

1

NT

N∑
i=1

∫ T

0
ϕj

(
Xi(u)

)
ϕ	

(
Xi(u)

)
du

)
j,	=0,...,m−1

.

Then, provided that �̂m is a.s. invertible,

(2.10) θ̂(m) = �̂−1
m Ẑm.

We introduce the empirical norm and the empirical scalar product associated with our obser-
vations. For t (·), s(·) two bounded functions, we set

‖t‖2
N = 1

NT

N∑
i=1

∫ T

0
t2(

Xi(u)
)
du, 〈s, t〉N = 1

NT

N∑
i=1

∫ T

0
t
(
Xi(u)

)
s
(
Xi(u)

)
du,(2.11)

νN(t) = 1

NT

N∑
i=1

∫ T

0
t
(
Xi(u)

)
σ

(
Xi(u)

)
dWi(u).(2.12)

Therefore, E‖t‖2
N = ‖t‖2

fT
, E〈s, t〉N = 〈s, t〉fT

and EνN(t) = 0, Eν2
N(t) = ‖tσ‖2

fT
/NT . Us-

ing this notation, we obtain

Ẑm = (〈ϕj , b〉N )
j=0,...,m−1 + Em, �̂m = (〈ϕj ,ϕ	〉N )

j,	=0,...,m−1,

where

(2.13) Em = (
νN(ϕj ), j = 0, . . . ,m − 1

)′
is a centered vector. Using (2.7)–(2.10), one easily checks that γN(b̂m) = −‖b̂m‖2

N .
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2.3. Risk bound. For M a matrix, we denote by Tr(M) the trace of M and by ‖M‖op the
operator norm defined as the square root of the largest eigenvalue of MM ′. If M is symmetric,
it coincides with sup{|λi |} where λi are the nonnegative eigenvalues of M . Moreover, if M ,
N are two matrices with compatible product MN , then ‖MN‖op ≤ ‖M‖op‖N‖op. For M , a
symmetric nonnegative matrix, we denote M1/2 a symmetric square root of M .

Let us define

(2.14) L(m) := sup
x∈A

m−1∑
j=0

ϕ2
j (x),

and note that L(m) < +∞, as the ϕj ’s are bounded. It is easy to see that the quantity L(m)

depends on the space Sm but not on the choice of the L2(A,dx)-orthonormal basis of Sm

used to compute it. Indeed, L(m) = supt∈Sm‖t‖=1 supx∈A t2(x). If the spaces Sm are nested,
that is, m ≤ m′ ⇒ Sm ⊂ Sm′ , then the map m �→ L(m) is increasing.

Throughout the paper, the length-time interval T is fixed and the asymptotic framework is
N tends to infinity. Without loss of generality, we assume that T is an integer with T ≥ 1.
Though fixed, the value of T may have an impact on the performances of the estimators. This
is why all bounds will be expressed as negative powers of NT .

To ensure the existence and stability of the estimator, we insert a cutoff and define, for
m ≥ 1,

(2.15) b̃m = b̂m1{L(m)(‖�̂−1
m ‖op∨1)≤cT NT/ log(NT )}, cT = 1 − log(2)

8T
.

Let us define the following m × m matrices:

�m = E�̂m = (〈ϕj ,ϕ	〉fT
, j, 	 = 0, . . . ,m − 1

)
,(2.16)

�m,σ 2 = E
(
EmE′

m

) = (〈σϕj , σϕ	〉fT
, j, 	 = 0, . . . ,m − 1

)
(2.17)

(see (2.13)). Under mild assumptions on the basis (ϕj ), the matrix �m is invertible as for
instance the ones given in the following lemma.

LEMMA 2.1. Assume that λ(A ∩ supp(fT )) > 0 where λ is the Lebesgue measure and
supp(fT ) the support of fT , that the (ϕj )0≤j≤m−1 are continuous, and that there exist
x0, . . . , xm−1 ∈ A ∩ supp(fT ), det[(ϕj (xk))0≤j,k≤m−1] �= 0. Then �m is invertible.

The proof is elementary using that, for u = (u0, . . . , um−1)
′,

u′�mu =
∫ (

m−1∑
j=0

ujϕj (y)

)2

fT (y) dy.

In particular, if (ϕj )0≤j≤m−1 is the Laguerre or the Hermite basis (see Section 4), �m is
invertible.

By convention, when M is a symmetric nonnegative and noninvertible matrix, we set
‖M−1‖op = +∞, a convention which is coherent since for M invertible, ‖M−1‖op =
1/ inf{λj } where {λj } are the eigenvalues of M .

PROPOSITION 2.1. Consider the estimator b̃m of bA. Then for m such that

(2.18) L(m)
(∥∥�−1

m

∥∥
op ∨ 1

) ≤ cT

2

NT

log(NT )
and m ≤ NT

with cT given in (2.15), we have

(2.19) E
[‖b̃m − bA‖2

N

] ≤ inf
t∈Sm

‖t − bA‖2
fT

+ 2

NT
Tr

[
�−1

m �m,σ 2
] + c1(T )

NT
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and

(2.20) E
[‖b̃m − bA‖2

fT

] ≤
(

1 + 1 − log(2)

2 log(NT )

)
inf

t∈Sm

‖t − bA‖2
fT

+ 8
Tr[�−1

m �m,σ 2]
NT

+ c2(T )

NT
,

where c1(T ), c2(T ) depend on T through
∫

σ 4
A(y)fT (y) dy and

∫
b4
A(y)fT (y) dy.

Actually, we can prove that m ≤ L(m)‖�−1
m ‖op and m � NT is automatically satisfied

(see Lemma 4 in Comte and Genon-Catalot (2019)).
In the framework of standard regression with independent data, Yi = b(Xi) + εi , i =

1, . . . , n, Cohen et al. (2013) introduced condition (2.14) on the space Sm and (2.18) on
the possible dimensions (see also Comte and Genon-Catalot (2019, 2020)). The restrictions
on the choices of m imposed by (2.18) have the effect of stabilizing projection estimators.
If m is too large, then estimators become very unstable and the precise cutoff for stability is
proportional to n/ logn in the regression model, or NT/ log(NT ) in our case.

Note that ‖�−1
m ‖op = supt∈Sm,‖t‖fT

=1 ‖t‖2 (see Proposition 2 in Comte and Genon-Catalot

(2019)) so that, for nested spaces, m �→ ‖�−1
m ‖op is increasing.

From the variance bound in (2.19), we cannot deduce a precise rate as a function of m.
Nevertheless, this bound verifies the following.

PROPOSITION 2.2.

(i) Let Sm be nested spaces, then m �→ Tr[�−1
m �m,σ 2] is increasing with m.

(ii) If σ is bounded on A, Tr[�−1
m �m,σ 2] ≤ m‖σA‖2∞.

Classically, in projection methods, the set A is chosen to be compact. If A is compact, σA

is automatically bounded, Proposition 2.2 applies, and we obtain a variance bound of order
m/(NT ).

In addition, if A is compact, it can be assumed that fT is lower bounded on A, say by f0.
Then we have ‖�−1

m ‖op ≤ 1/f0. Indeed for �u = (u0, . . . , um−1)
′ a vector of Rm, �u′�m�u is

equal to ∫
A

(
m−1∑
j=0

ujϕj (x)

)2

fT (x) dx ≥ f0

∫
A

(
m−1∑
j=0

ujϕj (x)

)2

dx = f0‖�u‖2
2,m.

Therefore, the stability condition (2.18) simplifies into m ≤ cNT/ log(NT ) where c depends
on T and f0.

If A is not compact, ‖�−1
m ‖op may be unbounded as a function of m and may increase the

variance rate. For instance, in the case where (ϕj ) is the Laguerre basis on A = R+ or the
Hermite basis on A = R, it is proved in the above quoted paper, Proposition 8, that for any
underlying density fT , ‖�−1

m ‖op ≥ c
√

m for some constant c (see Section 4 for the definitions
of the Laguerre and Hermite bases).

2.4. Rates of convergence. Some conclusions can be drawn from Propositions 2.1 and
2.2 concerning the rates of convergence of the projection estimators. In Comte and Genon-
Catalot (2019), to assess the bias rate, the following regularity set is proposed and justified:

Ws
fT

(A,R) = {
h ∈ L2(

A,fT (x) dx
)
,∀	 ≥ 1,

∥∥h − h
fT

	

∥∥2
fT

≤ R	−s},
where h

fT

	 is the L2(A,fT (x) dx)-orthogonal projection of h on S	. If bA has a given (un-
known) regularity s in the previous meaning, that is, if bA belongs to Ws

fT
(A,R), the square
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bias satisfies ‖bfT
m − bA‖2

fT
≤ Rm−s . Then bound (2.20) becomes, for NT ≥ 2,

E
[‖b̃m − bA‖2

fT

] ≤ 1.23Rm−s + 8
Tr[�−1

m �m,σ 2]
NT

+ c2(T )

NT
.

If σ is bounded on A (see Proposition 2.2), and if m� = (NT )1/(s+1) satisfies (2.18), we find
the rate

E
[‖b̃m� − bA‖2

fT

]
� (NT )−s/(s+1).

Let us stress that our context is hitherto unstudied and although this new rate looks familiar,
the optimal rate for this problem is not known.

In the general case, the best compromise between bias and variance terms is obtained
defining m� by the implicit relation (m�)−s = Tr[�−1

m� �m�,σ 2]/NT and yields a rate of im-

plicit order (m�)−s . The order of the quantity = Tr[�−1
m� �m�,σ 2] is empirically illustrated in

Section 4 (see Figure 1), and seems to be of order m in rather general context. In any case,
the choice of m� is not possible in practice, as s and R are unknown.

The next section is devoted to data-driven choices of the dimension of the projection space
and yields an adaptive estimator, that is, achieving automatically the best compromise be-
tween square bias and variance terms. This is especially interesting in our case where the
exact rate is implicit.

3. Data-driven procedure. Consider now the following assumptions:

(A1) The collection of spaces Sm is nested (i.e., Sm ⊂ Sm′ for m ≤ m′) and such that, for
each m, the basis (ϕ0, . . . , ϕm−1) of Sm satisfies

(3.1) L(m) =
∥∥∥∥∥
m−1∑
j=0

ϕ2
j

∥∥∥∥∥∞
≤ c2

ϕm, for cϕ > 0 a constant.

(A2) ‖fT ‖∞ < +∞.

Clearly, Assumption (A1) is fulfilled by classical compactly supported bases, such as his-
tograms and trigonometric polynomials, and also by the Laguerre and Hermite bases, which
are noncompactly supported; see Section 4. Note that L(m) does not depend on the basis, but
the bound c2

ϕm does depend on it. For instance, if the ϕj ’s are uniformly bounded over j , we
have c2

ϕ = supj supx∈A ϕ2
j (x).

In Section 3.3, we give sufficient conditions ensuring that (A2) holds. We consider the
following collection of models, for θ a positive constant specified below:

(3.2) M̂N(θ) =
{
m ∈ {1, . . . ,NT }, c2

ϕm
(∥∥�̂−1

m

∥∥2
op ∨ 1

) ≤ θ
NT

log(NT )

}
,

and its theoretical counterpart

(3.3) MN(θ) =
{
m ∈ {1, . . . ,NT }, c2

ϕm
(∥∥�−1

m

∥∥2
op ∨ 1

) ≤ θ

4

NT

log(NT )

}
.

Note that, analogously as for ‖�−1
m ‖op, m �→ ‖�̂−1

m ‖op is increasing.
Under (A1), the condition in the definition of MN(θ) is to be compared with the stability

condition (2.18): c2
ϕm(‖�−1

m ‖op ∨ 1) ≤ (cT /2)(NT/ log(NT )). The condition imposed in
MN(θ) is thus stronger as, clearly, (‖�−1

m ‖op ∨ 1) ≤ (‖�−1
m ‖2

op ∨ 1). The same remark holds

between M̂N(θ) and the cutoff used to define b̃m (see (2.15)).
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The aim here is to define a data-driven procedure for selecting the dimension m of the
projection space in such a way that the resulting estimator is adaptive, that is, its L2-risk real-
izes automatically the best compromise between the bias and the variance term. For this, we
distinguish the case where σA is bounded or not as the method is different. In both cases, we
need the Bernstein inequality for continuous local martingales; see Revuz and Yor ((1999),
p. 153), that we state in our context.

LEMMA 3.1. Consider MT := NT νN(t) (see (2.12)) and compute 〈M〉T =∫ T
0

∑N
i=1 t2(Xi(u))σ 2(Xi(u)) du. Then

P
(
MT ≥ NT ε, 〈M〉T ≤ NT v2) ≤ exp

(
−NT ε2

2v2

)
.

3.1. Case of bounded σA. If σ is bounded on A, proofs are simpler. We have that
〈M〉T ≤ NT ‖σA‖2∞‖t‖2

N and from Proposition 2.2, the variance term of the risk bound is
upper bounded by ‖σA‖2∞m/NT .

Let us define, under (A2),

(3.4) dT =
(

3 ∧ 1

‖fT ‖∞

)
1

c0T
,

where c0 is a numerical constant computed in the proof of Theorem 3.1. Now we set

(3.5) m̂ = arg min
m∈M̂N(dT )

{−‖b̂m‖2
N + pen1(m)

}
, pen1(m) = κ

∥∥σ 2
A

∥∥∞
m

NT
,

where κ is a numerical constant. Note that ‖σ 2
A‖∞m/NT is an upper bound on the variance

term obtained in Proposition 2.1 (see Proposition 2.2).

THEOREM 3.1. Let (Xi(t), t ∈ [0, T ])1≤i≤N be observations from model (1.1). Assume
that (A1), (A2) hold and that ‖σ 2

A‖∞ < ∞. Then there exists a numerical constant κ0 such
that for κ ≥ κ0, we have

E
[‖b̂m̂ − bA‖2

N

] ≤ C inf
m∈MN(dT )

(
inf

t∈Sm

‖bA − t‖2
fT

+ pen1(m)
)

+ C′

NT

and

E
[‖b̂m̂ − bA‖2

fT

] ≤ C1 inf
m∈MN(dT )

(
inf

t∈Sm

‖bA − t‖2
fT

+ pen1(m)
)

+ C′
1

NT
,

where C, C1 are numerical constants and C′, C′
1 are constants depending on T through

‖fT ‖∞,
∫

b4
A(y)fT (y) dy,

∫
σ 4

A(y)fT (y) dy.

Theorem 3.1 says that b̂m̂ automatically realizes the compromise between the squared-bias
term and the variance term, on the collection MN(dT ).

The penalty contains ‖σA‖∞. As we assume a continuous observation of each sample path,
it is well known that the function σ is identified from such an observation. Therefore, σ can
be assumed to be known. Note that the estimation procedure for b̂m and m̂ only depends on
σ through ‖σA‖∞. In practice, to implement the adaptive procedure, we can use a simple
estimator of ‖σA‖∞ built from discretizations of the observed trajectories with very small
sample step.

In the definition of the sets MN(dT ) and M̂N(dT ), there appears ‖fT ‖∞, which is un-
known. In theory and in practical implementation, we can replace dT (NT )/ log(NT ) by
NT/ log1+ε(NT ), ε > 0, provided that N is large enough.
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The constant κ is a specific feature of the model selection method. Theorem 3.1 states that,
under the assumptions of the theorem, for any function b, there exists a numerical (universal)
constant κ0 such that the inequalities hold for all κ ≥ κ0. The proof provides a numerical
value κ0 which is too large. Finding the best value κ0 for a given statistical problem is not
easy. For instance, this topic is the subject of Birgé and Massart (2007) in the Gaussian white
noise model where the authors prove that κ > 1 is required in this case. Thus, for practical
implementation of the adaptive estimator, it is standard and commonly done that one starts by
preliminary simulations to obtain a value of κ closer to the true one. Afterwards, this value is
fixed once and for all.

3.2. Case of unbounded σA. Here, the estimation procedure depends on the complete
knowledge of σ and of the constant K such that σ 2(x) ≤ K(1 + x2) (see (2.1)).

To study the case of unbounded σA, it is natural to consider that A is noncompact. In the
following, we consider the Laguerre and Hermite bases (see Section 4), and introduce the
specific assumptions:

(A3) There exists c > 0 such that for all m ≥ 1, ‖�−1
m ‖2

op ≥ cmβ with β = 4 for the
Laguerre basis and β = 5/3 for the Hermite basis.

(A4) The function σ 2 is lower bounded on A: σ 2(x) ≥ σ 2
0 > 0.

For the Hermite and Laguerre bases, ‖�−1
m ‖2

op ≥ cm, see Comte and Genon-Catalot
(2019), Proposition 8. Consequently, (A3) is a stronger constraint: our conjecture, based on
numerical simulations, is that it is related to the rate of decay of fT near infinity. Under (A4),
if A = R, then the state space of the processes Xi(t) is R; nevertheless, it is possible to esti-
mate b on R+ using the Laguerre basis. Moreover, if σ is not lower bounded, the result below
still holds replacing (A4) by the technical condition (6.21).

Let

(3.6) fT = dT ∧ 1 − log(2)

14T Bσ 2
0

where dT is defined in (3.4), B = 21K for the Laguerre basis, B = 2KC2∞ for the Hermite
basis (see the definition of C∞ in Section 4), K is defined in (2.1) and set

(3.7) m̂ = arg min
m∈M̂N(fT )

{−‖b̂m‖2
N + p̂en2(m)

}
where

(3.8) p̂en2(m) = κ1
m(1 + 	m)(1 + ‖�̂−1/2

m �̂m,σ 2�̂
−1/2
m )‖op

NT
,

with κ1 a numerical constant, (	m) is a sequence of nonnegative numbers. The matrix �̂m,σ 2

is the empirical counterpart of �m,σ 2 (see (2.17)), �̂m,σ 2 = (〈σϕj , σϕ	〉N)0≤j,	≤m−1, that is,

�̂m,σ 2 =
(

1

NT

N∑
i=1

∫ T

0
ϕj

(
Xi(u)

)
ϕ	

(
Xi(u)

)
σ 2(

Xi(u)
)
du

)
0≤j,	≤m−1

.

THEOREM 3.2. Let (Xi(t), t ∈ [0, T ])1≤i≤N be observations from model (1.1). Assume
that (A1)–(A4) hold. Let the sequence (	m) be such that 1 ≤ 	m ≤ NT , for m ∈ MN(fT ) and
assume that there exists a constant �, 0 < � < +∞ such that

(3.9)
∑

m∈MN(16fT )

m
∥∥�−1

m

∥∥
ope

−m	m ≤ �.
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Let

(3.10) pen2(m) = κ1
m(1 + 	m)(1 + ‖�−1/2

m �m,σ 2�
−1/2
m ‖op)

NT
.

Then there exists a numerical constant κ̃0 such that for κ1 ≥ κ̃0, we have

E
[‖b̂m̂ − bA‖2

N

] ≤ C inf
m∈MN(fT )

(
inf

t∈Sm

‖bA − t‖2
fT

+ pen2(m)
)

+ C′

NT

and

E
[‖b̂m̂ − bA‖2

fT

] ≤ C1 inf
m∈MN(fT )

(
inf

t∈Sm

‖bA − t‖2
fT

+ pen2(m)
)

+ C′
1

NT
,

where C, C1 are a numerical constants and C′, C′
1 are constants depending on � and de-

pending on T through
∫

b4
A(y)fT (y) dy,

∫
σ

4+56/β
A (y)fT (y) dy, ‖fT ‖∞.

As previously, the penalty is obtained using an upper bound on the variance term given
in Proposition 2.1, m(1 + 	m)(1 + ‖�−1/2

m �m,σ 2�
−1/2
m ‖op)/NT . Theorem 3.2 thus states

that the compromise between the squared-bias term and the variance term, is automatically
realized by b̂m̂, on the collection MN(fT ).

Under (A4), Tr(�−1/2
m �m,σ 2�

−1/2
m ) ≥ σ 2

0 m and ‖�−1/2
m �m,σ 2�

−1/2
m ‖op ≥ σ 2

0 , thus
pen2(m) � pen1(m).

In Comte and Genon-Catalot (2019), examples of densities for which ‖�−1
m ‖op is upper

bounded by O(mk) are given. In such a case, we can take 	m = 1 for all m, and (3.9) holds.

3.3. About assumption (A2) and some extensions. Recall that, for h continuous and
bounded, s → Eh(X(s)) is continuous and, therefore, the quantity T −1 ∫ T

0 Eh(X(s)) ds =∫
h(y)fT (y) dy is well defined so that the density fT is always well defined.
When the transition density is explicit, we can check (A2) directly. For instance, assump-

tion (A2) holds for the Brownian motion with drift, for the Ornstein–Uhlenbeck process or
for the geometric Brownian motion.

For the square-root process, the transition density is explicit but with a rather intricate
expression in the general case involving Bessel functions (for more details see, e.g., Chaleyat-
Maurel and Genon-Catalot (2006)). Nevertheless, in special cases (including our Example 4
in Section 4), we can give a rather tractable formula and check Assumption (A2).

LEMMA 3.2. Consider the process (X(t))t≥0, solution of

dX(t) = (
2θX(t) + δσ 2

0
)
dt + 2σ0

√
X(t) dW(t), X0 = x0,

where (W(t))t≥0 is a standard Brownian motion. Then, for any δ = 2r + 1 with r an integer,
r ≥ 1, (A2) is satisfied.

It is likely that the result holds for any δ ≥ 2 but the proof would require an in-depth study
of Bessel functions, which is beyond our scope.

More generally, the following result holds.

PROPOSITION 3.1.

(i) If σ(x) = 1, b is C1, |b| + |b′| ≤ M , then ‖fT ‖∞ < +∞.
(ii) If σ is C2, σ ′, σ ′′ bounded, σ lower bounded by σ0 > 0, b is C1 and b, b′ bounded,

then ‖fT ‖∞ < +∞.
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Our study concerns a fixed initial condition x0 for the diffusion model. This is not manda-
tory. We may also consider the model

(3.11) dXi(t) = b
(
Xi(t)

)
dt + σ

(
Xi(t)

)
dWi(t), Xi(0) = ηi, i = 1, . . . ,N,

where the initial conditions ηi are i.i.d. random variables independent of (W1, . . . ,WN), with
common distribution μ on R, such that Eη2k < +∞, for k large enough. In this case, Xi(s)

has distribution
∫
R μ(dx)ps(x, y) dy. It is enough to replace fT = f

x0
T by

f
μ
T (y) = 1

T

∫ T

0
ds

∫
R

μ(dx)ps(x, y).

In particular, if model (3.11) is positive recurrent with invariant distribution π(y)dy and
η has distribution π , then

∫
R π(dx)ps(x, y) = π(y) for all s, implying that f π

T = π . The
assumption ‖fT ‖∞ < +∞ becomes ‖π‖∞ < ∞. So ‖ · ‖fT

= ‖ · ‖π is fixed, the constants
c1(T ), c2(T ) in Proposition 2.1 no more depend on T , and thus the risk bound (especially
the variance term) is improved when T gets large.

3.4. Estimation of fT . The estimation procedures use some constants, which can be eas-
ily estimated, in particular ‖fT ‖∞ defined by (2.3). Assuming that fT ∈ L2(A,dx), the
estimation of fT can be done standardly by projection method. Let aj = 〈fT ,ϕj 〉. Then
âj = N−1 ∑N

i=1 T −1 ∫ T
0 ϕj (Xi(s)) ds is an unbiased estimator of aj and we can define the

projection estimator of fT on Sm by f̂T ,m = ∑m−1
j=0 âj ϕj . This estimator satisfies

E‖f̂T ,m − fT ‖2 ≤ ‖fT − fT,m‖2 + c2
ϕ

m

N
, fT,m =

m−1∑
j=0

ajϕj ,

where ‖ · ‖ is the usual L2-norm. For Laguerre and Hermite basis, under additional as-
sumptions on fT , the factor c2

ϕm in the variance can be improved; see Comte and Genon-
Catalot (2018).

4. Simulation study. We conduct a brief simulation study to illustrate the estimation
method. Implementation is done with either the Laguerre basis (A = R+) or the Hermite
basis (A = R). We recall their definition.

• The Laguerre basis, A = R+. The Laguerre polynomials (Lj ) and the Laguerre func-
tions (	j ) are given by

(4.1) Lj(x) =
j∑

k=0

(−1)k
(
j

k

)
xk

k! , 	j (x) = √
2Lj(2x)e−x1x≥0, j ≥ 0.

The collection (	j )j≥0 is a complete orthonormal system on L2(R+) satisfying: ∀j ≥ 0,
∀x ∈ R+, |	j (x)| ≤ √

2; see Abramowitz and Stegun ((1964), 22.14.12). The collection of
models (Sm = span{	0, . . . , 	m−1}) is nested and obviously (3.1) holds with c2

ϕ = 2.
• The Hermite basis, A = R. The Hermite polynomial and the Hermite function of order

j are given, for j ≥ 0, by

(4.2) Hj(x) = (−1)j ex2 dj

dxj

(
e−x2)

, hj (x) = cjHj (x)e−x2/2, cj = (
2j j !√π

)−1/2
.

The sequence (hj , j ≥ 0) is an orthonormal basis of L2(R, dx). Moreover (see Abramowitz
and Stegun ((1964), 22.14.17), Szegö (1975) p. 242, Indritz (1961)), ‖hj‖∞ ≤ �0,�0 �
1/π1/4 � 0.7511, so that (3.1) holds with c2

ϕ = �2
0. The collection of models (Sm =
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span{h0, . . . , hm−1}) is obviously nested. Moreover, ‖hj‖∞ ≤ C∞(j + 1)−1/12, j = 0,1, . . .

where the constant C∞ given is in Szegö (1975). Thus in this case, L(m) ≤ C2∞(6/5)m5/6,
and this order is smaller than order m, for m large enough.

The Laguerre polynomials are computed using formula (j + 1)Lj+1(x) = (2j + 1 −
x)Lj (x)− jLj−1(x), L0(x) = 1, L1(x) = 1 − x and the Hermite polynomials with H0(x) =
1, H1(x) = x and the recursion Hn+1(x) = 2xHn(x) − 2nHn−1(x); see Abramowitz and
Stegun ((1964), 22.7).

We simulate discrete sampling of four models, one by Euler scheme, and the others by ex-
act discretization. All our models admit a stationary distribution. When models are randomly
initialized, the initial variable follows the stationary density and (A2) is fulfilled.

EXAMPLE 1. Hyperbolic diffusion. The model dXt = −θXt dt +γ

√
1 + X2

t dWt , X0 =
0, is simulated by a Euler scheme with step �. We chose θ = 2 and γ = √

1/2. Model 1
satisfies (H1).

The other examples are obtained from a d-dimensional Ornstein–Uhlenbeck processes
(Ui(t))t≥0, with dynamics given by

(4.3) dUi(t) = − r

2
Ui(t) dt + γ

2
dWi,d(t), Ui(0) ∼ Nd

(
0,

γ 2

4r
Id

)
or Ui(0) = 0.

Here, Wi,d is a d-dimensional standard Brownian motion. Exact simulation is generated with
step � by computing

Ui

(
(k + 1)�

) = e− r�
2 Ui(k�) + εi

(
(k + 1)�

)
, εi(k�) ∼iid Nd

(
0,

γ 2(1 − e−r�)

4r
Id

)
.

EXAMPLE 2. Xi(t) = tanh(Ui(t)) where Ui(t) is defined by (4.3) with d = 1 is solution
of (3.11) with

b(x) = (
1 − x2)(− r

2
atanh(x) − γ 2

4
x

)
, σ (x) = γ

2

(
1 − x2)

, with r = 2, γ = 2.

Here, Xi(t) has state space [−1,1], so that b and σ are bounded on this domain and (H1)
holds.

EXAMPLE 3. Xi(t) = exp(Ui(t)) where Ui(t) is defined by (4.3) with d = 1 is solution
of (3.11) with

b(x) = x

(
− r

2
log

(
x+) + γ 2

8

)
, σ (x) = γ

2
x+, with r = 1 and γ = 2.

For Example 3, neither (H1) nor (H2) hold for b.

EXAMPLE 4. Cox–Ingersoll–Ross or square-root process. We take Xi(t) = ‖Ui(t)‖2
2,d

where Ui(t) is defined by (4.3) with d = 3 is solution of (3.11) with

dXi(t) =
(

dγ 2

4
− rXi(t)

)
dt + γ

√
Xi(t) dW ∗

i (t),

where W ∗
i (t) is a standard Brownian motion. We take r = 2 and γ = 1. Model 4 satisfies

(H2).
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FIG. 1. Plots of m �→ Tr(�̂−1
m �̂m,σ 2) (top) and m �→ Tr(�̂−1

m �̂m,σ 2)/[m‖�̂−1
m �̂m,σ 2‖op] (bottom) for 25

simulated paths, m = 1, . . . ,10 and N = 100, T = 100.

In all cases, samples (Xi(k�))1≤i≤N,1≤k≤n, n� = T from the above models are generated.
As almost all our examples (except the first one) correspond to exact discretization, we use
only one discretization step �, and we compute integrals by replacing them by their standard
discrete version. For Examples 1 and 2, the Hermite basis is used; in Example 3, both the
Hermite and Laguerre bases are used, and in Example 4, we use the Laguerre basis. Indeed,
Examples 3, 4 provide nonnegative processes and are well suited to the Laguerre basis use.
The order of Tr(�̂−1

m �̂m,σ 2) and its comparison with m‖�̂−1
m �̂m,σ 2‖op is illustrated on 25

simulated paths in Figure 1, with N = 100, T = 100 (corresponding to n = 1000 and � =
0.1). The lines m �→ Tr(�̂−1

m �̂m,σ 2) (top plots) seem linear (almost exactly for Example 2
which corresponds to a bounded case, and more approximately for Example 3), arguing for
a variance term of order m/N . The ratios m �→ Tr(�̂−1

m �̂m,σ 2)/[m‖�̂−1
m �̂m,σ 2‖op] (bottom

plots) indicate a likely convergence to a value less than 1.
For the model selection part, the set M̂N(fT ) is generally too small in practice to contain

enough values of m. Therefore, a larger set given by M̂�
N = {m ≤ 10,m‖�̂−1

m ‖1/4
op ≤ NT } is

chosen. The selected values of m being small, we do not need to look for m larger than 10,
but there is no problem to increase this value if it seems useful. The value ‖�̂−1

m ‖op, however,
increases too fast with m, which may be a numerical artefact: this is why we found mandatory
to set a lighter constraint.

The penalty is taken equal to p̂en(m) = κ‖�̂−1
m �̂m,σ 2‖op/(Nn�) and m̂ is selected as the

minimizer of −‖b̂m‖2
N + p̂en(m). After preliminary simulations, the constant κ is taken equal

to κ = 2, see the comment after Theorem 3.1.
Figure 2 shows 25 estimated drift functions b̂m̂ (green/grey), and the true (red/black), with

N = 100 and T = 100 (corresponding to n = 1000 and � = 0.1). We stress that the value
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FIG. 2. 25 estimated curves in the Hermite or the Laguerre basis in green, the true in bold red, N = 100,
T = 100. Below each plot, the mean of selected dimensions (with std in parentheses), and 100 ∗ MISE(100∗std)

and 100 ∗ median, over the 25 paths.

of m̂ is rather small (between 4 and 9, in all examples): under each graph, we give the mean¯̂m computed over the 25 estimators, with standard deviation in parenthesis, together with the
MISE. Thus, we see that the function is very well reconstructed using a small number of
coefficients. We present in Table 1 global simulation results correspond to different choices
of (N,T ) for our four examples. From column 1 to column 2, N = 100 is the same but T
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TABLE 1
100 ∗ MISE(100∗std), 100 ∗ Median for 100 simulations

(N,n,�) (100,500,0.05︸ ︷︷ ︸
T =25

) (100,1000,0.1︸ ︷︷ ︸
T =100

) (1000,100,0.02︸ ︷︷ ︸
T =2

)

NT = 2500 NT = 10,000 NT = 2000

Example 1
Hermite, Xi(0) = 0 1.47(8.2), 0.32 0.13(0.12), 0.08 0.25(0.41), 0.11
Example 2
Hermite, random Xi(0) 0.39(0.15), 0.40 0.77(0.19), 0.73 0.21(0.15), 0.18
Example 3
Hermite, random Xi(0) 0.68(1.33), 0.23 0.37(0.87), 0.16 0.22(0.57), 0.06
Laguerre, random Xi(0) 1.07(3.67), 0.22 0.29(0.23), 0.20 0.89(6.44), 0.04
Laguerre, Xi(0) = 1 0.32(0.59), 0.13 0.23(0.20), 0.17 0.15(0.33), 0.04
Example 4
Laguerre, random Xi(0) 0.45(0.88), 0.21 0.78(0.49), 0.62 0.17(0.35), 0.05

increases from 25 to 100; In the last column, N = 1000 is much larger and T = 2 is small. In
most cases, medians are smaller than means: this probably means that a small number of bad
selections degrade the mean risk. The better results, for both mean and median, are obtained
in the third column, showing that increasing N is the most decisive action, the value of T

being less important.

5. Concluding remarks. In this paper, nonparametric drift estimation for a one-
dimensional diffusion process is studied. For this problem, previous papers generally focus
on estimation from one trajectory discretely or continuously observed on a time interval
[0, T ] and the asymptotic framework is either that the diffusion coefficient tends to 0 or that
T tends to infinity. The latter case requires, except for special models, ergodicity assump-
tions (see, e.g., Hoffmann (1999), Dalalyan and Kutoyants (2003), Comte, Genon-Catalot
and Rozenholc (2007)).

Here, estimation is performed using the observation of N i.i.d. sample paths which are
continuously observed throughout a fixed time interval [0, T ] and the asymptotic framework
is N tends to infinity. The assumptions on the model are weak and ergodicity is not required.
The drift is estimated on a subset A of R by a projection method, using a least-squares con-
trast, on finite dimensional subspaces of L2(A,dx). The set A may be compact or not, the
drift function need not be square integrable nor bounded and the diffusion coefficient may
be bounded or not. We define a trimmed projection estimator and bound its L2-risk under a
restriction of the possible dimensions of projection spaces. Due to the noncompacity of the
estimation set, nonstandard bounds are obtained. A data-driven choice of the dimension is
proposed leading to an adaptive estimator: its L2-risk automatically achieves the best com-
promise between the square bias and the variance terms. The cases of σ bounded or not are
studied separately and much more difficulties are encountered in the unbounded case.

In Dalalyan and Reiss (2006, 2007), asymptotically equivalent statistical experiments in
the Le Cam sense are obtained for drift estimation based on the observation of one ergodic
diffusion model. Finding asymptotically equivalent experiments for drift estimation based on
N i.i.d. observations of diffusions is a different problem which is worth of interest and could
be a step toward finding the optimal rate for our estimator risk, a rate which is unknown in
this setting even in the simplest case of bounded σ .

In the whole paper, we consider that σ is known as it is identified from a continuous
observation of the sample paths. Nevertheless, the theoretical study of drift estimation for
discretely observed paths with known or unknown σ is of interest. It certainly leads to even
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more tedious proofs as, due to discretizations, new terms appear and have to be studied. This
is left for further investigation.

6. Proofs. We denote by x � y if there exists a constant c such that x ≤ cy.

6.1. Proof of Proposition 2.1. We start by defining the sets

�m :=
{
L(m)

(∥∥�̂−1
m

∥∥
op ∨ 1

) ≤ cT
NT

log(NT )

}
,(6.1)

�m :=
{∣∣∣∣ ‖t‖2

N

‖t‖2
fT

− 1
∣∣∣∣ ≤ 1

2
,∀t ∈ Sm

}
.(6.2)

On �m, the empirical norm ‖ · ‖N and the L2(A,fT (x) dx)-norm are equivalent for el-
ements of Sm: (2/3)‖t‖2

N ≤ ‖t‖2
fT

≤ 2‖t‖2
N . Moreover, if �x′ = (x0, . . . , xm−1) ∈ Rm and

t = ∑m−1
j=0 xjϕj , then

‖t‖2
N = �x′�̂m�x and ‖t‖2

fT
= �x′�m�x = ∥∥�1/2

m �x∥∥2
2,m,

so that

sup
t∈Sm,‖t‖fT

=1

∣∣‖t‖2
N − ‖t‖2

fT

∣∣ = sup
�x∈Rm,‖�1/2

m �x‖2,m=1

∣∣�x′(�̂m − �m)�x∣∣
= sup

�u∈Rm,‖�u‖2,m=1

∣∣�u′�−1/2
m (�̂m − �m)�−1/2

m �u∣∣
= ∥∥�−1/2

m �̂m�−1/2
m − Idm

∥∥
op.

Therefore,

�m = {∥∥�−1/2
m �̂m�−1/2

m − Idm

∥∥
op ≤ 1/2

}
.

The following lemma is analogous to Lemma 5 in Comte and Genon-Catalot (2019) and
determines the value of cT given in (2.15). Its proof is omitted.

LEMMA 6.1. Under the assumptions of Proposition 2.1, for m satisfying (2.18) with cT
given by (2.15), we have, for c a positive constant,

P
(
�c

m

) ≤ c/(NT )7, P
(
�c

m

) ≤ c/(NT )7.

Now we prove (2.19). For this, we write

‖b̃m − bA‖2
N = ‖b̂m − bA‖2

N1�m + ‖bA‖2
N1�c

m

= ‖b̂m − bA‖2
N1�m∩�m + ‖b̂m − bA‖2

N1�m∩�c
m

+ ‖bA‖2
N1�c

m
(6.3)

:= T1 + T2 + T3.

We bound the expectation of the three terms above.
The last term T3 is the easiest:

(6.4) ET3 ≤ E1/2(‖bA‖4
N

)
P1/2(

�c
m

)
� 1

(NT )7/2 � 1

NT

as

(6.5) E
(‖bA‖4

N

) ≤ 1

T 2E
(∫ T

0
b2
A

(
X1(u)

)
du

)2
≤

∫
b4
A(y)fT (y) dy < +∞.
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To study T1, T2, let us introduce the operator �m : L2(A,fT (x) dx) → Sm of orthogonal
projection with respect to the empirical scalar product 〈·, ·〉N , that is, �mh is the function of
Sm given by

‖h − �mh‖2
N = inf

t∈Sm

‖h − t‖2
N.

Simple computations show that �mh = ∑m−1
j=0 τjϕj where �τ = (τ0, . . . , τm−1)

′ = �̂−1
m (〈ϕj ,

h〉N)0≤j≤m−1. Thus, we can write

‖b̂m − bA‖2
N = ‖b̂m − �mbA‖2

N + ‖�mbA − bA‖2
N

= ‖b̂m − �mbA‖2
N + inf

t∈Sm

‖bA − t‖2
N.

(6.6)

We have �mbA = ∑m−1
j=0 âj ϕj where â(m) = (â0, . . . , âm−1)

′ = �̂−1
m (〈ϕj , bA〉N)0≤j≤m−1.

Recall that b̂m = ∑m−1
j=0 θ̂j ϕj with θ̂(m) = �̂−1

m Ẑm (see (2.8)). Hence, we have θ̂(m) − â(m) =
�̂−1

m Em (see (2.13)) and

‖b̂m − �mbA‖2
N = 1

NT

N∑
i=1

∫ T

0

(
m−1∑
j=0

(θ̂j − âj )ϕj

(
Xi(u)

))2

du

= 1

NT

N∑
i=1

∫ T

0

[
(θ̂(m) − â(m))

′(ϕj

(
Xi(u)

))
0≤j≤m−1

]2
du

= (θ̂(m) − â(m))
′�̂m(θ̂(m) − â(m)) = E′

m�̂−1
m Em.

Now we look at T1 = ‖b̂m − bA‖2
N1�m∩�m = (‖b̂m −�mbA‖2

N + inft∈Sm ‖bA − t‖2
N)1�m∩�m

(see (6.3) and (6.6)).
On �m, all the eigenvalues of �

−1/2
m �̂m�

−1/2
m belong to [1/2,3/2] and so all the eigen-

values of �
1/2
m �̂−1

m �
1/2
m belong to [2/3,2]. Thus on �m, we have, a.s.,

E′
m�̂−1

m Em = E′
m�−1/2

m �1/2
m �̂−1

m �1/2
m �−1/2

m Em ≤ 2E′
m�−1

m Em.

Therefore,

E
(‖b̂m − �mbA‖2

N1�m∩�m

) ≤ 2E
( ∑

0≤j,k≤m−1

[Em]j [Em]k[�−1
m

]
j,k

)

= 2

NT

∑
0≤j,k≤m−1

[
�−1

m

]
j,k[�m,σ 2]j,k

= 2

NT
Tr

(
�−1

m �m,σ 2
)
,

(6.7)

as [Em]j [Em]k is equal to∫ T

0
ϕj

(
X1(u)

)
σ

(
X1(u)

)
dW1(u)

∫ T

0
ϕk

(
X1(u)

)
σ

(
X1(u)

)
dW1(u).

So we obtain

E(T1) ≤ inf
t∈Sm

‖bA − t‖2
fT

+ 2

NT
Tr

(
�−1

m �m,σ 2
)
.

Now we look at T2 = ‖b̂m − bA‖2
N1�m∩�c

m
≤ (‖b̂m − �mbA‖2

N + ‖bA‖2
N)1�m∩�c

m
and find

(6.8) T2 ≤ (
E′

m�̂−1
m Em + ‖bA‖2

N

)
1�m∩�c

m
.
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This yields, using the definition of �m to bound �̂−1
m and the Cauchy–Schwarz inequality,

(6.9) ET2 ≤
(

cT NT

L(m) log(NT )
E1/2((

E′
mEm

)2) +E1/2‖bA‖4
N

)
)P1/2(

�c
m

)
,

where we have already seen that E(‖bA‖4
N) ≤ ∫

b4
A(y)fT (y) dy. The term E[(E′

mEm)2] is
ruled by the following lemma which is proved below.

LEMMA 6.2. With Em defined in (2.13) (see also (2.12)), we have

E
[(

E′
mEm

)2] ≤ c
mL2(m)

(NT )2

∫
σ 4

A(y)fT (y) dy,

where c is a numerical constant.

Plugging the result of Lemma 6.2 in (6.9) allows to conclude for all m satisfying (2.18),
and m ≤ NT , that E(T2) ≤ c/(NT )3 ≤ c/(NT ).

Joining the bounds for the expectations of T1, T2, T3 gives inequality (2.19).
Now we prove (2.20). We have

E
(‖b̃m − bA‖2

fT

) = E
(‖b̂m − bA‖2

fT
1�m∩�m

) +E
(‖b̂m − bA‖2

fT
1�c

m∩�m

)
+ ‖bA‖2

fT
P

(
�c

m

)
.

(6.10)

The last right-hand side term is bounded by applying Lemma 6.1.
Next, we study the first term E(‖b̂m − bA‖2

fT
1�m∩�m).

Let b
fT
m denote the orthogonal projection of b on Sm w.r.t. the L2(A,fT (x) dx)-norm and

set g = bA − b
fT
m , so that the bias term is equal to

‖g‖fT
= inf

t∈Sm

‖t − bA‖fT
.

We have

b̂m − bA = b̂m − �mbA + �mbA − bA = b̂m − �mbA + �mg − g,

where �mg = �mbA − b
fT
m . As g is orthogonal w.r.t. the L2(A,fT (x) dx)-scalar product to

Sm, and thus to b̂m − �mbA + �mbA, we have

‖b̂m − bA‖2
fT

= ‖b̂m − �mbA + �mg‖2
fT

+ ‖g‖2
fT

.

We can write

E
(‖b̂m − bA‖2

fT
1�m∩�m

) ≤ 2E
(‖b̂m − �mbA‖2

fT
1�m∩�m

)
+ 2E

(‖�mg‖2
fT

1�m∩�m

) + ‖g‖2
fT

.

The first term is the squared bias. The second term satisfies, by definition of �m and (6.7),

2E
(‖b̂m − �mbA‖2

fT
1�m∩�m

) ≤ 4E
(‖b̂m − �mbA‖2

N1�m∩�m

) ≤ 8

NT
Tr

(
�−1

m �m,σ 2
)
.

For the third term, we have the following result which is proved later on.

LEMMA 6.3. Under the assumptions of Proposition 2.1,

E
(‖�mg‖2

fT
1�m∩�m

) ≤ 2
cT

log(NT )
‖g‖2

fT
= 2

cT

log(NT )
inf

t∈Sm

‖t − bA‖2
fT

.
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Therefore, we conclude that

E
(‖b̂m − bA‖2

fT
1�m∩�m

) ≤
(

1 + 4
cT

log(NT )

)
inf

t∈Sm

‖t − bA‖2
fT

+ 8

NT
Tr

(
�−1

m �m,σ 2
)
.

(6.11)

Now we look at E(‖b̂m − bA‖2
fT

1�c
m∩�m) (see (6.10)). We have P(�c

m) ≤ c/(NT )7 and

‖b̂m − bA‖2
fT

≤ 2‖b̂m‖2
fT

+ 2‖bA‖2
fT

. Therefore, only the term E[‖b̂m‖2
fT

1�c
m∩�m] is to be

studied. We have

‖b̂m‖2
fT

=
∫ (

m−1∑
j=0

θ̂j ϕj (y)

)2

fT (y) dy = θ̂ ′
(m)�mθ̂(m) = Ẑ′

m�̂−1
m �m�̂−1

m Ẑm

≤ ∥∥�̂−1
m

∥∥2
op‖�m‖opẐ

′
mẐm

and

‖�m‖op = sup
‖�x‖2,m=1

�x′�m�x = sup
‖�x‖2,m=1

∫ (
m−1∑
j=0

xjϕj (u)

)2

fT (u)du ≤ L(m).

It follows by definition of �m that

(6.12) E
[‖b̃m‖2

fT
1�m∩�c

m

] ≤
(

cT NT

log(NT )

)2 1

L(m)
E1/2[(

Ẑ′
mẐm

)2]
P1/2(

�c
m

)
.

Now we have (Ẑ′
mẐm)2 ≤ 4m

∑m−1
j=0 〈ϕj , b〉4

N + 4(E′
mEm)2. By elementary computations,

E(〈ϕj , b〉4
N) ≤ ∫

(ϕj (x)bA(x))4fT (x) dx. Therefore, by using Lemma 6.2,(
E

(
Ẑ′

mẐm

)2)1/2

≤ 2
(√

mL(m)

(∫
b4
A(x)fT (x) dx

)1/2
+ √

c

√
mL(m)

NT

(∫
σ 4

A(y)fT (y) dy

)1/2)
.

Joining the above with (6.12) yields

(6.13) E
[‖b̂m‖2

fT
1�c

m∩�m

] ≤ c

NT

((∫
b4
A(y)fT (y) dy

)1/2
+

(∫
σ 4

A(y)fT (y) dy

)1/2)
.

So plugging (6.13) in (6.10) together with (6.11) yields the bound (2.20).

6.2. Proof of Lemma 6.2. E((E′
mEm)2) = 1

N4T 4E(F (M0(T ), . . . ,Mm−1(T ))) where

F(x0, . . . , xm−1) = (
∑m−1

j=0 x2
j )2 and

Mj(T ) =
∫ T

0

(
N∑

i=1

ϕj

(
Xi(u)

)
σ

(
Xi(u)

)
dWi(u)

)
.

By the Cauchy–Schwarz and Burkholder–Davis–Gundy inequalities, we get

E
((

E′
mEm

)2) ≤ c
m

(NT )4

m−1∑
j=0

E〈Mj 〉2
T

= c
m

(NT )4

m−1∑
j=0

E

[(∫ T

0

N∑
i=1

ϕ2
j

(
Xi(u)

)
σ 2(

Xi(u)
)
du

)2]
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≤ c
m

(NT )4 T N

N∑
i=1

m−1∑
j=0

E
(∫ T

0
ϕ4

j

(
Xi(u)

)
σ 4

A

(
Xi(u)

)
du

)

≤ c
mL2(m)

(NT )2

∫
σ 4

A(y)fT (y) dy.

6.3. Proof of Lemma 6.3. To compute ‖�mg‖fT
, let (ϕ̄j )0≤j≤m−1 be an orthonormal

basis of Sm w.r.t. the L2(A,fT (x) dx)-scalar product. If ϕ̄j = ∑m−1
k=0 αj,kϕk and Am =

(αj,k)0≤j,k≤m−1, then

Idm =
(∫

ϕ̄j ϕ̄kfT

)
j,k

= Am�mA′
m

so that Am is a square root of �−1
m . Let Ĝm = (〈ϕ̄j , ϕ̄k〉N)j,k = Am�̂mA′

m. The matrix Ĝm

and �
−1/2
m �̂m�

−1/2
m have the same eigenvalues. Therefore, on �m, ‖Ĝm − Idm‖op ≤ 1/2,

and thus ‖Ĝ−1
m ‖op ≤ 2.

Now if �mg = ∑m−1
k=0 βkϕ̄k , as 〈g − �mg, ϕ̄j 〉N = 0 for j = 0,1, . . . ,m − 1, we get

〈g, ϕ̄j 〉N = 〈�mg, ϕ̄j 〉N = ∑m−1
k=0 βk〈ϕ̄k, ϕ̄j 〉N so that

Ĝm
�βm = (〈g, ϕ̄j 〉N )

0≤j≤m−1 := �dm,

where �βm = (β0 . . . βm−1)
′. Therefore, on �m,

(6.14) ‖�mg‖2
fT

= ‖ �βm‖2
2,m = ∥∥Ĝ−1

m
�dm

∥∥2
2,m ≤ ∥∥Ĝ−1

m

∥∥2
op‖ �dm‖2

2,m ≤ 4
m−1∑
j=0

〈g, ϕ̄j 〉2
N.

Now we note that

E
(〈g, ϕ̄j 〉N ) = E

(
1

NT

N∑
i=1

∫
ϕ̄j

(
Xi(u)

)
g
(
Xi(u)

)
du

)
= 〈ϕ̄j , g〉fT

= 0

as g ⊥(fT ) ϕ̄j . Thus

E
[〈g, ϕ̄j 〉2

N

] = 1

NT 2 Var
(∫ T

0
ϕ̄j

(
X1(u)

)
g
(
X1(u)

)
du

)
and

E

[
m−1∑
j=0

〈g, ϕ̄j 〉2
N1�m∩�m

]
≤ 1

NT 2

m−1∑
j=0

E
[(∫ T

0
ϕ̄j

(
X1(u)

)
g
(
X1(u)

)
du

)2]

= 1

NT 2E
[‖Am�v‖2

2,m

]
,

where �v = (
∫ T

0 ϕk(X1(u))g(X1(u)) du)0≤k≤m−1. As ‖Am‖2
op = ‖�−1

m ‖op, we get

E

[
m−1∑
j=0

〈g, ϕ̄j 〉2
N1�m∩�m)

]
≤ ‖�−1

m ‖op

NT 2 E
(‖�v‖2

2,m

)

≤ ‖�−1
m ‖op

NT 2 E

(
m−1∑
j=0

(∫ T

0
ϕj

(
X1(u)

)
g
(
X1(u)

)
du

)2
)

≤ ‖�−1
m ‖op

N
L(m)‖g‖2

fT
.
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This, under (2.18) and reminding (6.14), implies

E
(‖�mg‖2

fT
1�m∩�m

) ≤ 2T cT

log(NT )
‖g‖2

fT
.

This gives the result of Lemma 6.3. �

6.4. Proof of Proposition 2.2. Property (i) follows from Proposition 2.4 in Comte and
Genon-Catalot (2020)). For (ii), we can write

Tr
[
�−1/2

m �m,σ 2�
−1/2
m

] ≤ m
∥∥�−1/2

m �m,σ 2�
−1/2
m

∥∥
op,

where∥∥�−1/2
m �m,σ 2�

−1/2
m

∥∥
op = sup

‖x‖2,m=1
x′�−1/2

m �m,σ 2�
−1/2
m x = sup

y,‖�1/2
m y‖2,m=1

y′�m,σ 2y.

Now, if σ is bounded on A,

y′�m,σ 2y =
∫ (

m−1∑
j=0

yjϕj (x)

)2

σ 2(x)fT (x) dx

≤ ∥∥σ 2
A

∥∥∞
∫ (

m−1∑
j=0

yjϕj (x)

)2

fT (x) dx = ∥∥σ 2
A

∥∥∞
∥∥�1/2

m y
∥∥2

2,m.

Thus, Tr[�−1/2
m �m,σ 2�

−1/2
m ] ≤ m‖σ 2

A‖∞.

6.5. Proofs of Theorem 3.1 and Theorem 3.2. To deal with the random set M̂N(θ) (see
(3.2)), we introduce an additional set

(6.15) M+
N(θ) =

{
m ∈ N, c2

ϕm
(∥∥�−1

m

∥∥2
op ∨ 1

) ≤ 4θ
NT

log(NT )

}
= MN(16θ).

In the following, for simplicity, we shall denote MN , M̂N , M+
N for MN(dT ), M̂N(dT ),

M+
N(dT ) if σA is bounded (case of Theorem 3.1), and for MN(fT ), M̂N(fT ), M+

N(fT )

otherwise (case of Theorem 3.2).
We denote by M̂N (resp., M+

N , MN ) the maximal element of M̂N (resp., M+
N , MN , (see

(3.3)). Let

(6.16) �N := {
MN ⊂ M̂N ⊂ M+

N

}
.

Proceeding as in Lemma 7 in Comte and Genon-Catalot (2019), we can prove that, for the
choice of dT given in (3.4) with c0 a large enough numerical value (c0 = 96 suits), and, for c

a positive constant,

(6.17) P
(
�c

N

) = P
({
MN � M̂N or M̂N �M+

N

}) ≤ c

(NT )4 .

We write the decomposition: b̂m̂ − bA = (b̂m̂ − bA)1�N
+ (b̂m̂ − bA)1�c

N
. As for the study

of T2 defined by (6.3), starting from (6.8), we get

‖bA − b̂m̂‖2
N1�c

N
≤ (

E′
m̂�̂−1

m̂
Em̂ + ‖bA‖2

N

)
1�c

N
.

Now, as m̂ ∈ M̂N ,(
E′

m̂�̂−1
m̂

Em̂

)2 ≤ ∥∥�̂−1
m̂

∥∥2
op

(
E′

NT ENT

)2 ≤ dT

c2
ϕ

NT

log(NT )

(
E′

NT ENT

)2
.
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Lemma 6.2 yields E[(E′
NT ENT )2] ≤ cc4

ϕ(NT )
∫

σ 4
A(y)fT (y) dy, and thus we have

E[(E′
m̂
�̂−1

m̂
Em̂)2] � (NT )2. This together with (6.17) implies, for C a constant depending

on
∫

σ 4
AfT ,

∫
b4
AfT , and dT ,

E
[‖bA − b̂m̂‖2

n1�c
N

] ≤ C

NT
.

It remains to study E[‖b̂m̂ − bA‖2
N1�N

].
To begin with, recall that γN(b̂m) = −‖b̂m‖2

N . Consequently, we can write

m̂ = arg min
m∈M̂N

{
γN(b̂m) + p̂en(m)

}
,

where p̂en(m) = pen1(m) defined by (3.5) if σ is bounded on A and p̂en(m) = p̂en2(m)

defined by (3.8) otherwise. Thus, we have, for any m ∈ M̂N , and any bm ∈ Sm,

(6.18) γN(b̂m̂) + p̂en(m̂) ≤ γN(bm) + p̂en(m).

On �N = {MN ⊂ M̂N ⊂ M+
N }, m̂ ≤ M̂N ≤ M+

N and either MN ≤ m̂ ≤ M̂N ≤ M+
N or m̂ <

MN ≤ M̂N ≤ M+
N . In the first case, m̂ is upper and lower bounded by deterministic bounds

and (6.18) a fortiori holds for any m ∈MN ; and in the second case,

m̂ = arg min
m∈MN

{
γN(b̂m) + p̂en(m)

}
.

Thus, on �N , (6.18) holds for any m ∈ MN and any bm ∈ Sm. The decomposition γn(t) −
γn(s) = ‖t − b‖2

N −‖s − b‖2
N + 2νN(t − s), where νN(t) is defined by (2.12), yields, for any

m ∈ MN and any bm ∈ Sm,

‖b̂m̂ − bA‖2
N ≤ ‖bm −A ‖2

N + 2νN(b̂m̂ − bm) + p̂en(m) − p̂en(m̂).

We introduce the unit ball and the set

B
fT

m,m′(0,1) = {
t ∈ Sm + Sm′,‖t‖fT

= 1
}
, �N = ⋂

m∈M+
N

�m,

where �m is defined by (6.1). We split again

E
[‖b̂m̂ − bA‖2

N1�N

] = E
[‖b̂m̂ − bA‖2

N1�N∩�N

] +E
[‖b̂m̂ − bA‖2

N1�N∩�c
N

]
.

The term E(‖b̂m̂ −bA‖2
N1�c

N∩�N
) is bounded analogously as E(‖b̂m̂ −bA‖2

N1�c
N
), using that

by Lemma 6.1, P(�N ∩ �c
N) ≤ ∑

m∈M+
N
P(�c

m) ≤ c′/(NT )6.
Then we study the expectation on �N ∩ �N . On �N , the following inequality holds:

‖t‖2
fT

≤ 2‖t‖2
N , ∀t ∈ SM+

N
. We get, on �N ∩ �N ,

‖b̂m̂ − bA‖2
N ≤ ‖bm − bA‖2

N + 1

8
‖b̂m̂ − bm‖2

fT

+
(
8 sup

t∈B
fT
m̂,m

(0,1)

ν2
N(t) + p̂en(m) − p̂en(m̂)

)

≤
(

1 + 1

2

)
‖bm − bA‖2

N + 1

2
‖b̂m̂ − bA‖2

N + 8p(m, m̂)

+ 8
(

sup
t∈B

fT
m̂,m

(0,1)

ν2
N(t) − p(m, m̂)

)
+ + p̂en(m) − p̂en(m̂).

(6.19)

Note that, in the case ‖σA‖∞ < +∞, pen1(m) = p̂en(m) is deterministic. Therefore, we can
complete the proof of the first inequality of Theorem 3.1 applying the following lemma.
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LEMMA 6.4. Assume that ‖σA‖∞ < +∞. Then there exists a numerical constant τ such
that for p(m,m′) = τ‖σA‖2∞(m + m′)/(NT ),

E
[(

sup
t∈B

fT
m̂,m

(0,1)

ν2
N(t) − p(m, m̂)

)
+1�N∩�N

]
≤ c

∥∥σ 2
A

∥∥∞
1

NT
.

Indeed, we choose κ ≥ 8τ in pen1(m) and the first inequality of Theorem 3.1 follows.
For the second inequality, we proceed as in the proof of Theorem 2 in Comte and Genon-
Catalot (2019).

PROOF OF LEMMA 6.4. When σA is bounded, for t an A-supported function,

〈M〉T =
∫ T

0

N∑
i=1

t2(
Xi(u)

)
σ 2(

Xi(u)
)
du ≤ NT

∥∥σ 2
A

∥∥∞‖t‖2
N.

Thus, by Lemma 3.1, we obtain

P
(
νN(t) ≥ ε,‖t‖2

N ≤ v2) ≤ exp
(−NT ε2/

(
2
∥∥σ 2

A

∥∥∞v2))
.

Afterwards, as in Comte, Genon-Catalot and Rozenholc (2007), we use the L2-chaining tech-
nique described in Baraud, Comte and Viennet ((2001), Section 7, pp. 44–47, Lemma 7.1,
with s2 = ‖σ 2

A‖∞/T ). �

Now we no longer assume σA bounded and we consider the Laguerre and Hermite bases
to complete the proof of Theorem 3.2. We have the following lemma.

LEMMA 6.5. Assume (A1)–(A4). Then there exists a numerical value τ1 such that νN(t)

satisfies

E
[(

sup
t∈B

fT
m̂,m

(0,1)

ν2
N(t) − p(m, m̂)

)
+1�N∩�N

]
≤ C

NT
,

where p(m,m′) = sup(p(m),p(m′)) with

p(m) = τ1
m(1 + 	m)‖�−1/2

m �m,σ 2�
−1/2
m ‖op

NT
.

For κ1 ≥ 8τ1, 8p(m,m′) ≤ pen(m) + pen(m′). Therefore, plugging the result of Lemma
6.5 in (6.19) and taking expectation yield that

1

2
E

(‖b̂m̂ − bA‖2
N1�N∩�N

)
≤ 3

2
‖bm − bA‖2

N + pen(m) + C

NT

+E
(
p̂en(m)1�N∩�N

) +E
[(

pen(m̂) − p̂en(m̂)
)
+1�N∩�N

)
.

Now we have the following lemma, the proof of which is omitted as it is similar to Lemma
6.5 in Comte and Genon-Catalot (2020).

LEMMA 6.6. Under the assumptions of Theorem 3.2, there exist constants c1, c2 > 0
such that for m ∈ MN and m̂ ∈ M̂N ,

E
(
p̂en(m)1�N∩�N

) ≤ c1pen(m) + c2

NT
,

E
[(

pen(m̂) − p̂en(m̂)
)
+1�N∩�N

) ≤ c2

NT
.
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Note that c2 contains
∫ |σA|4+56/βfT . Lemma 6.6 concludes the study of the expectation

of the empirical risk on �N ∩ �N . This gives the first inequality of Theorem 3.2. The second
inequality is obtained following the lines of the proof of Theorem 2 in Comte and Genon-
Catalot (2019).

6.6. Proof of Lemma 6.5. Define the set

�m,σ 2 =
{∣∣∣∣ ‖tσ‖2

N

‖tσ‖2
fT

− 1
∣∣∣∣ ≤ 1

2
,∀t ∈ Sm \ {0}

}
, �N,σ 2 = ⋂

m∈M+
N

�m,σ 2 .

We need the following lemma, similar to Lemma 6.1, which determines the constant fT .

LEMMA 6.7. Consider the Laguerre or the Hermite basis. Assume that (A1)–(A4) hold.
Then P(�c

m,σ 2) ≤ c/(NT )6 and P(�c
N,σ 2) ≤ c/(NT )5.

Note that

sup
‖t‖fT

=1
‖tσ‖2

fT
= sup

‖�1/2
m �a‖2,m=1

�a′�m,σ 2 �a = sup
‖�u‖2,m=1

�u′�−1/2
m �m,σ 2�

−1/2
m �u

= ∥∥�−1/2
m �m,σ 2�

−1/2
m

∥∥
op.

This implies

(6.20) sup
t∈Sm,‖t‖fT

=1
ν2
N(t) ≤ ∥∥�−1/2

m �m,σ 2�
−1/2
m

∥∥
op sup

t∈Sm,‖tσ‖fT
=1

ν2
N(t).

We have

E
[(

sup
t∈Sm,‖t‖fT

=1
ν2
n(t) − p(m)

)
+1�N∩�N

]
= E

[
T�

1(m)
] +E

[
T�

2(m)
]

with A(m) := (supt∈Sm,‖t‖fT
=1 ν2

n(t) − p(m))+, T�
1(m) = A(m)1�N∩�N∩�

N,σ2 and T�
2(m) =

A(m)1�N∩�N∩�c

N,σ2
. Now, by using (6.20), we have

E
[
T�

1(m)
] ≤ ∥∥�−1/2

m �m,σ 2�
−1/2
m

∥∥
opE

[(
sup

t∈Sm,‖tσ‖fT
=1

ν2
N(t) − q(m)

)
+1�

N,σ2

]
,

with q(m) = τ1m(1 + 	m)/(NT ).
Following the proof of Proposition 3 in Comte et al. (2007) (see also Baraud et al. (2001),

Theorem 3.1 and Proposition 6.1, in the regression model case), there exists a numerical
constant τ1 such that

E
[(

sup
t∈Sm,‖tσ‖fT

=1
ν2
N(t) − q(m)

)
+1�

N,σ2

]
≤ c

e−m	m

NT
.

As a consequence, for the same numerical constant τ1,

E
[
T �

1 (m)
] ≤ c

e−m	m

NT

∥∥�−1/2
m �m,σ 2�

−1/2
m

∥∥
op.

Moreover, ‖�−1/2
m �m,σ 2�

−1/2
m ‖op ≤ ‖�−1

m ‖op‖�m,σ 2‖op, and we have

‖�m,σ 2‖op = sup
‖�a‖2,m=1

�a′�m,σ 2 �a

= sup
‖�a‖2,m=1

∫ (
m−1∑
j=0

ajϕj (y)

)2

σ 2(y)fT (y) dy ≤ c2
ϕm

∫
σ 2fT .
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Therefore, for c1 = c2
ϕ

∫
σ 2fT ,

E
[
T�

1(m ∨ m̂)
] ≤ ∑

m∈M+
N

E
[
T�

1(m)
] ≤ c1

∑
m∈M+

N

me−m	m
∥∥�−1

m

∥∥
op ≤ c1�

under condition (3.9). Thus, we get

E
[(

sup
t∈Sm∨m̂,‖t‖fT

=1
ν2
N(t) − p(m, m̂)

)
+1�N∩�N∩�

N,σ2

]
≤ C

NT
.

Now we have to study E[T�
2(m ∨ m̂)]. First,

p(m) ≤ κ1c
2
ϕ

m2(1 + 	m)

NT

∥∥�−1
m

∥∥
op

∫
σ 2fT ≤ Cm

∥∥�−1
m

∥∥2
op ≤ C′NT

as ‖�−1
m ‖op ≥ m under (A3) and m ∈M+

N . This yields

E
[
p(m, m̂)1�N∩�N∩�c

N,σ2

] ≤ CNT P
(
�c

N,σ 2

) ≤ c/(NT )4.

Second,

E
[(

sup
t∈Sm∨m̂,‖t‖fT

=1
ν2
N(t)

)
1�N∩�N∩�c

N,σ2

]
≤ E1/2

[
sup

t∈S
M

+
N

,‖t‖fT
=1

ν4
N(t)

]
P1/2(

�N ∩ �c
N,σ 2

)
.

Then we write, setting M = M+
n for sake of simplicity,

E
(

sup
t∈SM,‖t‖fT

=1
ν4
N(t)

)
≤ M

M−1∑
k=0

Eν4
N

(
M−1∑
j=0

[
�

−1/2
M

]
jkϕj

)

= M

M−1∑
k=0

Eν4
N

([
�

−1/2
M ϕ

]
k

)

≤ c
M

(NT )4

M−1∑
k=0

E

(∫ T

0

N∑
i=1

([
�

−1/2
M ϕ

(
Xi(s)

)]
k

)2
σ 2(

Xi(s)
)
ds

)2

≤ cM

(NT )2

∫ (
M−1∑
k=0

[
�

−1/2
M ϕ(y)

]2
k

)2

σ 4
A(y)fT (y) dy.

Thus, the expectation is less than

cM

(NT )2

∫ (
M−1∑
j=0

ϕ2
j (y)

)2∥∥�−1
M

∥∥2
opσ

4
A(y)fT (y) dy

≤ cc4
ϕ

M3

(NT )2

∥∥�−1
M

∥∥2
op

∫
σ 4

A(y)fT (y) dy ≤ CNT

∫
σ 4

A(y)fT (y) dy,

and we get

E
[(

sup
t∈Sm∨m̂,‖t‖fT

=1
ν2
N(t)

)
1�N∩�N∩�c

N,σ2

]
≤ c(NT )1/2/(NT )5/2 = c/(NT )2.

We obtain E[T�
2(m ∨ m̂)] � 1/(NT )2. This completes the proof of Lemma 6.5.



NONPARAMETRIC DRIFT ESTIMATION FOR I.I.D. SDE MODELS 3361

PROOF OF LEMMA 6.7. Analogously as for �m, we have

�m,σ 2 =
{∥∥�−1/2

m,σ 2 �̂m,σ 2�
−1/2
m,σ 2 − Idm

∥∥
op >

1

2

}
.

Therefore, we apply the Chernoff matrix inequality stated in Theorem 1.1 of Tropp (2012).
To that aim, we write �

−1/2
m,σ 2 �̂m,σ 2�

−1/2
m,σ 2 as a sum of independent matrices

�
−1/2
m,σ 2 �̂m,σ 2�

−1/2
m,σ 2 = 1

N

N∑
i=1

Km,σ 2(Xi),

with

Km,σ 2(Xi) = �
−1/2
m,σ 2

(
1

T

∫ T

0
ϕj

(
Xi(u)

)
ϕk

(
Xi(u)

)
σ 2(

Xi(u)
)
du

)
0≤j,k≤m−1

�
−1/2
m,σ 2 .

Clearly, E(Km,σ 2(Xi)) = Idm, so that μmin = μmax = 1 and

P
(
�c

m,σ 2

) ≤ 2m exp
(
−cT (1/2)

NT

R

)
with cT (δ) = (δ + (1 − δ) log(1 − δ))/T and R is an upper bound on the largest eigenvalue
of Km,σ 2(X1).

Now we have a.s.

∥∥Km,σ 2(X1)
∥∥

op = sup
‖�x‖2,m=1,y=�

−1/2
m,σ2x

1

T

∫ T

0

(
m−1∑
j=0

yjϕj

(
Xi(u)

))2

σ 2(
Xi(u)

)
du

≤ ∥∥�−1
m,σ 2

∥∥
op

1

T

∫ T

0

m−1∑
j=0

ϕ2
j

(
Xi(u)

)
σ 2(

Xi(u)
)
du.

Now we use that σ 2(x) ≤ K(1 + x2) with K known. If ϕj = 	j , the Laguerre basis on
A = R+, we have |	j |2 ≤ 2 and (see, e.g., Comte and Genon-Catalot (2018), Section 8):
x	j (x) = − j+1

2 	j+1 + (j + 1
2)	j (x) − j

2	j−1(x). This implies∥∥Km,σ 2(X1)
∥∥

op ≤ K
(
2m + 9m3 + 9m2 + m

)∥∥�−1
m,σ 2

∥∥
op

≤ K
(
3m + 18m3)∥∥�−1

m,σ 2

∥∥
op ≤ 21Km3∥∥�−1

m,σ 2

∥∥
op := R.

If ϕj = hj , the Hermite basis on A = R, we have |hj | ≤ C∞(j + 1)−1/12, j = 0,1, . . .

(with the constant C∞ given in Szegö (1975)) and (see, e.g., Comte and Genon-Catalot
(2018), Section 8):

2xhj (x) =
√

2(j + 1)hj+1 +
√

2jhj−1(x).

This yields ∥∥Km,σ 2(X1)
∥∥

op ≤ KC2∞
(
m5/6 + 3m11/6)∥∥�−1

m,σ 2

∥∥
op

≤ 2KC2∞m11/6∥∥�−1
m,σ 2

∥∥
op := R.

Let us note R = Bmb‖�−1
m,σ 2‖op with (B, b) = (21K,3) with the Laguerre basis and (B, b) =

(2KC2∞,11/6) for the Hermite basis. We obtain

P
(
�c

m,σ 2

) ≤ 2m exp
(
−cT (1/2)

NT

Bmb‖�−1
m,σ 2‖op

)
≤ 1

(NT )6
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if m ≤ NT and

(6.21) Bmb
∥∥�−1

m,σ 2

∥∥
op ≤ cT (1/2)

NT

7 log(NT )
.

Now, for σ 2(x) ≥ σ 2
0 , we get ‖�−1

m,σ 2‖op ≤ σ 2
0 ‖�−1

m ‖op, so that the above condition is satis-
fied if

Bσ 2
0 mb

∥∥�−1
m

∥∥
op ≤ cT (1/2)

NT

7 log(NT )
.

By definition of MN and under (A3), we have mb‖�−1
m ‖op ≤ m‖�−1

m ‖2
op so that for

fT = dT ∧ cT (1/2)

7Bσ 2
0

= dT ∧ 1 − log(2)

14T Bσ 2
0

condition (6.21) is fulfilled and the bound is true. �

6.7. Proof of Lemma 3.2. When δ is an integer, (X(t)) has the distribution of
(
∑δ

j=1 ξ2
j (t)) where (ξj (t)) are i.i.d. Ornstein–Uhlenbeck processes such that

dξj (t) = θξj (t) dt + σ0 dWj(t), ξ
j
0 = xj

with
∑δ

j=1 x2
j = x0. When δ = 2r + 1 is an odd integer (with r ≥ 0, r an integer), the transi-

tion density of (X(t)) has a tractable expression. Setting

(6.22) a(t) = a = exp (θt), β(t) = β = σ0

(
exp (2θt) − 1

2θ

)1/2
,

we have

(6.23) p
(2r+1)
t (x0, x) = 1x>0

xr−(1/2)

√
2πβ2r+1

exp
[
−

(
x

2β2 + a2x0

2β2

)][
T r (cosh)(z)

]
z=a

√
x0x/β2,

where the operator T is given by T (f ) = f ′(x)/x. In particular, when δ = 1 (r = 0), as-
sumption (A2) is not satisfied. For δ = 3 (r = 1),

(6.24) p
(3)
t (x0, x) = 1x>0 exp

[
−

(
x

2β2 + a2x0

2β2

)]
1√
2πβ

sinh(a
√

x0x/β2)

a
√

x0
.

We can write, for any x > 0, p
(3)
t (x0, x) is smaller than

1

2
√

2πx0aβ
exp

[
−

(
x

2β2 + a2x0

2β2

)][
exp

(
a
√

x0x/β2) + exp
(−a

√
x0x/β2)]

≤ 1

2
√

2πx0aβ
[exp

[
−(

√
x − a

√
x0)

2

2β2 + exp
[
−(

√
x + a

√
x0)

2

2β2

]]
≤ 1√

2πx0aβ
,

where the upper bound only depends on t . Near 0,

(6.25)
1

aβ
∼ 1√

t

and it is continuous on (0, T ]. Therefore, fT (x) = (1/T )
∫ T

0 pu(x0, x) du is bounded and
(A2) holds. More generally, it is easy to check that

T r (cosh)(z) = Pr(z) sinh(z) + Qr(z) cosh(z)

z2r−1 ,
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with Pr and Qr polynomials of degree less than or equal to r − 1. This can be proved by
setting P1(z) = 1 and Q1(z) = 0 and computing the recursion formula:

Pr+1(z) = zQr(z) + zP ′
r (z) − (2r − 1)Pr(z),

Qr+1(z) = zPr(z) + zQ′
r (z) − (2r − 1)Qr(z).

Thus p
(2r+1)
t (x0, x) is equal, for x > 0, to

xr−(1/2)

2
√

2πβ2r+1

1

(a
√

x0x/β2)2r−1

×
{
Pr

(
a
√

x0x/β2)[exp
[
−(

√
x − a

√
x0)

2

2β2 − exp
[
−(

√
x + a

√
x0)

2

2β2

]]

+ Qr

(
a
√

x0x/β2)[exp
[
−(

√
x − a

√
x0)

2

2β2 + exp
[
−(

√
x + a

√
x0)

2

2β2

]]}
.

Therefore, p
(2r+1)
t (x0, x), x > 0, is bounded by a linear combination of terms of type

xr−(1/2)

β2r+1

1

(a
√

x0x/β2)2r−1−k
exp

[
−(

√
x ± a

√
x0)

2

2β2

]

= 1

(a
√

x0)2r−1−k
β2r−2k−3(

√
x)k exp

[
−(

√
x ± a

√
x0)

2

2β2

]
,

where k is an integer, 0 ≤ k ≤ r − 1. Noticing that for any u > 0, uke−u2/(2β2) ≤ Ckβ
k with

Ck = (2k/e)k/2, we derive that all the terms in p
(2r+1)
t (x0, x) are uniformly bounded w.r.t.

x ≥ 0 by a combination of terms C(k, r, x0)
1

a2r−1−k β
2r−k−3 where k is an integer, 0 ≤ k ≤

r − 1. As 2r − k − 3 ≥ r − 2 ≥ −1, using (6.22)–(6.25), the terms C(k, r, x0)
1

a2r−1−k β
2r−k−3

only depend on t and are integrable near 0; therefore, fT (x) = (1/T )
∫ T

0 pu(x0, x) du is
bounded and (A2) holds.

6.8. Proof of Proposition 3.1. We use the following representation (see, e.g., Rogers
(1985)).

For (i), set B(y) = ∫ y
0 b(u)du. Then

pt(x, y)

= 1√
2πt

exp
(
B(y) − B(x) − (y − x)2

2t

)

×E
(

exp
(
− t

2

∫ 1

0
g
(
(1 − u)x + uy + √

tB0
u

)
du

))
,

g = b2 + b′ and (B0
u, u ∈ [0,1]) is a standard Brownian bridge. As |b′| ≤ M and |b| ≤ M ,

then

pt(x, y) ≤ 1√
2πt

exp
[
M|y − x| + M

t

2
− (y − x)2

2t

]

≤ 1√
2πt

exp
[
M

t

2
+ 2M2t − (y − x)2

4t

]
it follows that

fT (y) ≤ 2T 1/2
√

2π
exp

[
M

T

2
+ 2M2T

]
which implies (i).
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For (ii), we consider the model dX(t) = b(X(t)) dt + σ(X(t)) dWt , where b, σ are func-
tions from R to R. Setting F(·) = ∫ ·

0
1

σ(u)
du, the process Yt = F(X(t)) satisfies

dYt = α(Yt ) dt + dWt,

with α(y) = b(F−1(y)

σ (F−1(y)
− 1

2σ ′(F−1(y)). The transition density pt(x, x′) of X is linked to

the transition density qt (y, y′) of Y by: pt(x, x′) = qt (F (x),F (x′))1/σ(x′). As σ ′, σ ′′ are
bounded and obtain that ‖fT ‖∞ < +∞.

7. A theoretical tool.

THEOREM 7.1 (Matrix Chernoff, Tropp (2012)). Consider a finite sequence {Xk} of in-
dependent, random, self-adjoint matrices with dimension d . Assume that each random matrix
satisfies

Xk � 0 and λmax(Xk) ≤ R almost surely.

Define μmin := λmin(
∑

k E(Xk)) and μmax := λmax(
∑

k E(Xk)). Then

P
{
λmin

(∑
k

Xk

)
≤ (1 − δ)μmin

}
≤ d

[
e−δ

(1 − δ)1−δ

]μmin/R

for δ ∈ [0,1],

P
{
λmax

(∑
k

Xk

)
≥ (1 + δ)μmax

}
≤ d

[
eδ

(1 + δ)1+δ

]μmax/R

for δ ≥ 0.
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