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We consider the problem of minimax estimation of the entropy of a den-
sity over Lipschitz balls. Dropping the usual assumption that the density is
bounded away from zero, we obtain the minimax rates (n lnn)−s/(s+d) +
n−1/2 for 0 < s ≤ 2 for densities supported on [0,1]d , where s is the smooth-
ness parameter and n is the number of independent samples. We generalize
the results to densities with unbounded support: given an Orlicz functions
� of rapid growth (such as the subexponential and sub-Gaussian classes),
the minimax rates for densities with bounded �-Orlicz norm increase to
(n lnn)−s/(s+d)(�−1(n))d(1−d/p(s+d)) + n−1/2, where p is the norm pa-
rameter in the Lipschitz ball. We also show that the integral-form plug-in
estimators with kernel density estimates fail to achieve the minimax rates,
and characterize their worst case performances over the Lipschitz ball.

One of the key steps in analyzing the bias relies on a novel application of
the Hardy–Littlewood maximal inequality, which also leads to a new inequal-
ity on the Fisher information that may be of independent interest.

1. Introduction. Estimation of functionals of data generating distributions is a funda-
mental problem in statistics. While this problem is relatively well understood in finite dimen-
sional parametric models [3, 63], the corresponding nonparametric counterparts are often
much more challenging and have attracted tremendous interest over the last two decades. Ini-
tial efforts have focused on inference of linear, quadratic and cubic functionals in Gaussian
white noise and density models and have laid the foundation for the ensuing research. We do
not attempt to survey the extensive literature in this area, but instead refer to the interested
reader to, for example, [4, 5, 7, 8, 14, 16, 22, 36, 40, 45, 58] and the references therein.

The monograph by [45] provides a general treatment of estimating smooth functionals
and discusses cases where efficient parametric rate of estimation is possible. Recently, there
has been progress toward the understanding of more complex nonparametric functionals over
substantially more general observational models. These include causal effect functionals in
observational studies and mean functionals in missing data models. For more details, we refer
to [44, 52, 53], which considers a general recipe to yield minimax estimation of a large class
of nonparametric functionals common in statistical literature. However, among the class of
nonparametric functionals considered in literature, most of the research endeavors, at least
from the point of view of minimax optimality, have focused on “smooth functionals” (see
[52] for a discussion on general classes of “smooth functionals”).

In contrast, the results on optimal estimation of nonsmooth functionals have been less
comprehensive [13, 28, 37]. Notably, the seminal papers of [41] and [9] considered the esti-
mating of Lr -norms in Gaussian mean models. Subsequently, significant progress has been
made on testing and estimation of nonsmooth functionals, such as the Shannon entropy, sup-
port size, total variation and Kullback–Leibler (KL) divergence, for discrete distributions on
large domains (see, e.g., [6, 25, 32, 33, 47, 61, 65, 66]).
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An important nonsmooth functional of probability density function is the entropy, which
has been the subject of extensive studies. The main goal of this paper is to resolve the mini-
max rates of entropy estimation in the density model under smoothness constraints, specifi-
cally, over Lipschitz classes. To this end, consider the following i.i.d. sampling model:

X1, . . . ,Xn
i.i.d.∼ f,

where f is a probability density function on R
d . The goal is to estimate the entropy (also

known as the differential entropy in the information theory literature) of the density f :

H(f ) �
∫
Rd

−f (x) lnf (x) dx.

This problem has extensive applications in various fields such as information theory, neuro-
science, time series and machine learning (cf. [10, 29, 38] and the survey [1, 64]).

A prevalent assumption in nonparametric entropy estimation is that f (x) ≥ c everywhere
for some constant c > 0 [21, 34, 35, 55, 62], while others impose various assumptions quan-
tifying on average how close the density is to zero [11, 15, 17, 18, 23, 42, 54, 60]. Assuming
the density is bounded away from zero makes entropy a smooth functional, consequently,
the general technique for estimating smooth nonparametric functionals [44, 52, 53] can be
directly applied to achieve the minimax rate �(n−4s/(4s+d) + n−1/2).

It is well known that smoothness conditions or shape restrictions are often necessary for
nonparametric problems. We allow the density to be arbitrarily close to zero and adopt Lips-
chitz ball Lips,p,d(L) smoothness assumptions. Assume smoothness parameter s > 0, norm

parameter p ∈ [2,∞) and dimensionality d ∈ N � {1,2, . . .}. The Lipschitz ball is defined as

(1.1) Lips,p,d(L) �
{
f : ‖f ‖Lips,p,d

≤ L
} ∩ {

f : supp(f ) ⊆ [0,1]d}
,

where with r � 
s�, the Lipschitz norm ‖ · ‖Lips,p,d
is defined as

‖f ‖Lips,p,d
� ‖f ‖p + sup

t>0
t−sωr(f, t)p,(1.2)

ωr(f, t)p � sup
e∈Rd ,|e|≤1

∥∥�r
tef (·)∥∥p,(1.3)

�r
hf (x) �

r∑
k=0

(−1)r−k

(
r

k

)
f

(
x +

(
k − r

2

)
h

)
, h ∈ R

d .(1.4)

Here, |x| denotes the Euclidean norm of a vector x ∈ R
d and ‖ · ‖p denotes the Lp norm of

measurable functions on R
d . Note that the Lp norm in (1.3) is taken over the whole space

R
d to ensure that the density f vanishes smoothly at the boundary. For example, any density

whose derivatives up to order 
s� − 1 all vanish at the boundary of [0,1]d suffices.
We characterize the minimax rates of estimating H(f ) over the Lipschitz ball Lips,p,d(L)

in the following theorem.

THEOREM 1 (Compactly supported densities). For any d ∈ N, 0 < s ≤ 2 and 2 ≤ p <

∞, there exist constants L0 > 1 and c,C > 0 depending on s, p, d , such that for any L0 ≤
L ≤ (n lnn)s/d and any n ∈ N,

(1.5)
c
(
(n lnn)−

s
s+d L

d
s+d + n− 1

2 lnL
) ≤

(
inf
Ĥ

sup
f ∈Lips,p,d (L)

Ef

(
Ĥ − H(f )

)2
) 1

2

≤ C
(
(n lnn)−

s
s+d L

d
s+d + n− 1

2 lnL
)
.

Moreover, the lower bound part of (1.5) holds for any s > 0, 1 ≤ p < ∞.
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REMARK 1. A careful inspection of the proof of Theorem 1 reveals that, for s ∈ (0,2],
p ≥ 2 and L0 ≤ L ≤ L′ ≤ (n lnn)s/d , the minimax L2 risk for entropy estimation over densi-
ties supported on [0,1]d with ‖f ‖p ≤ L and supt>0 t−sω
s�(f, t)p ≤ L′ is

(1.6) �
(
(n lnn)−

s
s+d

(
L′) d

s+d + n− 1
2 lnL

)
.

Hence, by scaling,1 if the density is supported on [0,R]d with R ≥ 1 and satisfies
‖f ‖Lips,p,d

≤ L with Rd(1−1/p)L ≥ L0 and Rs+d(1−1/p)L ≤ (n lnn)s/d , the minimax L2 risk
is

(1.7) �
(
(n lnn)−

s
s+d

(
Rs+d(1−1/p)L

) d
s+d + n− 1

2 ln
(
Rd(1−1/p)L

))
.

REMARK 2. A direct consequence of Theorem 1 is that, for fixed parameters s > 0,
p ∈ [2,∞) and L > L0, when d = 1,2, the parametric rate �(n−1/2) is attainable for entropy
estimation over the Lipschitz ball Lips,p,d(L) if and only if s ≥ d . Moreover, when d ≥ 3,
the parametric rate cannot be attained for all s < d .

To the best of our knowledge, Theorem 1 is the first characterization of the minimax rate
for nonparametric entropy estimation in arbitrary dimensions over Lipschitz balls (or even
the simpler Hölder balls) without assuming the density is bounded away from zero. One
observes that the exponents of n or L in the minimax rates (1.5) and (1.6) do not depend
on the norm parameter p under the assumption that 2 ≤ p < ∞. Another observation from
Remark 2 is that the level of smoothness required for the parametric rate is s ≥ d , which is
more than s ≥ d/4 that suffices for densities bounded away from zero on the support [0,1]d
[40], and also more than s ≥ d/2 that suffices for densities satisfying a relative version of
Hölder smoothness [2].

We construct the minimax rate-optimal estimator by first approximating the density f by
fh (a locally smoothed version of f ), and then designing estimators to estimate H(fh). The
key advantage of estimating H(fh) over estimating H(f ) is that for each x ∈ [0,1]d and
positive integer k ≤ lnn, the kth power of fh(x) admits an unbiased estimator using a U -
statistic, which enables us to employ the techniques of best polynomial approximation and
Taylor expansion to reduce the bias in estimating H(fh). Moreover, our estimator is directly
constructed and proved for the density model rather than the Poissonized model, unlike most
prior work based on polynomial approximation [33, 65].

We improve the best known minimax lower bound for estimating nonsmooth nonparamet-
ric functionals. The well-known lower bound �(n−4s/(4s+d) + n−1/2) [5], which is optimal
for smooth functionals such as quadratic functionals, is loose for entropy estimation. Instead,
we reduce the nonparametric problem into a parametric submodel, and construct lower bound
via the duality between moment matching and best approximation using rational functions.

In addition to compactly supported densities, Theorem 1 can be extended to densities
supported on R

d with general tail conditions. Let � : [0,∞] → [0,∞] be an Orlicz function,
that is, a continuous, increasing and convex function � satisfying �(0) = 0, �(u) > 0 for
any u > 0 and limu→∞ �(u) = ∞. Moreover, we say � is of rapid growth if there is a
constant κ = κ(�) > 1 such that �(κu) ≥ �(u)2 holds for all u ≥ 0. Examples of rapidly
growing Orlicz functions include �q(u) = exp(uq) − 1 for any q ≥ 1, with κ(�q) = 21/q ; in
particular, the cases of q = 1 and q = 2 correspond to the subexponential and sub-Gaussian
class, respectively. Consider the following class of densities:

(1.8) Lip�
s,p,d(L) �

{
f : ‖f ‖Lips,p,d

≤ L
} ∩

{
f :

∫
Rd

�
(|x|)f (x) dx ≤ L

}
,

1Let f̃ (x) � Rdf (Rx) denote the density of Xi/R. Then H(f̃ ) = H(f ) − d logR, ‖f̃ ‖p = Rd(1−1/p)‖f ‖p ,

�hf̃ (x) = Rd�r
Rhf (Rx), and hence supt>0 t−sωr (f̃ , t)p = Rd(1−1/p)+s supt>0 t−sωr (f, t)p .
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where ‖ · ‖Lips,p,d
is the Lipschitz norm defined in (1.2). Note that the second constraint of

(1.8) implies that the �-Orlicz norm of the random variable |X| with X ∼ f is upper bounded
by L.

The following theorem presents the minimax rate for entropy estimation over Lip�
s,p,d(L).

THEOREM 2 (Densities with unbounded support). Let � be an Orlicz function of rapid
growth and �−1 its inverse function. For any d ∈ N, 0 < s ≤ 2, 2 ≤ p < ∞, there exist
constants c,C,L0 > 0 depending on s, p, d , κ(�), �(1) such that if �−1(n) ≥ 1 and L ≥
L0, then

c
(
(n lnn)−

s
s+d

[
�−1(n)

]d(1− d
p(s+d)

) + n− 1
2
) ≤

(
inf
Ĥ

sup
f ∈Lip�

s,p,d (L)

Ef

(
Ĥ − H(f )

)2
) 1

2

≤ C
(
(n lnn)−

s
s+d

[
�−1(n)

]d(1− d
p(s+d)

) + n− 1
2
)
.

Moreover, the minimax lower bound works for any s > 0, 1 ≤ p < ∞.

Comparing Theorem 2 with Remark 1, we see that for general Orlicz function � with
rapid growth, any density in Lip�

s,p,d(L) is effectively supported on [−�−1(n),�−1(n)]d .

There is also a subtle difference: the hidden constant in the parametric rate �(n−1/2) does
not involve �−1(n), thanks to the Orlicz norm constraint. Note that for simplicity we assume
that L is a constant and omit the dependence on L in Theorem 2.

The estimator that achieves the minimax rates in Theorems 1 and 2 relies on polynomial
approximation. It is a natural question to ask whether an integral-form2 plug-in estimator
using kernel density estimate can achieve the minimax rates. Recall that the kernel density
estimator takes the form

f̂h(x) = 1

nhd

n∑
i=1

K

(
x − Xi

h

)
,(1.9)

where K(·) is a kernel function, and h is the bandwidth. The next result shows that the
answer is negative for any sliding window kernel density estimator with a spatially invariant
bandwidth (i.e., the bandwidth h can depend on the sample size n but not on the location x).

THEOREM 3 (Suboptimality of integral-form plug-in estimators). For s ∈ (0,2], p ≥
2, let f̂h(x) be given in (1.9) and define the integral-form plug-in estimator as H(f̂h) =∫
[0,1]d −f̂h(x) ln f̂h(x) dx. If the kernel K(·) satisfies Assumption 1 and h � (Ln)−1/(s+d),

then for L ≤ ns/d ,

[
sup

f ∈Lips,p,d (L)

Ef

(
H(f̂h) − H(f )

)2
] 1

2 ≤ C
(
n− s

s+d L
d

s+d + n− 1
2 lnL

)
,

where C > 0 is a constant independent of n, L.
Conversely, for any kernel K(·) satisfying Assumption 1 and any bandwidth h > 0, there

exist constants L0 > 0, c > 0 independent of n, L, h, such that for any L ≥ L0,

[
sup

f ∈Lips,p,d (L)

Ef

(
H(f̂h) − H(f )

)2
] 1

2 ≥ c
(
n− s

s+d L
d

s+d + n− 1
2 lnL

)
.

2Given a density estimate f̂ , an integral-form plug-in estimator for the entropy is
∫ −f̂ (x) ln f̂ (x) dx, as op-

posed to 1
n

∑n
i=1 log f̂ (Xi).
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Theorem 3 presents a tight characterization of the integral-form plug-in approach, and
shows that the plug-in idea applied to the integral is strictly suboptimal: the bias of the
kernel-based plug-in estimator is O(n−s/(s+d)Ld/(s+d)), while for the optimal estimator it
is O((n lnn)−s/(s+d)Ld/(s+d)).

Next, we elaborate on the various assumptions in Theorem 1:

The Lipschitz ball Lips,p,d(L). For s = r + α with r integer and α ∈ (0,1], the Hölder
ball Hs

d(L) with smoothness s and radius L consists of functions f with supx �=y |f (r)(x) −
f (r)(y)|/|x − y|α ≤ L. The Lipschitz ball is a generalization of the Hölder ball by imposing
the smoothness constraint on average through the norm parameter p; for example, for p = ∞
the Lipschitz ball coincides with the Hölder Lips,∞,d(L) = Hs

d(L) for any noninteger s > 0.3

Radius of the Lipschitz ball. The assumption L ≤ (n lnn)s/d ensures that the minimax rate
in Theorem 1 is O(1), and L ≥ L0 is not superfluous as well. Indeed, if sp ≥ d , then by stan-
dard embedding results of Lipschitz (or Besov) spaces [31], there exists L1 = L1(s,p, d) > 0
such that any f ∈ Lips,p,d(L1) is bounded from below by a positive constant almost every-
where,4 which, in view of the previous results [44, 52, 53], implies that the entropy can be
estimated at a faster rate �(n−4s/(4s+d) + n−1/2) than that in Theorem 1.

The smoothness condition s ∈ (0,2]. Capturing high-order smoothness s > 2 of a function
is often challenging in nonparametric statistics, especially for density models. For example, if
one would like to apply a kernel density estimator, for s > 2 there does not exist a nonnegative
kernel to keep all polynomials with degree at most �s�. We will discuss this phenomenon in
details in Section 4.2. We note that the minimax lower bound �((n lnn)−s/(s+d)Ld/(s+d) +
n−1/2 lnL) only requires 0 < s < ∞, 1 ≤ p < ∞.

The norm condition p ∈ [2,∞). Our current upper bound requires p ≥ 2, which ensures
the difference between the entropy of the true density and its kernel-smoothed version is
at the right order. For the lower bound, the case of p = ∞ imposes a too strict constraint
on the density (i.e., to be smooth everywhere), while p < ∞ only imposes an average-case
smoothness constraint which can be handled by the current construction. When p = ∞, we
prove a lower bound of �(n−s/(s+d)(lnn)−(s+2d)/(s+d)Ld/(s+d) + n−1/2 lnL) as shown in
Theorem 7.

The support of f . For general nonparametric functional estimation problem, there are es-
sentially three factors contributing to the minimax rates: the tail behavior if f is supported on
R

d , the boundary behavior if f is compactly supported, and the behavior of f in the interior
of its domain. In Theorem 1, we assume that f is compactly supported and smoothly van-
ishing at the boundary so that sliding window kernel methods are applicable; this assumption
is relaxed in Section 4.1 to the so-called “periodic boundary condition” [39]. The effect of
the tail behavior on the minimax rates is precisely quantified in Theorem 2 for densities with
unbounded support.

3As opposed to the definition of the Lipschitz ball in (1.2), there is another slightly different definition using the
modified Lipschitz norm Lip∗

s,p,d , which coincides with a special case of the Besov ball Bs
p,∞,d [12]. These two

definitions are equivalent for noninteger s, while for integer s the latter is strictly bigger. In this paper, we adopt
the former definition in (1.2) to avoid some technical subtleties.

4In fact, [31], Theorem 2.1, states that if sp ≥ d , ‖f (·) − f (· − t)‖∞ ≤ C(s,p, d)‖f (·) − f (· − t)‖Lips,p,d

for any t ∈ [0,1]d . Since there must be some x0 ∈ [0,1]d such that f (x0) ≥ 1, we conclude that f (x) ≥ 1 −
2C(s,p, d)L for almost every x ∈ [0,1]d , which is bounded from below by a constant if L is sufficiently small.
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1.1. Related work. The problem of estimating the entropy of a density has been inves-
tigated extensively in the literature. As discussed in the overview [1], there exist two main
approaches, based on either kernel density estimators, for example, [20, 23, 34, 35, 48] or
nearest neighbor methods, for example, [2, 11, 18, 54, 55, 60]. Among these works, some
focus on the consistency [20, 48],

√
n-consistency [34, 60], or the asymptotic efficiency [2,

23] of the proposed estimator, while others work on the minimax rate [11, 18, 35, 54, 55].
Similar estimator constructions have appeared in the literature. Asymptotic efficient esti-

mators are obtained in [30, 45] for smooth functionals by means of Taylor expansion; [41]
and [9] estimated the L1 norm of the mean in Gaussian white noise model using trigono-
metric polynomial approximation. One related work [24] deserves special attention. Dealing
with the Gaussian white noise model, [24] analyzed the minimax rates of estimating the Lr

norms (for all r ∈ [1,∞)) of the mean function over Besov spaces which was previously
studied in [41]. Although both papers use the polynomial approximation technique for the
upper and lower bound construction (which trace back to earlier work of [9, 33, 41, 65]),
there exist significant distinctions between this work and [24]. First, here we analyze the den-
sity model as opposed to the location model, and it is crucial to design estimators to adapt to
low-density regions. This specific problem has been investigated in [49] for estimating linear
functionals (density at a given point), where it was conjectured that the case of s > 2 exhibits
significantly different behavior from the case of 0 < s ≤ 2; this is the underlying reason for
the assumption 0 < s ≤ 2 for our upper bound, which is discussed in more details in Sec-
tion 4.2. In contract, in white noise models there is no need to adapt. Moreover, when d = 1
these two models are asymptotically equivalent [46] for s > 1/2 provided that the density is
bounded from below by a positive constant; however, they do not imply the minimax rates
of a given estimation problem for these two models must coincide, and for small densities
the equivalence can break down [50]. In fact, in contrast to the conclusion of Remark 2, it
is shown in [24] that the parametric rate is never achievable for “entropy” estimation in the
white noise model. Second, the estimator construction in this paper requires more delicate
analysis, and bounding the approximation error H(fh) − H(f ) relies on a novel application
of the Hardy–Littlewood maximal inequality in conjunction with the nonnegativity of the
density function, which also leads to, as a by-product, a new inequality upper bounding the
Fisher information in terms of the Lp norm of the second derivative (Theorem 5). Third, in
the minimax lower bound, this work carefully chooses nonnegative functions (not required
in the Gaussian white noise model), and analyzes the total variation bound instead of the
χ2-divergence bound which is simpler and more suitable for Gaussian models.

1.2. Notation. For a finite set A, let |A| denote its cardinality. The norm | · | denotes
the Euclidean norm of vectors in R

d , and ‖ · ‖p denotes the Lp norm (with respect to the
Lebesgue measure) of real-valued functions defined on R

d . Let ‖ · ‖op denotes the operator
norm of matrices, that is, the largest singular value. For x ∈R

d , let x\i � (xj : j �= i) ∈ R
d−1.

For n ∈ N, let [n] � {1, . . . , n}. Denote by
([n]

l

) = {J ⊆ [n] : |J | = l} the collection of all
l-subsets of [n]. Throughout the paper, for nonnegative sequences {aγ } and {bγ }, we write
aγ � bγ (or an = O(bn)) if aγ ≤ Cbγ for some positive constant C that does not depend on
the sample size n, the bandwidth h, or the Lipschitz norm L. We use aγ � bγ (or aγ = �(bγ ))
to denote bγ � aγ , and aγ � bγ (or aγ = �(bγ )) to denote both aγ � bγ and bγ � aγ . We
use aγ � bγ (or aγ = o(bγ )) to denote limγ

aγ

bγ
= 0, and aγ � bγ (or aγ = ω(bγ )) to denote

bγ � aγ . The support set of a probability measure μ is denoted by supp(μ). Let PX denote
the distribution of a random variable X. The KL (resp., χ2) divergence from distribution μ to
ν is defined as D(μ‖ν) = ∫

dμ log dμ
dν

(resp., χ2(μ‖ν) = ∫
dν(

dμ
dν

− 1)2) if μ � ν and +∞
otherwise.



3234 HAN, JIAO, WEISSMAN AND WU

1.3. Organization. The rest of this paper is organized as follows. Section 2 presents the
construction of the minimax rate-optimal estimator. Section 3 proves the upper bound. In
particular, the analysis of the bias incurred by the first-stage approximation relies on a novel
application of the Hardy–Littlewood maximal inequality, and the same argument also leads
to an inequality on Fisher information, which is presented at the end of Section 3.1 and
might be of independent interest. Section 4 discusses generalizations and open problems. In
particular, Section 4.1 extends the results to a broader class of densities that satisfy a periodic
boundary conditions, and establishes the corresponding minimax rates of entropy estimation.
Remaining proofs are relegated to the Appendices in the Supplementary Material [26].

2. Construction of the estimator. Define the smoothed density

fh(x) �
∫
Rd

Kh(x − y)f (y) dy,

where Kh(·) is some kernel function with bandwidth h > 0. In the special case of Kh(x) =
1
hd K(x

h
) for some kernel function K : Rd →R, we have

(2.1) fh(x) =
∫
Rd

1

hd
K

(
x − y

h

)
f (y) dy,

which admits the following natural unbiased estimator (kernel density estimate):

(2.2) f̂h(x) � 1

n

n∑
i=1

Kh(x − Xi),

where X1, . . . ,Xn
i.i.d.∼ f .

The optimal estimator for the entropy H(f ) is constructed in two steps: First, by choosing
a suitable (in particular, compactly-supported) kernel K , we approximate f by fh and bound
|H(fh) − H(f )| using functional-analytic properties of the density class. Next, we construct
an estimator for H(fh) based on the kernel density estimator f̂h. The main insight is that
{f̂h(x) : x ∈ [0,1]d} is essentially a finite-dimensional parametric model, in the sense that
f̂h(x) roughly follows the binomial distribution nhdf̂h(x) ∼ B(n,hdfh(x)) (cf. Lemma 5).
As a result, we essentially obtain a parametric binomial model with h−d parameters, so that
the existing approximation-theoretic techniques for entropy estimation in parametric models
[33, 65] can be applied.

We now describe the construction of the optimal entropy estimator for any s ∈ (0,2] in
any dimension. For the first approximation stage, in order to find a suitable approximation fh

for f , we recall the following property of Lipschitz spaces [27], Theorem 8.1.

LEMMA 1. Fix any s > 0 and any kernel K : Rd → R which satisfies
∫
Rd |x|
s� ×

|K(x)|dx < ∞ and maps any polynomial q in d variables of degree at most 
s� − 1 to
themselves, that is,

∫
Rd q(y)K(x − y)dy = q(x). Then for any f ∈ Lips,p,d(L) and fh de-

fined in (2.1), we have

‖fh − f ‖p �
(∫

Rd

∣∣fh(x) − f (x)
∣∣p dx

)1/p

� Lhs.

To apply Lemma 1, we choose a kernel K with the following properties.

ASSUMPTION 1. Suppose K :Rd →R satisfies the following:

1. Nonnegativity: K(t) ≥ 0 for any t ∈ R
d ;

2. Unit total mass:
∫
Rd K(t) dt = 1;
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3. Zero mean:
∫
Rd tK(t) dt = 0;

4. Finite second moment:
∫
Rd |t |2K(t) dt < ∞.

5. Compact support: sup{|t | : K(t) �= 0} < ∞.

There are several kernel functions which fulfill Assumption 1, for example, the box kernel
K(t) = 1(t ∈ [−1/2,1/2]d). Note that the second and the third requirements ensure that it
keeps all polynomials of degree at most one, that is,

∫
Rd (a�x + b)K(x − y)dx = a�y + b,

and the first requirement (nonnegativity) is crucial for proving the concentration result in
Section 3. In fact, the nonnegativity requirement is the key reason why we need to impose the
assumption s ≤ 2, and relaxing this requirement appears highly challenging (cf. Section 4.2).

Since the kernel K(·) has a compact support, the approximation fh is compactly supported
as well. By Lemma 1 and our assumption that s ≤ 2, we have

(2.3) ‖f − fh‖p � Lhs.

Later in Section 3.1 we will show that the entropy difference also satisfies |H(f )−H(fh)| �
Lhs .

Fix an appropriate kernel K that fulfills Assumption 1 and define fh, f̂h as in (2.1) and
(2.2). To construct an estimator Ĥ for H(fh) = ∫ −fh(x) lnfh(x) dx, we let Ĥ = ∫

Ĥ (x) dx,
where for each x ∈ [0,1]d , Ĥ (x) is an estimator for −fh(x) lnfh(x) obtained as follows:

1. For notational convenience, let the sample size be 3n as opposed to n. Split the obser-
vations into three parts X(1), X(2), X(3), each consisting of n observations.

2. For each part of observations, construct the kernel density estimators f̂h,1(x), f̂h,2(x)

and f̂h,3(x) per (2.2). The estimator f̂h,1(x) will be used for classifying smooth versus non-
smooth regime, and the other two for estimation.

3. Regime classification and estimator construction:

• “Nonsmooth” regime: f̂h,1(x) < c1 lnn

nhd . Denote by Q the best degree-k polynomial approx-

imation of −t ln t on [0, 2c1 lnn

nhd ]:

(2.4) Q =
k∑

l=0

alt
l = arg min

P∈Polyk

max
t∈[0,

2c1 lnn

nhd ]

∣∣−t ln t − P(t)
∣∣,

where Polyk denotes the collection of all polynomials of degree at most k. Define the
following unbiased estimator of Q(fh(x)) in terms of U -statistics:

(2.5) Ĥ1(x) =
k∑

l=0

al

((
n

l

)−1 ∑
J∈

([n]
l

)
∏
j∈J

Kh

(
x − X

(2)
j

))
.

• “Smooth” regime: f̂h,1(x) ≥ c1 lnn

nhd . Define the following bias-corrected plug-in estimator:

(2.6)

Ĥ2(x) = 1
(
f̂h,2(x) ≥ c1 lnn

4nhd

)
·
{
−f̂h,2(x) ln f̂h,2(x)

− (
1 + ln f̂h,2(x)

)(
f̂h,3(x) − f̂h,2(x)

) − 1

2

(
f̂h,2(x)

− 2f̂h,3(x) + 1(n
2

)
f̂h,2(x)

∑
i<j

Kh

(
x − X

(3)
i

)
Kh

(
x − X

(3)
j

))}
.
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• The final point estimate of H(x) = −fh(x) lnfh(x) is

(2.7)

Ĥ (x) � min
{
Ĥ1(x),

1

n1−2εhd

}
1
(
f̂h,1(x) <

c1 lnn

nhd

)

+ Ĥ2(x)1
(
f̂h,1(x) ≥ c1 lnn

nhd

)
.

Finally, choose

(2.8) h = c0(Ln lnn)−
1

s+d , k = 
c2 lnn�,
where c0 > 0 is any constant, 0 < 7c2 ln 2 < ε < s

s+d
and c1 > 0 is sufficiently large (per

Lemmas 7–8) and output the estimator

(2.9) Ĥ =
∫
Rd

Ĥ (x) dx.

Note that the integration only need to be taken over the support of fh, which is slightly larger
than the unit cube [0,1]d . This completes the construction of our estimator. A few remarks
are in order:

Choice of the U -statistics. The following U -statistic

Um = 1(n
m

) ∑
1≤i1<i2<···<im≤n

m∏
j=1

Kh(x − Xij )

has appeared several times in the estimator construction, which is the natural unbiased esti-
mator for powers of fh(x):

E[Um] = 1(n
m

) ∑
1≤i1<i2<···<im≤n

m∏
j=1

E
[
Kh(x − Xij )

] = fh(x)m.

The reason why we average over all possible subsets of size m is to reduce the variance to
the correct order (cf. Lemma 12). In practice, to compute the kth order U -statistics, note
that it is simply the (normalized) kth elementary symmetric polynomial of Kh(x − Xi).
Hence, it suffices to compute the power sum

∑n
i=1(Kh(x − Xi))

l for all l = 1, . . . , k,
and then invoke Newton’s identity to compute elementary symmetric polynomials; this has
overall time complexity O(nk + k2) = O(n logn). For the special case of the box kernel
K(t) = 1(t ∈ [−1/2,1/2]d), which can be used to achieve the upper bound in Theorem 4,
Ĥ1(x) reduces to

(2.10) Ĥ1(x) =
k∑

l=0

al · Zx · (Zx − 1) · . . . · (Zx − l + 1)

hld · n · (n − 1) · . . . · (n − l + 1)
,

where Zx = ∑n
i=1 hdKh(x − X

(2)
i ). Hence, the computational cost can be further reduced to

O(n + k2) = O(n) in this simple example.

Polynomial approximation in the nonsmooth regime. In the nonsmooth regime (i.e.,
f̂h,1(x) ≤ c1 lnn

nhd ) a suitable linear combination of the U -statistics is applied, where the coeffi-
cients come from the best approximating polynomial of our target functional −x lnx. By the
previous property of the U -statistic, in the nonsmooth regime we estimate Q(fh(x)) without
any bias, and thus the bias in this regime becomes the polynomial approximation error. The
coefficients of the polynomial Q(·) can be efficiently computed via the Remez algorithm,
which converges double exponentially fast (see discussions in [33]). The coefficients can
also be precomputed and stored so that there is no need to recompute the coefficients when
applying the estimator.
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Bias correction based on Taylor expansion in the smooth regime. In the smooth regime (i.e.,
f̂h,1(x) > c1 lnn

nhd ), we use the idea in [25] to correct the bias. Specifically, by Taylor expansion
we can write

(2.11)

φ
(
fh(x)

) ≈
R∑

l=0

φ(l)(f̂h,2(x))

l!
(
fh(x) − f̂h,2(x)

)l

=
R∑

l=0

φ(l)(f̂h,2(x))

l!
l∑

j=0

(
l

j

)
fh(x)j

(−f̂h,2(x)
)l−j

.

A natural idea to debias is to find an unbiased estimator of the right-hand side in (2.11).
Indeed, this can be done by sample splitting: we can split observations to obtain f̂h,3(x), an
independent copy of f̂h,2(x), and then apply the previous U -statistics to f̂h,3(x) to obtain an
unbiased estimator fh(x)j . Our estimator construction uses this idea with φ(z) = −z ln z and
R = 2 (which suffices for our debiasing purposes).

Choice of bandwidth. As will be clarified in Section 3 (cf. (3.16)), the bandwidth h �
(n lnn)−1/(s+d) in (2.8) is chosen in order to balance between two types of biases of our
estimator. Compared with the optimal bandwidth h � n−1/(2s+d) in estimating the density
under Lp risk for p ∈ [1,∞) [45], our choice of the bandwidth results in an “undersmoothed”
kernel estimator of the density, which is consistent with the findings in [19, 48] that an under-
smoothed kernel estimator should be used in estimating nonparametric functionals. However,
our specific choice of h � (n lnn)−1/(s+d) is different from the optimal bandwidths for other
problems, such as h � n−2/(4s+d) for estimating quadratic, cubic and general smooth func-
tionals [4, 36, 44, 52], and the optimal bandwidth h � (n lnn)−1/(2s+d) for estimating the Lr

norm of the function in Gaussian white noise in one dimension with r ∈ [1,∞) not an even
integer [24, 41].

Final integration. The estimator Ĥ (x) in (2.7) provides the pointwise estimation of
−fh(x) lnfh(x) for all x ∈ supp(fh), and an integration is required to produce the final
entropy estimator. If the box kernel is used, notice that n small cubes of equal size can par-
tition the unit cube [0,1]d into O(nd) pieces, the mapping x �→ Zx in (2.10) is piecewise
constant on O(nd) pieces. Hence, for exact integration it suffices to evaluate Ĥ (x) at O(nd)

points, which yields an overall O(nd+1 logn) time complexity of our estimator. For practical
implementation with general kernels, numerical integration methods and quadrature formulas
can be used to evaluate the integral, and then we only need to evaluate Ĥ (x) at finitely many
points.

In the next section, we prove the following result, which completes the proof of the upper
bound in Theorem 1.

THEOREM 4. For s ∈ (0,2], p ≥ 2 and L ≤ (n lnn)s/d , the following holds for the esti-
mator Ĥ defined in (2.9):

(
sup

f ∈Lips,p,d (L)

Ef

(
Ĥ − H(f )

)2
) 1

2 ≤ C
(
(n lnn)−

s
s+d L

d
s+d + n− 1

2 lnL
)
,

where C = C(s,p, d) > 0 is independent of n, L (we omit the dependence of C on the choice
of parameters c0, c1, c2, ε and the kernel K(·)).

3. Proof of upper bound. The error of our estimator Ĥ can be decomposed into three
terms: the approximation error of |H(fh)−H(f )|, the bias and the variance of the estimation
error of Ĥ in estimating H(fh). Next, we deal with these terms separately.
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3.1. First-stage approximation error. The approximation error between H(fh) and
H(f ) is summarized in the following lemma, which is one of the key results in this paper.

LEMMA 2. Let s ∈ (0,2], p ≥ 2. For any f ∈ Lips,p,d(L) and bandwidth h with 0 <

Lhs ≤ 1, let fh be defined in (2.1). There exists a constant C > 0 independent of h, such that

(3.1)
∣∣H(f ) − H(fh)

∣∣ =
∣∣∣∣
∫
Rd

f (x) lnf (x) dx −
∫
Rd

fh(x) lnfh(x) dx

∣∣∣∣ ≤ C · Lhs

whenever 0 < h < h0, where h0 is a constant depending only on s.

In view of the fact that ‖f − fh‖p � Lhs (cf. (2.3)), Lemma 2 essentially says that the
entropy functional H(·) is “Lipschitz” with respect to convolution. The proof of Lemma 2
consists of three steps:

1. By the convolution property, we first express the entropy difference H(fh)−H(f ) as a
mutual information term. Then using the variational representation of the mutual information
and χ2-divergence, we reduce (3.1) to an inequality that no longer involves the kernel;

2. By the equivalence between the K-functional and the modulus of continuity [12], we
approximate f by a nonnegative C2-function g and further reduce the goal to an estimate of
the form ∫

[0,1]d
|∇g(x)|2
f (x) + hs

dx;
3. We invoke the Hardy–Littlewood maximal inequality to control the above integral using

the L2-norm of the second-order derivative of g. This is the crux of the proof. The same proof
technology also leads to a new upper bound on Fisher information, which we summarize at
the end of this subsection.

3.1.1. Mutual information and χ2-divergence. Recall the mutual information between
random variables A and B is defined as the KL divergence between the joint distribution and
product of the marginal distributions:

I (A;B) = D(PAB ‖ PA ⊗ PB) = E

[
ln

dPAB

dPA dPB

]
.

Recall that, by Assumption 1, the kernel satisfies K ≥ 0 and
∫
Rd K(x) dx = 1. Let X and U

be independent random variables with density function f and K , respectively. Then by the
convolution property, the density of X + hU is fh, and as a result,

(3.2) 0 ≤ H(fh) − H(f ) = I (U ;X + hU).

Note that by the compact support of the kernel K , the density fh is supported on a cube
slightly larger than [0,1]d (i.e., with edge size 1 +O(h)), and by a proper scaling we assume
without loss of generality that both f and fh are supported on [0,1]d .

Next, we reduce the desired inequality into a simpler one independent of the kernel K(·).
Let w be an arbitrary density supported on [0,1]d . Then

(3.3)

I (U ;X + hU) = EU

[∫
[0,1]d

f (x − hU) ln
f (x − hU)

fh(x)
dx

]

= EU

[∫
[0,1]d

f (x − hU) ln
f (x − hU)

w(x)
dx

]
− D(fh ‖ w)

(a)≤ EU

[∫
[0,1]d

f (x − hU) ln
f (x − hU)

w(x)
dx

]

(b)≤ EU

[∫
[0,1]d

(f (x − hU) − w(x))2

w(x)
dx

]
,
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where (a) follows from the nonnegativity of the KL divergence, and (b) is due to the fact that
the KL divergence is upper bounded by the χ2-divergence.

Since Lhs ≤ 1, there exists another density w on [0,1]d such that w(x) ≥ f (x)/2+Lhs/2
for all x ∈ [0,1]d and |w(x) − f (x)| ≤ Lhs(1 + f (x))/2. Such an existence may be con-
structed by choosing w(x) = Lhs/2 + (1 − Lhs/2)f (x). As a result,

(3.4)

∫
[0,1]d

(f (x − hU) − w(x))2

w(x)
dx

=
∫
[0,1]d

(f (x − hU) − f (x) + f (x) − w(x))2

w(x)
dx

≤ 2
∫
[0,1]d

(f (x − hU) − f (x))2

w(x)
dx + 2

∫
[0,1]d

(f (x) − w(x))2

w(x)
dx

≤ 2
∫
[0,1]d

(f (x − hU) − f (x))2

w(x)
dx +

∫
[0,1]d

(Lhs)2(1 + f (x)2)

f (x)/2 + Lhs/2
dx

�
∫
[0,1]d

(f (x − hU) − f (x))2

w(x)
dx + Lhs.

Combining (3.2)–(3.4), we have

0 ≤ H(fh) − H(f ) � EU

[∫
[0,1]d

(f (x − hU) − f (x))2

f (x) + Lhs
dx

]
+ Lhs.

Recall that the finite second moment of the kernel K ensures that E|U |2 < ∞. Therefore, for
Lemma 2 to hold, it suffices to prove that for any u ∈ R,

∫
[0,1]d

(f (x + hu) − f (x))2

f (x) + Lhs
dx � Lhs(1 + |u|2)

.(3.5)

Note that (3.5) no longer involves the kernel K(·).
We provide some insights why (3.5) is expected to hold. When s ≤ 1 and p = ∞, the

Lipschitz ball condition ensures that |f (x +hu)−f (x)| � Lhs |u|s ≤ Lhs(1+|u|), and (3.5)
clearly holds. However, when 1 < s ≤ 2, we will only have |f (x + hu) − f (x)| � Lh|u| in
general, and (3.5) cannot be derived by this simple approach. The crux of proving (3.5) for
1 < s ≤ 2 is that, when f (x) is close to zero, the difference |f (x + hu) − f (x)| also needs
to be small to maintain the nonnegativity of f (x − hu). In Section 3.1.3, we will essentially
show that |f (x + hu) − f (x)| � L

√
f (x)hs(1 + |u|), which leads to (3.5).

3.1.2. Approximation by C2 functions. We need the following lemma to replace f with
a smoother function g.

LEMMA 3. Let f ∈ Lips,p,d(L) be a nonnegative function, with s ∈ (0,2] and p ≥ 1.
Then there exists C = C(s,p, d), such that for any h > 0, there exists a nonnegative function
g ∈ C2(Rd) such that

‖f − g‖p ≤ CLhs,(3.6) ∥∥∥∥∇2g(·)∥∥op

∥∥
p ≤ CLhs−2.(3.7)

Note that Lemma 3 is essentially the equivalence between the K-functional and the modu-
lus of smoothness (Lemma 14 in Appendix 5), with an extra constraint that g being nonneg-
ative, which turns out to be crucial in proving the inequality (3.9) below.



3240 HAN, JIAO, WEISSMAN AND WU

Let g be given by Lemma 3. Then

(3.8)

∫
[0,1]d

(f (x + hu) − f (x))2

f (x) + Lhs
dx

≤ 3
∫
[0,1]d

(f (x + hu) − g(x + hu))2 + (f (x) − g(x))2 + (g(x + hu) − g(x))2

f (x) + Lhs
dx

≤ 3
∫
[0,1]d

(f (x + hu) − g(x + hu))2 + (f (x) − g(x))2

Lhs
dx

+ 6
∫
[0,1]d

(h∇g(x)�u)2 + (g(x + uh) − g(x) − h∇g(x)�u)2

f (x) + Lhs
dx

≤ 6‖f − g‖2
2

Lhs
+ 6

Lhs

∥∥ρ(·, u)
∥∥2

2 + 6h2|u|2
∫
[0,1]d

|∇g(x)|2
f (x) + Lhs

dx,

where

ρh(x,u) � g(x + uh) − g(x) − h∇g(x)�u.

We bound the three terms in (3.8) separately. By (3.6), the first term is upper bounded by

6‖f − g‖2
2

Lhs
≤ 6‖f − g‖2

p

Lhs
� Lhs.

For the second term, by the integral representation of the Taylor remainder term, we have

∣∣ρh(x,u)
∣∣ =

∣∣∣∣
∫ 1

0
(1 − t)u�∇2g(x + t · hu)u · dt

∣∣∣∣
≤ h2|u|2 ·

∫ 1

0
(1 − t)

∥∥∇2g(x + t · hu)
∥∥

op dt

and hence
∥∥ρh(·, u)

∥∥
2 ≤ h2|u|2 ·

∥∥∥∥
∫ 1

0
(1 − t)

∥∥∇2g(x + t · hu)
∥∥

op dt

∥∥∥∥
2

(a)≤ h2|u|2 ·
∫ 1

0
(1 − t)‖‖∇2g(x + t · hu)‖op‖2 dt

(b)

� h2|u|2 · Lhs−2 = Lhs |u|2,
where (a) follows from the convexity of norms and (b) follows from (3.7). Thus the first two
terms in (3.8) are both upper bounded by O(Lhs |u|2). Hence, to show (3.5), it remains to
prove that

(3.9)
∫
[0,1]d

|∂ig(x)|2
f (x) + Lhs

dx � Lhs−2 ∀i ∈ [d],

where ∂ig = ∂g
∂xi

.

3.1.3. Application of the Hardy–Littlewood maximal inequality. Finally, we use the non-
negativity of g and the Hardy–Littlewood maximal inequality [57] to prove (3.9). Fix any
τ > 0 to be optimized later. Since g is nonnegative, we have

0 ≤ g(x + τei)

= g(x) + τ · ∂ig(x) + (
g(x + τei) − g(x) − τ · ∂ig(x)

)
,
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and thus

−τ · ∂ig(x) ≤ g(x) + (
g(x + τei) − g(x) − τ · ∂ig(x)

)
.

Replacing x + τei by x − τei , we also have

τ · ∂ig(x) ≤ g(x) + (
g(x − τei) − g(x) + τ · ∂ig(x)

)
.

Combining these two inequalities, we arrive at the following pointwise bound:

τ · ∣∣∂ig(x)
∣∣ ≤ 2g(x) + ∣∣g(x + τei) − g(x) − τ · ∂ig(x)

∣∣
+ ∣∣g(x − τei) − g(x) + τ · ∂ig(x)

∣∣
≤ 2g(x) + τ 2

∫ 1

−1

∣∣∂iig(x + t · τei)
∣∣dt

where for the second inequality we have used the integral representation of the Taylor re-
mainder term again.

Since the previous inequality holds for any τ > 0, we choose τ = τx =
√

h2−sf (x)/L + h2

to obtain an upper bound on the derivative:

∣∣∂ig(x)
∣∣ ≤ 2g(x)√

h2−sf (x)/L + h2
+ τx

∫ 1

−1

∣∣∂iig(x + t · τxei)
∣∣dt.

Plugging this bound into (3.9) and using the triangle inequality, we have
∫
[0,1]d

|∂ig(x)|2
f (x) + Lhs

dx

≤ 2
(
Lhs−2

∫
[0,1]d

4g(x)2

(f (x) + Lhs)2 dx

︸ ︷︷ ︸
�A1

+ (
Lhs−2)−1

∫
[0,1]d

(∫ 1

−1

∣∣∂iig(x + t · τxei)
∣∣dt

)2
dx

︸ ︷︷ ︸
�A2

)
.

Next, we upper bound A1 and A2 separately. For A1, we use the triangle inequality again
to obtain

A1 = Lhs−2 ·
∫
[0,1]d

4g(x)2

(f (x) + Lhs)2 dx

≤ 8Lhs−2 ·
∫
[0,1]d

(g(x) − f (x))2 + f (x)2

(f (x) + Lhs)2 dx

≤ 8Lhs−2 ·
(∫

[0,1]d
(g(x) − f (x))2

L2h2s
dx +

∫
[0,1]d

(f (x))2

(f (x))2 dx

)

= 8Lhs−2 ·
(‖g − f ‖2

2

L2h2s
+ 1

)
� Lhs−2.

Hence, it remains to upper bound A2, and it further suffices to prove that for any x\i ∈
[0,1]d−1,

(3.10)
∫ 1

0

(∫ 1

−1

∣∣∂iig(x + t · τxei)
∣∣dt

)2
dxi ≤ C

∫ 1

0

∣∣∂iig(x)
∣∣2 dxi
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for some constant C > 0. In fact, if (3.10) holds, then integrating both sides over x\i ∈
[0,1]d−1 together with the fact ‖∂iig‖2 ≤ ‖∂iig‖p � Lhs−2 completes the proof of (3.9).

The proof of (3.10) requires the introduction of the maximal inequality. Fix any x\i ∈
[0,1]d−1 and define h(y) � |∂iig(x\i , y)|, (3.10) is equivalent to

(3.11)
∫ 1

0

(
1

2τx

∫ x+τx

x−τx

h(y) dy

)2
dx ≤ C

4

∫ 1

0

∣∣h(x)
∣∣2 dx.

For any function h on the real line, recall the Hardy–Littlewood maximal function M[h]
is defined as

(3.12) M[h](y) � sup
t>0

1

2t

∫ y+t

y−t

∣∣h(z)
∣∣dz.

Next, we recall the maximal inequality on the real line [57].

LEMMA 4. For any nonnegative real-valued measurable function h on the real line R,
the following tail bound holds: for any t > 0, there exists a universal constant C1 > 0 such
that for p > 1 we have

∥∥M[h]∥∥p ≤ C1

(
p

p − 1

) 1
p ‖h‖p.

Applying this lemma with p = 2 yields (3.11) (and thus (3.10)), as desired, completing the
proof of Lemma 2.

We finish this subsection by noting that the proof technology developed based on the max-
imal inequality in fact leads to the following upper bound on Fisher information, which may
be of independent interest.

THEOREM 5. Let f ∈ C1(Rd) be a density function supported on [0,1]d with an abso-
lute continuous gradient. Denote its Fisher information by

J (f ) �
∫
Rd

|∇f |2
f

.

Then for any p > 1, there exists a constant Cp > 0, such that

J (f ) ≤ Cp

d∑
i=1

‖∂iif ‖p.

The connection between this result and the previous proof of Lemma 2 is the well-known
fact that the local expansion of χ2-divergence is given by the Fisher information. Indeed, by
Taylor expansion (assuming for simplicity that d = 1 and f = g), the LHS of the main esti-
mate (3.5) behaves as h2J (f ). Thanks to Theorem 5, we can control the Fisher information
by J (f ) = O(‖f ′′‖2), which, by the smoothness assumption, is O(Lhs−2), and leads to the
desired (3.5).

3.2. Second-stage approximation error and variance. In this subsection, we analyze the
performance of our pointwise estimator Ĥ (x) in estimating −fh(x) lnfh(x) for any x ∈ R

d .
Recall that

fh(x) =
∫
Rd

Kh(x − y)f (y) dy
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is the smoothed density, and

f̂h(x) = 1

n

n∑
i=1

Kh(x − Xi)

is our estimator of fh(x), and Kh(t) � h−dK(h−1t). In addition to the unbiasedness of f̂h(x)

in estimating fh(x), it satisfies some more properties: the random variable hdf̂h(x) roughly
follows a binomial distribution B(n,hdfh(x)). This property confines to the one-dimensional
simple example that hdfh(x) can be viewed as the discrete probability in the bin containing
x, and hdf̂h(x) is the empirical frequency. Specifically, we prove the following lemma.

LEMMA 5. If the kernel K is nonnegative everywhere, then there exists a constant c1 > 0
depending on d and ‖K‖∞ only such that:

1. If fh(x) ≤ c1 lnn

2nhd , we have

P

(
f̂h(x) <

c1 lnn

nhd

)
≥ 1 − n−5d;

2. If fh(x) ≥ c1 lnn

2nhd , we have

P

(
fh(x)

2
≤ f̂h(x) ≤ 2fh(x)

)
≥ 1 − n−5d .

Note that the concentration property of f̂h(x) in Lemma 5 behaves as if nf̂h(x) is dis-
tributed binomially as B(n,hdfh(x)). It shows that, based on our threshold to split the smooth
and nonsmooth regimes in (2.7), the probability of making an error in classification is negli-
gible.

Now we prove that our estimators Ĥ1 and Ĥ2 in (2.5)–(2.6) perform well in the corre-
sponding regimes. To bound the variance, we invoke the well-known Efron–Stein–Steele
inequality.

LEMMA 6 ([56]). Let X1,X2, . . . ,Xn be independent random variables, and for i =
1, . . . , n, let X′

i be an independent copy of Xi . Then for any f ,

Var
(
f (X1, . . . ,Xn)

) ≤ 1

2

n∑
i=1

E
(
f (X1, . . . ,Xn) − f

(
X1, . . . ,Xi−1,X

′
i ,Xi+1, . . . ,Xn

))2
.

To apply Lemma 6, we need to bound the difference between the original estimator and
the perturbed one where one observation is substituted by a fresh copy. Recall that Ĥ1 de-
pends only on the second part of observations X(2), and Ĥ2 depends on the last two parts
X(2) ∪ X(3). Hence, we may define Ĥ ′

1, Ĥ ′
2 to be the perturbed estimators where exactly

one observation chosen uniformly at random from X(2) ∪ X(3) is replaced by its independent
copy. The following lemmas summarize the upper bounds of the bias and the second moment
of the perturbations.

LEMMA 7 (Nonsmooth regime). If fh(x) ≤ 2c1 lnn

nhd , c1 ≥ 2‖K‖∞c2, 0 < 7c2 ln 2 < ε and
n ≥ 4c2 lnn, we have

∣∣EĤ1(x) + fh(x) lnfh(x)
∣∣ � 1

nhd lnn
,

E
[(

Ĥ1(x) − Ĥ ′
1(x)

)2]
� 1

n3−εh2d
.
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LEMMA 8 (Smooth regime). If fh(x) ≥ c1 lnn

2nhd with sufficiently large constant c1 > 0 (as

in Lemma 5), h ≤ 1 and nhd ≥ 1, we have

∣∣EĤ2(x) + fh(x) lnfh(x)
∣∣ � 1

nhd lnn
,

E
[(

Ĥ2(x) − Ĥ ′
2(x)

)2]
� fh(x)(1 + (lnfh(x))2)

n2hd
.

For the final pointwise estimator Ĥ (x) in (2.7), let Ĥ ′(x) be its perturbed version where
exactly one observation chosen uniformly at random from X(2) ∪ X(3) is replaced by its
independent copy (note that X(1) is excluded). The following guarantee for Ĥ (x) follows
from Lemmas 5–8.

COROLLARY 1. Under the assumptions of Lemmas 5–8, we have

E
(
E

[
Ĥ (x)|X(1)] + fh(x) lnfh(x)

)2 � 1

(nhd lnn)2 ,(3.13)

E
[(

Ĥ (x) − Ĥ ′(x)
)2]

� 1

n3−εh2d
+ fh(x)(1 + (lnfh(x))2)

n2hd
.(3.14)

3.3. Overall performance. Now we are ready to analyze the overall performance of the
integrated estimator Ĥ = ∫

Rd Ĥ (x) dx. As argued in Section 3.1.1, we assume without loss
of generality that fh(·) is supported on [0,1]d , so that Ĥ = ∫

[0,1]d Ĥ (x) dx. By the triangle
inequality, we have the following decomposition of the mean squared error (recall that X(1)

is the first part of observations for regime classification):

(3.15)

E
(
Ĥ − H(f )

)2 ≤ 2
[(

H(fh) − H(f )
)2 +E

(
Ĥ − H(fh)

)2]
= 2

[(
H(fh) − H(f )

)2 +E
(
E

[
Ĥ |X(1)] − H(fh)

)2

+E
[
Var

(
Ĥ |X(1))]].

We analyze different types of errors in (3.15) separately:

• First-stage approximation error: by Lemma 2, we know that
∣∣H(f ) − H(fh)

∣∣ � Lhs.

• Conditional bias (second-stage approximation error): by Corollary 1 and Cauchy–Schwarz,

E
(
E

[
Ĥ |X(1)] − H(fh)

)2 = E

(∫
[0,1]d

(
E

[
Ĥ (x)|X(1)] + fh(x) lnfh(x)

)
dx

)2

≤
∫
[0,1]d

E
(
E

[
Ĥ (x)|X(1)] + fh(x) lnfh(x)

)2
dx

� 1

(nhd lnn)2 .

• Conditional variance: conditioned on X(1), the estimator Ĥ is a deterministic function of
(X(2),X(3)) consisting of mutually independent observations. We now apply Lemma 6 to
bound the variance. For i = 1,2, . . . ,2n, define Ĥi(x) to be the pointwise estimator in
(2.7) with ith observation in (X(2),X(3)) replaced by an independent copy, and let Ĥi =
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∫
[0,1]d Ĥi(x) dx. Then by Lemma 6, we have

Var
(
Ĥ |X(1)) ≤ 1

2

2n∑
i=1

E
[
(Ĥ − Ĥi)

2|X(1)]

= 1

2

2n∑
i=1

E

[(∫
[0,1]d

(
Ĥ (x) − Ĥi(x)

)
dx

)2∣∣∣X(1)

]
.

Since K has compact support (cf. Assumption 1), by our estimator construction we have
Leb({x ∈ [0,1]d : Ĥ (x) �= Ĥi(x)}) � hd . Hence, by Cauchy–Schwarz, we have

(∫
[0,1]d

(
Ĥ (x) − Ĥi(x)

)
dx

)2

≤
∫
[0,1]d

(
Ĥ (x) − Ĥi(x)

)2
dx ·

∫
[0,1]d

1
(
Ĥ (x) �= Ĥi(x)

)
dx

� hd
∫
[0,1]d

(
Ĥ (x) − Ĥi(x)

)2
dx.

Combining the previous two displays, the conditional variance can be upper bounded as
(recall the definition of Ĥ ′(x) before Corollary 1)

E
[
Var

(
Ĥ |X(1))] � nhd

∫
[0,1]d

E
(
Ĥ (x) − Ĥ ′(x)

)2
dx

(3.14)
�

∫
[0,1]d

(
1

n2−εhd
+ fh(x)(1 + (lnfh(x))2)

n

)
dx

� 1

n2−εhd
+ (lnL)2

n
,

where the last inequality follows from Lemma 10 and ‖fh‖p ≤ ‖f ‖p + ‖f − fh‖p �
L(1 + hs) (cf. (2.3)).

Substituting all three types of error bounds into (3.15), we obtain
(

sup
f ∈Lips,p,d (L)

Ef

(
Ĥ − H(f )

)2
) 1

2 �Lhs + 1

nhd lnn
+ 1

n1−ε/2
√

hd
+ lnL√

n
.(3.16)

Finally, we choose h = (Ln lnn)−
1

s+d (note that the condition Lhs ≤ 1 in Lemma 2 holds due
to the assumption L ≤ (n lnn)s/d ) and ε < s

s+d
in (3.16) to obtain

(
sup

f ∈Lips,p,d (L)

Ef

(
Ĥ − H(f )

)2
) 1

2 � (n lnn)−
s

s+d L
d

s+d + n− 1
2 lnL,

completing the proof of Theorem 4.

4. Further discussions.

4.1. Extensions to densities satisfying periodic boundary conditions. In this section, we
relax the assumptions that the underlying density f is supported on [0,1]d and smoothly van-
ishing at the boundary, and establish the corresponding minimax rates in entropy estimation.

Note that since the Lp norm in (1.2) is taken in R
d , the definition of the Lipschitz norm

requires that the density f connects to zero smoothly at the boundary of [0,1]d , which may
exclude some well-known densities such as the uniform distribution. This assumption can be
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relaxed by considering the “periodic boundary condition,” which requires that the periodic
extension of the density f lies in the Lipschitz ball. Specifically, we define a new Lipschitz
ball

Lip�
s,p,d(L) = {

f : ‖f ‖Lip�
s,p,d

≤ L
} ∩ {

f : supp(f ) ⊆ [0,1]d}
,

where the Lipschitz norm ‖ ·‖Lip�
s,p,d

is defined in the same way as (1.2) to (1.4), with the only
exceptions that the Lp norm is taken over the unit cube [0,1]d instead of Rd , and f is period-
ically extended to the entire space R

d via f (x mod 1) � f (x1 − �x1�, x2 − �x2�, . . . , xd −
�xd�), for x = (x1, . . . , xd) ∈ R

d . Note that in this case we may also identify the unit cube
[0,1]d as the d-dimensional torus Td .

The periodic boundary condition is weaker than the previous Lipschitz ball condition, in
the sense of the norm comparison ‖f ‖Lip�

s,p,d
≤ C‖f ‖Lips,p,d

for some constant C > 0.5 This
assumption has already appeared in the literature [39], and the special case s = 2, d = 1
corresponds to f (0) = f (1), f ′(0) = f ′(1). The next theorem shows that, the minimax rate
remains unchanged in this weaker setting.

THEOREM 6. For any d ∈ N, 0 < s ≤ 2 and 2 ≤ p < ∞, there exists L0 > 1 depending
on s, p, d , such that for any L0 ≤ L ≤ (n lnn)s/d and any n ∈ N,

c
(
(n lnn)−

s
s+d L

d
s+d + n− 1

2 lnL
) ≤

(
inf
Ĥ

sup
f ∈Lip�

s,p,d (L)

Ef

(
Ĥ − H(f )

)2
) 1

2

≤ C
(
(n lnn)−

s
s+d L

d
s+d + n− 1

2 lnL
)
,

where c,C > 0 are constants depending on s, p, d .

Theorem 6 is a straightforward extension of Theorem 1. Since ‖ · ‖Lip�
s,p,d

is a weaker
norm than ‖ · ‖Lips,p,d

, the minimax lower bound in Theorem 1 continues to hold for the
new Lipschitz ball. As for the upper bound, we use the same estimator construction as in
Section 2, with the understanding that the kernel convolution is taken with respect to the
periodic extension of f (or equivalently, is taken on the torus T

d ). For the analysis of this
estimator, we apply a version of the maximal inequality on the torus T

d in Section 3.1, and
the remaining arguments in Section 3 are essentially the same. We postpone the detailed proof
to Section 7.3 in the Appendix.

4.2. The case of s > 2. Note that the minimax lower bound in Theorem 7 holds for all
smoothness parameters s > 0, but our current proof techniques of upper bound only work for
the smoothness regime of 0 < s ≤ 2. There are two main reasons:

1. Classifying smooth/nonsmooth regime (Lemma 5) fails when s > 2;
2. Bias correction based on Taylor expansion (Lemma 8) in the smooth regime does not

extend to s > 2.

The failures of Lemma 5 and 8 are intrinsically related to the fact that one has to use ker-
nels with negative parts to take advantage of smoothness s > 2 [59]. Concretely, Lemma 5
is closely related to the problem of adapting to the lowest values of density in density esti-
mation [49]. It was conjectured in [49] that the case of s > 2 exhibit significantly different
behavior from the case of 0 < s ≤ 2. Regarding bias correction, when the kernel is no longer

5This can be shown by applying the triangle inequality to ‖∑3d

i=1 fi‖Lips,p,d
, where fi(x) = f (x − xi) is the

translation of f with {x1, . . . , x3d } = {−1,0,1}d . Consequently, one can choose C = 3d .
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nonnegative, (8.1) can fail even when fh(x) > 0, which makes the proof of Lemma 8 break
down. It is possible that bias correction based on Jackknife may achieve better performances
when s > 2. For the application of this approach in entropy estimation, we refer to [11, 43].

Finally, we remark that the high smoothness regime of s > 2 may not pose significant
challenge for other problems of nonparametric statistics. For example, in the Gaussian white
noise model, since it is a location model, the concentration of kernel estimators can be di-
rectly guaranteed using concentration inequality for sums of independent bounded random
variables, which turns out to be sufficient for nonsmooth functional estimation [24]. Even in
the density model, the case of s > 2, which indeed calls for kernels with negative parts, can
be easily handled. For example, to estimate density itself under L2 risk, we can simply trun-
cate the negative density estimates to obtain a better performance [59]; in smooth functional
estimation [5, 58], the case of s > 2 is also not special. It is mainly in estimating nonsmooth
functionals that designing procedures that can adapt to low density regime becomes a crucial
challenge [49].

4.3. Connections to discrete entropy estimation. Another intuitive idea for estimating
the entropy of densities is to reduce it to a discrete entropy estimation problem. The mo-
tivation is that for a continuous random variable X with density f , it is well known [51]
that the Shannon entropy of its quantized version [X]k � �kX�/k satisfies H([X]k) =
d logk + H(f ) + o(1) as the quantization level k → ∞. Thus, to estimate H(f ), we can
choose an appropriate k, quantize all the observations, and apply the optimal Shannon entropy
estimator developed in [33, 65]. Below we show that this approach achieves the minimax rate
if s ≤ 1.

For the ease of exposition, we consider s ∈ (0,1] and p ≥ 2, with general dimension d ∈ N.
We split the unit cube [0,1]d into S = h−d subcubes I1, . . . , IS of size h, where h is the
“bandwidth” we will choose later. For i = 1, . . . , S, define

pi =
∫
Ii

f (t) dt, p̂i = 1

n

n∑
j=1

1(Xj ∈ Ii),

as the “probability” and the “empirical frequency” of the cube Ii , respectively. Since
the entropy of the piecewise constant density fh(x) = ∑S

i=1 pi1(x ∈ Ii) is H(fh) =∑S
i=1 pi ln 1

pi
+ lnhd , the problem of estimating H(fh) is reduced to a discrete Shannon

entropy estimation problem. We can then use the minimax rate-optimal estimators Ĥdiscrete

[33, 65] for the discrete entropy
∑S

i=1 −pi lnpi to define the estimator Ĥ for the entropy of
the density H(f ) as

Ĥ = Ĥdiscrete + lnhd.(4.1)

One can show that |H(f ) − H(fh)| = O(Lhs). The optimal bandwidth is h �
(Ln lnn)−1/(s+d), leading to the following risk bound, with an additional mild assumption
that the density is bounded.

LEMMA 9. For d ∈ N, s ∈ (0,1], p ≥ 2, the performance of the estimator Ĥ in (4.1) is
given by

(
sup

f ∈Lips,p,d (L),‖f ‖∞≤L

Ef

(
Ĥ − H(f )

)2
) 1

2 ≤ C
(
(n lnn)−

s
s+d L

d
s+d + n− 1

2 lnL
)
,

where C > 0 is a constant independent of n, L.
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