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Mean square error (MSE) of the estimator can be used to evaluate the
performance of a regression model. In this paper, we derive the asymptotic
MSE of l1-penalized robust estimators in the limit of both sample size n and
dimension p going to infinity with fixed ratio n/p → δ. We focus on the l1-
penalized least absolute deviation and l1-penalized Huber’s regressions. Our
analytic study shows the appearance of a sharp phase transition in the two-
dimensional sparsity-undersampling phase space. We derive the explicit for-
mula of the phase boundary. Remarkably, the phase boundary is identical to
the phase transition curve of LASSO which is also identical to the previously
known Donoho–Tanner phase transition for sparse recovery. Our derivation
is based on the asymptotic analysis of the generalized approximation pass-
ing (GAMP) algorithm. We establish the asymptotic MSE of the l1-penalized
robust estimator by connecting it to the asymptotic MSE of the correspond-
ing GAMP estimator. Our results provide some theoretical insight into the
high-dimensional regression methods. Extensive computational experiments
have been conducted to validate the correctness of our analytic results. We
obtain fairly good agreement between theoretical prediction and numerical
simulations on finite-size systems.

1. Introduction.

1.1. Motivation. Consider the problem of reconstructing β0 ∈ Rp from the measure-
ments

(1.1) y = Xβ0 + ε,

where X ∈ R
n×p is the design matrix and ε denotes random noise which has zero-mean com-

ponents ε = (ε1, . . . , εn)
T i.i.d. with distribution pε . The l1-penalized least square regression,

also called LASSO [29], is one of the successful methods for estimating β0. The performance
of LASSO has been studied in the literature by evaluating the upper bound of its mean square
error (MSE). For instance, [11] prove that the MSE of LASSO estimator is bounded by the
size of the error multiplying by a constant. These types of results are very robust but suffer
from loose constants and cannot provide quantitative recommendations in practice.

Inspired by the seminal work of [16], researchers have started performing asymptotic anal-
yses of LASSO under the setting n,p → ∞ with fixed ratio n/p → δ. These type of analyses
can provide sharp quantitative guidelines because they allow to derive exact high-dimensional
limit for the LASSO risk [4]. One interesting result in this direction is the phase transition of
the LASSO minimax risk which is defined as the minimum of the worst-case MSE of LASSO
estimator over the regularization parameter. Let k = ‖β0‖0 denote the number of nonzero el-
ements of β0 and ε = k/p denote the sparsity rate. It was shown in [17] that the LASSO
minimax risk exhibits a phase transition in the two-dimensional phase space (δ, ε) ∈ [0,1]2.
More specifically, a curve δ = δc(ε) was explicitly computed to divide the phase space into
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FIG. 1. LASSO minimax risk phase transition in the plane (ε, δ). The solid curve represents the phase transition
boundary δ = δc(ε).

two components as shown in Figure 1. The LASSO minimax risk is bounded in the region
δ > δc(ε) and unbounded in the region δ < δc(ε). Remarkably, the phase boundary δ = δc(ε)

is identical to the previously known phase transition curve in the problem of reconstructing
the underdetermined linear systems in compressed sensing in the k-sparse noiseless case [13].

The least square loss is efficient for normal distributed errors and homogeneous data. How-
ever, data subject to heavy-tailed errors or outliers are commonly encountered in applications.
In this case, the least square estimation is inefficient and can be biased. To overcome this
problem, robust estimators such as those based on the least absolute deviation (LAD) or
Huber-type losses can be useful. Toward this end, penalized robust regression methods have
been proposed in the literature to handle the robustness and sparsity simultaneously. Exam-
ples include [22, 32] among many others. Substantial efforts in this field have been devoted to
developing efficient algorithms for solving the optimization problem and characterizing the
performances of the estimators in low-dimensional setting. However, the characterization of
the penalized robust estimators in the high-dimensional setting has not been explored much.

The objective of this paper is to derive the asymptotic MSE of penalized robust estima-
tors. We focus on l1-penalized LAD and l1-penalized Huber’s estimators. Using the results
of asymptotic MSE, we study the phase diagram and associated transitions which describe
the undersampling sparsity trade-off for the reconstruction of signal using penalized robust
estimators. We will show that the phase boundary is identical to the phase transition curve of
LASSO in Figure 1. Our study can provide insight in the theory of regression models.

Our analysis is based on the application of the generalized approximate message passing
(GAMP) algorithm to the problem of penalized robust regression. GAMP is a recently de-
veloped iterative algorithm by [24] which is a generalization of the approximate message
passing (AMP) algorithm and can handle not only least square loss but also more general
convex loss functions. The advantage of the GAMP framework is that its asymptotic expres-
sion can be explicitly described by the state evolution equations at each iteration. By showing
that the GAMP estimators converge to the corresponding penalized robust estimators in the
large system limit, we derive the asymptotic MSE of the penalized robust estimator by using
state evolution of the corresponding GAMP estimators. All analytical results are confirmed
by extensive numerical experiments on finite-size systems and our formulas are clarified to
work well even for moderate-size systems.

1.2. Related work. This phase-transition curve shown in Figure 1 was originally derived
in [13] by methods in combinatorial geometry. Donoho et al. [16] rederived this boundary by
applying the AMP algorithm to the LASSO problem in the noiseless case. General analysis
of phase transition for AMP was presented in [14] for both the noiseless and noisy cases.
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In the high-dimensional regime of n,p → ∞ with n/p = δ > 1, [5, 12, 18] examine the
exact stochastic representation for the distribution of nonpenalized robust estimators.

Bradic [8] proposed a sparse approximate message passing (RAMP) algorithm and ex-
plored the effects of model selection on the estimation of asymptotic MSE for the l1-penalized
robust estimators in the setting of both p < n and p > n. However, the convergence of the
RAMP estimators to the solution of the penalized robust estimation problem has not been
proved completely. Moreover, they did not investigate the noise sensitivity phase transition
features of the penalized robust estimators. The prediction of phase transitions for different
denoisors besides the soft thresholding one has been studied in [14], but the results are still
based on least square loss.

2. Asymptotic behavior of l1-penalized robust estimator.

2.1. l1-Penalized robust estimator. For problem (1.1), we are interested in estimating β0
using the following l1-penalized robust estimators:

(2.1) β̂ = argmin
β∈Rp

{
n∑

i=1

ρ
(
yi − xT

i β
) + λ

p∑
j=1

|βj |
}
,

where λ > 0 is the tuning parameter for penalty. Here, the loss function ρ : R → R+ is a
nonnegative convex function. Examples of the loss function include:

• Least square loss: ρ(u) = 1
2u2.

• Least absolute deviation (LAD) loss: ρ(u) = |u|.
• Huber’s loss:

ρ(u) =

⎧⎪⎪⎨
⎪⎪⎩

u2

2
|u| ≤ γ,

γ |u| − γ 2

2
|u| > γ,

where γ > 0 is a fixed positive constant.

The regression model based on least square loss is also called LASSO and has been well
studied. Here, we consider the robust regression model based on LAD loss and Huber’s loss.
The robust regression is an alternative to least square regression when the data subject to
heavy-tailed errors or are contaminated with outliers. It can also be used for the purpose of
detecting influential observations. Given a vector v ∈ R

p and a scalar function f : R→R, we
write f (v) for the vector obtained by applying f componentwise. Further, 〈v〉 = p−1 ∑p

i=1 vi

is the average of the vector v, and XT is the transpose of matrix X.

2.2. Generalized approximate message passing algorithm. Many algorithms have been
developed in the literature to solve the optimization problem (2.1). Here, we use the gener-
alized approximate message passing algorithm (GAMP). Our goal is to study the asymptotic
behavior of the regularized robust estimators (2.1) in the limit of n,p → ∞ with fixed ra-
tio n/p = δ. We start from the asymptotic behavior of the corresponding GAMP estimators
in the large system limit which can be well characterized by a simple set of state evolution
equations. Then we show that the regularized robust estimators asymptotically converge to
the corresponding GAMP estimators.

Approximate message passing algorithm (AMP) is a recently developed optimization
method for solving the LASSO minimization problem [16]. The advantage of the AMP
framework is that it provides an exact expression for the asymptotic MSE of the LASSO
estimator instead of an upper bound. AMP has been extended to GAMP in [24] for solving
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general convex optimization problem. In order to apply GAMP to the problem (2.1), we first
need to define the following two functions:

η(a, b) = argmin
β

{
|β| + 1

2b
(β − a)2

}
= (|a| − b

)
+ sign(a),(2.2)

G0(a, b) = b∂ρ
(
û(a, b)

)
,(2.3)

where ∂ρ(·) represents the subgradient of ρ(·) function and

(2.4) û(a, b) = argmin
u

{
ρ(u) + 1

2b
(u − a)2

}
.

Based on the definition of G0(a, b), it can be easily shown that

(2.5) G0(a, b) = a − û(a, b).

For the LAD loss ρ(u) = |u|, (2.4) gives

û(a, b) = sign(a)
(|a| − b

)
+,

which leads to

(2.6) G0(a, b) =

⎧⎪⎪⎨
⎪⎪⎩

a |a| ≤ b,

b a > b,

−b a < −b.

For Huber’s loss, (2.4) gives

û(a, b) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

a

1 + b
|a| ≤ (1 + b)γ,

a − γ b a > (1 + b)γ,

a + γ b a < −(1 + b)γ

which leads to

(2.7) G0(a, b) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

b

1 + b
a |a| ≤ (1 + b)γ,

γ b a > (1 + b)γ,

−γ b a < −(1 + b)γ.

Let {θt , at , πt ,ωt }t≥0 denote four sequences of nonnegative parameters. Starting with ini-
tial conditions β0 = 0 ∈ R

p , a0 = 1 and G0(z−1, a−1) = 0 ∈ R
n, the general form of GAMP

algorithm for (2.1) constructs a sequence of estimates β t ∈ R
p and residuals zt ∈ R

n accord-
ing to the iteration

(2.8)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

zt = y − Xβ t + 1

ωt−1
G0

(
zt−1, at−1

)
πt−1,

β t+1 = η

(
β t + 1

ωt

XT G0
(
zt , at

)
, θt

)
,

with the parameters θt , at , πt , ωt updated through

(2.9)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

πt = 1

δ

〈
∂1η

(
β t−1 + 1

ωt−1
XT G0

(
zt−1, at−1

)
, θt−1

)〉
,

at = at−1πt−1

ωt−1
,

ωt = 〈
∂1G0

(
zt , at

)〉
,

θt = λat

ωt

,
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where ∂1 represents the derivative over the first argument of the function. A detailed deriva-
tion of (2.8) and (2.9) is provided in the Supplementary Material [19]. The connection of
(2.8) and (2.9) to the l1-penalized robust estimator (2.1) can be formalized by the proposition
below.

PROPOSITION 2.1. Let (β�, z�) be a fixed point of the iteration (2.8) for θt = θ�, at = a�,
πt = ωt = π� fixed. Then β� is a minimum of the cost function (2.1) for

(2.10) λ = θ�π�

a�

.

As a consequence of this proposition, if the estimates β t based on (2.8) and (2.9) converge,
then we are guaranteed that the limit is a l1-penalized robust estimator.

Although GAMP has been successfully applied to many problems, its convergence is still
not fully understood [25, 31]. Various modification procedures have been proposed to im-
prove the convergence of GAMP; see, for example, [26, 28]. To facilitate the convergent
study, here we fix certain parameters throughout the iteration to its fixed-point values. For
this purpose, we take ωt = π�, the fixed point of πt , and choose θt in a way that will be
discussed in Section 2.4. Let

(2.11) G(a,b) = 1

π�

G0(a, b)

denote the rescaled min regularized effective score function, we eventually take the following
form of GAMP algorithm:

(2.12)

⎧⎪⎨
⎪⎩

zt = y − Xβ t + 1

δ
G

(
zt , at

)〈
∂1η

(
β t + XT G

(
zt , at

)
, θt

)〉
,

β t = η
(
β t−1 + XT G

(
zt−1, at−1

)
, θt−1

)
,

where the sequence {at }t≥0 is determined by

(2.13)
〈
∂1G

(
zt , at

)〉 = 1.

The RAMP algorithm proposed in [8] chooses ωt = ‖β0‖0/(pδ), where ‖β0‖0 denotes the
number of nonzero elements in the true coefficient vector. The advantage of the choice ωt =
π� over other choices is that it is more relevant for mathematical analysis. Particularly, as
it will be discussed below, it allows us to establish the convergence of GAMP in a more
convenient way.

2.3. State evolution of GAMP. It has been shown in [3] that AMP algorithm has several
unique advantages. Particularly, the asymptotic limit of the AMP estimates as n,p → ∞
for any fixed t can be described by the state evolution (SE). The SE not only predicts the
evolution of numerical statistical properties of β t with the iteration number t , it also correctly
predicts the success/failure to converge to the correct result.

We will show that the GAMP algorithm enjoys the same properties. We will consider
sequences of instances of increasing sizes which are completely determined by the measure-
ment matrix X, the signal β0, and the error vector ε. We assume the following conditions in
order for SE to hold.

ASSUMPTION 1. n/p → δ ∈ (0,∞).

ASSUMPTION 2. The empirical distribution of the entries of β0 converges weakly to
a probability measure pβ0 on R with bounded second moment. Further 1

p

∑p
i=1 β2

0,i →
Eβ0(β

2
0 ).
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ASSUMPTION 3. The empirical distribution of the entries of ε converges weakly to a
probability measure pε on R with bounded second moment. Further 1

n

∑n
i=1 ε2

i → Eε(ε
2).

ASSUMPTION 4. The entries of X are i.i.d. normal with mean 0 and variance 1/n.

Note that the hypothesis of Gaussian measurement matrix X (Assumption 4) is necessary
for the proof technique to be applicable. Extensive numerical simulations carried out in [17]
showed that, for LASSO, the result is universal over a broader class of i.i.d. matrices. Re-
cently, [6] generalizes the SE result for AMP to standard Gaussian design with nonseparable
denoisers. This work enables the applicability of AMP to Gaussian design with nontrivial
covariance � and a separable denoiser by a change of variable X̃ → �−1/2X, β̃0 → �1/2β0.
However, the challenge of this extension is that the convergence of AMP under general non-
i.i.d. matrices has not been fully understood. In fact, recent works in [25, 31] have shown that,
even for the simplest least square loss, GAMP can diverge under mildly ill-conditioned X.

We say a function ψ : Rk → R is pseudo-Lipschitz if there exists a constant L > 0 such
that for all x,y ∈ Rk : |ψ(x) − ψ(y)| ≤ L(1 + ‖x‖2 + ‖y‖2)‖x − y‖2. The following propo-
sition is a simple application of the existing results in [8]. It shows that the GAMP iterations
(2.12) and (2.13) admit a high-dimensional limit as n,p → ∞ with fixed n/p = δ. The proof
is still included in the Appendix for the completeness of the paper.

PROPOSITION 2.2. Let ψ : R × R → R be a pseudo-Lipschitz function. Then, under
Assumptions 1–4, almost surely

lim
p→∞

1

p

p∑
i=1

ψ
(
βt+1

i , β0,i

) = E
{
ψ

(
η(β0 + τtZ, θt ), β0

)}
,

lim
n→∞

1

n

n∑
i=1

ψ
(
zt
i , εi

) = E
{
ψ(ε + σtZ, ε)

}
,

where Z ∼ N(0,1) is independent of β0 ∼ pβ0 and ε ∼ pε . The state evolution sequences
{τ 2

t , σ 2
t }t≥0 are obtained by the following iterative equations:

τ 2
t = E

{
G(ε + σtZ, at )

2}
,(2.14)

σ 2
t = 1

δ
E

{(
η(β0 + τt−1Z,θt−1) − β0

)2}
,(2.15)

with the parameters at determined by

(2.16) E
{
∂1G(ε + σtZ, at )

} = 1.

According to the standard weak convergence arguments, Proposition 2.2 indicates that
the empirical distribution of the entries of the GAMP estimator β t converges weakly to the
distribution of the random variable η(β0 + τt−1Z,θt−1) with Z ∼ N(0,1) independent of β0.
Similarly, the empirical distribution of the entries of the residuals zt converges weakly to the
distribution of the random variable ε + σtZ with Z ∼ N(0,1) independent of ε.

2.4. Fixed-point equations and convergence. Define τ�, σ�, a� and θ� the solutions of the
SE fixed-point equations

τ 2
� = E

{
G(ε + σ�Z,a�)

2}
,(2.17)

σ 2
� = 1

δ
E

{(
η(β0 + τ�Z, θ�) − β0

)2}
,(2.18)

1 = E
{
∂1G(ε + σ�Z,a�)

}
.(2.19)
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Clearly, the solutions depend on δ as well as the distributions pβ0 and pε . Then the quantity
π� can be obtained as

(2.20) π� = 1

δ
E

{
∂1η(β0 + τ�Z, θ�)

}
.

Using the explicit forms of (2.6) and (2.7), we obtain the following proposition.

PROPOSITION 2.3. Define Z̃ = ε + σ�Z. Then the SE fixed-point equations of l1-LAD-
GAMP are

τ 2
� = 1

π2
�

[
E

{
Z̃2I

(|Z̃| ≤ a�

)} + E
{
a2
�I

(|Z̃| ≥ a�

)}]
,(2.21)

π� = p
(|Z̃| ≤ a�

) = 1

δ
E

{
∂1η(β0 + τ�Z, θ�)

}
.(2.22)

The SE fixed-point equations of l1-Huber-GAMP are

τ 2
� = 1

π2
�

[
E

{
a2
�

(1 + a�)2 Z̃2I
(|Z̃| ≤ (1 + a�)γ

)}
(2.23)

+ E
{
a2
�γ

2I
(|Z̃| ≥ (1 + a�)γ

)}]
,

π� = a�

1 + a�

p
(|Z̃| ≤ (1 + a�)γ

) = 1

δ
E

{
∂1η(β0 + τ�Z, θ�)

}
.(2.24)

Combining (2.14) and (2.15), we obtain the one-dimensional update for τ 2
t as

τ 2
t+1 = V

(
τ 2
t , θt

)
,

where

V
(
τ 2, θ

) = E
{
G

(
ε + σ(τ, θ)Z,a(τ, θ)

)2}
,(2.25)

σ(τ, θ)2 = 1

δ
E

{(
η(β0 + τZ; θ) − β0

)2}
(2.26)

with a(τ, θ) implied by

E
{
∂1G

(
ε + σ(τ, θ)Z,a(τ, θ)

)} = 1.

Now we discuss the choice of the sequence of thresholds θt . We take θt = ατt with α

fixed throughout the iterations. As discussed in [4], the main advantage of such choice is that
the convergence of the corresponding recursion τ 2

t+1 = V (τ 2
t , ατt ) can be well established.

Moreover, it is a natural choice from an intuitive point of view. At each step, we apply the
soft thresholding denoiser η(·, θt ) to an effective observation β0 + τtZ which can be regarded
as the signal β0 corrupted by Gaussian noise τtZ. Therefore, this suggests to choose θt pro-
portional to the standard deviation of the noise τt . More discussion about the choice of θt was
given in [23].

Let αl = αl(δ) be the unique nonnegative solution of the equation

(2.27) 2�(−α) = δ,

where �(z) = ∫ z
−∞ φ(x) dx and φ(x) = e−x2/2/

√
2π is the standard Gaussian density func-

tion. The following proposition indicates the convergence of the SE equations (2.14) and
(2.15).
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PROPOSITION 2.4. For any σ 2 > 0 and α > αl , the fixed-point equation

(2.28) τ 2 = V
(
τ 2, ατ

)
,

admits at least one solution. Denoting by τ 2
� = τ 2

� (α) the largest solution, we have
limt→∞ τ 2

t = τ 2
� (α) for large enough initial condition τ 2

t=0.

2.5. Connection of GAMP to regularized robust estimator. Before stating our main re-
sults, we have to describe a calibration mapping between α and λ which will depend on pβ0 .
For pβ0 , we consider the sparse class

(2.29) Fε ≡ {
ν : ν is a probability measure with ν

({0}) ≥ 1 − ε
}

which put mass at least 1 − ε on 0. Let αu = αu(δ) be the unique nonnegative solution of the
equation

ε + 2(1 − ε)�(−α) = δ.

Clearly, αl < αu for ε > 0. We then define the function α → λ(α) on (0,∞) by

(2.30) λ(α) = ατ�(α)π�(α)

a�(α)
.

This function defines a correspondence between the threshold ατ� and the regularization
parameter λ. We need to invert this function and define α : (0,∞) → (0,∞) in such a way
that

(2.31) α(λ) = {
a ∈ (0,∞) : λ(a) = λ

}
.

The next result implies that the set on the right-hand side is nonempty and therefore the
function λ → α(λ) is well defined.

PROPOSITION 2.5. For any σ 2 > 0, there exist an αmin ∈ [αl, αu] which depends on pβ0

such for any α > αmin, the function α → λ(α) is continuous on the interval (αmin,∞) with
λ(αmin+) = 0 and limα→∞ λ(α) = ∞. Therefore, the function λ → α(λ) satisfying (2.31)
exists.

State evolution provides the limit of GAMP estimation in the high-dimensional setting.
By showing that the GAMP estimator converges to the regularized robust estimator, one can
obtain the distributional limit for the latter as well. The following theorem shows that the
empirical distribution of the entries of the regularized robust estimator β̂ from (2.1) con-
verges weakly to the distribution of the random variable η(β0 + τ�Z; θ�) with Z ∼ N(0,1)

independent of β0.

THEOREM 2.1. Under Assumptions 1–4, denote by f (x) the density function for the
distribution of error term ε. Further assume that for any ω > 0, there exists a large enough
C > 0 such that f (x) > 0 for all x ∈ [−C,C] and the probability p(x ∈ [−C,C]) ≥ 1 − ω.
Let ψ :R×R →R be a pseudo-Lipschitz function. Then, almost surely

lim
p→∞

1

p

p∑
i=1

ψ
(
β̂(λ)i, β0,i

) = E
{
ψ

(
η
(
β0 + τ�Z,α(λ)τ�

)
, β0

)}
,

where Z ∼ N(0,1) is independent of β0 ∼ pβ0 , τ� = τ�(α(λ)) is the solution of the fixed-point
equation (2.28) with α = α(λ).
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Theorem 2.1 allows us to theoretically study the MSE of the regularized robust estimator.
Using function ψ(a, b) = (a − b)2, we obtain

lim
p→∞

1

p

∥∥β̂(λ) − β0
∥∥2 = E

{[
η
(
β0 + τ�Z,α(λ)τ�

) − β0
]2}

,

which depends on δ, λ, pβ0 and pε . Therefore, the asymptotic risk of the regularized robust
estimator can be determined for any specific distributions pβ0 and pε by solving the fixed-
point equation (2.28). Note that Theorem 2.1 allows us to predict MSE for any fixed λ. This is
different from the traditional large n fixed p situations where the usual value for λ is chosen
growing to 0. We prove Theorem 2.1 by proving the following result.

THEOREM 2.2. Under the same assumptions used for Theorem 2.1, we have

lim
t→∞ lim

p→∞
1

p

∥∥β t − β̂
∥∥2

2 = 0,

almost surely.

After establishing the convergence of the state evolution, the proof technique of Theo-
rem 2.2 is very similar to the existing proof techniques used in LASSO paper [4]. For com-
pleteness, we outline the main proof in the Appendix and move the technical lemmas into the
Supplementary Material.

3. Phase transition and minimax risk. In this section, we study the minimax risk and
phase transition properties of the l1-penalized robust estimator based on the asymptotic re-
sults derived in Section 2. Here, the minimax risk refers to minimizing the worst-case MSE
over λ for estimators based on a specific l1-penalized robust method. It is not a minimax over
all possible estimators. We start from the fixed-point equations (2.17)–(2.20) and focus on
two special robust regression methods: l1-LAD and l1-Huber’s regression. The results de-
pend on distributions pε and pβ0 . We consider the sparse class Fε defined in (2.29) for pβ0

and have a phase space 0 ≤ ε, δ ≤ 1 expressing different combinations of under-sampling δ

and sparsity ε.

3.1. Noiseless l1-LAD. Let us first consider the noiseless case, that is, σ 2
0 = 0. We study

under which condition the original signal β0 can be correctly reconstructed from the mea-
surement y using l1-LAD regression after appropriately tuning the λ.

It is well known that in the problem of reconstructing the underdetermined linear system,
exact reconstruction takes place subject to a trade-off between under-sampling δ and sparsity
ε [13]. There is a function δc(ε) whose graph partitions the domain (ε, δ) ∈ [0,1]2 into two
regions, a “success” region, where exact reconstruction occurs, and a “failure” region where
exact reconstruction fails. In the lower region, where δ < δc(ε), the probability of exact re-
construction tends to zero as k,n,p → ∞ with k/p → ε and n/p → δ. In the upper region,
where δ > δc(ε), the corresponding probability of exact reconstruction tends to one. Hence
the curve δ = δc(ε) for 0 < δ < 1 indicates the precise trade-off between under-sampling and
sparsity.

Note that, for LASSO, δc(ε) is independent of the actual signal distribution pβ0 . This is
different from the lp-penalized regressions with 0 ≤ p < 1 studied in [34] in which pβ0 has a
substantial effect on the phase transition curve. As shown in [16], the curve δc(ε) admits the
following simple form:

(3.1) δc(ε) = 2φ(αc)

αc + 2(φ(αc) − αc�(−αc))
,
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where αc is determined by

(3.2) ε = 2(φ(αc) − αc�(−αc))

αc + 2(φ(αc) − αc�(−αc))
,

where αc ∈ [0,∞) is the parameter.
The following theorem shows that a phase transition also occurs in the l1-LAD regression

for noiseless case. The domain has two phases: a “success” phase, where the l1-LAD regres-
sion succeeds to recover β0, and a “failure” phase where it fails to reconstruct β0. Moreover,
this phase transition boundary is exactly δ = δc(ε).

THEOREM 3.1. Under Assumptions 1, 2 and 4, denote β̂ the estimator from (2.1) based
on the LAD loss in the noiseless case. For any δ > δc(ε), we can tune the parameter λ and
have limp→∞ 1

p
‖β̂ − β0‖2 = 0 almost surely. Thus we can make consistent estimation for

the original signal β0 in this region. For any δ < δc(ε), we have limp→∞ 1
p
‖β̂ − β0‖2 > 0

almost surely for any tuning parameter λ. Thus the consistent estimation in this region fails.

Theorem 3.1 shows that, in the “success” region, we can tune α such that the equation
(2.28) admits a unique solution τ� = 0 which corresponds to λ = 0 for the original problem
(2.1) according to the calibration mapping (2.30).

3.2. Noisy l1-LAD. Next, we study the MSE of β̂ in the noisy case, that is, σ 2
0 = 0. In

this case, the probability of exact reconstruction tends to zero and the MSE result depends on
pβ0 . In the more realistic situation, we do not know pβ0 . However, if we consider the sparsity
class Fε and take the worst case MSE over this class and then minimize over λ, we get a
result that is independent of pβ0 . Toward this end, we define the minimax risk as

(3.3) M(δ, ε) = min
λ

sup
pβ0∈Fε

lim
p→∞

1

p

p∑
i=1

{∣∣β̂i(λ) − β0,i

∣∣2}
.

That is, the regularization parameter λ is optimally chosen such that the maximal MSE based
on a specific l1-penalized robust method for the class Fε is minimized.

The following theorem shows that in the presence of noise, the phase space 0 ≤ δ, ε ≤ 1 is
partitioned by the curve δ = δc(ε) into two regions. The minimax risk of l1-LAD is bounded
throughout the “success” region and unbounded throughout the “failure” region.

THEOREM 3.2. Under Assumptions 1–4 with the condition of bounded second moment
for pβ0 in Assumption 2 removed, recall that M(δ, ε) defined in (3.3) denotes the minimax
risk of l1-LAD. Then, for any δ > δc(ε), M(δ, ε) is bounded; for any δ < δc(ε), M(δ, ε) is
unbounded.

Note that the optimal choice of regularization parameter for minimizing the maximum
risk is related to αc provided by (3.1). The upper bounds for the minimax risk of the sparse
regression estimators for (1.1) have been studied in the literature; see, for example, [7, 9, 27,
30]. There is a lower bound result in [30] which shows that the lower bound of estimating
β in high dimension is C1

ε
δ
{1 + log(1/ε)} for 1 ≤ k ≤ (n − 1)/4 and � = I (see (6.7) in

Proposition 6.4 in [30]). Our results complement this type of “rough and robust” bounds by
providing asymptotic formal expression for the MSE of β̂ .

Based on Theorem 3.2, in the upper region δ > δc(ε), we can estimate the actual minimax
risk of l1-LAD. Denote

(3.4) M�(ε) = δc(ε)
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which is defined in (3.1). It was shown in [17] that the LASSO minimax risk is simply given
by

(3.5) M(δ, ε) = σ 2
0 M�(ε)

1 − M�(ε)/δ

which does not depend on the distribution pε . In contrast, the explicit form of minimax risk
of l1-LAD depends on the distribution pε . We consider three different distributions here.

PROPOSITION 3.1. Normal random error. Assume that the noise term ε follows a normal
distribution ε ∼ N(0, σ 2

0 ). Then for δ > δc(ε), the minimax MSE of l1-LAD is

(3.6) M(δ, ε) = σ 2
0 F(c)M�(ε)

1 − F(c)M�(ε)/δ
,

where

(3.7) F(c) = 2�(c) − 1 + 2c(c�(−c) − φ(c))

(2�(c) − 1)2 ,

where c depends on (ε, δ) through 2�(c) − 1 = M�(ε)
δ

.

Clearly, l1-LAD risk (3.6) is larger than the corresponding LASSO risk (3.5) because
F(c) ≥ 1. It is interesting to check that

F(c)M�(ε)/δ ≤ 1.

To show this, notice that M�(ε)
δ

= 2�(c) − 1 which leads to

F(c)M�(ε)/δ = 2�(c) − 1 + 2c(c�(−c) − φ(c))

2�(c) − 1
≤ 1

because c�(−c) ≤ φ(c) for any c ≥ 0. Therefore, for normal distributed ε, l1-LAD mini-
max risk is larger than LASSO minimax risk. This is consistent with the classical statistical
analysis, that is, least square loss is optimal for Gaussian errors.

PROPOSITION 3.2. Laplace random error. Assume that the noise term ε follows a
Laplace distribution

ε ∼ 1

2b0
exp

(
−|ε|

b0

)

which has mean 0 and variance 2b2
0. Denote c = a�√

σ 2
0 +σ 2

�

and b = b0
σ�

. Then the minimax MSE

of l1-LAD is τ 2
� M�(ε), where τ 2

� (together with c) is determined by the equations

(3.8)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

τ 2
� =

(
2b2

0 + τ 2
� M�(ε)

δ

)
B(b, c),

τ�M
�(ε)

δ
= D(b, c),

where

B(b, c) = 1

D(b, c)
+ N(b, c) + c2(1 − D(b, c))

D(b, c)2(1 + 2b2)
,

D(b, c) = �(c) − �(−c) + f1(b, c) − f2(b, c),

N(b, c) = (
c2 − 1

)(
f1(b, c) − f2(b, c)

) − 2bc
(
f1(b, c) + f2(b, c)

) − 2c�(c),
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f1(b, c) = exp
{

1

2

(
1

b2 + 2c

b

)}
�

(
−c − 1

b

)
,

f2(b, c) = exp
{

1

2

(
1

b2 − 2c

b

)}
�

(
c − 1

b

)
.

In the classical statistical theory for p fixed and n → ∞, it is well known that MLE based
LAD loss is optimal for Laplace errors. Actually, from (2.21) and (2.22), we obtain that as

δ → ∞, l1-LAD M(δ, ε) → σ 2
0 M�(ε)

4ϕ(0)
, where ϕ(x) is the density function of ε/σ0. Comparing

it to (3.5), we conclude that, in contrast to LASSO, the minimax MSE of l1-LAD is larger for
normal error but smaller for Laplace distribution error. It is interesting to see that this con-
clusion is independent of the choice of the denoiser. Because from the fixed-point equations
(2.17) and (2.18), different denoisers lead to different η(·) function, and thus different M�(ε)

but the result of τ� will not be affected if δ is large enough.
But the above conclusion is no longer true in the regime when p is large and comparable to

n. Specifically, our numerical studies in Section 4 show that, in this regime, the results depend
on δ. For very small δ, LASSO is better than l1-LAD; but as δ increases, l1-LAD eventually
outperforms LASSO and yields smaller MSE. This observation is due to the extra Gaussian
noise σ�Z which is dominant over ε at very small δ and can be negligible comparing to ε

when δ is large enough.

PROPOSITION 3.3. Gaussian mixture random error. Assume that the noise term ε follows
a mixture of two component Gaussian distribution ε ∼ ε1N(0, σ 2

1 ) + ε2N(0, σ 2
2 ) with ε1 +

ε2 = 1. Denote c1 = a�/σ1 and c2 = a�/σ2. Then the minimax MSE of l1-LAD is τ 2
� M�(ε),

where τ 2
� (together with c1 and c2) is determined by the equations

(3.9)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

τ 2
� = ε1(σ

2
� + σ 2

1 )fb(c1) + ε2(σ
2
� + σ 2

2 )fb(c2)

{ε1(2�(c1) − 1) + ε2(2�(c2) − 1)}2 ,

τ�M
�(ε)

δ
= ε1

(
2�(c1) − 1

) + ε2
(
2�(c2) − 1

)
,

where

fb(c) = 2�(c) − 1 + 2c
{
c�(−c) − φ(c)

}
.

There is no closed form solution for τ 2
� and we have to use numerical methods. In Sec-

tion 4, we have also performed extensive numerical studies to compare minimax MSE of
l1-LAD with LASSO for Gaussian mixture distributed ε.

3.3. Penalized Huber’s regression. The phase transition and minimax risk of l1-
penalized Huber’s regression can be studied using the same procedure as we did for l1-LAD.
The following theorem shows that the same phase transition also occurs in l1-Huber regres-
sion for both noiseless and noisy cases. This phase transition boundary is exactly δ = δc(ε).

THEOREM 3.3. Under Assumptions 1, 2 and 4, denote β̂ the estimator from (2.1) based
on the Huber loss. For any δ > δc(ε), by tuning the parameter λ, we can have limp→∞ 1

p
‖β̂ −

β0‖2 = 0 almost surely. Thus we can make consistent estimation for the original signal β0

in this region. For any δ < δc(ε), we have limp→∞ 1
p
‖β̂ − β0‖2 > 0 almost surely for any

tuning parameter λ. Thus the consistent estimation in this region fails.

We have the following theorem in the presence of measurement noise, that is, σ 2
0 = 0.
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THEOREM 3.4. Under Assumptions 1–4 with the condition of bounded second moment
for pβ0 in Assumption 2 removed, recall that M(δ, ε) denotes the minimax MSE of l1-Huber.
Then, for any δ > δc(ε), M(δ, ε) is bounded; for any δ < δc(ε), M(δ, ε) is unbounded.

For a given δ, ε satisfying δ > δc(ε), we can estimate the corresponding minimax risk of
l1-Huber. The results depend on δ as well as the form of the error distribution pε . We have
derived the explicit formulas under three different error distributions: normal, Laplace and
Gaussian mixture. The following proposition shows the result for normal error.

PROPOSITION 3.4. Denote c0 = (1+a�)γ√
σ 2

0 +σ 2
�

. Assume that the noise term ε follows a normal

distribution ε ∼ N(0, σ 2
0 ). Then for δ > δc(ε), the minimax MSE of l1-Huber is

(3.10) M(δ, ε) = σ 2
0 F(c0)M

�(ε)

1 − F(c0)M�(ε)/δ
,

where F(c0) is defined in (3.7) and a�
1+a�

(2�(c0) − 1) = M�(ε)
δ

.

Comparing (3.10) with (3.6) and (3.5), it can be shown that, for normal random error, the
minimax of MSE l1-Huber is less than l1-LAD but larger than LASSO due to the fact that
F(c) is decreasing with c and F(c) ≥ 1. The minimax MSE formulas of l1-Huber for Laplace
and Gaussian mixture errors are complicated but the derivation is very straightforward and
similar to the ones for l1-LAD. To save space, we will not show the details here.

3.4. Technical novelties. Since the least squares loss is strongly convex and the LAD
and Huber losses are not, our main results in Section 2 cannot be seen as a straightforward
extension of the results in [4] for LASSO research. For example, the proof of Theorem 2.1
is much more sophisticated than the proof of the corresponding LASSO result in [4], and
requires nontrivial extensions. The main reason is that, according to (2.13), the least square
loss can lead to a constant at , and thus a strictly concave function τ 2 �→ V (τ 2, ατ). This
substantially simplify the convergence analysis of the SE. On contrary, for LAD and Huber
losses, at is not constant and the form of τ 2 �→ V (τ 2, ατ) is quite complicated and not con-
cave. As a consequence, the proof of the SE convergence for GAMP is much more difficult
than for AMP. To overcome this difficulty, as suggested by one reviewer, we first construct
a modified GAMP procedure by appropriately fixing certain parameters throughout the iter-
ation to the final values they will converge to. Then, instead of using concavity, we prove
the convergence of τt by exploring the large τ 2 behavior of V (τ 2, ατ). An addition level of
complexity due to nonstrongly convex loss comes from the proof of Lemma S2. For example,
(S1) can be obtained immediately for strongly convex loss ρ(·) as shown in [12]. However,
for nonstrongly convex loss, we have to develop new techniques in Lemma S1 to prove it.
Moreover, in Section 3, we study the phase transition phenomenon of the penalized robust
estimators. Some techniques used in the proofs of Theorems 3.1–3.3 are outside the scope of
current AMP results. To the best of our knowledge, all previous rigorous analyses of phase
transition were for the case of least square loss.

4. Numerical results.

4.1. Comparison between theoretical prediction and simulation on finite-size systems. In
this section, we conduct Monte Carlo simulations to test the validity of our analytical esti-
mation and to determine the finite-size effect. We first confirm that our theoretical results
presented in Sections 2 and 3 are reliable. For this purpose, we focus on the comparison of
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FIG. 2. Comparison between theoretical estimation and simulation study for the change of MSE against tuning
parameter λ. Here, μ = 2, δ = 0.5, ε = 0.15. The error term follows a Laplace distribution with mean 0 and vari-
ance 1. The simulation is based on p = 1000 and each setting was repeated 100 times. The solid curve represents
the theoretical estimation and the error bars represent the mean and 95% confidence interval summarized over
100 simulated data. Left panel: l1-LAD. Right panel: l1-Huber with γ = 1.

the estimated MSE from theory and the MSE computed from numerical algorithms for finite
system. We consider two methods: l1-LAD and l1-Huber. The errors follow a Laplace dis-
tribution. The Supplementary Material contains more simulation results with other types of
error distributions.

For each setting, we first found the fixed point of the state evolution for τ 2
� by numerically

solving (2.28) with the corresponding pβ0 . Then using Theorem 2.1 and (2.18), we obtain that
MSE = δσ 2

� . The comparisons between theoretical estimation and Monte Carlo simulation
for MSE of l1-LAD are shown in the left panel of Figure 2. We fix the undersampling and
sparsity parameters as δ = 0.5 and ε = 0.15. The signal is assumed to follow a three-point
distribution pβ0 ∼ (1 − ε)δ0 + ε

2δμ + ε
2δ−μ with μ = 2. The change of MSE as a function

of tuning parameter λ is plotted. The dimension of the simulated data p = 1000 and we
repeat simulation 100 times for each parameter setting. The mean and standard errors over
100 replications are presented. We use R package quantreg to fit the l1-LAD estimators. Our
analytical curves (solid lines) show a fairly good agreement with the direct computations from
numerical algorithms (error bar) for simulated data. Thus our analytical formulas provide
reliable estimates for moderate system sizes.

The comparisons between theoretical estimation and Monte Carlo simulation for MSE of
l1-Huber with γ = 1 are shown in the right panel of Figure 2. We use the same parameter
settings as we did for l1-LAD. We use R package hqreg to solve the l1-Huber optimization
problem. Similar to l1-LAD, we obtain fairly good agreement between analytic estimation
and simulation study for l1-Huber as well.

4.2. Phase transition. For the noiseless case, we compare the theoretical phase transition
with the empirical one estimated by applying the l1-LAD algorithm to simulated data. We
first fix a grid of 30 δ values between 0.05 and 1. For each δ, we consider a series of ε values
between εc(δ) − 0.1 and εc(δ) + 0.1, where εc(δ) = {ε : δc(ε) = δ}. We then have a grid of δ,
ε values in parameter space [0,1]2. At each δ, ε, we generate 20 problem instances (X,β0)

with size p = 1000. Then y = Xβ0. For the ith problem instance, we obtain an output β̂i by
using the l1-LAD regression method to the ith simulated data with λ chosen to minimize the

MSE. We set the success indicator variable Si = 1 if ‖β̂i−β0‖2
‖β0‖2

≤ 10−4 and Si = 0 otherwise.

Then at each (δ, ε) combination, we have S = ∑20
i=1 Si .

We analyze the simulated dataset to estimate the phase transition. At each fixed value
of δ in our grid, we model the dependence of S on ε using logistic regression. We assume
that S follows a binomial B(π,20) distribution with logit(π) = a + bε. We define the phase



3104 H. HUANG

FIG. 3. Observed phase transition for l1-LAD in the plane (δ, ρ). Solid curve represents the theoretical result
and circle points represent estimation from simulated data on finite-size systems with p = 1000.

transition as the value of ε at which the success probability π = 0.5. In terms of the fitted
parameters â, b̂, we have the estimated phase transition ε̂(δ) = −â/b̂. Figure 3 shows that
the agreement between the estimated phase transition curve based on the simulated finite-size
systems and the analytical curve based on asymptotic theorem is remarkably good. Note that
here we follow Donoho–Tanner notation and plot ρ = ε/δ, the number of nonzero elements
in the signal per measurement, as a function of δ.

Figure 4 displays the average MSE of l1-LAD over 20 replications as a function of ε at 3
different δ values. It is apparent that MSE closes to zero for ε below the critical value εc(δ)

and is nonzero for ε above the critical value εc(δ). Therefore, we can get exact reconstruction
for below but not for above.

Figure 5 shows the location of the noise sensitivity boundary ρc(δ) = εc(δ)/δ as well as
the level lines of M(δ, ε) for ρ < ρc(δ). The different contour lines show positions in the
δ, ρ plane where a given minimax MSE is achieved. It is apparent that the MSE increases
dramatically as one approaches the phase boundary. Above ρc(δ), the l1-LAD MSE is not
uniformly bounded.

4.3. Minimax risk. In the noisy case, for fixed (δ, ε) with δ > δc(ε), we compare the es-
timated minimax risk among different regression methods. Figure 6 displays the estimated
minimax MSE based on three different regression methods for errors following standard
norm, Laplace and mixture of two component Gaussian distributions. The change of min-
imax MSE as a function of δ for fixed ε is plotted.

FIG. 4. Empirical average MSE over 20 replications as a function of ε at fixed δ for l1-LAD regression on
simulated noiseless data. The red vertical lines represent the critical ε values at the corresponding δ which is
equal to εc(δ).
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FIG. 5. Phase diagram for the l1-LAD regression method in the plane (δ, ρ) for noisy case. Red line: The
phase transition boundary ρ = ρc(δ). Blue lines: Level curves for the l1-LAD minimax risk M(δ, ε). Notice that
M(δ, ε) → ∞ as ρ → ρc(δ).

The left panel of Figure 6 shows that for normally distributed random error, LASSO (blue
curve) gives the smallest minimax MSE at all δ values. But for Laplace or Gaussian mixture
distributed errors, LASSO is not the best. As illustrated in the middle panel of Figure 6 for
Laplace distributed error, LASSO gives smaller minimax MSE than l1-LAD (red curve) at
very small δ value. When δ increases, l1-LAD eventually exceeds LASSO and yields smaller
minimax MSE. Therefore, the optimal loss is not always the negative log likelihood func-
tion in high-dimensional regime. Similar situations happen to Gaussian mixture distributed
random error as illustrated in the right panel of Figure 6. The performance of l1-penalized
Huber’s regression (black curve) depends on the parameter γ . Here, for γ = 1, it gives the
smallest minimax MSE at all δ values for Gaussian mixture distributed error. For other two
error distributions, its performance is in between. Actually l1-penalized Huber’s regression
can always achieve the best performance if we tune the parameter γ optimally. It is because
that Huber’s regression is indeed a hybrid of quantile regression and least square regres-
sion.

The numerical results shown in Figure 6 are consistent with our theoretical findings in
Section 2. Theorem 2.2 indicates that the observed errors follow a mixture of two compo-
nent distribution including the original error component ε and an extra Gaussian component
σ�Z. Therefore, classical MLE estimation constructed based on the original error distribu-
tion cannot always achieve the best performance especially in situations when δ � 1. For
example, the middle panel of Figure 6 illustrates that LASSO gives a smaller MSE than MLE
based l1-LAD when δ < 0.2 even if the error actually follows a Laplace distribution. This
phenomenon cannot be explained by classical concepts. But if δ is large enough, l1-LAD
is eventually optimal which is consistent with the classical large n fixed p asymptotic the-
ory.

FIG. 6. Minimax MSE as a function of δ at fixed ε = 0.01. The blue, red and black lines represent the estimation
from LASSO, l1-LAD and l1-Huber (γ = 1), respectively. Left panel: standard normal distributed error. Middle
panel: Laplace distributed error with mean 0 and variance 1. Right panel: Gaussian mixture distributed error
with ε ∼ 0.9N(0,1) + 0.1N(0,10).
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Our numerical results provide some guidelines for statisticians to decide among different
loss functions given the noise density. Although appropriately tuning Huber’s regression is
the best in all situations, it is often computationally expensive to find the optimal γ in practice.
Therefore, based on our simulation studies, for normal noise, we recommend LASSO; for
heavy tailed errors such as exponential ones, we recommend l1-LAD for large δ and LASSO
for small δ; for mixture of Gaussian errors, we recommend l1-Huber.

5. Discussion. In this paper, we study the asymptotic MSE of l1-penalized robust es-
timators in the framework of GAMP algorithm under high-dimensional asymptotics where
the number of parameters p and the number of observations n are both tending to infin-
ity, at the same rate. Our analysis shows the existence of a sharp phase transition in the
two-dimensional (δ, ε) plane which is consistent with the phase transition in LASSO. The
analytical calculations are compared with numerical simulations on finite-size systems and
the agreement between the data analysis and theoretical prediction is fairly good, and thus,
our formulas are validated. Our numerical studies show that when δ is small enough, least
squares loss becomes preferable to LAD loss for Laplace errors. Therefore, the most optimal
loss function is no longer the negative log likelihood function. This is because of the extra
Gaussian component caused by high-dimensional asymptotics. This new phenomenon was
first discovered in [18] and later confirmed in [12] for robust regression. We show here that
this phenomenon can be characterized rigorously using GAMP techniques for penalized ro-
bust regression as well. Our results can be applied to the case of k log(p)/n → 0 in practice
by letting δ → ∞ or ε → 0. As shown by Figure S6 in the Supplementary Material, we can
obtain fairly good agreement between analytic estimation and simulation study in the case of
small k log(p)/n with n < p.

The focus of this paper is on mathematical analysis of the l1-penalized robust regression
methods. The analytical predictions are derived based on given signal distribution pβ0 and
error distribution pε . However, in practice, these quantities are usually unknown. As shown
in [10], even for LASSO, the loss of estimator is hard to estimate based on the data set. There
has been some recent work for the case of LASSO that uses Stein’s Unbiased Risk Estimator
(SURE) to propose unbiased predictions of the risk without using signal distribution pβ0 ;
see, for example, [1, 23]. Interesting areas for the future include following that direction to
provide analytical predictions in real data analysis based on robust estimators.

In additional to the l1-penalization, [14] studied the phase transitions of regularized least
square estimators under a wide range of penalizations. Krzakala [21] proposed a probabilistic
approach to reconstruct the signal by assuming that the signals follow a parametric Gauss–
Bernoulli distribution. Then they add an expectation maximization based procedure to learn
the unknown distribution parameters. The phase diagram of this model has also been an-
alyzed and compared with the result based on l1-penalization. One of our future research
topics is to study the phase transition of regularized robust regression under other types of
penalizations.

An important assumption made for deriving the asymptotic result in GAMP is that the
matrix X has i.i.d. Gaussian entries. The reason is that the rigorous proof for SE of GAMP
can only be given for this class of matrices although simulation studies have shown that the
results hold for a much broader class of matrices. For least square loss, the SE is proved
in [2] under i.i.d. sub-Gaussian matrices. [20] has derived the asymptotic result of LASSO
estimators under general Gaussian matrices using nonrigorous replica method. Our another
future direction is to rigorously prove this result using the method developed in [6]. For this
purpose, the main challenge is to find conditions for X under which the GAMP can converge
to those fixed points.
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APPENDIX A: PROOF OF THEOREM 3.1

PROOF. For σ 2
0 = 0, denote c = a�

σ�
and Ẑ = Z̃

σ�
. Then the fixed-point equation (2.28)

becomes

(A.1) τ 2
� = V

(
τ 2
� , ατ�

) = σ 2
� F (c),

where F(c) is defined in (3.7) and c is determined through

(A.2) P
(|Ẑ| ≤ c

) = π� = 2�(c) − 1.

It can be shown that F(c) is a decreasing function with F(0) = π/2 and F(∞) = 1.
As shown in the proof of Proposition 2.3, V (τ 2, ατ) < τ 2 as τ → ∞. We argue that if the

only fixed point satisfies τ 2
� = 0, it must be true that the derivative of V (τ 2, ατ) at τ 2 = 0 is

smaller than or equal to 1. That is,

dV (τ 2, ατ)

dτ 2

∣∣∣∣
τ 2=0

≤ 1

for appropriately chosen α. Starting from (A.1), we obtain

dV (τ 2, ατ)

dτ 2

∣∣∣∣
τ 2=0

= dσ 2

dτ 2

∣∣∣∣
τ 2=0

F
(
c(τ )

) + σ 2
� F ′(c(τ )

)dc(τ )

dτ 2

∣∣∣∣
τ 2=0

.

Note that

(A.3) π� = 1

δ
E

{
�(−α + w�) + �(−α − w�)

}
,

where w� = β0
τ

. Taking derivative on both side of (A.2), we have

2φ(c)
dc

dτ 2 = 1

δ
E

{
− w�

2τ 2δ

[
φ(−α + w�) − φ(−α − w�)

]} τ 2→0−−−→ 0.

Therefore, dc(τ)

dτ 2 |τ 2
� =0 = 0 and for pβ0 ∈ F ,

(A.4)

dV (τ 2, ατ)

dτ 2

∣∣∣∣
τ 2=0

= {
ε
(
1 + α2) + (1 − ε)

[
2
(
1 + α2)

�(−α) − 2αφ(α)
]}F(c)

δ
,

where we have used (S2). Denote δmin(ε) the smallest δ for a fixed ε such that

(A.5) min
α≥0

{
dV (τ 2, ατ)

dτ 2

∣∣∣∣
τ 2=0

}
≤ 1.

The terms inside {·} on the right-hand side of (A.4) are minimized when we choose α = αc

such that

(A.6) ε = 1 − αc

αc − 2αc�(−αc) + 2φ(αc)
.

Then if we take

(A.7) δmin(ε) = 2φ(αc)

αc − 2αc�(−αc) + 2φ(αc)
,

we can show that the second term F(c) on the right-hand side of (A.4) is also minimized at
this value. Toward this end, substituting (A.6) and (A.7) into (A.3), we get

π�
τ 2→0−−−→ ε + 2(1 − ε)�(−αc)

δmin(ε)
= 1.
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Therefore, from (A.2), we have c = ∞, and thus F(c) = 1 which is also the smallest value for
F(c). Therefore, the smallest δ that satisfies (A.5) is just the δmin(ε) defined in (A.7) which
is exactly equal to the δc(ε) defined in (3.1).

Next, we prove that if δ > δc(ε), we have V (τ 2, αcτ ) < τ 2 for any τ 2 > 0. Thus the unique
fixed-point solution is τ 2 = 0. For pβ0 ∈ Fε , (S2) can be written as

σ 2 = τ 2

δ

{
(1 − ε)

{
2
(
1 + α2)

�(−α) − 2αφ(α)
} + ε

(
1 + α2)

+ εE
{(

1 + α2 − w2
�

)[
�(−α − w�) − �(α − w�)

]
− (α + w�)φ(α − w�) − (α − w�)φ(α + w�)

}}
.

Plug in (A.6), we obtain

(A.8) σ 2 = τ 2

δ

{
δc(ε) + εE

{
�(−αc − w�) − �(αc − w�)

} + εg(αc)
}
,

where

g(α) = (
α2 − w2

�

)
E

{
�(−α − w�) − �(α − w�)

}
− (α + w�)E

{
φ(α − w�)

} − (α − w�)E
{
φ(α + w�)

}
.

Since g(0) = 0 and

g′(α) = 2αE
{
�(−α − w�) − �(α − w�)

} − E
{
φ(α − w�)

} − E
{
φ(α + w�)

}
which is less than 0 for any α > 0, therefore, g(α) < 0 for any α > 0. On the other hand, for
α = αc, from (A.2) and (A.3), we have

2�(c) − 1 = 1

δ

[
δc(ε) + εE

{
�(−αc − w�) − �(αc − w�)

}]
.

From (3.7) and using c�(−c) < φ(c) for all c > 0, we get

(A.9) F(c) <
1

2�(c) − 1
= δ

δc(ε) + εE{�(−αc − w�) − �(αc − w�)} .
Combining it to (A.1), (A.8) and the fact that g(α) < 0, we obtain

(A.10) V
(
τ 2, αcτ

) = σ 2F(c) < τ 2

for any τ 2 > 0. �

APPENDIX B: PROOF OF THEOREM 3.2

PROOF. From Theorem 2.1, we have

M(δ, ε) = min
α

sup
pβ0∈Fε

E
{∥∥η(β0 + τ�Z;ατ�) − β0

∥∥2}
.

Since the class Fε is invariant by rescaling, the worst case MSE must be proportional to the
only scale in the problem, that is, τ 2

� . We get

M(δ, ε) = τ 2
� M�(ε),

where

(B.1) M�(ε) = min
α

sup
pw�∈Fε

E
[
η(w� + Z,α) − w�

]2
,
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where w� = β0/τ�. Minimax MSE of soft thresholding was studied in [15, 17, 33] where one
can find a considerable amount of information about the behavior of the optimal threshold α

and the least favorable distribution pβ0 ∈ Fε . Particularly, the supremum is achieved only by
a three-point mixture on the centered real line R∪ {−∞,∞}:
(B.2) pβ0 = ε

2
δ+∞ + (1 − ε)δ0 + ε

2
δ−∞.

Then the explicit formula of M�(ε) takes the form

(B.3)

M�(ε) = min
α

{
ε
(
1 + α2) + (1 − ε)

[
2
(
1 + α2)

�(−α) − 2αφ(α)
]}

= 2φ(αc)

αc + 2(φ(αc) − αc�(−αc))
= δc(ε),

where αc is defined in (3.2). Therefore, the finiteness of M(δ, ε) depends on τ� which is the
solution of fix-point equation τ 2 = V (τ 2, αcτ ).

For σ 2
0 = 0, it is apparent that V (τ 2, αcτ )|τ 2=0 > 0. Thus, we can get finite solution for

equation τ 2 = V (τ 2, αcτ ) if V (τ 2, αcτ ) < τ 2 for large enough τ 2. Let us first determine the
phase transition curve by finding the smallest δ such that V (τ 2, αcτ ) < τ 2 as τ 2 → ∞ for
fixed ε.

From (S2), we have that τ 2 → ∞ leads to σ 2 → ∞ and Ẑ → N(0,1). In this situation,
V (τ 2, αcτ ) takes the form

(B.4) V
(
τ 2, αcτ

) → τ 2M�(ε)

δ
F (c) ≤ τ 2M�(ε)

δ(2�(c) − 1)
,

where the second step is obtained using (A.9) and the equality only holds for c = ∞. From
(S3), we get

(B.5) 2�(c) − 1 = 1

δ

{
ε + 2(1 − ε)�(−α)

}
as τ� → ∞. If we plug in the optimal α from (3.2), we have

(B.6) 2�(c) − 1 = 1

δ

2φ(αc)

αc + 2(φ(αc) − αc�(−αc))
= M�(ε)

δ
.

For fixed ε, plugging it into (B.4), we have V (τ 2, αcτ ) ≤ τ 2 for large enough τ 2 if δ ≤
δc(ε) = M�(ε). If δ > δc(ε), we can strictly have V (τ 2, αcτ ) < τ 2 as τ 2 → ∞ and thus at
least one finite solution τ 2

� for the fix-point equation which leads to a finite minimax MSE.
On the other hand, if δ < δc(ε), we can prove that V (τ 2, αcτ ) > τ 2 for any τ ≥ 0, thus the

only solution is τ 2
� = ∞ which leads to an infinite minimax MSE. Toward this end, we start

from

V
(
τ 2, αcτ

) = E
{
G(Z̃, a)2}

,

where Z̃ = ε+σZ which can be described as Z̃ = Fε �N(0, σ 2) (here � denotes convolution).
Denote ξ

Z̃
the score function for location of Z̃, then using (2.19) we have 1 = |E

Z̃
G′| =

|E
Z̃
Gξ

Z̃
|. Meanwhile, by Cauchy–Schwarz, |E

Z̃
Gξ

Z̃
| ≤

√
E

Z̃
G2

√
E

Z̃
ξ2
Z̃

. We conclude that

V
(
τ 2, αcτ

) ≥ |E
Z̃
Gξ

Z̃
|2

E
Z̃
ξ2
Z̃

= |E
Z̃
G′|2

E
Z̃
ξ2
Z̃

= 1

I (Z̃)
,

where I (Z̃) is the Fisher information of F
Z̃

. From convexity and translation-invariance of
Fisher information I (Z̃) = I (Fε � N(0, σ 2)) < I (N(0, σ 2)) = 1/σ 2 if var(ε) = σ 2

0 > 0.
Therefore,

(B.7) V
(
τ 2, αcτ

)
> σ 2(αc)

(a)= τ 2M�(ε)

δ
= τ 2δc(ε)

δ
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which is larger than τ 2 for δ < δc(ε). In step (a) of (B.7), we have used (2.17), (B.1) and
(B.3). We conclude that the phase transition curve is determined by (B.3), which is exactly
the same as the transition curve (A.6) and (A.7) derived in noiseless case. �

Acknowledgments. The author thanks the Editor, Associate Editor and four referees for
many insightful comments and suggestions which have led to to great improvement of this
article. This research is supported in part by Division of Mathematical Sciences (National
Science Foundation) Grant DMS-1916411.

SUPPLEMENTARY MATERIAL

Supplement: More simulations and proofs (DOI: 10.1214/19-AOS1923SUPP; .pdf).
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