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Sequential Monte Carlo methods, also known as particle methods, are
a popular set of techniques for approximating high-dimensional probability
distributions and their normalizing constants. These methods have found nu-
merous applications in statistics and related fields; for example, for inference
in nonlinear non-Gaussian state space models, and in complex static models.
Like many Monte Carlo sampling schemes, they rely on proposal distribu-
tions which crucially impact their performance. We introduce here a class of
controlled sequential Monte Carlo algorithms, where the proposal distribu-
tions are determined by approximating the solution to an associated optimal
control problem using an iterative scheme. This method builds upon a num-
ber of existing algorithms in econometrics, physics and statistics for inference
in state space models, and generalizes these methods so as to accommodate
complex static models. We provide a theoretical analysis concerning the fluc-
tuation and stability of this methodology that also provides insight into the
properties of related algorithms. We demonstrate significant gains over state-
of-the-art methods at a fixed computational complexity on a variety of appli-
cations.

1. Introduction. Sequential Monte Carlo (SMC) methods have found a wide range of
applications in many areas of statistics as they can be used, among others things, to perform
inference for dynamic nonlinear non-Gaussian state space models [32, 33, 41] but also for
complex static models [8, 12, 39]; see [16, 30, 31] for recent reviews of this active area.
Although these methods are supported by theoretical guarantees [11], the number of samples
required to achieve a desired level of precision of the corresponding Monte Carlo estimators
can be prohibitively large in practice, especially so for high-dimensional problems.

The present work is one means to address the computational difficulties with SMC in of-
fline inference settings. In particular, we leverage ideas from optimal control theory and we
seek novel SMC methods that achieve a desired level of precision at a fraction of the com-
putational cost of state-of-the-art algorithms. We introduce a class of algorithms that will
be referred to as controlled SMC, under which the sequence of SMC proposal distributions
are related naturally with an associated optimal control problem. The cost functional is the
Kullback–Leibler divergence from the sought after proposals to the target distributions and
we may account for an arbitrary current proposal estimate. With this formulation, the opti-
mal proposal distributions are specified by the optimal control policy of a related dynamic
programming recursion. In general, this dynamic programming recursion is intractable. How-
ever, by making this connection, we can then exploit an array of methods and procedures for
so-called approximate dynamic programming (ADP). Broadly speaking, a single iteration
of our proposed methodology involves: (1) based on a current sequence of proposal distribu-
tions, running a SMC method to obtain a collection of samples that approximate the sequence
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of SMC target distributions; (2) using these samples as support points, we approximate in-
tractable backward recursions using regression to compute a new policy that specifies a new
sequence of approximately optimal proposal distributions. Continuing in this manner allows
us to further refine the proposal distributions and improve our approximation of the target
distributions, via a novel iteration of SMC and ADP.

Prior influential work in [42] proposed a motivating method in the context of importance
sampling, for computing the marginal likelihood in state space models. In this contribution,
the sequential structure which defines the marginal likelihood is exploited and proposal dis-
tributions are defined by a sequence of parameterized Markov transition kernels. A criterion
based on the variance of importance weights is introduced to optimize these parameters and
an iterative procedure with fixed random numbers is proposed. The work of [47] extends [42]
by employing these optimized proposal distributions within a SMC methodology. In particu-
lar, [47] identified the appropriate importance weights one should use for resampling, which
is crucial to ensure that the variance of the marginal likelihood estimator remains controlled.
Moreover, [47] also recommends relaxing the use of common random variables across iter-
ations. Recent work in [22], again with a focus on discrete time state space models, may be
viewed as an extension of [47] where resampling is performed at every iteration, instead of
just the last. The resulting algorithm is numerically much more stable than [42, 47]. Although
the iterative procedures in [22, 42, 47] are similar in spirit to our proposed methodology, the
main and important difference is that all of these works employ an optimality criterion, to
learn proposal distributions, that is not adjusted across iterations to account for any improve-
ments made in prior iterations. Finally, we highlight related ideas in [28, 45] where the focus
is partially observed diffusion models and the algorithms proposed therein are based on other
strategies to learn a parameterized additive control directly. Such ideas have also been ex-
ploited in physics to perform rare event simulation for diffusions [40].

Our work extends these contributions in the following ways. First, these preceding works
[22, 42, 47] consider only state space models. In contrast, the methodology proposed here
allows us to perform inference for static models; a direct extension of these prior methods [22,
42, 47] to static models is infeasible, as it leads to algorithms which are not implementable.

Second, in contrast to the methodology in [22, 42, 47], the Kullback–Leibler optimal-
ity criterion at each iteration in our approach, is dependent on the approximately optimal
proposal distributions computed at the preceding iteration; that is, we seek to minimize the
residual discrepancy between any previously estimated proposals and the target distributions.
This difference allows us to elucidate the effect each iteration in our method has on refining
proposal distributions and improves algorithmic performance as illustrated in Section 6.2.
See also [49, 50] for related iterative procedures in continuous-time optimal control approxi-
mation.

The controlled SMC methodology is one of the main contributions of this work. Another
contribution is to provide a detailed theoretical analysis of various aspects of our method-
ology. In Proposition 5.1, we provide a backward recursion that characterizes the error of
policies estimated using our ADP procedure. This error is given naturally in terms of func-
tion approximation errors with finite samples and the stability properties of the dynamic
programming recursion defining the optimal policy, which is addressed in Proposition 5.2.
These results show that we can obtain good approximations of the optimal policy, and hence
the optimal proposal distributions, if the function classes employed are “rich” enough and
the number of samples used to learn policies is sufficiently large. In Theorem 5.1, we then
establish a central limit theorem for our ADP algorithm as the number of samples used in
the policy learning goes to infinity. This reveals that the algorithm concentrates around an
idealized ADP algorithm and provides a precise characterization of how Monte Carlo er-
rors correlate over time. These preceding results concern a single iteration of our proposed
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method and may be applied to the existing algorithms discussed above, for example, [22,
42, 47]. Using the notion of iterated random functions, we introduce a novel framework in
Theorem 5.2 to understand the asymptotic behaviour of our algorithm as the number of it-
erations converges to infinity. This elucidates the need for iterating the ADP procedure and
provides insight into the number of iterations required in practice. The discussion surround-
ing Theorem 5.2 also emphasizes a key difference between the newly proposed method and
existing work in [22, 42, 47]. After the first version of this work appeared, a similar approach
was developed for generic stochastic control problems in [23]. Our results hold under strong
assumptions but appear to capture our experimental results remarkably well.

The rest of this paper is organized as follows. We introduce SMC methods in the frame-
work of Feynman–Kac models [11] in Section 2 and twisted variants in Section 3, as this
affords us the generality to cover both state space models and static models. We then identify
the optimal policy that induces an optimal SMC method in Section 4.1. We describe general
methods to approximate the optimal policy in Section 4.2 and develop an iterative scheme
to refine policies in Section 4.3. The proposed methodology is illustrated on a neuroscience
application in Section 4.4. We present the results of our analysis in Section 5 and conclude
with applications in Sections 6–7. All proofs are given in the Supplementary Material [24]
which also includes three additional applications. MATLAB code to reproduce all numerical
results is available online.1

2. Motivating models and sequential Monte Carlo.

2.1. Notation. We first introduce notation used throughout the article. Given integers n ≤
m and a sequence (xt )t∈N, we define the set [n : m] = {n, . . . ,m} and write the subsequence
xn:m = (xn, . . . , xm). When n < m, we use the convention

∏n
t=m xt = 1. Let (E,E) be an

arbitrary measurable space. We denote the set of all finite signed measures by S(E), the set
of all probability measures by P(E) ⊂ S(E) and the set of all Markov transition kernels on
(E,E) by M(E). Given μ,ν ∈P(E), we write μ � ν if μ is absolutely continuous w.r.t. ν and
denote the corresponding Radon–Nikodym derivative as dμ/dν. For any x ∈ E, δx denotes
the Dirac measure at x. The set of all real-valued, E-measurable, lower bounded, bounded
or continuous functions on E are denoted by L(E), B(E) and C(E), respectively. Given γ ∈
S(E) and M ∈ M(E), we define (γ ⊗M)(dx,dy) = γ (dx)M(x,dy) and (M ⊗γ )(dx,dy) =
M(y,dx)γ (dy) as finite signed measures on the product space E × E, equipped with the
product σ -algebra E × E . Given γ ∈ S(E), M ∈ M(E), ϕ ∈ B(E), ξ ∈ B(E × E), we define
the integral γ (ϕ) = ∫

E ϕ(x)γ (dx), the signed measure γM(·) = ∫
E γ (dx)M(x, ·) ∈ S(E) and

functions M(ϕ)(·) = ∫
E ϕ(y)M(·,dy) ∈ B(E), M(ξ)(·) = ∫

E ξ(·, y)M(·,dy) ∈ B(E).

2.2. Feynman–Kac models. We begin by introducing Feynman–Kac models [11] and
defer a detailed discussion of their applications to Sections 2.3–2.4. Consider a nonhomo-
geneous Markov chain of length T + 1 ∈N on a measurable space (X,X ), associated with an
initial distribution μ ∈ P(X), and a collection of Markov transition kernels Mt ∈ M(X) for
t ∈ [1 : T ]. We denote the law of the Markov chain on path space XT +1, equipped with the
product σ -algebra X T +1, with

(1) Q(dx0:T ) = μ(dx0)

T∏
t=1

Mt(xt−1,dxt )

1Link: https://github.com/jeremyhengjm/controlledSMC.

https://github.com/jeremyhengjm/controlledSMC
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and denote expectations w.r.t. Q by EQ, whereas we write E
t,x
Q for conditional expectations

on the event Xt = x ∈ X. Given a sequence of strictly positive functions G0 ∈ B(X) and
Gt ∈ B(X × X) for t ∈ [1 : T ], we define the Feynman–Kac path measure

(2) P(dx0:T ) = Z−1G0(x0)

T∏
t=1

Gt(xt−1, xt )Q(dx0:T ),

where Z := EQ[G0(X0)
∏T

t=1 Gt(Xt−1,Xt)] denotes the normalizing constant. Equation (2)
can be understood as the probability measure obtained by repartitioning the probability mass
of Q with the potential functions (Gt)t∈[0:T ].

To examine the time evolution of (2), we define the following sequence of positive signed
measures γt ∈ S(X) for t ∈ [0 : T ] by

(3) γt (ϕ) = EQ

[
ϕ(Xt)G0(X0)

t∏
s=1

Gs(Xs−1,Xs)

]

and their normalized counterparts ηt ∈ P(X) by

(4) ηt (ϕ) = γt (ϕ)/Zt

for ϕ ∈ B(X), t ∈ [0 : T ], where Zt := γt (X). Equations (3) and (4) are known as the unnor-
malized and normalized (updated) Feynman–Kac models respectively [11], Definition 2.3.2.
These models are determined by the triple {μ, (Mt)t∈[1:T ], (Gt)t∈[0:T ]}, which depends on
the specific application of interest. The measure ηT is the terminal time marginal distribution
of P and Z = ZT = μ(G0)

∏T
t=1 ηt−1(Mt(Gt)).

2.3. State space models. Consider an X-valued hidden Markov chain (Xt)t∈[0:T ], whose
law on (XT +1,X T +1) is given by

H(dx0:T ) = ν(dx0)

T∏
t=1

ft (xt−1,dxt ),

where ν ∈ P(X) and ft ∈ M(X) for t ∈ [1 : T ]. The Y-valued observations (Yt )t∈[0:T ] are
assumed to be conditionally independent given (Xt)t∈[0:T ] and the conditional distribution
of Yt has a strictly positive density gt (Xt , ·) with gt ∈ B(X × Y) for t ∈ [0 : T ]. Here,
{ν, (ft )t∈[1:T ], (gt )t∈[0:T ]} can potentially depend on unknown static parameters θ ∈ 
, but
this is notationally omitted for simplicity. Given access to a realization y0:T ∈ YT +1 of the
observation process, statistical inference for these models relies on the marginal likelihood
of y0:T given θ ,

Z(y0:T ) = EH

[
T∏

t=0

gt (Xt , yt )

]
,

and/or the smoothing distribution, that is, the conditional distribution of X0:T given Y0:T =
y0:T and θ

(5) P(dx0:T |y0:T ) = Z(y0:T )−1
T∏

t=0

gt (xt , yt )H(dx0:T ).

If we set Q ∈ P(XT +1) defined in (1) equal to H, we recover the Feynman–Kac path mea-
sure representation (2) by defining Gt(xt−1, xt ) = gt (xt , yt ) for all t ∈ [0 : T ]. However, this
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FIG. 1. Number of neuron activations over M = 50 repeated experiments with time (left) and effective sam-
ple size of bootstrap particle filter with N = 1024 particles (right) for the neuroscience model with parameters
α = 0.99 and σ 2 = 0.11.

representation is not unique. Indeed any Q satisfying H � Q provides a Feynman–Kac path
measure representation of (2) by defining the potentials

G0(x0) = d(ν · g0)

dμ
(x0),

Gt(xt−1, xt ) = d(ft · gt )(xt−1,·)
dMt(xt−1, ·) (xt ), t ∈ [1 : T ].

As outlined in [16], most SMC algorithms available at present correspond to the same basic
mechanism applied to different Feynman–Kac representations of a given target probability
measure. The bootstrap particle filter (BPF) presented in [21] corresponds to Q = H, that
is, Mt(xt−1,dxt ) = ft (xt−1,dxt ) for t ∈ [1 : T ], while the popular ‘fully adapted’ auxiliary
particle filter (APF) of [41] uses Mt(xt−1,dxt ) = P(dxt |xt−1, yt ) ∝ ft (xt−1,dxt )gt (xt , yt ).

As a motivating example, we consider a model for T + 1 = 3000 measurements col-
lected from a neuroscience experiment [48]. The observation yt ∈ Y = [0 : M] at each time
instance t ∈ [0 : T ], shown in the left panel of Figure 1, represents the number of neu-
ron activations over M = 50 repeated experiments and is modelled as a binomial distribu-
tion with probability of success pt ∈ [0,1]. We will write its probability mass function as
yt �→ Bin(yt ;M,pt). To model the time varying behaviour of activation probabilities, it is as-
sumed that pt = κ(Xt) where κ(u) := (1+ exp(−u))−1 for u ∈ R is the logistic link function
and (Xt)t∈[0:T ] is a real-valued first-order autoregressive process. This corresponds to a time
homogeneous state space model on X = R, equipped with its Borel σ -algebra X = B(R),
with ν = N (0,1), f (xt−1,dxt ) = N (xt ;αxt−1, σ

2)dxt , and g(xt , yt ) = Bin(yt ;M,κ(xt ))

for t ∈ [1 : T ], where we denote the Gaussian distribution on Rd with mean vector ξ ∈ Rd

and covariance matrix 
 ∈ Rd×d by N (ξ,
) and its Lebesgue density by x �→ N (x; ξ,
).
The parameters of this model to be inferred from data are θ = (α,σ 2) ∈ [0,1] ×R+.

2.4. Static models. Suppose we are interested in sampling from a target distribution
η(dx) = Z−1γ (dx) ∈ P(X) and/or estimating its normalizing constant Z = γ (X). To facil-
itate inference, we introduce a sequence of probability measures (ηt )t∈[0:T ] in P(X) that
bridges a simple distribution η0 = μ to the target distribution ηT = η with η � μ. Our im-
plementation in Section 7 adopts the geometric path [12, 17, 39]

(6) γt (dx) := μ(dx)

(
dγ

dμ
(x)

)λt

, ηt (dx) := γt (dx)/Zt , t ∈ [0 : T ],

where Zt := γt (X) and (λt )t∈[0:T ] ∈ [0,1]T +1 is an increasing sequence satisfying λ0 = 0 and
λT = 1; see [12], Section 2.3.1, for choices in other inference settings. In order to define Q,
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we introduce a sequence of ‘forward’ Markov transition kernels Mt ∈ M(X) for t = [1 : T ]
where ηt−1Mt approximates ηt . One expects the distribution η̂ = η0M1 · · ·MT of samples
drawn from a nonhomogeneous Markov chain with initial distribution η0 and transition ker-
nels (Mt)t∈[1:T ] to be close to ηT = η. However, importance sampling cannot be employed
to correct for the discrepancy between η̂ and η, as η̂ is typically analytically intractable.

SMC samplers described in [12] circumvent this difficulty by performing importance sam-
pling on path space (XT +1,X T +1) using an artificial extended target distribution of the form

P(dx0:T ) = η(dxT )

T∏
t=1

Lt−1(xt ,dxt−1),

where Lt ∈ M(X) for t ∈ [0 : T − 1] is a sequence of auxiliary ‘backward’ Markov transition
kernels. Assuming that we have Lt−1 ⊗ γt � γt−1 ⊗ Mt with strictly positive and bounded
Radon–Nikodym derivative for all t ∈ [1 : T ], the Feynman–Kac path measure representation
(2) can be recovered by defining

(7) G0(x0) = 1, Gt(xt−1, xt ) = d(Lt−1 ⊗ γt )

d(γt−1 ⊗ Mt)
(xt−1, xt ), t ∈ [1 : T ].

Under these potentials, the normalized Feynman–Kac models (4) act as the sequence of bridg-
ing distributions (ηt )t∈[0:T ] in this setting. In annealed importance sampling (AIS) [39] and
the sequential sampler proposed in [8], one selects Mt ∈ M(X) as a Markov chain Monte
Carlo (MCMC) kernel that is ηt -invariant and Lt−1 ∈ M(X) as its time reversal, that is,
Lt−1 ⊗ ηt = ηt ⊗ Mt , so the potentials in (7) simplify to

(8) G0(x0) = 1, Gt(xt−1) = γt (xt−1)

γt−1(xt−1)
, t ∈ [1 : T ].

3. Twisted models and sequential Monte Carlo.

3.1. Twisted Feynman–Kac models. SMC methods can perform poorly when the dis-
crepancy between P and Q is large. The right panel of Figure 1 illustrates that this is the
case when we employ BPF on the neuroscience application in Section 2.3: the effective
sample size (ESS), a common criterion used to assess the quality of a particle approxima-
tion ([32], pp. 34–35) falls below 20% when the data change abruptly. This is because the
kernel Mt(xt−1,dxt ) = ft (xt−1,dxt ) used to sample particles at time t does not take the ob-
servations into account. Better performance could be obtained using observation-dependent
kernels. Indeed, in the context of state space models, the smoothing distribution (5) can be
written as P(dx0:T |y0:T ) = P(dx0|y0:T )

∏T
t=1 P(dxt |xt−1, yt :T ) with

P(dx0|y0:T ) = ν(dx0)ψ
∗
0 (x0)

ν(ψ∗
0 )

,

P(dxt |xt−1, yt :T ) = ft (xt−1,dxt )ψ
∗
t (xt )

ft (ψ
∗
t )(xt−1)

, t ∈ [1 : T ],
(9)

where the kernel ft (xt−1, ·) is twisted using the so-called backward information filter [5, 6],
given by ψ∗

t (xt ) = P(yt :T |xt ), for t ∈ [0 : T ].
The backward information filter can also be defined using the backward recursion

ψ∗
T (xT ) = gT (xT , yT ),

ψ∗
t (xt ) = gt (xt , yt )ft+1

(
ψ∗

t+1
)
(xt ), t ∈ [0 : T − 1].(10)
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We can exploit this to obtain an approximation ψ̂t (xt ), t ∈ [0 : T ] using regression

[22, 42, 47]. We can then sample particles at time t using a proposal M
ψ̂
t (xt−1,dxt ) ∝

ft (xt−1,dxt )ψ̂t (xt ) that approximates P(dxt |xt−1, yt :T ).
Abstracting the above discussion from state space models to general Feynman–Kac mod-

els, where the potential Gt might depend on both xt−1 and xt , motivates the following defi-
nitions.

DEFINITION 3.1 (Admissible policies). A sequence of functions ψ = (ψt )t∈[0:T ] is an
admissible policy if these functions are strictly positive and satisfy ψ0 ∈ B(X), ψt ∈ B(X×X)

for all t ∈ [1 : T ]. The set of all admissible policies will be denoted as � .

DEFINITION 3.2 (Twisted path measures). Given a policy ψ ∈ � and a path measure
F ∈ P(XT +1) of the form F(dx0:T ) = ν(dx0)

∏T
t=1 Kt(xt−1,dxt ) for some ν ∈ P(X) and

Kt ∈ M(X) for t ∈ [1 : T ], the ψ-twisted path measure of F is defined as Fψ(dx0:T ) =
νψ(dx0)

∏T
t=1 K

ψ
t (xt−1,dxt ) where

νψ(dx0) := ν(dx0)ψ0(x0)

ν(ψ0)
,

K
ψ
t (xt−1,dxt ) := Kt(xt−1,dxt )ψt (xt−1, xt )

Kt(ψt)(xt−1)
, t ∈ [1 : T ].

(11)

For any policy ψ ∈ � , since P �Q�Qψ by positivity of ψ , we can rewrite the measure
P defined in (2) as

(12) P(dx0:T ) = Z−1G
ψ
0 (x0)

T∏
t=1

G
ψ
t (xt−1, xt )Q

ψ(dx0:T ),

where the twisted potentials associated with the twisted path measure Qψ are given by

G
ψ
0 (x0) := μ(ψ0)G0(x0)M1(ψ1)(x0)

ψ0(x0)
,

G
ψ
t (xt−1, xt ) := Gt(xt−1, xt )Mt+1(ψt+1)(xt )

ψt (xt−1, xt )
, t ∈ [1 : T − 1],(13)

G
ψ
T (xT −1, xT ) := GT (xT −1, xT )

ψT (xT −1, xT )
.

Note from (12) that Z = EQψ [Gψ
0 (X0)

∏T
t=1 G

ψ
t (Xt−1,Xt)] by construction, whereas the

triple {μψ, (M
ψ
t )t∈[1:T ], (Gψ

t )t∈[0:T ]} induces the ψ-twisted Feynman–Kac models given by

γ
ψ
t (ϕ) = EQψ

[
ϕ(Xt)G

ψ
0 (X0)

t∏
s=1

Gψ
s (Xs−1,Xs)

]
,

η
ψ
t (ϕ) = γ

ψ
t (ϕ)/Z

ψ
t ,

(14)

for ϕ ∈ B(X), t ∈ [0 : T ], where Z
ψ
t := γ

ψ
t (X). For t ∈ [0 : T − 1], the marginal distributions

of the twisted model are given by

(15) η
ψ
t (dxt ) = ηt (dxt )Mt+1(ψt+1)(xt )Zt/Z

ψ
t
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and do not generally coincide with the ones of the original model (4). However, we stress that
they coincide at time T as

(16) Z = Z
ψ
T = μψ (

G
ψ
0

) T∏
t=1

η
ψ
t−1

(
M

ψ
t

(
G

ψ
t

))
.

To illustrate the effect of twisting models in the static setting of Section 2.4, rewriting the
twisted potentials (13) using (15) as

G
ψ
0 (x0) = dη

ψ
0

dμψ
(x0), G

ψ
t (xt−1, xt ) = d(Lt−1 ⊗ γ

ψ
t )

d(γ
ψ
t−1 ⊗ M

ψ
t )

(xt−1, xt ), t ∈ [1 : T ],

shows that this corresponds to employing the same backward kernels (Lt )t∈[0:T −1], but
altered bridging distributions (η

ψ
t )t∈[0:T ], initial distribution μψ and forward kernels

(M
ψ
t )t∈[1:T ].

3.2. Twisted sequential Monte Carlo. Consider a policy ψ ∈ � such that sampling from
the initial distribution μψ ∈ P(X) and the transition kernels (M

ψ
t )t∈[1:T ] in M(X) is fea-

sible and evaluation of the twisted potentials (13) is tractable. We can now construct the
ψ-twisted SMC method as simply the standard sampling-resampling SMC algorithm applied
to ψ-twisted Feynman–Kac models [16]. The resulting algorithm provides approximations
of the probability measures (η

ψ
t )t∈[0:T ], normalizing constant Z and path measure P, by sim-

ulating an interacting particle system of size N ∈ N. An algorithmic description is detailed
in Algorithm 1, where R(w1, . . . ,wN) refers to a resampling operation based on a vector
of unnormalized weights (wn)n∈[1:N] ∈ RN+ . For example, this is the categorical distribution
on [1 : N ] with probabilities (wn/

∑N
m=1 wm)n∈[1:N], when multinomial resampling is em-

ployed; other lower variance and adaptive resampling schemes can also be considered [18].
All simulations presented in this article employ the systematic resampling scheme.

Given the output of the algorithm, that is, an array of X-valued position variables
(Xn

t )(t,n)∈[0:T ]×[1:N] and an array of [1 : N ]-valued ancestor variables (An
t )(t,n)∈[0:T ]×[1:N],

we have a particle approximation of η
ψ
t given by the weighted random measure

η
ψ,N
t =

N∑
n=1

W
ψ,n
t δXn

t
, W

ψ,n
t := G

ψ
t (X

An
t−1

t−1 ,Xn
t )∑N

m=1 G
ψ
t (X

Am
t−1

t−1 ,Xm
t )

,

Algorithm 1: ψ-twisted sequential Monte Carlo
Input: number of particles N ∈ N and policy ψ ∈ � .

1. At time t = 0 and particle n ∈ [1 : N ]:
(a) sample Xn

0 ∼ μψ ;

(b) sample ancestor index An
0 ∼ R(G

ψ
0 (X1

0), . . . ,G
ψ
0 (XN

0 )).

2. For time t ∈ [1 : T ] and particle n ∈ [1 : N ]:
(a) sample Xn

t ∼ M
ψ
t (X

An
t−1

t−1 , ·);
(b) sample ancestor index An

t ∼ R(G
ψ
t (X

A1
t−1

t−1 ,X1
t ), . . . ,G

ψ
t (X

AN
t−1

t−1 ,XN
t )).

Output: trajectories (Xn
t )(t,n)∈[0:T ]×[1:N] and ancestries (An

t )(t,n)∈[0:T ]×[1:N].
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for t ∈ [1 : T ] (similar expression for t = 0) and an unbiased estimator of Z resembling the
form of (16)

(17) Zψ,N =
{

1

N

N∑
n=1

G
ψ
0

(
Xn

0
)} T∏

t=1

{
1

N

N∑
n=1

G
ψ
t

(
X

An
t−1

t−1 ,Xn
t

)}
.

With stored trajectories [26], we can also form a particle approximation of P with Pψ,N =
N−1 ∑N

n=1 δXn
0:T , where Xn

0:T denotes the path obtained by tracing the ancestral lineage of

particle Xn
T , that is, Xn

0:T := (X
Bn

t
t )t∈[0:T ] with Bn

T := An
T and Bn

t := A
Bn

t+1
t for t ∈ [0 : T −1].

Many convergence results are available for these approximations as the size of the particle
system N increases [11]. However, depending on the choice of ψ ∈ � , the quality of these
approximations may be inadequate for practical values of N ; for example, the large vari-
ance of (17) often hinders its use within particle MCMC schemes [1] and the approximation
Pψ,N could degenerate quickly with T . The choice of an optimal policy is addressed in the
following section.

4. Controlled sequential Monte Carlo.

4.1. Optimal policies. Suppose we have an arbitrary current policy ψ ∈ � , initially given
by a sequence of constant functions. We would like to twist the path measure Qψ ∈ P(XT +1)

further with a policy φ ∈ � , so that the resulting twisted path measure (Qψ)φ ∈ P(XT +1) is
in some sense ‘closer’ to the target Feynman–Kac measure P. Note from Definition 3.2 that
(Qψ)φ = Qψ ·φ , where ψ ·φ = (ψt ·φt)t∈[0:T ] denotes element-wise multiplication, is simply
the (ψ · φ)-twisted path measure of Q. From (13), the corresponding twisted potentials are
given by

G
ψ ·φ
0 (x0) = μψ(φ0)G

ψ
0 (x0)M

ψ
1 (φ1)(x0)

φ0(x0)
,

G
ψ ·φ
t (xt−1, xt ) = G

ψ
t (xt−1, xt )M

ψ
t+1(φt+1)(xt )

φt (xt−1, xt )
, t ∈ [1 : T − 1],(18)

G
ψ ·φ
T (xT −1, xT ) = G

ψ
T (xT −1, xT )

φT (xT −1, xT )
.

The choice of φ that optimally refines an arbitrary policy ψ is given by the following
optimality result.

PROPOSITION 4.1. For any ψ ∈ � , under the policy φ∗ = (φ∗
t )t∈[0:T ] defined recursively

as

φ∗
T (xT −1, xT ) = G

ψ
T (xT −1, xT ),

φ∗
t (xt−1, xt ) = G

ψ
t (xt−1, xt )M

ψ
t+1

(
φ∗

t+1
)
(xt ), t ∈ [1 : T − 1],(19)

φ∗
0(x0) = G

ψ
0 (x0)M

ψ
1

(
φ∗

1
)
(x0),

the refined policy ψ∗ := ψ · φ∗ satisfies the following properties:

1. the twisted path measure Qψ∗
coincides with the Feynman–Kac path measure P;

2. the normalized Feynman–Kac model η
ψ∗
t is the time t-marginal distribution of P and

its normalizing constant Z
ψ∗
t = Z for all t ∈ [0 : T ];

3. the normalizing constant estimator Zψ∗,N = Z almost surely for any N ∈ N.

Moreover, if G
ψ
0 ∈ B(X) and G

ψ
t ∈ B(X × X) for t ∈ [1 : T ] then φ∗ ∈ � .
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This proposition implies that SMC sampling with the optimal ψ∗-twisted version of Al-
gorithm 1 ensures that the normalizing constant estimator is constant over the entire time
horizon, and is equal to the desired normalizing constant. This follows because the SMC
weights themselves are almost surely constant; one can see this by substituting the optimal
choice (19) into (18). The variance of the SMC weights and the constancy of the normal-
izing constant estimator can both be used (as described later) as measures of performance
evaluation or adaptive tuning.

In a state space context, (19) corresponds to the recursion satisfied by the backward infor-
mation filter introduced in (10) when ψ ∈ � are constant functions, that is, μψ = μ = ν and
M

ψ
t = Mt = ft , t ∈ [1 : T ]; see, for example, [5, 6].
As it can be shown that φ∗ is the optimal policy of an associated Kullback–Leibler optimal

control problem (Supplementary Material, Section 5), we shall refer to it as the optimal policy
w.r.t. Qψ , although the optimality properties in Proposition 4.1 only identify a policy up to
normalization factors. An application of this result gives us the optimal policy ψ∗ = ψ · φ∗
w.r.t. Q, which is admissible if the original potentials (Gt)t∈[0:T ] are bounded.2

4.2. Approximate dynamic programming. Equation (19) may be viewed as a dynamic
programming backward recursion. The optimal policy φ∗ w.r.t. Qψ will give rise to an opti-
mally controlled SMC algorithm via a ψ∗ = (ψ · φ∗)-twisted version of Algorithm 1. In all
but simple cases, the recursion (19) defining φ∗ is intractable. We now exploit the connection
to optimal control by adapting numerical methods (i.e., approximate dynamic programming)
for finite horizon control problems ([2], pp. 329–331) to our setup. The resulting methodology
approximates φ∗ by combining function approximation and iterating the backward recursion
(19).

In the following, we will approximate V ∗
t := − logφ∗

t , t ∈ [0 : T ] as this corresponds to
learning the optimal value functions of the associated control problem. Compared to learn-
ing optimal policies directly, as considered in [22], the latter choice is often more desirable
as computing in logarithmic scale offers more numerical stability and the minimization is
additionally analytically tractable in important scenarios. Moreover, this allows us to relate
regression errors to performance properties of the resulting twisted SMC method in the next
section.

Let (Xn
t )(t,n)∈[0:T ]×[1:N] and (An

t )(t,n)∈[0:T ]×[1:N] denote the trajectories and ancestries, ob-

tained by running a ψ-twisted SMC. At time T , to approximate V ∗
T := − logφ∗

T = − logG
ψ
T ,

we consider the least squares problem

V̂T = arg min
ϕ∈FT

N∑
n=1

(
ϕ

(
X

An
T −1

T −1 ,Xn
T

) + logG
ψ
T

(
X

An
T −1

T −1 ,Xn
T

))2
,(20)

where FT is a pre-specified function class. An approximation of φ∗
T can then be obtained by

taking φ̂T := exp(−V̂T ). To iterate the backward recursion φ∗
T −1 = G

ψ
T −1M

ψ
T (φ∗

T ), we set

ξT −1 := G
ψ
T −1M

ψ
T (φ̂T ) by plugging in the approximation φ̂T ≈ φ∗

T and consider the least
squares problem

V̂T −1 = arg min
ϕ∈FT −1

N∑
n=1

(
ϕ

(
X

An
T −2

T −2 ,Xn
T −1

) + log ξT −1
(
X

An
T −2

T −2 ,Xn
T −1

))2
,(21)

where FT −1 is another function class to be specified. As before, we form the approximation
φ̂T −1 := exp(−V̂T −1). Continuing in this manner until time 0 gives us an approximation φ̂ =

2For ease of presentation, the notion of admissibility adopted in Definition 3.1 is more stringent than necessary
as nonadmissible optimal policies can still lead to valid optimal SMC methods.
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Algorithm 2: Approximate dynamic programming
Input: policy ψ ∈ � and output of ψ-twisted SMC method (Algorithm 1).

1. Initialization: set M
ψ
T +1(φ̂T +1)(X

n
T ) = 1 for n ∈ [1 : N ].

2. For time t ∈ [1 : T ]:
(a) set ξt (X

An
t−1

t−1 ,Xn
t ) = G

ψ
t (X

An
t−1

t−1 ,Xn
t )M

ψ
t+1(φ̂t+1)(X

n
t ) for n ∈ [1 : N ];

(b) fit V̂t = arg minϕ∈Ft

∑N
n=1(ϕ(X

An
t−1

t−1 ,Xn
t ) + log ξt (X

An
t−1

t−1 ,Xn
t ))2;

(c) set φ̂t = exp(−V̂t ).

3. At time t = 0:

(a) set ξ0(X
n
0) = G

ψ
0 (Xn

0)M
ψ
1 (φ̂1)(X

n
0) for n ∈ [1 : N ];

(b) fit V̂0 = arg minϕ∈F0

∑N
n=1(ϕ(Xn

0) + log ξ0(X
n
0))2;

(c) set φ̂0 = exp(−V̂0).

Output: policy φ̂ = (φ̂t )t∈[0:T ] ∈ � .

(φ̂t )t∈[0:T ] of φ∗. We shall refer to this procedure as the approximate dynamic programming
(ADP) algorithm and provide a detailed description in Algorithm 2.

Restricting the function classes (Ft )t∈[0:T ] to contain only lower bounded functions ensures
that the estimated policy φ̂ lies in � , hence the refined policy ψ · φ̂ also lies in � . We defer a
detailed discussion on the choice of function classes and shall assume for now this is such that
under the refined policy ψ · φ̂ ∈ � , sampling from initial distribution μψ ·φ̂ ∈ P(X), transition

kernels (M
ψ ·φ̂
t )t∈[1:T ] in M(X) is feasible and evaluation of twisted potentials (G

ψ ·φ̂
t )t∈[0:T ]

is tractable.
As the size of the particle system N increases, it is natural to expect φ̂ to converge (in a

suitable sense) to a policy defined by an idealized algorithm that performs the least squares
approximations in (20)–(21) using L2-projections. This will be established in Section 5.2 for
a common choice of function class. It follows that the quality of φ̂, as an approximation of
the optimal policy φ∗, will depend on the number of particles N and the ‘richness’ of chosen
function classes (Ft )t∈[0:T ]. A more precise characterization of the ADP error in terms of
approximate projection errors will be given in Section 5.1.

4.3. Policy refinement. If the recursion (19) could be performed exactly, no policy re-
finement would be necessary as we would initialize ψ as a policy of constant functions and
obtain the optimal policy ψ∗ = φ∗ w.r.t. Q. This will not be possible in practical scenarios.
Given a current policy ψ ∈ � , we employ ADP and obtain an approximation φ̂ of the opti-
mal policy φ∗ w.r.t. Qψ . The residuals from the corresponding least squares approximations
(20)–(21) are given by

ε
ψ
T := log φ̂T − logG

ψ
T , ε

ψ
t := log φ̂t − logG

ψ
t − logM

ψ
t+1(φ̂t+1), t ∈ [0 : T − 1].

From (18), these residuals are related to twisted potentials of the refined policy ψ · φ̂ via

logG
ψ ·φ̂
0 = logμψ(φ̂0) − ε

ψ
0 , logG

ψ ·φ̂
t = −ε

ψ
t , t ∈ [1 : T ].(22)

Using this relation, we can monitor the efficiency of ADP via the variance of SMC weights
in the (ψ · φ̂)-twisted version of Algorithm 1. It follows from (22) that the Kullback–Leibler
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divergence from (Qψ)φ̂ to P is at most

(23)
∣∣logμψ(φ̂0) − logZ

∣∣ + ∥∥εψ
0

∥∥
L1(P0)

+
T∑

t=1

∥∥εψ
t

∥∥
L1(Pt−1,t )

,

where ‖ · ‖L1 denotes the L1-norm w.r.t. the one time (Pt )t∈[0:T ] and two time
(Pt,s)(t,s)∈[0:T −1]×[t+1:T ] marginal distributions of P. This shows how performance of (ψ · φ̂)-
twisted SMC depends on the quality of the ADP approximation of the optimal policy w.r.t.
Qψ .

If we further twist the path measure Qψ ·φ̂ by a policy ζ̂ ∈ � , the subsequent ADP proce-
dure defining ζ̂ would consider the least squares problem

− log ζ̂T := arg min
ϕ∈FT

N∑
n=1

(
ϕ

(
X

An
T −1

T −1 ,Xn
T

) − ε
ψ
T

(
X

An
T −1

T −1 ,Xn
T

))2
,(24)

at time T , and for t ∈ [1 : T − 1]

− log ζ̂t := arg min
ϕ∈Ft

N∑
n=1

(
ϕ

(
X

An
t−1

t−1 ,Xn
t

) − (
ε
ψ
t − logM

ψ ·φ̂
t+1 (ζ̂t+1)

)(
X

An
t−1

t−1 ,Xn
t

))2
,(25)

where (Xn
t )(t,n)∈[0:T ]×[1:N] and (An

t )(t,n)∈[0:T ]×[1:N] denote the output of (ψ · φ̂)-twisted
SMC. Equations (24)–(25) reveal that it might be beneficial to have an iterative scheme to
refine policies as this allows repeated least squares fitting of residuals, in the spirit of L2-
boosting methods [7]. Moreover, it follows from (22)–(23) that errors would not accumulate
over iterations. The resulting iterative algorithm, summarized in Algorithm 3, will be referred
to as the controlled SMC method (cSMC). The overall computational complexity is of order
I ×T ×(NCsample Cevaluate +Capprox), where Csample(d) is the cost of sampling from each ini-
tial distribution or transition kernel in (11), Cevaluate(d) is the cost of evaluating each twisted
potential in (13), and Capprox(N,d) is the cost of each least squares approximation.3 The first
iteration of the algorithm would coincide with that of [22] for state space models, if regres-
sions were computed on the natural scale; subsequent iterations differ in policy refinement

Algorithm 3: Controlled sequential Monte Carlo
Input: number of particles N ∈ N and iterations I ∈ N.

1. Initialization: set ψ(0) as constant one functions.
2. For iterations i ∈ [0 : I − 1]:

(a) run ψ(i)-twisted SMC method (Algorithm 1);
(b) perform ADP (Algorithm 2) with SMC output to obtain policy φ̂(i+1);
(c) construct refined policy ψ(i+1) = ψ(i) · φ̂(i+1).

3. At iteration i = I :

(a) run ψ(I)-twisted SMC method (Algorithm 1).

Output: trajectories (Xn
t )(t,n)∈[0:T ]×[1:N] and ancestries (An

t )(t,n)∈[0:T ]×[1:N] from
ψ(I)-twisted SMC method.

3The dependence of these costs on their arguments will depend on the specific problem of interest and the
choice of function classes. As an example, Capprox will depend linearly on N in the case of linear least squares
regression.
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strategy. To maintain a coherent terminology, we will refer to the standard SMC method and
ψ∗-twisted SMC method as the uncontrolled and optimally controlled SMC methods, respec-
tively. From the output of the algorithm, we can estimate P with Pψ(I),N and its normalizing
constant Z with Zψ(I),N as explained in Section 3.2.

It is possible to consider performance monitoring and adaptive tuning for the SMC sam-
pling and the iterative policy refinement. Recalling the relationship between residuals and
twisted potentials (22), we note that monitoring the variance of the SMC weights using, for
example, the ESS, allows us to evaluate the effectiveness of the ADP algorithm and to iden-
tify time instances when the approximation is inadequate. We can also deduce if the estimated
policy is far from optimal by comparing the behaviour of the normalizing constant estimates
across time with those when the optimal policy is applied, as detailed in Proposition 4.1.
When implementing Algorithm 3, the number of iterations I ∈ N can be pre-determined
using preliminary runs or chosen adaptively until successive policy refinement yields no im-
provement in performance. For example, one can iterate policy refinement until the ESS
across time achieves a desired minimum threshold and/or there is no improvement in ESS
across iterations; see Section 6.2 for a numerical illustration. In Section 5.3, under appro-
priate regularity assumptions, we show that this iterative scheme generates a geometrically
ergodic Markov chain on � and characterize its unique invariant distribution. For all numeri-
cal examples considered in this article, we observe that convergence happens very rapidly, so
only a small number of iterations is necessary.

4.4. Illustration on neuroscience model. We now apply our proposed methodology on
the neuroscience model introduced in Section 2.3. We take BPF as the uncontrolled SMC
method, that is, we set μ = ν and Mt = f for t ∈ [1 : T ]. Under the following choice of
function classes,

(26) Ft = {
ϕ(xt ) = atx

2
t + btxt + ct : (at , bt , ct ) ∈ R3}

, t ∈ [0 : T ],
the policy ψ(i) = (ψ

(i)
t )t∈[0:T ] at iteration i ∈ [1 : I ] of Algorithm 3 has the form

ψ
(i)
t (xt ) = exp

(−a
(i)
t x2

t − b
(i)
t xt − c

(i)
t

)
, t ∈ [0 : T ],

where a
(i)
t := ∑i

j=1 a
j
t , b

(i)
t := ∑i

j=1 b
j
t , c

(i)
t := ∑i

j=1 c
j
t for t ∈ [0 : T ] and (a

j+1
t , b

j+1
t ,

c
j+1
t )t∈[0:T ] denotes the coefficients estimated using linear least squares at iteration j ∈ [0 :

I − 1]. Exact expressions of the twisted initial distribution, transition kernels and potentials,
required to implement cSMC are given in Section 9.3 of Supplementary Material.

Figure 2 illustrates that the parameterization (26) provides a good approximation of the
optimal policy. We note (left panel) the significant improvement of ESS across iterations, and
see how this may be used as a measure of performance evaluation. In the right panel, we
can also deduce how far the estimated policy is from optimality by observing the behaviour
of normalizing constant estimates as discussed previously. Indeed, while the uncontrolled

SMC approximates Zt = Z
ψ(0)

t = p(y0:t ), the controlled SMC scheme approximates Z
ψ∗
t =

p(y0:T ) for all t ∈ [0 : T ].
Moreover, we see from the left panel of Figure 3 that the improvement in performance is

reflected in the estimated policy’s ability to capture abrupt changes in the data. This plot also
demonstrates the effect of policy refinement: by refitting residuals from previous iterations
(24)–(25), the magnitude of estimated coefficients decreases with iterations as the residuals
can be adequately approximated by simpler functions. Lastly, in the right panel of Figure 3,
we illustrate the invariant distribution of coefficients estimated by cSMC using a long run of
I = 1000 iterations, with the first 10 iterations discarded as burn-in. These plots show that the
distribution concentrates as the size of the particle system N increases, which is consistent
with our findings presented in Section 5.3.
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FIG. 2. Comparison of uncontrolled and controlled SMC methods in terms of effective sample size (left) and
normalizing constant estimation (right) on the neuroscience model introduced in Section 2.3. The parameters are
α = 0.99, σ 2 = 0.11 and the algorithmic settings of cSMC are I = 3, N = 128.

5. Analysis. This section considers several theoretical aspects of the proposed method-
ology, and may be skipped without affecting the methodological developments thus far and
the experimental results that follow.

5.1. Policy learning. The goal of this section is to characterize the error of ADP (Al-
gorithm 2) for learning the optimal policy (19) in terms of regression errors. We first de-
fine, for any μ ∈ P(E), the set L2(μ) of E-measurable functions ϕ : E → Rd such that
‖ϕ‖L2(μ) := (

∫
E |ϕ(x)|2μ(dx))1/2 < ∞, and L2(μ) as the set of equivalence classes of func-

tions in L2(μ) that agree μ-almost everywhere. To simplify notation, we introduce some
operators.

DEFINITION 5.1 (Bellman operators). Given ψ ∈ � such that G
ψ
0 ∈ B(X) and G

ψ
t ∈

B(X × X) for t ∈ [1 : T ], we define the operators Q
ψ
t : L2(ν

ψ
t+1) → L2(ν

ψ
t ) for t ∈ [0 : T − 1]

as

Q
ψ
0 (ϕ)(x) = G

ψ
0 (x)M

ψ
1 (ϕ)(x), ϕ ∈ L2(

ν
ψ
1

)
,

Q
ψ
t (ϕ)(x, y) = G

ψ
t (x, y)M

ψ
t+1(ϕ)(y), ϕ ∈ L2(

ν
ψ
t+1

)
,

FIG. 3. Applying controlled SMC method on the neuroscience model introduced in Section 2.3: coefficients
estimated at each iteration with N = 128 particles (left) and invariant distribution of coefficients with various
number of particles (right).
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where ν
ψ
0 := μψ ∈ P(X) and ν

ψ
t := η

ψ
t−1 ⊗ M

ψ
t ∈ P(X × X) for t ∈ [1 : T ]. For notational

convenience, define Q
ψ
T (ϕ)(x, y) = G

ψ
T (x, y) for any ϕ (take ν

ψ
T +1 as an arbitrary element

in P(X × X)).

Although these operators are typically used to define unnormalized predictive Feynman–
Kac models [11], Proposition 2.5.1, we shall adopt terminology from control literature and
refer to them as Bellman operators. It can be shown that these Bellman operators are well
defined and are in fact bounded linear operators; see Proposition 5.2. In this notation, we can
rewrite (19) more succinctly as

φ∗
T = G

ψ
T , φ∗

t = Q
ψ
t φ∗

t+1, t ∈ [0 : T − 1].(27)

To understand how regression errors propagate in time, for −1 ≤ s ≤ t ≤ T , we define the
Feynman–Kac semigroup Q

ψ
s,t : L2(ν

ψ
t+1) → L2(ν

ψ
s+1) associated to a policy ψ ∈ � as

(28) Q
ψ
s,t (ϕ) =

{
ϕ s = t,

Q
ψ
s+1 ◦ · · · ◦ Q

ψ
t (ϕ) s < t,

for ϕ ∈ L2(ν
ψ
t+1). To describe regression steps taken to approximate the intractable recursion

(27), we introduce the following operations.

DEFINITION 5.2 (Logarithmic projection). On a measurable space (E,E), let ν ∈ P(E),
ξ : E →R+ be a E-measurable function such that − log ξ ∈ L2(ν)∩L(E), and F ⊂ L(E) be a
closed linear subspace of L2(ν). We define the (F, ν)-projection operator P ν : B(E) → B(E)

as

(29) P νξ = exp
(
− arg min

ϕ∈F
‖ϕ + log ξ‖2

L2(ν)

)
.

The projection theorem gives existence of a unique P νξ . We have chosen to define
− logP νξ as the orthogonal projection of − log ξ onto F, as this corresponds to learning
the optimal value functions of the associated control problem. Since projections are typically
intractable, a practical implementation will involve a Monte Carlo approximation of (29).

DEFINITION 5.3 (Approximate projection). Following notation in Definition 5.2, given
a consistent approximation νN of ν, that is, νN(ϕ) → ν(ϕ) almost surely for any ϕ ∈ L1(ν),
we define the approximate (F, ν)-projection operator P ν,N : B(E) → B(E) as the (F, νN)-
projection operator. We additionally assume that the function class F is such that P ν,Nξ is a
random function for all ξ ∈ B(E).

If ψ ∈ � is the current policy, we use the output of ψ-twisted SMC (Algorithm 1) to learn
the optimal policy φ∗, through the empirical measures

(30) ν
ψ,N
0 = 1

N

N∑
n=1

δXn
0
, ν

ψ,N
t = 1

N

N∑
n=1

δ
(X

An
t−1

t−1 ,Xn
t )

, t ∈ [1 : T ],

which are consistent approximations of (ν
ψ
t )t∈[0:T ] [11], defined in Definition 5.1. Given

pre-specified closed and linear function classes F0 ⊂ L2(ν
ψ
0 ) ∩L(X), Ft ⊂ L2(ν

ψ
t ) ∩L(X2),

t ∈ [1 : T ], we denote the approximate (Ft , ν
ψ
t )-projection operator by P

ψ,N
t for t ∈ [0 : T ].

We can now write our ADP algorithm detailed in Algorithm 2 succinctly as

φ̂T = P
ψ,N
T G

ψ
T , φ̂t = P

ψ,N
t Q

ψ
t φ̂t+1, t ∈ [0 : T − 1].(31)

The following result characterizes how well (31) can approximate (27).
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PROPOSITION 5.1. Suppose that we have a policy ψ ∈ � , number of particles N and
closed, linear function classes F0 ⊂ L2(ν

ψ
0 ) ∩ L(X), Ft ⊂ L2(ν

ψ
t ) ∩ L(X2), t ∈ [1 : T ] such

that:

[A1] the Feynman–Kac semigroup defined in (28) satisfies

(32)
∥∥Qψ

s,t (ϕ)
∥∥
L2(ν

ψ
s+1)

≤ C
ψ
s,t‖ϕ‖

L2(ν
ψ
t+1)

, −1 ≤ s < t ≤ T − 1,

for some C
ψ
s,t ∈ [0,∞) and all ϕ ∈ L2(ν

ψ
t+1);

[A2] the approximate (Ft , ν
ψ
t )-projection operator satisfies

sup
ξ∈S

ψ
t

Eψ,N
∥∥P ψ,N

t ξ − ξ
∥∥
L2(ν

ψ
t )

≤ e
ψ,N
t < ∞,

where Sψ
t := {Qψ

t exp(−ϕ) : ϕ ∈ Ft+1} for t ∈ [0 : T − 1] and Sψ
T := {Gψ

T }. Then the policy
φ̂ ∈ � generated by ADP algorithm (31) satisfies

(33) Eψ,N
∥∥φ̂t − φ∗

t

∥∥
L2(ν

ψ
t )

≤
T∑

u=t

C
ψ
t−1,u−1e

ψ,N
u , t ∈ [0 : T ],

where C
ψ
t−1,t−1 = 1 and Eψ,N denotes expectation w.r.t. the law of the ψ-twisted SMC method

(Algorithm 1).

Equation (33) reveals how function approximation errors propagate backwards in time.
If the choice of function class is ‘rich’ enough and the number of particles is sufficiently
large, then these errors can be kept small and ADP provides a good approximation of the
optimal policy. If the number of particles is taken to infinity, the projection errors are driven
solely by the choice of function class (as the latter dictates e

ψ,∞
t ). Moreover, observe that

these errors are also modulated by stability constants of the Feynman–Kac semigroup in
(32). We now establish the inequality (32). For ϕ ∈ B(E), we write its supremum norm as
‖ϕ‖∞ = supx∈E |ϕ(x)|.

PROPOSITION 5.2. Suppose ψ ∈ � is such that G
ψ
0 ∈ B(X), G

ψ
t ∈ B(X × X) for t ∈ [1 :

T ] and let δ := maxt∈[0:T ] ‖Gψ
t ‖∞ (and Z

ψ
−1 := 1). Then (32) holds with

C
ψ
s,t =

(
Z

ψ
t /Zψ

s

t∏
u=s+1

∥∥Gψ
u

∥∥∞

)1/2

≤ (
Z

ψ
t /Zψ

s

)1/2
δ(t−s)/2, −1 ≤ s < t ≤ T − 1.

(34)

For the case G
ψ
t (x, y) = G

ψ
t (y) for all x, y ∈ X and t ∈ [1 : T ], if we assume additionally for

each t ∈ [1 : T ] that:

[A3] there exist σ
ψ
t ∈ P(X) and κ

ψ
t ∈ (0,∞) such that for all x ∈ X we have

(35) M
ψ
t (x,dy) ≤ κ

ψ
t σ

ψ
t (dy).

Then inequality (32) holds with

(36) C
ψ
s,t =

[
κ

ψ
s+2

∥∥Gψ
s+1

∥∥∞σ
ψ
s+2

(
Q

ψ
s+1,t (1)

)Zψ
t

Z
ψ
s

]1/2
, −1 ≤ s < t ≤ T − 1.
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The assumption of bounded potentials is typical in similar analyses of ADP errors [20],
Section 8.3.3, and stability of SMC methods [11]. The second part of Proposition 5.2 shows
that it is possible to exploit regularity properties of the transition kernels to obtain better con-
stants C

ψ
s,t . Conditions such as (35) are common in the filtering literature; see, for example,

[13], equation (9), and [11], Chapter 4.

5.2. Limit theorems. We now study the asymptotic behaviour of the ADP algorithm (31),
with a current policy ψ ∈ � , as the size of the particle system N grows to infinity. For a
common choice of function class, we will establish convergence to a policy φ̃ = (φ̃t )t∈[0:T ],
defined by the idealized algorithm

φ̃T = P
ψ
T G

ψ
T , φ̃t = P

ψ
t Q

ψ
t φ̃t+1, t ∈ [0 : T − 1],(37)

where P
ψ
t denotes the (Ft , ν

ψ
t )-projection operator for t ∈ [0 : T ]. In particular, we consider

logarithmic projections that are defined by linear least squares approximations; this corre-
sponds to function classes of the form

(38) Ft := {
�T

t β : β ∈ RM}
, t ∈ [0 : T ],

where �0 ⊂ L2(ν
ψ
0 ) ∩ L(X), �t ⊂ L2(ν

ψ
t ) ∩ L(X2), t ∈ [1 : T ] are vectors of M ∈ N pre-

specified basis functions. We will treat M as fixed in our analysis and refer to [20], The-
orem 8.2.4, for results on how M should increase with N to balance the tradeoff between
enriching (38) and the need for more samples to achieve the same estimation precision.
We denote by φ̃ := (φ̃t )t∈[0:T ] the policy generated by the idealized algorithm (37) where
φ̃t := exp(−�T

t β
ψ
t ), β

ψ
t being the corresponding least squares estimate. This result builds

upon the central limit theorem for particle methods established in [9, 11, 29].

THEOREM 5.1. Consider the ADP algorithm (31) with current policy ψ ∈ � , under
linear least squares approximations (38). Under appropriate regularity conditions, for all
x ∈ X2T +1, the estimated policy φ̂(x) converges in probability to the policy φ̃(x) as N → ∞.
Moreover, for all x ∈ X2T +1,

(39)
√

N
(
φ̂(x) − φ̃(x)

) d−→N
(
0(T +1),�

ψ(x)
)

for some �ψ : X2T +1 → R(T +1)×(T +1), where
d−→ denotes convergence in distribution and

0p = (0, . . . ,0)T ∈ Rp is the zero vector.

A precise mathematical statement of this result and its proof are given in Section 3 of Sup-
plementary Material. Note that the proof relies on a technical central limit theorem on path
space that can be deduced in the case of multinomial resampling from [11], Theorem 9.7.1.
The exact form of �ψ reveals how errors correlate over time and suggests that we may expect
the variance of the estimated policy to be larger at earlier times, due to the inherent backward
nature of the ADP approximation.

5.3. Iterated approximate dynamic programming. We provide here a theoretical frame-
work to understand the qualitative behaviour of policy ψ(I), estimated by Algorithm 3, as the
number of iterations I grows to infinity. This offers a novel perspective of iterative algorithms
for finite horizon optimal control problems and may be of general interest.

To do so, we require the set of all admissible policies to be a complete separable met-
ric space. This follows if we impose that X is a compact metric space and work with
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� := C(X)
∏T

t=1 C(X × X), equipped with the metric ρ(ϕ, ξ) := ∑T
t=0 ‖ϕt − ξt‖∞ for ϕ =

(ϕt )t∈[0:T ], ξ = (ξt )t∈[0:T ] ∈ �; noncompact state spaces can also be accommodated with a
judicious choice of metric (see, e.g., [4], p. 380).

We begin by writing the iterative algorithm with N ∈ N particles as an iterated random
function FN : U × � → � , defined by FN

U (ψ) = ψ · φ̂, where φ̂ is the output of ADP algo-
rithm (31) and U ∈ U encodes all uniform random variables needed to simulate a ψ-twisted
SMC method (Algorithm 1). As the uniform variables (U(I))I∈N used at every iteration are
independent and identically distributed, iterating FN defines a Markov chain (ψ(I))I∈N on
� . We will write E to denote expectation w.r.t. the law of (U(I))I∈N and π(I) ∈ P(�) to
denote the law of ψ(I). Similarly, we denote the iterative scheme with exact projections by
F : � → � , defined as F(ψ) = ψ · φ̃, where φ̃ is the output of the idealized ADP algorithm
(37). We denote by ϕ∗ ∈ � a fixed point (if it exists) of F , that is, F(ϕ∗) = ϕ∗. The following
is based on results developed in [14].

THEOREM 5.2. Assume that the iterated random function FN satisfies:

[A4] E[ρ(FN
U (ϕ0), ϕ0)] < ∞ for some ϕ0 ∈ � ,

[A5] there exists a measurable function LN : U → R+ with E[LN
U ] < α for some α ∈

[0,1) such that ρ(FN
U (ϕ),FN

U (ξ)) ≤ LN
U ρ(ϕ, ξ) for all ϕ, ξ ∈ � .

Then the �-valued Markov chain (ψ(I))I∈N generated by Algorithm 3 admits a unique in-
variant distribution π ∈ P(�) and

(40) �
(
π(I), π

) ≤ C
(
ψ(0))rI , I ∈N,

for some C : � →R+ and r ∈ (0,1), where � denotes the Prohorov metric on P(�) induced
by the metric ρ. If we suppose in addition that:

[A6] for each ψ ∈ � , ρ(FN
U (ψ),F (ψ)) ≤ N−1/2E

ψ,N
U where (E

ψ,N
U )N∈N is a uniformly

integrable sequence of nonnegative random variables with finite mean that converges in dis-
tribution to a limiting distribution with support on R+, then we also have that

(41) Eπ

[
ρ

(
ψ,ϕ∗)] ≤ N−1/2E

[
E

ϕ∗,N
U

]
(1 − α)−1,

where ϕ∗ is a fixed point of F and Eπ denotes expectation w.r.t. ψ ∼ π .

Assumption A5 requires the ADP procedure to be sufficiently regular; that is, for two
policies ϕ, ξ ∈ � that are close, given the same uniform random variables U to simu-
late a ϕ-twisted and ξ -twisted SMC method, the policies ϕ̂ (w.r.t. Qϕ) and ξ̂ (w.r.t. Qξ )
estimated by (31) should also be close enough to keep the Lipschitz constant LN

U small.
Assumption A6 is necessary to quantify the Monte Carlo error involved when employ-
ing approximate projections and can be deduced for example using the central limit the-
orem in (39). See Section 4 of the Supplementary Material for a discussion on when
and why contraction occurs, and a simple example where Assumptions A4–A6 are veri-
fied.

The first part of Theorem 5.2, which establishes existence of a unique invariant dis-
tribution and geometric convergence to the latter, follows from standard theory on iter-
ated random functions; see, for example, [14]. The second conclusion of Theorem 5.2,
which provides a characterization of the limiting distribution, is to the best of our knowl-
edge novel. A fixed point ϕ∗ can be interpreted as a policy for which subsequent refine-
ment using exact (i.e., with N → ∞) projections onto the same function classes yields no
change.
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FIG. 4. Assessing performance on the neuroscience model introduced in Section 2.3 based on 100 independent
repetitions of each algorithm: sample relative variance of smoothing expectation (left) and log-marginal likelihood
estimates (right).

6. Application to state space models.

6.1. Neuroscience model. We return to the neuroscience model introduced in Section 2.3
and explore cSMC’s utility as a smoother, with algorithmic settings described in Sec-
tion 4.4, in comparison to the forward filtering backward smoothing (FFBS) procedure of
[15, 30]. We consider an approximation of the maximum likelihood estimate (MLE)
(α,σ 2) = (0.99,0.11) as parameter value and the smoothing functional x0:T �→ M(κ(x0),

. . . , κ(xT )) whose expectation represents the expected number of neuron activations at each
time. Although BPF’s particle approximation of the smoothing distribution degenerates
quickly in time, cSMC with I = 3 iterations offers a marked improvement; for example,
the number of distinct ancestors at the initial time is on average 63 times that of BPF. We use
N = 1024 particles for cSMC and select the number of particles in FFBS to match compute
time. The results, displayed in the left panel of Figure 4, show some gains over FFBS and
especially so at later times.

We then investigate the relative variance of the log-marginal likelihood estimates obtained
using cSMC and BPF in a neighbourhood of the approximate MLE. As the marginal likeli-
hood surface is rather flat in α, we fix α = 0.99 and vary σ 2 ∈ {0.01,0.02, . . . ,0.2}. We use
I = 3 iterations, N = 128 particles for cSMC and N = 5529 particles for BPF to match com-
putational cost. The results, reported in the right panel of Figure 4, demonstrate that while
the relative variance of estimates produced by BPF increases exponentially as σ 2 decreases,
that of cSMC is stable across the values of σ 2 considered.

Lastly, we perform Bayesian inference on the unknown parameters θ = (α,σ 2) and
compare the efficiency of cSMC and BPF within a particle marginal Metropolis–Hastings
(PMMH) algorithm [1]. We specify a uniform prior on [0,1] for α and an independent
inverse-Gamma prior distribution IG(1,0.1) for σ 2. Initializing at θ = (0.99,0.11), we
run two PMMH chains (θ cSMC

k )k∈[0:K], (θBPF
k )k∈[0:K] of length K = 100,000. Both chains

are updated using an independent Gaussian random walk proposal with standard deviation
(0.002,0.01), but rely on cSMC or BPF to produce unbiased estimates of the marginal like-
lihood when computing acceptance probabilities. To ensure a fair comparison, we use I = 3
iterations and N = 128 particles for cSMC which matches the compute time taken by BPF
with N = 5529 particles, so that both PMMH chains require very similar computational
cost. The autocorrelation functions of each PMMH chain, shown in Figure 5, reveal that
the (θBPF

k )k∈[0:K] chain has poorer mixing properties. These differences can be summarized
by the effective sample size, computed as the length of the chain K divided by the esti-
mated integrated autocorrelation time for each parameter of interest, which was found to be
(4356,2442) for (θBPF

k )k∈[0:K] and (20,973,13,235) for (θcSMC
k )k∈[0:K].
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FIG. 5. Autocorrelation functions of PMMH chains, with marginal likelihood estimates produced by cSMC or
BPF, for parameters of the neuroscience model introduced in Section 2.3.

6.2. The Lorenz-96 model. Following [38], we consider the Lorenz-96 model [34] in a
low noise regime, that is, the Itô process ξ(s) = (ξi(s))i∈[1:d], s ≥ 0 defined as the weak
solution of the stochastic differential equation

(42) dξi = (−ξi−1ξi−2 + ξi−1ξi+1 − ξi + α)dt + σf dBi, i ∈ [1 : d],
where indices should be understood modulo d , α ∈ R is a forcing parameter, σ 2

f ∈ R+ is
a noise parameter and B(s) = (Bi(s))i∈[1:d], s ≥ 0 is a d-dimensional standard Brownian
motion. The initial condition is taken as ξ(0) ∼ N (0d, σ 2

f Id). We assume that the process
is observed at a regular time grid of size h > 0 according to Yt ∼ N (Hξ(st ),R), st = th,
t ∈ [0 : T ], and consider the partially observed case where Hii = 1 for i = 1, . . . , p and 0
otherwise with p = d − 2.

As discussed in [38], an efficient discretization scheme in this low noise regime [36],
Chapter 3, is given by adding Brownian increments to the output of a high-order nu-
merical integration scheme on the drift of (42). Incorporating time discretization gives
a time homogenous state space model on (X,X ) = (Rd,B(Rd)) with ν = N (0d, σ 2

f Id),

f (xt−1,dxt ) = N (xt ;q(xt−1), σ
2
f hId)dxt and g(xt , yt ) = N (yt ;Hxt ,R) for t ∈ [1 : T ],

where y0:T ∈ YT +1 = (Rp)T +1 is a realization of the observation process and q : X → X
denotes the mapping induced by a fourth-order Runge–Kutta (RK4) method on [0, h]. We
will take noise parameters as σ 2

f = 10−2, R = σ 2
g Ip , observe the process for 10 time units,

that is, set h = 0.1, T = 100 and implement RK4 with a step size of 10−2. For this appli-
cation, we can employ the fully adapted APF as uncontrolled SMC method [41], that is, set
μ = νψ and Mt = f ψ for t ∈ [1 : T ] with policy ψt = g, t ∈ [0 : T ].

Our ADP approximation will utilize the function classes

(43) Ft = {
ϕ(xt ) = xT

t Atxt + xT
t bt + ct : (At , bt , ct ) ∈ Sd ×Rd ×R

}
, t ∈ [0 : T ],

where Sd = {A ∈ Rd×d : A = AT }. Under this parameterization, the policy ψ(i) =
(ψ

(i)
t )t∈[0:T ] at iteration i ∈ [1 : I ] of Algorithm 3 is given by

(44) − logψ
(i)
t (xt ) = xT

t A
(i)
t xt + xT

t b
(i)
t + c

(i)
t , t ∈ [0 : T ],

where A
(i)
t := ∑i

j=1 A
j
t , b

(i)
t := ∑i

j=1 b
j
t , c

(i)
t := ∑i

j=1 c
j
t for t ∈ [0 : T ] and (A

j+1
t , b

j+1
t ,

c
j+1
t )t∈[0:T ] denotes coefficients estimated using linear least squares at iteration j ∈ [0 :

I − 1]. Having APF as uncontrolled SMC is also equivalent to taking BPF as uncontrolled
with an initial policy ψ(0) = (ψ

(0)
t )t∈[0:T ] of the form (44) with A

(0)
t := 1

2σ−2
g HT H , b

(0)
t :=
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−σ−2
g HT yt and c

(0)
t := 1

2σ−2
g yT

t yt + 1
2p log(2π)+ 1

2p log(σ 2
g ) for t ∈ [1 : T ]. For A ∈ Sd , the

notation A � 0 refers to A being positive definite. If the constraints (σ−2
f Id + 2A

(i)
0 )−1 � 0,

(σ−2
f h−1Id + 2A

(i)
t )−1 � 0, t ∈ [1 : T ] are satisfied or imposed,4 then sampling from the

twisted initial distribution and transition kernels is feasible and evaluation of the correspond-
ing potentials is also tractable; see Section 9.2 of Supplementary Material for exact expres-
sions. The diagnostics discussed in Section 4.4 indicate that (44) provides an adequate ap-
proximation of the optimal policy by adapting to the chaotic behaviour of the Lorenz system.

We begin by comparing the relative variance of the log-marginal likelihood estimates ob-
tained by cSMC and APF, as α takes values in a regular grid between 2.5 to 8.5. We consider
d = 8 and simulate observations under the model with α = 4.8801, σ 2

g = 10−4. We employ
N = 512 particles and the following adaptive strategy within cSMC: perform policy refine-
ment until the minimum ESS over time is at least 90%, terminating at a maximum of 4 iter-
ations. To ensure a fair comparison, the number of particles used in APF is chosen to match
computation time. The results, plotted in the left panel of Figure 6, show that cSMC offers
significant variance reduction across all values of α considered. Moreover, we see from the
right panel of Figure 6 that the adaptive criterion allows us to adaptively increase the number
of iterations as we move away from the data generating parameter. We then compare cSMC
against the iterated APF [22], Algorithm 4, when function approximations are performed
in the logarithmic scale (43). Using N = 512 particles and I = 3 iterations with the fully
adapted APF as initialization for both algorithms, the sample variance of cSMC log-marginal
likelihood estimates at α = 4.8801, based on 1000 independent repetitions, was smaller than
iterated APF at each iteration i ∈ [1 : 3], with a relative ratio of {0.99,0.94,0.92}, respec-
tively.

Next, we consider configurations (d, σ 2
g ) ∈ {8,16,32,64} × {10−4,10−3,10−2} with α =

4.8801 and generate observations under the model. We use I = 1 iteration for cSMC in all
configurations and increase the number of particles N with d for both algorithms. As before,
N is chosen so that both methods require the same compute time to ensure a fair comparison.
The relative variance of both methods are reported in Table 1. These results indicate several
order of magnitude gains over APF in all configurations considered.

FIG. 6. Lorenz-96 model of Section 6.2 with data generating parameter α = 4.8801: sample relative variance of
log-marginal likelihood estimates based on 100 independent repetitions of each algorithm (left), average number
of iterations taken by cSMC with adaptation (right).

4In our numerical implementation, we find that these constraints are already satisfied when the step size h is
sufficiently small. Otherwise, they can be imposed by projecting onto the set of real symmetric positive definite
matrices using the algorithm in [25].
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TABLE 1
Algorithmic settings and performance of APF and cSMC for each dimension d and observation noise σ 2

g

considered. Notationally, N refers to the number of particles and RVAR is the sample relative variance of
log-marginal likelihood estimates over 100 independent repetitions of each method

Observation noise

σ 2
g = 10−4 σ 2

g = 10−3 σ 2
g = 10−2

N log10(RVAR) log10(RVAR) log10(RVAR)

Algorithm APF d = 8 1382 −6.7263 −5.6823 −4.4061
d = 16 2027 −7.4056 −5.9009 −4.4719
d = 32 4034 −7.5943 −5.4901 −4.1039
d = 64 11,468 −7.5173 −5.3765 −3.1057

cSMC d = 8 512 −11.1252 −10.4173 −8.66563
d = 16 512 −11.8899 −11.1011 −9.29596
d = 32 1024 −12.5804 −11.8622 −9.6577
d = 64 4096 −13.5959 −12.7691 −9.74631

7. Application to static models. We now detail how the proposed methodology can be
applied to static models described in Section 2.4. The framework introduced in [12] general-
izes the AIS method of [39] and the sequential sampler of [8] by allowing arbitrary forward
and backward kernels instead of being restricted to MCMC kernels. This degree of freedom
is useful here as sampling from twisted MCMC kernels and computing integrals w.r.t. these
kernels is typically impossible.

7.1. Setup. We consider the Bayesian framework where the target distribution of inter-
est is a posterior distribution η(dx) = Z−1 μ(dx)�(x, y) defined on (X,X ) = (Rd,B(Rd)),
given by a Bayes update with a prior distribution μ ∈ P(X) and a likelihood function
� : X × Y → R+. In applications, the marginal likelihood Z(y) := ∫

X μ(dx)�(x, y) of ob-
servations y ∈ Y is often also a quantity of interest. Assuming η has a strictly positive
and continuously differentiable density x �→ η(x) w.r.t. Lebesgue measure on Rd , we se-
lect the forward kernel Mt related to the transition kernel of an unadjusted Langevin algo-
rithm (ULA) [43, 44] targeting ηt defined in (6), for example, we will define Mt(xt−1,dxt ) =
N (xt ;xt−1 + 1

2h�∇ logηt (xt−1), h�)dxt where h > 0 denotes the step size, and � is a posi-
tive definite pre-conditioning matrix (which in the simplest case may be the identity � = Id ).

Under appropriate regularity conditions, for sufficiently small h, Mt admits an invariant
distribution that is close to ηt [35]. Moreover, as the corresponding Langevin diffusion is
ηt -reversible, this suggests that Mt will also be approximately ηt -reversible for small h. This
prompts the choice of backward kernel Lt−1(xt ,dxt−1) = Mt(xt ,dxt−1), in which case, we
expect the potentials (7) to be close to (8) when the step size is small. We have limited the
scope of this article to overdamped Langevin dynamics; future work could consider the use
of generalized Langevin dynamics and other nonreversible dynamics.

7.2. Log-Gaussian Cox point process. We end with a challenging high dimensional ap-
plication of Bayesian inference for log-Gaussian Cox point processes on a dataset5 concern-
ing the locations of 126 Scots pine saplings in a natural forest in Finland
[10, 19, 37]. The actual square plot of 10 × 10 square metres is standardized to the unit
square and locations are plotted in the left panel of Figure 7. We then discretize [0,1]2

5The dataset can be found in the R package spatstat as finpines.
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FIG. 7. Locations of 126 Scots pine saplings in a natural forest in Finland (left) and log-marginal likelihood
estimates obtained with 100 independent repetitions of cSMC, standard AIS and adaptive AIS (right).

into a 30 × 30 regular grid. Given a latent intensity process � = (�m)m∈[1:30]2 , the num-

ber of points in each grid cell Y = (Ym)m∈[1:30]2 ∈ N302
are modelled as conditionally in-

dependent and Poisson distributed with means a�m, where a = 1/302 is the area of each
grid cell. The prior distribution for � is specified by �m = exp(Xm), m ∈ [1 : 30]2, where
X = (Xm)m∈[1:30]2 is a Gaussian process with constant mean μ0 ∈R and exponential covari-
ance function 
0(m,n) = σ 2 exp(−|m − n|/(30β)) for m,n ∈ [1 : 30]2. We will adopt the
parameter values σ 2 = 1.91, β = 1/33 and μ0 = log(126) − σ 2/2 estimated by [37]. This
application corresponds to dimension d = 900, a prior distribution μ = N (μ01d,
0) with
1d = (1, . . . ,1)T ∈ Rd and likelihood function �(x, y) = ∏

m∈[1:30]2 exp(xmym − a exp(xm)),
where y = (ym)m∈[1:30]2 ∈ Y = Nd is the given dataset.

For this application, cSMC relies on pre-conditioned ULA moves with the choice of �−1 =

−1

0 + a exp(μ0 + σ 2/2)Id considered in [19]. As the above choice of pre-conditioning cap-
tures the curvature of the posterior distribution, we adopt the following function classes:

F0 = {
ϕ(x0) = xT

0 A0x0 + xT
0 b0 + c0 : (A0, b0, c0) ∈ Sd ×Rd ×R

}
,

Ft = {
ϕ(xt−1, xt ) = xT

t Atxt + xT
t bt + ct − (λt − λt−1) log�(xt−1, y)(45)

: (At , bt , ct ) ∈ Sd ×Rd ×R
}
, t ∈ [1 : T ],

where (At )t∈[0:T ] are restricted to diagonal matrices to reduce the computational overhead
involved in estimating large number of coefficients for a problem of this scale. The rationale
for approximating the xt−1 dependency in ψ∗

t (xt−1, xt ), t ∈ [1 : T ] is based on the argument
that the potentials (7) would be close to that of AIS (8) for sufficiently small step size h. We
refer to Section 8.1 of Supplementary Material for exact expressions required to implement
cSMC. As before, the diagnostics discussed in Section 4.4 reveal that such a parameterization
offers an adequate approximation of the optimal policy.

We select as competing algorithms: (1) standard AIS with pre-conditioned Metropolis-
adjusted Langevin algorithm (MALA) moves and (2) an adaptive (pre-conditioned) AIS. For
both cSMC and standard AIS, we adopt the geometric path (6) with λt = t/T and fix the
number of time steps as T = 20. We use N = 4096 particles, I = 3 iterations for cSMC and
5 times more particles for standard AIS to ensure that our comparison is performed at a fixed
computational complexity. Using pilot runs, we chose a step size of 0.4 for MALA to achieve
suitable acceptance probabilities, and a smaller step size of 0.05 for ULA as this improves
the approximation in (45). For the adaptive AIS algorithm, we also adopt (6) with λt adapted
so that the ESS% is maintained above 80% [27, 46, 51] and with an adaptive step size chosen
to ensure an acceptance probability within the range of 30% to 50% at each time step [3, 27].
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Since the runtime of adaptive AIS is random, we choose the number of particles to ensure the
averaged computational cost matches that of cSMC and standard AIS; this is typically on the
order of 2 times as many particles as cSMC.

The results obtained show that standard AIS performs poorly in this scenario, providing
high variance estimates of the log-marginal likelihood compared to each iteration of cSMC, as
displayed in the right panel of Figure 7. Adaptive AIS performs better than standard AIS but
it is still outperformed by cSMC. The sample variance of log-marginal likelihood estimates
is 573 times smaller for the last iteration of cSMC compared to standard AIS, and it is 200
times smaller compared to adaptive AIS. The mean squared error6 of adaptive AIS algorithm
is 920 times larger than that of cSMC.

SUPPLEMENTARY MATERIAL

Supplementary material for “Controlled sequential Monte Carlo” (DOI: 10.1214/19-
AOS1914SUPP; .pdf). The supplement contains proofs of all results, a detailed description of
the connection to Kullback–Leibler control, three more applications employing other flexible
function classes and some model specific expressions.
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