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In this paper, we consider the problem of testing the equality of two mul-
tivariate distributions based on geometric graphs constructed using the inter-
point distances between the observations. These include the tests based on
the minimum spanning tree and the K-nearest neighbor (NN) graphs, among
others. These tests are asymptotically distribution-free, universally consistent
and computationally efficient, making them particularly useful in modern ap-
plications. However, very little is known about the power properties of these
tests. In this paper, using the theory of stabilizing geometric graphs, we de-
rive the asymptotic distribution of these tests under general alternatives, in the
Poissonized setting. Using this, the detection threshold and the limiting local
power of the test based on the K-NN graph are obtained, where interesting
exponents depending on dimension emerge. This provides a way to compare
and justify the performance of these tests in different examples.

1. Introduction. Given independent and identically distributed samples

XN1 = {X1,X2, . . . ,XN1} and YN2 = {Y1, Y2, . . . , YN2},(1.1)

from two unknown densities f and g (with respect to the Lebesgue measure) in R
d , respec-

tively, the two-sample problem is to test the hypotheses

(1.2) H0 : f = g versus H1 : f �= g.

In this paper, we will derive asymptotic properties of two-sample tests based on geometric
graphs in the usual limiting regime where the dimension d is fixed and the sample size N1 +
N2 := N → ∞, such that

N1

N1 + N2
→ p ∈ (0,1),

N2

N1 + N2
→ q := 1 − p.(1.3)

For univariate data, there are several well-known nonparametric tests such as the two-
sample Kolmogorov–Smirnoff maximum deviation test [29], the Wald–Wolfowitz runs test
[31] and the Mann–Whitney rank test [22].

The nonparametric two-sample problem for multivariate data has been extensively studied,
beginning with the work of Weiss [32] and Bickel [8]. Friedman and Rafsky [14] generalized
the Wald–Wolfowitz runs test [31] to higher dimensions using the Euclidean minimal span-
ning tree (MST) of the pooled data. Thereafter, many other two-sample tests based on geo-
metric graphs have been proposed. Schilling [28] and Henze [18] considered tests based on
the K-nearest neighbor (K-NN) graph of the pooled sample. Later, Rosenbaum [26] devel-
oped a test based on matchings, and, more recently, Biswas et al. [10] proposed a test based
on the Hamiltonian cycle, both of which are exactly distribution-free under the null. Recently,
Chen and Friedman [12] proposed new modifications of these tests for high-dimensional and
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object data. Maa et al. [21] provided certain theoretical motivations for using tests based on
interpoint distances.

Another class of multivariate two-sample tests is the Liu–Singh rank sum statistics [20],
which generalize the Mann–Whitney rank test using the notion of data depth [20, 30]. For
other popular two-sample tests, refer to [3, 4, 15, 17, 27] and the references therein. The
problem of testing the equality of two discrete distributions has also been extensively studied
in recent years [5, 11].

1.1. Graph-based two-sample tests. Many of the tests mentioned above can be studied
in the general framework of graph-based two-sample tests [6], which include the tests based
on geometric graphs, as well as those based on data depth. To this end, we have the following
definition: A graph functional G in R

d defines a graph for all finite subsets of Rd , that is,
given S ⊂ R

d finite, G (S) is a graph with vertex set S. A graph functional is said to be
undirected/directed if the graph G (S) is an undirected/directed graph with vertex set S. We
assume that G (S) has no self loops and multiple edges, that is, no edge is repeated more than
once in the undirected case, and no edge in the same direction is repeated more than once in
the directed case. The set of edges in the graph G (S) will be denoted by E(G (S)).

DEFINITION 1.1 (Bhattacharya [6]). Let XN1 and YN2 be i.i.d. samples of size N1 and
N2 from densities f and g, respectively, as in (1.1). The two-sample test statistic based on
the graph functional G is defined as

T
(
G (XN1 ∪ YN2)

) :=
N1∑
i=1

N2∑
j=1

111
{
(Xi, Yj ) ∈ E

(
G (XN1 ∪ YN2)

)}
.(1.4)

If G is an undirected graph functional, then the statistic (1.4) counts the number of edges
in the graph G (XN1 ∪ YN2) with one end point in XN1 and the other in YN2 . If G is a di-
rected graph functional, then (1.4) is the number of directed edges with the outward end in
XN1 and the inward end in YN2 . The null hypothesis is generally rejected for “small” val-
ues of the statistic (1.4). This includes the Friedman–Rafsky (FR) test [14] (based on the
MST), the test based on the K-NN graph [18, 28], the cross match test [26] (based on mini-
mum non-bipartite matching), among others. These tests are asymptotically distribution-free,
universally consistent and computationally efficient (both in sample size and in dimension),
making them particularly attractive for modern statistical applications.

1.2. Poissonization. In the Poissonized setting, instead of taking N1 samples from the
density f and N2 from the density g, we have Pois(N1) from f and Pois(N2) samples from
g. To this end, suppose X = {X1,X2, . . .} and Y = {Y1, Y2, . . .} be i.i.d. samples from f

and g, respectively, and

X ′
N1

= {X1,X2, . . . ,XLN1
} and Y ′

N2
= {Y1, Y2, . . . , YLN2

},(1.5)

where LN1 ∼ Pois(N1) and LN2 ∼ Pois(N2) are independent of each other, and of X and Y .
Poissonization is a common assumption in geometric probability, which simplifies calcula-
tions, due to the spatial independence of the Poisson process, and yields cleaner formulas for
the asymptotic variances. One can expect to de-Poissionize the limit theorems derived below,
using well-known de-Poissonization methods [23, 24]. However, de-Poissonization does not
affect the rates of convergence, and the detection thresholds obtained below would remain
unchanged (see Remark 3.3 for more on de-Poissonization).
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Given a graph functional G , the Poissonized two-sample statistic is defined as

T
(
G

(
X ′

N1
∪ Y ′

N2

)) :=
LN1∑
i=1

LN2∑
j=1

111
{
(Xi, Yj ) ∈ E

(
G

(
X ′

N1
∪ Y ′

N2

))}
.(1.6)

The distribution of this statistic can be described as follows: Let φN(x) := N1
N

f (x)+ N2
N

g(x)

and Z1,Z2, . . . , be independent random variables with common density φN(·). Let LN be
an independent Poisson variable with mean N1 + N2. Then Z ′

N = {Z1,Z2, . . . ,ZLN
} is a

nonhomogeneous Poisson process in R
d with rate function NφN = N1f + N2g. Label each

point of z ∈Z ′
N independently with

cz =

⎧⎪⎪⎨
⎪⎪⎩

1 with probability
N1f (z)

N1f (z) + N2g(z)
,

2 with probability
N2g(z)

N1f (z) + N2g(z)
.

(1.7)

Then the sets of points assigned labels 1 and 2 have the same distribution as X ′
N1

and Y ′
N2

(as in (1.5)), respectively. This implies that for a directed graph functional G , the Poissonized
two-sample test statistic (1.6) is equal in distribution to

T
(
G

(
Z ′

N

)) = ∑
x,y∈Z ′

N

ψ(cx, cy)1
{
(x, y) ∈ E

(
G

(
Z ′

N

))}
,(1.8)

where ψ(cx, cy) = 1{cx = 1, cy = 2}. (Note that every undirected graph functional G can
be modified to a directed graph functional G+ in a natural way: For S ⊂ R

d finite, G+(S)

is obtained by replacing every edge in G (S) with two directed edges, one in each direction.
Thus, without loss of generality, it suffices to consider directed graph functionals.)

Denote by EH0 and EH1 the expectation under the null and the alternative, respectively.
For a directed graph functional G ,

EH0

(
T

(
G

(
Z ′

N

))) = N1N2

(N1 + N2)2E
(∣∣E(

G
(
Z ′

N

))∣∣),
where |E(G (Z ′

N))| denotes the number of edges in the graph G (Z ′
N). For example, in the

MST functional, E(|E(T (Z ′
N))|) = N − 1, and in the directed K-NN graph functional

E(|E(NK(Z ′
N))|) = KN , respectively. (Formal definitions of these graph-functionals are

given in Section 1.3 below.) We will see later in Section 3 that for many geometric graphs,
such as the MST and the K-NN graph, the statistic T (G (Z ′

N)) is asymptotically normal

and distribution-free under the null H0, that is, N− 1
2 {T (G (Z ′

N)) − EH0(T (G (Z ′
N)))} D→

N(0, σ 2
G ), where σG depends on the graph functional G , but not on the unknown null dis-

tribution. For such a graph functional G , the asymptotically level α-test rejects H0 when

1√
N

{
T

(
G

(
Z ′

N

)) −EH0

(
T

(
G

(
Z ′

N

)))} ≤ σG zα,(1.9)

where zα is the standard normal quantile of level α.

1.3. Stabilizing graphs. Many geometric graphs such as the MST and the K-NN graph,
have local dependence, that is, addition/deletion of a point only effects the edges incident on
the neighborhood of that point. This was formalized by Penrose and Yukich [25], using the
notion of stabilization. To describe this, a few definitions are needed: A subset S ⊂ R

d is
said to be locally finite, if S ∩ C is finite, for all compact subsets C ⊂ R

d . A locally finite set
S ⊂ R

d is nice if all the interpoint distances among elements of S are distinct. If S is a set
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of N i.i.d. points W1,W2, . . . ,WN from some continuous distribution function F , then the
distribution of ‖W1 − W2‖ does not have any point mass, and S is nice almost surely.

Let G be a graph functional defined for all locally finite subsets of R
d . For S ⊂ R

d

nice and x ∈ R
d , let E(x,G (S)) be the set edges incident on x in G (S ∪ {x}). Note that

|E(x,G (S))| := d(x,G (S)), the (total) degree of the vertex x in G (S ∪ {x}). Finally, note
that two graphs H1,H2 are said to be isomorphic if there is a bijection φ from the vertex set
of H1 to the vertex set of H2 such that any two vertices u and v of H1 are adjacent in H1 if
and only if φ(u) and φ(v) are adjacent in H2.

DEFINITION 1.2. Given S ⊂ R
d , y ∈ R

d , and a ∈ R, denote by y + S = {y + z : z ∈ S}
and aS = {az : z ∈ S}. A graph functional G is said to be translation invariant if the graphs
G (x + S) and G (S) are isomorphic for all points x ∈ R

d and all locally finite S ⊂ R
d . A

graph functional G is scale invariant if G (aS) and G (S) are isomorphic for all points a ∈ R

and and all locally finite S ⊂ R
d .

For λ ≥ 0, denote by Pλ the homogeneous Poisson process of intensity λ in R
d , and Px

λ :=
Pλ ∪ {x}, for x ∈ R

d . Penrose and Yukich [25] defined stabilization of graph functionals over
homogeneous Poisson processes as follows.

DEFINITION 1.3 (Penrose and Yukich [25]). A translation and scale invariant graph
functional G stabilizes on Pλ if, for almost all realizations Pλ, there exists R := R(Pλ) < ∞
such that

(1.10) E
(
0,G

(
P0

λ

)) a.s.= E
(
0,G

(
P0

λ ∩ B(0,R) ∪ A
))

,

for all finite A ⊂ R
d\B(0,R), where B(0,R) is the (Euclidean) ball of radius R centered at

the origin 0 ∈R
d .

Informally, a graph functional is stabilizing if addition of finitely many points outside a
ball of finite radius centered at the origin, does not effect the set of edges incident at the
origin. The K-NN graph and the minimum spanning tree are known to be stabilizing ([25],
Lemma 2.1). We discuss the two-sample tests associated with these graphs below.

1.3.1. Friedman–Rafsky (FR) test. Friedman and Rafsky [14] generalized the Wald and
Wolfowitz runs test to higher dimensions by using the Euclidean minimal spanning tree of
the pooled sample.

DEFINITION 1.4. Given a nice finite set S ⊂ R
d , a spanning tree of S is a connected

graph T with vertex-set S and no cycles. The length w(T ) of T is the sum of the Euclidean
lengths of the edges of T . A minimum spanning tree (MST) of S, denoted by T (S), is a
spanning tree with the smallest length, that is, w(T (S)) ≤ w(T ) for all spanning trees T of
S.

Thus, T defines a graph functional in R
d , and given X ′

N1
and Y ′

N2
as in (1.5), the FR-test

rejects H0 for small values of

T
(
T

(
Z ′

N

)) = ∑
x,y∈Z ′

N

111{cx �= cy}1{
(x, y) ∈ E

(
T

(
Z ′

N

))}
,

= ∑
x,y∈Z ′

N

ψ(cx, cy)111
{
(x, y) ∈ E

(
T+

(
Z ′

N

))}
,

(1.11)
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FIG. 1. The directed 3-NN graph on a pooled sample of size 15 in R
2 with 10 i.i.d. points from N(0, I2) (colored

blue) and 5 i.i.d. points from N(� · 111, I2) (colored red). For (a) � = 2, there are 3 directed edges starting from
sample 1 and ending in sample 2, and for (b) � = 0.05, there are 8 such edges.

where Z ′
N = X ′

N1
∪ Y ′

N2
and T+(Z ′

N) is obtained by replacing every (undirected) edge in
T (Z ′

N) with two directed edges, one in each direction. Note that this counts the number of
edges in the MST of the pooled sample with one end-point in sample 1 and the other end-
point in sample 2, which is expected to be small when the two distributions are different.
Note that this reduces to the well-known Wald–Wolfowitz runs test when dimension d = 1,
where the MST is the path through the data.

Friedman and Rafsky [14] calibrated (1.11) as a permutation test, and showed that it has
good power in finite sample simulations. Later, Henze and Penrose [19] proved that the statis-
tic T (T (Z ′

N)) is asymptotically normal under H0 and is consistent under all fixed alterna-
tives.

1.3.2. Test based on the K-nearest neighbor (K-NN) graph. As in (1.11), a multivariate
two-sample test can be constructed using the K-nearest neighbor graph of Z ′

N . This was
originally suggested by Friedman and Rafsky [14], and later studied by Schilling [28] and
Henze [18].

DEFINITION 1.5. Given a nice finite set S ⊂R
d , the (directed) K-nearest neighbor graph

(K-NN) is a graph with vertex set S with a directed edge (a, b), for a, b ∈ S, if the Euclidean
distance between a and b is among the K-th smallest distances from a to any other point in
S. Denote the directed K-NN of S by NK(S).

Given Z ′
N = X ′

N1
∪ Y ′

N2
as in (1.5), the K-NN statistic is

T
(
NK

(
Z ′

N

)) = ∑
x,y∈Z ′

N

ψ(cx, cy)111
{
(x, y) ∈ E

(
NK

(
Z ′

N

))}
.(1.12)

As before, when the two distributions are different, the number of directed edges starting
from sample 1 and ending in sample 2 will be small (see Figure 1), so the K-NN test rejects
H0 for small values of (1.12). This will be our main running example throughout the paper.

Another variant is the symmetrized K-NN test statistic [28]:

TS

(
NK

(
Z ′

N

)) = ∑
x,y∈Z ′

N

ψS(cx, cy)111
{
(x, y) ∈ E

(
NK

(
Z ′

N

))}
,(1.13)

where ψS(cx, cy) = 1{cx �= cy}, which counts the number of (directed) edges with the end-
points in the different samples. This can be rewritten as a graph-based test (1.8) by consid-
ering the underlying undirected multigraph (which allows for multiple edges between two
vertices).
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1.4. Summary of results. The asymptotic null distribution and consistency of the tests
described above are well known (see [19] for the FR test and [18, 28] for the K-NN test).
However, a mathematical treatment of the power properties of these tests, which requires
understanding the limiting distribution of the test statistics under the alternative, remained
unavailable. In this paper, we address this problem by deriving the asymptotic distribution
of (1.8), for stabilizing geometric graph functionals, under general alternatives, in the Pois-
sonized setting described above. As a consequence, the exact detection threshold and the
limiting local power of these tests can be derived.

We begin with a few notations: For a vector x ∈ R
p , ‖x‖ and ‖x‖1 will denote the L2

and L1 norms of x, respectively. For two nonnegative sequences, (an)n≥1 and (bn)n≥1, an =
�(bn) means that there exist positive constants C1,C2, such that C1bn ≤ an ≤ C2bn, for all
n large enough. Finally, for two positive sequences (an)n≥1 and (bn)n≥1, we write an � bn

or an � bn, if an/bn → 0 or an/bn → ∞, respectively. The results obtained in this paper are
summarized below.

1. The limiting distribution of graph-based two-sample tests under general alternatives
is derived. The proof of this general result has two main steps: To begin with we show that
for tests based on stabilizing geometric graphs, such as the Friedman–Rafsky test (1.11) and
the test based on the K-nearest-neighbor (K-NN) graph (1.12), the statistic (1.8) has a limit-

ing normal distribution, after centering by the conditional mean and scaling by N− 1
2 (Theo-

rem 3.1). This result is of independent interest, as it leads to a new conditional test, and can
be used for approximate power calculations (Remark 3.2). Next, under the stronger assump-
tion of exponential stabilization [24], the conditional CLT can be strengthened to obtain the
(unconditional) central limit theorem of (1.8) (Theorem 3.3).

2. The CLT proved above can be used to determine the detection threshold of the K-NN
test, that is, the rate at which the alternatives shrink toward the null, such that the limiting
power of the test transitions from 0 to 1. More precisely, suppose {Pθ }θ∈� is a parametric
family of distributions in R

d , indexed by θ ∈ � ⊆ R
p . Given samples X ′

N1
and Y ′

N2
from

Pθ1 and Pθ2 as in (1.5), respectively, consider the testing problem

H0 : θ2 − θ1 = 0 versus H1 : θ2 − θ1 = εN,

for a sequence (εN)N≥1 in R
p , such that ‖εN‖ → 0. The detection threshold for the K-NN

test is the magnitude of the sequence εN below which the test is powerless and above which

the test has power going to 1. The parametric rate of detection is O(N− 1
2 ); however, results

in [6] imply that tests based on geometric graphs, have no power in this scale, that is, they
have zero Pitman efficiency, which makes the problem of determining the detection threshold
of such tests particularly interesting. In Theorem 4.2, we determine the precise detection
threshold of the K-NN test, which undergoes a remarkable phase transition at dimension d ≥
9, and compute the exact limiting power at the threshold. The result is pictorially represented
in Figure 2 and summarized below:

• For dimension d ≤ 8, the detection threshold of the test based on the K-NN graph (4.3) is at

�(N− 1
4 ), that is, the limiting power of the test undergoes a phase transition from the level

α to 1, depending on whether ‖N 1
4 εN‖ → 0 or ‖N 1

4 εN‖ → ∞, respectively. Moreover,

using the CLT above, we can derive the exact local power at the threshold N
1
4 εN → h.

• The detection threshold changes for dimension d ≥ 9, where the situation becomes
more delicate: Here, the K-NN test has power going to α or 1, depending on whether

‖N 1
2 − 2

d εN‖ → 0 or ‖N 2
d εN‖ → ∞, respectively. This shows that the detection threshold

is somewhere between these two bounds, however, unlike in d ≤ 8, the exact location of
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FIG. 2. Detection threshold of the test based on the K-NN graph: Illustration of Theorem 4.2.

the detection threshold has no universality: it depends on the distribution of the data un-
der the null and the direction along which εN goes to zero. Note that the exponent in the
lower bound 1

2 − 2
d

increases to 1
2 (the parametric detection threshold), and the exponent

in the upper bound decreases to the 0 (which gives consistent fixed alternatives). We show
that both these thresholds are tight in a truncated spherical normal problem, depending on
the sign of the alternative. This is an example where the K-NN test exhibit a surprising
blessing of dimensionality, that is, it becomes easier to detect local changes along certain
directions as dimension increases (see Section 4.2.2 for details). The reason behind the
phase transition of the detection threshold at dimension 9 is explained in Section 4.1.1,
and the details of the proof are given in Appendix B.

1.5. Organization. The rest of the paper is organized as follows: The general consistency
result is stated in Section 2. The central limit theorems for the statistic (1.8) are described in
Section 3. The detection threshold and local power of the K-NN test are given in Section 4.1,
and the performance of the different tests are compared in simulations in Section 4.2. The
proofs of the results are given in the Supplementary Material [7].

2. Consistency. In this section, we prove consistency against all fixed alternatives of
the test (1.9) for stabilizing graphs functionals. This unifies the proof of consistency of the
test based on the K-NN graph [18, 28], and the FR test [19], generalizing the result to any
stabilizing graph. We begin by recalling that d(x,G (S)) is the total degree of the vertex x in
G (S ∪{x}), for S ⊂R

d nice and x ∈R
d . Moreover, for a function ψ :Rd →R, we denote by

Pψ the inhomogeneous Poisson process with intensity function ψ . (In particular, this means
for any measurable set A ⊂R

d , the number of points in A is distributed as Pois(
∫
A ψ(x)dx).)

ASSUMPTION 2.1 (Degree moment condition). A translation and scale invariant graph
functional G is said to satisfy the β-degree moment condition if it stabilizes on Pλ, for all
λ ∈ (0,∞), and

(2.1) sup
N∈N

sup
z∈Rd ,

A⊂R
d

E
{
dβ(

z,G (PNφN
∪A)

)}
< ∞,

where A ranges over all finite subsets of Rd , and φN = N1
N

f + N2
N

g.
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This condition ensures that the β-th moment of the degree function at a point z is uniformly
bounded over z and over the addition of finitely many points to the data. Note that this is
trivially satisfied for bounded degree graphs, such as the K-NN and the MST. Under this
assumption, the weak limit of the statistic 1

N
T (G (Z ′

N)) can be derived, which is given in
terms of the Henze–Penrose dissimilarity measure between the two density functions.

DEFINITION 2.1. Given p ∈ (0,1) and densities f and g in R
d , the Henze–Penrose

dissimilarity measure is defined as

(2.2) δ(f, g,p) = 1 − 2pq

∫
f (x)g(x)

pf (x) + qg(x)
dx.

This belongs to a general class of separation measures between probability distributions [16].

The following proposition gives the weak-limit of 1
N

T (G (Z ′
N)) for stabilizing graph func-

tionals satisfying the degree moment condition. The proof of the proposition closely mimics
[19], Theorem 2, and is detailed in Section A.3.

PROPOSITION 2.1. Let G be a translation and scale invariant directed graph functional
which stabilizes on Pλ for all λ ∈ (0,∞). If G satisfies the β-degree moment condition for
some β > 4, then

(2.3)
1

N
T

(
G

(
Z ′

N

)) P→ E�
↑
0

2

(
1 − δ(f, g,p)

)
,

where �
↑
0 = d↑(0,G (P1)) is the out-degree of the origin in the graph G (P1 ∪ {0}).

Using the fact δ(f, g,p) ≥ δ(f,f,p) = p2 + q2 and that the inequality is strict for den-
sities f and g differing on a set of positive measure (see [16], Theorem 1 and Corollary 1),
it can be shown that various tests based on stabilizing graph functionals, which includes the
MST and the K-NN graphs, are consistent for all fixed alternatives (1.2) (refer to Remark A.2
for details).

REMARK 2.1. Recently, Arias-Castro and Pelletier [2] showed that Rosenbaum’s cross
match test [26] based on non-bipartite matching (NBM), has the same limit as in (2.3), thus it
is also consistent for general alternatives. Note that this does not follow from Proposition 2.1,
because it is unknown whether the NBM graph functional is stabilizing. They show that the
properties of stabilizing graphs required in the proof of consistency also hold for the NBM
graph functional and, therefore, (2.3) holds for the cross match test as well.

3. Distribution under general alternatives. This section describes the central limit the-
orems of the Poissonized two-sample statistic T (G (Z ′

N)) (recall (1.8)) for stabilizing graph
functionals. Let X ′

N1
and Y ′

N2
be Poissonized samples from densities f and g in R

d as in
(1.5). Define

φN(x) = N1

N
f (x) + N2

N
g(x) and φ(x) = pf (x) + qg(x).(3.1)

Recall from Section 1.2 that the joint distribution of X ′
N1

and Y ′
N2

can be described as fol-
lows: Let Z ′ = {Z1,Z2, . . .} be independent random variables with common density φN .
Then Z ′

N = {Z1,Z2, . . . ,ZLN
}, where LN ∼ Pois(N) is independent of Z ′, and each point

of Z ′
N is labeled 1 or 2 as in (1.7). Then the sets of points assigned labels 1 and 2 have the
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same distribution as X ′
N1

and Y ′
N2

. In this section, we derive the limiting distribution of the
test statistic

R
(
G

(
Z ′

N

)) = 1√
N

{
T

(
G

(
Z ′

N

)) −EH1

(
T

(
G

(
Z ′

N

)))}
(3.2)

for stabilizing graph functionals. This involves the following two steps:

(1) The first step is to derive the CLT of the test statistic centered by the conditional
mean EH1(T (G (Z ′

N))|F), where F := σ(Z ′,LN) is the sigma-algebra generated by Z ′ and
the Poisson random variable LN , that is,

(3.3) R1
(
G

(
Z ′

N

)) = 1√
N

{
T

(
G

(
Z ′

N

)) −EH1

(
T

(
G

(
Z ′

N

))|F)}
,

for a stabilizing graph functional G . Note that conditional on F , the randomness comes from
the labeling (1.7). As the labeling is independent across the vertices of the graph, the depen-
dence in (3.3) is local, and the CLT can be proved using Stein’s method based on dependency
graphs (Theorem 3.1). This can be used to devise and calibrate a conditional test (see Re-
mark 3.2), which might be of independent interest.

(2) The second step is to derive the CLT of the conditional mean

(3.4) R2
(
G

(
Z ′

N

)) = 1√
N

{
EH1

(
T

(
G

(
Z ′

N

))|F) −EH1

(
T

(
G

(
Z ′

N

)))}
.

This requires the additional assumption of exponential stabilization (Definition 3.2), and is
proved in Proposition 3.2.

The above results can be combined to obtain the CLT of (3.2), since R(G (Z ′
N)) =

R1(G (Z ′
N)) +R2(G (Z ′

N)) (see Theorem 3.3 below for details).

3.1. The conditional CLT. For a directed graph functional G , S ⊂ R
d finite and a point

x ∈ R
d , let d↑(x,G (S)) be the out-degree of the vertex x in the graph G (S ∪ {x}), that is, the

number of outgoing edges (x, y), where y ∈ S ∪ {x}, in the graph G (S ∪ {x}). Similarly, let
d↓(x,G (S)) be the in-degree of the vertex x in the graph G (S ∪ {x}), that is, the number of
incoming edges (y, x), where y ∈ S ∪ {x}, in the graph G (S ∪ {x}). Note that d(x,G (S)) =
d↓(x,G (S)) + d↑(x,G (S)) is the total degree of the vertex x in the graph G (S ∪ {x}).

Moreover, let

(3.5) T
↑
2

(
x,G (S)

) =
(
d↑(

x,G (S)
)

2

)
, T

↓
2

(
x,G (S)

) =
(
d↓(

x,G (S)
)

2

)

be the number of outward 2-stars and inward 2-stars incident on x in G (S), respectively. Fi-
nally, let T +

2 (x,G (S)) be the number of 2-stars incident on x in G (S) with different directions
on the two edges. For notational brevity, denote

�
↑
0 = d↑(

0,G (P1)
)
, �

↓
0 = d↓(

0,G (P1)
)
,(3.6)

and �+
0 := |{z ∈ P1 : (0, z), (z,0) ∈ E(G (P0

1 ))}|. (Note that �
↑
0 was already defined in the

statement of Proposition 2.1.) Similarly, let

T
↑

2 = T
↑
2

(
0,G (P1)

)
, T

↓
2 = T

↓
2

(
0,G (P1)

)
,(3.7)

and T +
2 := T +

2 (0,G (P1)).
To derive the CLT of (3.3), we need some control on the maximum degree of the graph

functional G . The natural assumption of bounded maximum degree includes most of the
natural graphs, such as the MST and the K-NN graph. The slightly weaker polynomial upper
bound given below includes other stabilizing geometric graphs, like the Delaunay graph [25].
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ASSUMPTION 3.1 (Maximum degree condition). A graph functional G is said to satisfy
the maximum degree condition if

(3.8) sup
z∈PNφN

d
(
z,G (PNφN

)
) = oP

(
N

1
40

)
.

The following theorem gives the CLT of the test statistic centered by the conditional mean,
as in (3.3), for stabilizing graph functionals. Recall φ(x) = pf (x) + qg(x).

THEOREM 3.1. Let G be a translation and scale invariant directed graph functional
which stabilizes on Pλ, for all λ ∈ (0,∞). If G satisfies the β-degree moment condition for
β > 4 and the maximum degree condition (3.8), then

R1
(
G

(
Z ′

N

)) D→ N
(
0, κ2

G

)
,

where

κ2
G = r

4

∫
f (x)g(x)

φ3(x)
L(x)dx,(3.9)

with r := 2pq , and

L(x) := 2E�
↑
0 φ2(x) + 4φ(x)

(
qET

↑
2 g(x) + pET

↓
2 f (x)

) − 4pqE�0f (x)g(x),

where �0 := T
↑
2 + T

↓
2 + T +

2 + �+
0

2 + �
↑
0

2 , with �
↑
0 , �

↓
0 , T

↑
2 , and T

↓
2 as defined in (3.6) and

(3.7).

The proof of theorem is given in Section A.4. The limit of the conditional variance (3.9)
is derived using properties of stabilizing graphs, and the CLT is proved using Stein’s method
based on dependency graphs. In fact, our proof suggests that it is possible to extend the CLT in
Theorem 3.1 to other distance functions in R

d , whenever the maximum degree condition (As-
sumption 3.1) holds, and the conditional variance of R1(G (Z ′

N)) has a limit in probability, in
the graph G (Z ′

N) constructed using that metric. This is because our proof technique proceeds
by conditioning on the randomness of the graph and, therefore, as long as the associated graph
quantities that arise in Var(R1(G (Z ′

N))|F) converge in probability (as in Lemma A.5), and
the dependence is local (which is ensured by Assumption 3.1), the Stein’s method argument
applies and the asymptotic normality in Theorem 3.1 would hold.

REMARK 3.1 (Null distribution). Given the graph functional G , the limit of the condi-
tional variance κG depends on the densities f and g and the limiting proportion p of the
samples. Under the null (f = g) this simplifies to

κ2
G ,H0

= r

4

{
2E�

↑
0 + 4

(
qET

↑
2 + pET

↓
2

) − 2r�0
}
.(3.10)

• G = NK is the K-NN nearest neighbor graph functional: In this case, �
↑
0 = K , T

↑
2 =

K(K−1)
2 , T +

2 = �
↑
0 �

↓
0 − �+

0 = K�
↓
0 − �+

0 , E�↓ = K , and (3.10) simplifies to

κ2
NK,H0

= r

2

{
Kpq + (p − q)2K2 + p2 Var

(
�

↓
0

) + pqE�+
0

}
.(3.11)

• G is an undirected graph functional: In this case (3.10) simplifies to

κ2
G ,H0

= r

2

{
rE�0 +E

(
�2

0
)
(1 − 2r)

}
,(3.12)

since ET
↑
2 = ET

↓
2 = E

�0(�0−1)
2 , ET +

2 = E�0(�0 − 1) and E�+
0 = E�0. For example,

when G = T is the MST graph functional as in the Friedman–Rafsky test (1.11), �0 = 2
([1], Lemma 7), and (3.12) becomes κ2

T ,H0
= r{r + 1

2E(�2
0)(1 − 2r)}.
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The above discussion suggests that the CLT in Theorem 3.1 can be used to derive a condi-
tional test for (1.2).

REMARK 3.2 (A conditional test and its power). For concreteness, suppose G = T is the
MST. Then under the null EH0(T (T (Z ′

N))|F) = N1N2
(N1+N2)

2 |E(T (Z ′
N))| = N1N2

(N1+N2)
2 (LN − 1),

and given the data, we reject H0 whenever

1√
N

{
T

(
T

(
Z ′

N

)) − N1N2

(N1 + N2)2 LN

}
≤ κG ,H0zα.

By Theorem 3.1, this test has asymptotically level α. Moreover, it can be shown that (see
Section A.3 for details) that

EH1

(
T

(
G

(
Z ′

N

))|F) = ∑
1≤i �=j≤LN

N1N2f (Zi)g(Zj )1{(Zi,Zj ) ∈ E(G (Z ′
N))}

(N1f (Zi) + N2g(Zj ))(N1f (Zi) + N2g(Zj ))
.

The proof of Proposition 2.1 reveals that this test is consistent against all fixed alternatives,
and using Theorem 3.1 we can compute the approximate power of this test as

�

(
κG ,H0zα − �(Z ′

N)

κG

)
,(3.13)

where �(Z ′
N) = 1√

N
(EH1(T (G (Z ′

N))|F)−EH0(T (G (Z ′
N))|F)) is the difference of the con-

ditional means under the alternative and the null, which can be calculated from the data. The
approximation in (3.13) can be justified because Stein’s method gives uniform control on
the corresponding distribution functions (see Proposition A.2 in Appendix A.4.2). (Note that
the argument above holds for any stabilizing graph functional, as long as the number of
edges |E(G (Z ′

N))| does not depend on the unknown null distribution, as is the case for the
Friedman–Rafsky test and the test based on the K-NN graph.)

3.2. CLT of the test statistic under general alternatives. In this section, the (uncondi-
tional) CLT of the test statistic (3.2) is derived. This involves finding the CLT of the condi-
tional mean (3.4), which requires the stronger notion of exponential stabilization [24]. For
any locally finite point set H ⊂ R

d and x ∈ R
d , define the out-degree measure of a graph

functional G as follows: For all Borel sets A ⊂R
d ,

(3.14) d
↑
G (x,H,A) = ∑

y∈Hx∩A

1
{
(x, y) ∈ E

(
G

(
Hx))}

,

where Hx = H ∪ {x}. In other words, the out-degree measure of a set A, with respect to H
and x is the number of edges incident on x with the other end point in Hx ∩ A in the graph
G (Hx). The following definition formalizes the notion of “radius of stabilization” of a point,
which is the smallest radius outside which addition of finitely many points does not affect the
degree measure at the point.

DEFINITION 3.1. Fix a locally finite point set H, a point x ∈ R
d , and a Borel set A ⊆ R

d .
The radius of stabilization of the degree measure (3.14) at x with respect to H and A (to be
denoted by R(x,H,A)) is the smallest R ≥ 0 such that

(3.15) d
↑
G

(
x, x + {

H ∩ B(0,R) ∪Y
}
, x + B

) = d
↑
G

(
x, x + {

H ∩ B(0,R)
}
, x + B

)
,

for all finite Y ⊆ A\B(0,R) and all Borel subsets B ⊆ A, where B(0,R) is the (Euclidean)
ball of radius R with center at the point 0 ∈ R

d . If no such R exists, then set R(x,H,A) = ∞.
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Throughout this section, we will assume that f and g have a common support S, which is
compact and convex, and N → ∞ such that

√
N

(
N1

N1 + N2
− p

)
→ 0 and

√
N

(
N1

N1 + N2
− q

)
→ 0.(3.16)

DEFINITION 3.2. Let RN(x) := R(x,PNφN
,S) be the radius of stabilization of out-

degree measure d
↑
G at x with respect to the Poisson process PNφN

and S. Define

(3.17) τ(s) := sup
N∈N

sup
x∈Rd

P
(
RNφN

(x) > N− 1
d s

)
.

The out-degree measure d
↑
G is said to be

• power law stabilizing of order q if sups≥1 sqτ (s) < ∞,
• exponentially stabilizing if lim sups→∞ 1

s
log τ(s) < 0.

Conditions on the decay of the tail of the radius of stabilization, similar to (3.17) above, is
a standard requirement for proving limit theorems of functionals of random geometric graphs
[24, 33]. Using this machinery, we prove the following theorem, which gives the CLT of the
conditional mean (3.4) for exponentially stabilizing random geometric graphs.

PROPOSITION 3.2. Let G be a translation and scale invariant directed graph functional
in R

d which satisfies the β-degree moment condition (2.1) for some β > 2. If the out-degree
measure d

↑
G is power law stabilizing of order q >

β
β−2 , then

lim
N→∞ Var

(
R2

(
G

(
Z ′

N

))) = τ 2
G ,(3.18)

where

τ 2
G = r2

4
L0

∫
f 2(x)g2(x)

φ3(x)
dx,(3.19)

where L0 := ∫
(E{d↑(0,G (Pz

1))d↑(z,G (P0
1 ))} − (E�

↑
0 )2)dz + E(�

↑
0 )2. Moreover, if d

↑
G is

exponentially stabilizing then R2(G (Z ′
N))

D→ N(0, τ 2
G ).

The proof of theorem is given in Section A.6.1. Combining Theorem 3.1 and Proposi-
tion 3.2, the CLT of R(G (Z ′

N)) (defined in (3.2)) can be obtained. The proof is in Sec-
tion A.6.2.

THEOREM 3.3. Let G be a translation and scale invariant directed graph functional
which satisfies the β-degree moment condition for some β > 4 and the maximum out-degree
condition (3.8). If the degree measure d

↑
G is exponentially stabilizing, then

R
(
G

(
Z ′

N

)) D→ N
(
0, σ 2

G

)
,(3.20)

where σ 2
G = κ2

G + τ 2
G , with κ2

G and τ 2
G as defined in (3.9) and (3.19), respectively.

Many random geometric graphs, such as the K-NN graph and the Delaunay graph [24, 25]
are exponentially stabilizing. This theorem gives the asymptotic distribution of two-sample
tests based on such graphs, under general alternatives. This can be used to the compute power
of such tests as in Remark 3.2. Moreover, using this we can understand the asymptotic perfor-
mances of the tests, by identifying testable local alternatives, as elaborated in the following
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section for the test based on the K-NN graph. The techniques used in this section might
also be useful in studying limiting distributions of multivariate goodness-of-fit tests based on
nearest neighbors [9, 13].

To see why the asymptotic variance in (3.20) is the sum of two terms, note that

Var
(
R

(
G

(
Z ′

N

))) = E
(
Var

(
R

(
G

(
Z ′

N

))|F)) + Var
(
E

(
R

(
G

(
Z ′

N

))|F))
,

where F := σ(Z ′,LN) is the sigma-algebra generated by Z ′ and the Poisson random vari-
able LN (recall notation from Section 1.2). Now, recalling (3.3) shows Var(R(G (Z ′

N))|F) =
Var(R1(G (Z ′

N))|F), and (3.4) gives Var(E(R(G (Z ′
N))|F)) = Var(R2(G (Z ′

N))). In the
proof of Theorem 3.1, we show that Var(R1(G (Z ′

N))|F) converges in L2 to κ2
G (Lemma A.5),

while the proof of Proposition 3.2 shows that Var(R2(G (Z ′
N))) → τ 2

G (Section A.6.1), hence
the asymptotic variance in (3.20) is the sum of these two terms.

REMARK 3.3. (Comments on de-Poissonization) Poissionization is a commonly used
trick in geometric probability, where calculations become simpler because of the spatial in-
dependence of the Poisson process. In fact, when the sample sizes are large, one can pretend
that the data comes from Poissonized samples with a slightly smaller mean, since a Poisson
random variable is tightly concentrated around its expectation. De-Poissionization techniques
are well known ([23], Section 2.5 and [24], Theorem 2.3), using which one can expect to de-
Poissonize the CLT in Theorem 3.3 for the test based on the K-NN graph. The only thing that
would change is the formula of the asymptotic variance, but its derivation is quite tedious for
general alternatives. However, for the implementation of the test, we are more interested in
the asymptotic null variance, where the calculations are much simpler, and the de-Poissonized
null variance can be easily computed (see Section A.5). In fact, de-Poissonization would only
change the asymptotic variance (not the order), and the constants in the limiting power (but,
not the rates). Therefore, de-Poissonization would not affect (most of) the results of Sec-
tion 4 as these mainly focus on detection thresholds. This is also validated by the simulations
in Section 4.2.

4. Local power of the K-NN test. The test based on the K-NN graph is exponentially
stabilizing and, therefore, the results obtained in the previous section apply. Recall that we
assume f , g have a common support S which is compact and convex, and N → ∞ such that
(3.16) hold. Then we have the following corollary of Theorem 3.3.

COROLLARY 4.1. For the K-NN graph functional NK and f and g as above:

R
(
NK

(
Z ′

N

)) D→ N
(
0, σ 2

NK

)
,(4.1)

where σ 2
NK

= κ2
NK

+ r2K2

4

∫ f 2(x)g2(x)

φ3(x)
dx, with κNK

as defined in (3.9).

PROOF. Note that the graph functional NK is exponentially stabilizing [24] and satisfies
the degree moment condition for β > 4. Therefore, by Theorem 3.3, (4.1) holds with σ 2

NK
=

κ2
NK

+ τ 2
NK

. The result follows by noting that τ 2
NK

= r2K2

4

∫ f 2(x)g2(x)

φ3(x)
dx (recall (3.19)). �

REMARK 4.1. Under the null (f = g), τ 2
NK,H0

= r2K2

4 , and using (3.11), the asymptotic
variance (4.1) simplifies to

σ 2
K := σ 2

NK,H0
= κ2

NK,H0
+ τ 2

NK,H0

= r

2

{
K(K + 1)pq + (p − q)2K2 + p2 Var

(
�

↓
0

)}
.

(4.2)
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Then recalling (1.9), the two-sample test based on NK rejects when

1√
N

{
T

(
NK

(
Z ′

N

)) −EH0

(
T

(
NK

(
Z ′

N

)))} ≤ σKzα.(4.3)

4.1. Power against local alternatives. In this section, we determine the power of the
K-NN test against local alternatives, that is, the power when the alternatives shrink (with
increasing sample size) toward the null at a certain rate. To this end, let � ⊆ R

p be the
parameter space and {Pθ }θ∈� be a parametric family of distributions in R

d with density
f (·|θ). Let X ′

N1
and Y ′

N2
be samples from Pθ1 and Pθ2 as in (1.5), respectively, and consider

the testing problem

(4.4) H0 : θ2 − θ1 = 0 versus H1 : θ2 − θ1 = εN,

for a sequence (εN)N≥1 in R
p , such that ‖εN‖ → 0. The limiting power of the two-sample

test based on the K-NN graph NK (4.3) is

lim
N→∞Pθ2=θ1+εN

(
N− 1

2
{
T

(
NK

(
Z ′

N

)) −EH0

(
T

(
NK

(
Z ′

N

)))} ≤ σKzα

)
,

where σK is the variance of the K-NN test under the null (recall (4.2)). Our goal is to find the
threshold on εN where the K-NN test transitions from powerless to powerful. More precisely,
we want to determine the sequence aN → 0, such that for ‖εN‖ � aN , the limiting power is
α, and for ‖εN‖ � aN , the limiting power is 1. The sequence (aN)N≥1 is often known as the
detection-threshold of the test.

The parametric rate of detection is O(N− 1
2 ); however, results in [6] imply that the test

based on the K-NN graph has no power in this scale. As a result, the asymptotic performance
of these tests cannot be compared using their Pitman efficiencies (limiting local power when

εN = hN− 1
2 , which happens to be zero in this case), making the problem of determining the

exact detection threshold particularly important. We answer this question in Theorem 4.2,
where the exact detection threshold of the K-NN test is determined. Quite interestingly, the
threshold depends on several things, such as the dimension d , the distribution of the data, and
the direction of the alternative.

To state the assumptions required for computing the detection threshold, we need a few
definitions: For a function g(z1, z2) :Rd ×R

p →R, ∇z1g(z1, z2) denotes the d × 1 gradient
vector and Hz1g(z1, z2) the d ×d Hessian matrix of g, with respect to z1 (with z2 held fixed).
Similarly, ∇z2g(z1, z2) and Hz2g(z1, z2) is the p × 1 gradient vector and the p × p Hessian
matrix of g, with respect to z2, respectively.

ASSUMPTION 4.1. Suppose the parameter space � ⊆ R
p is convex, and the family of

distributions {Pθ }θ∈� satisfy:

(a) For all θ ∈ �, the density f (·|θ) has a compact and convex support S ⊂ R
d , with a

nonempty interior, not depending on θ .
(b)

∫
∂S f (z|θ)dz = 0, for all θ ∈ �, where ∂S denotes the boundary of S.

(c) For all θ ∈ �, the functions f (·|θ) and ∇θf (·|θ) are three times continuously differen-
tiable in the interior of S, and the expected squared of the score function:

EX∼f (·|θ)[h�∇θ f (X|θ)
f (X|θ)

]2 > 0, for all h ∈ R
p\{0}.

(d) For all x ∈ S, f (x|·) is three times continuously differentiable in the interior of �.

The compactness of the support is required for establishing the CLT for exponentially sta-
bilizing graph functionals (recall Corollary 4.1). However, we expect the CLT, and hence
our results, to hold even when the support is not compact, as long as, the distributions have
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“nice” tails (see simulations in Section 4.2 below). Under the above assumptions, the follow-
ing theorem characterizes the detection threshold of the K-NN test and determines the exact
limiting power at the threshold. To state the theorem, we need to introduce some notation:
Recall that P0

1 denotes the Poisson process of rate 1 in R
d with the origin 0 ∈ R

d added to it.
Define

CK,s := E

{ ∑
x∈P0

1

‖x‖s1
{
(0, x) ∈ E

(
NK

(
P0

1
))}}

,(4.5)

which is the expectation of the sum of the s-th power of the lengths of the outward edges
incident at the origin 0 in the graph NK(P0

1 ). This can be computed explicitly in terms of
Gamma functions (see (B.11) in the Supplementary Material for details). Finally, define

aK,θ1(h) := −rpCK,2

4dσK

∫
S
h�∇θ1

(
tr(Hxf (x|θ1))

f (x|θ1)

)
f

d−2
d (x|θ1)dx,(4.6)

where CK,2 is defined above in (4.5), σK as in (4.2), and

bK,θ1(h) := r2K

2σK

E

[
h�∇θ1f (X|θ1)

f (X|θ1)

]2
,(4.7)

where the expectation is with respect to X ∼ f (·|θ1).

THEOREM 4.2. Let {Pθ }θ∈� be a family of distributions satisfying Assumption 4.1, and
X ′

N1
and Y ′

N2
be samples from Pθ1 and Pθ2 as in (1.5), respectively. Consider the two-sample

test based on the K-NN graph functional NK with rejection region (4.3) for the testing prob-
lem (4.4).

(i) If the dimension d ≤ 8, then the following hold:

– ‖N 1
4 εN‖ → 0: The limiting power of the test (4.3) is α.

– N
1
4 εN → h: Then if dimension dimension d ≤ 7, limiting power of the test (4.3) is

�
(
zα + bK,θ1(h)

)
.(4.8)

Otherwise, dimension d = 8 and the limiting power is

�
(
zα + aK,θ1(h) + bK,θ1(h)

)
,(4.9)

where aK,θ1(h) and bK,θ1(h) are as defined above.

– ‖N 1
4 εN‖ → ∞: The limiting power of the test (4.3) is 1.

(ii) If the dimension d ≥ 9, then the following hold:

– ‖N 1
2 − 2

d εN‖ → 0: The limiting power of the test (4.3) is α.

– N
1
2 − 2

d εN → h: The limiting power of the test (4.3) is

�
(
zα + aK,θ1(h)

)
.(4.10)

– ‖N 1
2 − 2

d εN‖ → ∞ such that ‖N 2
d εN‖ → 0: Then depending on whether

N
1
2 − 2

d

∫
S
ε�
N∇θ1

(
tr(Hxf (x|θ1))

f (x|θ1)

)
f

d−2
d (x|θ1)dx →

{∞,

−∞,

the limiting power of the test (4.3) is 0 or 1, respectively.

– N
2
d εN → h: The limiting power of the test (4.3) is 0 or 1, depending on whether aK,θ1(h)+

bK,θ1(h) is negative or positive, respectively.

– ‖N 2
d εN‖ → ∞: The limiting power of the test (4.3) is 1.
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The theorem is pictorially summarized in Figure 2, and the proof is given in the Appendix.
We elaborate on the implications of this result, and its several interesting consequences be-
low:

(a) Theorem 4.2 shows that for dimension d ≤ 7, the detection threshold of the test is at
N− 1

4 . More precisely, if we fix an alternative direction h ∈ R
p , and suppose θ2 = θ1 + δNh,

for some positive sequence δN → 0, then, by Theorem 4.2, the limiting power of the test (4.3)
is ⎧⎪⎪⎨

⎪⎪⎩
α if N

1
4 δN → 0,

�
(
zα + λ2bK,θ1(h)

)
> α if N

1
4 δN → λ > 0,

1 if N
1
4 δN → ∞.

Note that the power at the threshold N
1
4 δN → λ is always greater than α, because bK,θ1(h) >

0 by Assumption 4.1(c). Here, the limiting power is obtained from the limit of the Hessian of
the mean difference (defined below in (4.13)), which can be thought of as the second-order
efficiency of the test (4.3), in comparison to the first-order (Pitman) efficiency, which is zero
in this case (see Section 4.1.1 below for more on this analogy).

(b) For dimension d = 8, the behavior is similar to the case above, but there is a subtle
difference when N

1
4 δN → λ. Here, for an alternative direction h ∈ R

p and θ2 = θ1 + δNh as
above, the limiting power of the test (4.3) is⎧⎪⎪⎨

⎪⎪⎩
α if N

1
4 δN → 0,

�
(
zα + λaK,θ1(h) + λ2bK,θ1(h)

)
if N

1
4 δN → λ > 0,

1 if N
1
4 δN → ∞.

Note that at the threshold N
1
4 δN → λ, the limiting power can be greater than α or less than α,

depending on whether λaK,θ1(h)+λ2bK,θ1(h) is positive or negative. In particular, consider-

ing the power as a function of λ gives: if λ < −aK,θ1 (h)

bK,θ1 (h)
, then the limiting power is less than α,

and if λ > −aK,θ1 (h)

bK,θ1 (h)
, then the limiting power is greater than α. Therefore, in dimension 8, the

limiting power function is nonmonotone if aK,θ1(h) < 0. The asymptotic power starts off at
α, decreases for a while, going below α and making it asymptotically biased (i.e., the limiting
power is less than the size of the test), then starts to increase, going past α and eventually be-
coming 1, as λ → ∞. This also shows that for every direction h ∈ R

d such that aK,θ1(h) < 0,

there is a “special” point λ = −aK,θ1 (h)

bK,θ1 (h)
> 0, where the limiting power is exactly α.

(c) A surprising phenomenon happens for dimension d ≥ 9: Here, unlike for dimension 8
or smaller, the precise location of the detection threshold depends on the distribution of the
data under the null f (·|θ1) and the direction of the alternative. As before, fix an alternative
direction h ∈ R

p , and suppose θ2 = θ1 + δNh, for some positive sequence δN → 0. Then,
depending on the sign of aK,θ1(h) (recall (4.6)), there are two cases:

– Suppose aK,θ1(h) > 0. Then, by Theorem 4.2, the limiting power of the test (4.3) is⎧⎪⎪⎨
⎪⎪⎩

α if N
1
2 − 2

d δN → 0,

�
(
zα + λaK,θ1(h)

)
> α if N

1
2 − 2

d δN → λ > 0,

1 if N
1
2 − 2

d δN → ∞.

(4.11)

Here, the detection threshold of the test (4.3) is at �(N− 1
2 + 2

d ), that is, the limiting power

transitions from α to 1 at δN = �(N− 1
2 + 2

d ). Note that the detection threshold N− 1
2 + 2

d



TWO-SAMPLE TESTS BASED ON GEOMETRIC GRAPHS 2895

improves with dimension, moving closer to the parametric rate of N− 1
2 as the dimension d

grows to infinity, exhibiting a blessing of dimensionality. An example where this is attained
is the truncated spherical normal problem (see Section 4.2.2 below).

– Suppose aK,θ1(h) < 0. By Theorem 4.2, the limiting power of the test (4.3) is⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α if N
1
2 − 2

d δN → 0,

�
(
zα + λaK,θ1(h)

)
< α if N

1
2 − 2

d δN → λ > 0,

0 if N
1
2 − 2

d δN → ∞ and N
2
d δN → 0,

0 if N
2
d δN → κ and

κaK,θ1(h) + κ2bK,θ1(h) < 0,

1 if N
2
d δN → κ and

κaK,θ1(h) + κ2bK,θ1(h) > 0,

1 if N
2
d δN → ∞.

Note that in this case the limiting power function is nonmonotone and asymptotically
biased, it starts off at α, then goes below α, eventually drops to zero, and then tran-
sitions up to 1. This surprising phenomenon happens because the test (4.3) has a one-
sided rejection region, and it is universally consistent. Therefore, the limiting power when

N
1
2 − 2

d δN → λ > 0 is given by the normal lower tail, more precisely, �(zα + λaK,θ1(h)).
Therefore, for a direction chosen such that aK,θ1(h) < 0, the power drops below α and then
goes to zero when λ → ∞, but it has to eventually go up to 1 because of consistency, hence

the nonmonotonicity. In this case, the power transitions from 0 to 1, at δN = �(N− 2
d ),

which becomes worse with dimension (converging finally to fixed difference alternatives
as d → ∞), exhibiting a curse of dimensionality. Again, this is attained in the truncated
spherical normal problem (see Section 4.2.2 below). Theorem 4.2 also gives the limiting

power at the threshold N
2
d δN → κ > 0. Here, the limiting power of the test (4.3) con-

verges to 0 or 1, depending on whether κaK,θ1(h) + κ2bK,θ1(h) is negative or positive,
respectively. In other words, considering the limiting power as a function of κ gives: if

κ < −aK,θ1 (h)

bK,θ1 (h)
, then the limiting power is 0, and if κ > −aK,θ1 (h)

bK,θ1 (h)
, then the limiting power is

1. This happens because at the threshold N
2
d δN → κ > 0, the gradient and Hessian of the

mean difference (defined below in (4.13)) are of the same order, and the limiting power is 0
or 1 depending on whether the sum of the gradient and the Hessian diverges to ∞ or −∞,
which is in turn determined by the sign of κaK,θ1(h) + κ2bK,θ1(h). (Note that, similar to

case (b) above, there is a “special” point κ = −aK,θ1 (h)

bK,θ1 (h)
, where the theorem is unable to say

anything about the limiting power, when N
2
d δN → κ > 0. If this happens, then the limiting

power depends on the higher-order expansions of the gradient and the Hessian of the mean
difference, which has to be calculated individually for specific examples.)

The discussion above shows that for dimension 9 and higher, given a family of distributions
{Pθ : θ ∈ � ⊂ R

p} and an alternative direction h ∈ R
p , there are some “good directions”

(where aK,θ1(h) > 0) where the test (4.3) exhibits a blessing of dimensionality, but at the
same time there are “bad directions” (where aK,θ1(h) < 0) where one sees a curse of dimen-
sionality. For simulations illustrating this phenomenon, refer to Section 4.2.2 below.

(d) Note that Theorem 4.2 does not tell us what the detection threshold is when aK,θ1(h) =
0. These are the “degenerate directions,” for which the precise location of the detection
threshold has to be determined on a case by case basis: For example, this happens in the
normal location problem (see Section 4.2.1 below), where a direct calculation shows that,

irrespective of the dimension, the detection threshold is at �(N− 1
4 ), for all directions.
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(e) The rates obtained in Theorem 4.2 can be summarized in terms of the critical expo-
nents,

βd =
⎧⎪⎨
⎪⎩

1

4
if d ≤ 8,

1

2
− 2

d
if d ≥ 9,

γd =
⎧⎪⎨
⎪⎩

1

4
if d ≤ 8,

2

d
if d ≥ 9.

(4.12)

Theorem 4.2 says that (irrespective of the distribution of the data) for the testing problem
(4.4): (1) if ‖Nβd εN‖ → 0, the limiting power of the test (4.3) is α; and (2) if ‖Nγd εN‖ → ∞,
the limiting power of the test (4.3) is 1. Note that they are equal up to dimension d = 8, after

which βd increases with d to 1
2 (recall the K-NN test has no power for N− 1

2 alternatives [6]),
and γd decreases with d to zero (the K-NN test always has power against fixed alternatives).

4.1.1. Proof outline. The proof of Theorem 4.2 is given in Appendix B. Here, we give
an outline of the proof. To find the limiting local power of the K-NN test (4.3), it suffices to
derive the asymptotic distribution of

1√
N

{
T

(
NK

(
Z ′

N

)) −EH0

(
T

(
NK

(
Z ′

N

)))} = T1 + T2,

where T1 := 1√
N

{T (NK(Z ′
N)) −EH1(T (NK(Z ′

N)))} and the mean difference

T2 := 1√
N
EH1

(
T

(
NK

(
Z ′

N

))) −EH0

(
T

(
NK

(
Z ′

N

)))},(4.13)

when θ2 = θ1 + εN , where εN is as in (4.4). The proof of Corollary 4.1 shows that the first
term converges in distribution to N(0, σ 2

K). Therefore, determining the limiting power boils
down to computing the limit of the mean difference T2. In the parametric setup of (4.4),
EH1(T (NK(Z ′

N))) := δN(θ1, θ2) for some function δN : �2 → R. (The expression of δN is
given in (B.1) in the Supplementary Material. Note that δN is related to the function μN in
the Appendix as: δN(θ1, θ2) = N1N2

N2 μN(θ1, θ2).) Then by a Taylor series expansion in the
second coordinate (and ignoring the error term) gives

T2 = 1√
N

{
δN(θ1, θ1 + εN) − δN(θ1, θ1)

}

≈ ε�
N√
N

∇δN(θ1, θ1) + ε�
NH[δN(θ1, θ1)]εN

2
√

N
,

where ∇δN(θ1, θ1) := ∇θ δN(θ1, θ)|θ=θ1 ∈ R
p is the gradient vector (with respect to the sec-

ond coordinate θ ) of δN(θ1, θ) evaluated at θ = θ1, and H[δN(θ1, θ1)] ∈ R
p×p is the Hessian

matrix (with respect to θ ) of δN(θ1, θ). The proof of Theorem 4.2 involves showing the fol-
lowing steps:

– 1√
N

ε�
N∇δN(θ1, θ1) has finite limit when εN = h

N
1
2 − 2

d

(Lemma B.1 in Appendix B).

– 1√
N

ε�
NH[δN(θ1, θ1)]εN has finite limit when εN = h

N
1
4

(Lemma B.2 in Appendix B).

Note that when d ≤ 7, N− 1
2 + 2

d � N− 1
4 and the Hessian term dominates the gradient term,

giving the formula in (4.8). This can be thought of as the second-order efficiency of the test
(4.3). (This is in analogy with the classical first-order (Pitman) efficiency, which is derived
under local alternatives εN = h/

√
N . However, the K-NN test (4.3) has zero-Pitman effi-

ciency, because the first-order term h�
N

∇δN(θ1, θ1) is asymptotically zero in this scale, hence
the local power is given by the second-order Hessian term.) On the other hand, when d = 8,
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the rate of convergence of the gradient and the Hessian terms match, and, as a result the
contributions from both the terms show up in (4.9). Finally, when d ≥ 9, the gradient term

dominates the Hessian term (since N− 1
2 + 2

d � N− 1
4 ), which explains the shift in the location

of the detection threshold at dimension 8 and gives the expression in (4.10).

4.2. Examples. In this section, we discuss examples which attain the threshold obtained
in Theorem 4.2. In order to meet compactness assumption in Theorem 4.2 (recall Assump-
tion 4.1), we consider standard distributions truncated to a compact, convex set. However,
as mentioned earlier, we expect the results to hold for the un-truncated family (with “nice”
tails), as well.

4.2.1. Example: Normal location. Let A ⊂ R
d be a compact and convex set which is

symmetric around the origin 0 ∈ R
d , that is, A = −A. For θ ∈ R

d , define a family of densities

φA(x|θ) = 1
ZA(θ)

e− 1
2 ‖x−θ‖2

, where ZA(θ) := ∫
A e− 1

2 ‖x−θ‖2
dx, is the normalizing constant.

This is the d-dimensional multivariate normal N(θ, Id) truncated to the set A.
Now, consider the problem of testing (4.4) based on (4.3), given i.i.d. samples XN1 and

YN2 from φA(·|θ1) and φA(·|θ2), respectively. There are two cases depending whether the
true θ1 is zero or nonzero. Here, we discuss the case θ1 = 0: When θ1 = 0, it is easy to check
that ∫

A
∇θ=0

(
tr(HxφA(x|θ))

φA(x|θ)

)
φ

d−2
d

A (x|θ)dx = 0,

which implies Theorem 4.2 cannot be directly applied to the case d ≥ 9. However, in this
case a direct calculation shows that the gradient term is exactly zero across all dimensions,
which implies the following (calculations are given in Lemma C.1 in Appendix C): For any
d ≥ 1:

– If ‖N 1
4 εN‖ → 0, the limiting power of the test is α.

– If ‖N 1
4 εN‖ → ∞, the limiting power of the test is 1.

– If N
1
4 εN → h, for some h ∈ R

p\{0}, the limiting power of the test is given by �(zα +
r2K
2σK

EX∼φA(·|0)(h
�X)2).

Details of the other case θ1 �= 0 can be found in Appendix C. In this case, because of the
asymmetry introduced by the truncation,∫

A
∇θ1

(
tr(HxφA(x|θ1))

φA(x|θ1)

)
φ

d−2
d

A (x|θ1)dx �= 0,

and hence, the detection threshold undergoes a phase-transition at dimension 8 as in Theo-
rem 4.2. However, in the untruncated normal family ({Pθ ∼ N(θ, Id) : θ ∈R

d})∫
Rd

∇θ1

(
tr(HxφRd (x|θ1))

φRd (x|θ1)

)
φ

d−2
d

Rd (x|θ1) = 0,

for all θ1 ∈ R
d , that is, for the untruncated normal location problem we expect the detection

threshold to be at N− 1
4 , for all dimensions, as seen in the simulations below.

To illustrate the results above, we consider the following simulation: Consider the para-
metric family Pθ ∼ N(θ, Id), for θ ∈ R

d . Figure 3 shows the empirical power (out of 100
repetitions) of the tests based on the 2-NN and 6-NN graphs, the test based on the sym-
metrized 3-NN graph (see Appendix E for details on the limiting power of the symmetrized
3-NN test), and the Hotelling’s T 2 test, with N1 = 2000 samples from N(2 · 1, Id) and N2 =
1000 samples from N(2 · 1 + δN− 1

4 1, Id), over a grid of 40 values of δ in [−3,3] (smoothed
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FIG. 3. Empirical power for the normal location problem against δN− 1
4 alternatives, in dimension (a) d = 4

and (b) d = 10.

out using the loess function in R), in (a) dimension 4 and (b) dimension 10. (Here,
N = N1 + N2 = 3000.) The level of the tests are set to α = 0.05. The plots show that the
tests based on the NN graphs have nontrivial local power as a function of δ, as predicted by
the calculations above. Note that, in this case, the most powerful test is the Hotelling’s T 2-

test, which has detection threshold at N− 1
2 and, therefore, has high power at the N− 1

4 scale,
as seen in the plots.

Figure 4 shows the empirical power (out of 100 repetitions) of the different tests with
N1 = 5000 samples from N(2 · 1, Id) and N2 = 3000 samples from N(2 · 1 + N−b · h, Id),
where b varies over a grid of 100 values in [0,1], h = 1 and dimension (a) d = 4 and (b)
d = 10. Note that b = 0 corresponds to fixed alternatives where the power is expected to
be near 1 because of consistency. The level of the tests are set to α = 0.25. Note that the
power of the tests based on the K-NN graphs transitions from α to 1 around b = 0.25, which

FIG. 4. Empirical power in the normal location problem with N1 = 5000 samples from N(2 · 1, Id) and
N2 = 3000 samples from N(2 · 1 + N−b · h, Id ), where b varies over a grid of 100 values in [0,1], h = 1
and dimension (a) d = 4 and (b) d = 10.
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corresponds to the rate N− 1
4 , in both dimensions, as predicted by the calculations above. On

the other hand, the power of the Hotelling’s T 2 test transitions from α to 1 around b = 0.5,

which corresponds to the parametric rate of N− 1
2 . The corresponding plots for the negative

direction h = −1 are given in Appendix F.1.

4.2.2. Example: Spherical normal. Let M be a convex, compact subset of Rd . For λ > 0,
define a family of densities φM(·|λ2):

φM

(
x|λ2) = 1

ZM(λ2)
e
− 1

2λ2 ‖x‖2
for x ∈ M,

where ZM(λ2) := ∫
M e

− 1
2λ2 ‖x‖2

dx is the normalizing constant. (Note that ZRd (λ2) =
(2πλ2)

d
2 .) This is the d-dimensional spherical normal distribution N(0, λ2Id) truncated to

the set M . Now, consider the problem of testing (4.4) based on (4.3), given i.i.d. samples
XN1 and YN2 from φM(·|λ2

1) and φM(·|λ2
2), respectively. In this case, for h ∈ R,

∫
M

h · ∇λ1

(
tr(HxφM(x|λ2

1))

φM(x|λ2
1)

)
φ

d−2
d

M

(
x|λ2

1
)

= − ZM(
dλ2

1
d−2)

ZM(λ2
1)

d−2
d

2h

λ5
1

(
2E‖W‖2 − λ2

1d
)
,

(4.14)

where W = (W1,W2, . . . ,Wd)′ are i.i.d. from the density φM(·| dλ2
1

d−2) (see Section D in the
Supplementary Material for details). Therefore (recall (4.6)),

aK,λ1(h) = rpCK,2

2dσK

ZM(
dλ2

1
d−2)

ZM(λ2
1)

d−2
d

h

λ5
1

(
2E‖W‖2 − λ2

1d
)
,(4.15)

which is positive or negative depending on whether h is positive or negative. Therefore,

the limiting power of the test (4.3) for dimension d ≥ 9, at the threshold N
1
2 − 2

d εN → h,
is �(zα + aK,λ1(h)). (Note that in the simulations below we will consider the untruncated
spherical normal family {Pλ ∼ N(0, λ2Id) : λ > 0}. The limiting power in this case can be
obtained by choosing M = [−L,L]d , and taking L → ∞ in (4.15).)

Now, suppose we are given i.i.d. samples XN1 from φM(·|λ2
1) and YN2 from φM(·|λ2

2),
where λ2 = λ1 +hδN > 0, for some h fixed and δN → 0, as N → ∞. Then, by Theorem 4.2,
depending on the dimension and the sign of h we have the following cases:

• For dimension d ≤ 8, irrespective of the sign of h, the limiting power of the test (4.3) is

0 or 1, depending on whether N
1
4 δN → 0 or N

1
4 δN → ∞. At the threshold, N

1
4 δN → κ ,

the limiting power is given by (4.8) or (4.9) (with h replaced by κh). This is illustrated
in Figure 5, which shows the empirical power (out of 100 repetitions) of the tests based
on the 2-NN and 6-NN graphs, the test based on the symmetrized 3-NN graph, and the
generalized likelihood ratio test (GLR), in dimension d = 4, with N1 = 12,000 samples
from N(0,32 · Id) and N2 = 6000 samples from N(0, (3+hN−b)2Id), where b varies over
a grid of 100 values in [0,1] and (a) h = 2 (b) h = −2. (Here, N = N1 + N2 = 18,000.)
The level of the tests are set to α = 0.25. Note that the power of the tests based on the K-
NN graphs transitions from α to 1 around b = 0.25 (irrespective of the sign of h), which

corresponds to the rate N− 1
4 , as shown in the calculations above. On the other hand, the

power of the GLR test transitions from α to 1 around b = 0.5, which corresponds to the

parametric rate of N− 1
2 .
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FIG. 5. Empirical power in the spherical normal problem in dimension d = 4 with N1 = 12,000 samples from
N(0,32 · Id ) and N2 = 6000 samples from N(0, (3 + hN−b)2Id), where b varies over a grid of 100 values in
[0,1] and (a) h = 2 (b) h = −2.

• Next, suppose d ≥ 9. Then depending on the sign of h the following cases arise:
– Suppose h > 0 (then aK,λ1(h) > 0). By (4.11), the limiting power of the test (4.3) is⎧⎪⎪⎨

⎪⎪⎩
α if N

1
2 − 2

d δN → 0,

�
(
zα + κaK,λ1(h)

)
> α if N

1
2 − 2

d δN → κ > 0,

1 if N
1
2 − 2

d δN → ∞,

where aK,λ1(h) is defined above in (4.15). Here, the detection threshold exhibits a

blessing of dimensionality, improving with dimension to the parametric rate of N− 1
2

as the dimension d grows to infinity. This is illustrated in Figure 6(a), which shows
the empirical power (out of 100 repetitions) of the different tests in dimension d =
10, with N1 = 300,000 samples from N(0,32 · Id) and N2 = 200,000 samples from
N(0, (3 + hN−b)2Id), where b varies over a grid of 100 values in [0,1] and h = 2. As
before, the level of the tests are set to α = 0.25. Note that the power of the tests based
on the K-NN graphs transitions from α to 1 around b = 1

2 − 2
d

= 0.3, which is the pre-

dicted rate of N− 1
2 + 2

d . As before, the power of the GLR test transitions from 0 to 1
around b = 0.5. To see the transitions more sharply and observe the local power of the
different tests, we can zoom in at the thresholds (see Appendix F.2).

– Suppose h < 0 (then aK,θ1(h) < 0). By Theorem 4.2, the limiting power of the test (4.3)
is ⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

α if N
1
2 − 2

d δN → 0,

�
(
zα + κaK,θ1(h)

)
< α if N

1
2 − 2

d δN → κ > 0,

0 if N
1
2 − 2

d δN → ∞ and N
2
d δN → 0,

1 if N
2
d δN → ∞.

This is illustrated in Figure 6(b), which shows the empirical power (out of 100 repe-
titions) of the different tests in dimension d = 10, with N1 = 200,000 samples from
N(0,32 · Id) and N2 = 100,000 samples from N(0, (3 + hN−b)2Id), where b varies
over a grid of 100 values in [0,1] and h = −2. Here, we observe the predicted non-
monotonicity of the power of the K-NN tests. The asymptotic power starts of at the
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FIG. 6. Empirical power in the spherical normal problem in dimension d = 10 with N1 samples from
N(0,32 · Id) and N2 samples from N(0, (3 + hN−b)2Id), where b varies over a grid of 100 values in [0,1]
and (a) h = 2 (b) h = −2.

level α = 0.25, goes down to zero (predicted by the theorem at b = 1
2 − 2

d
= 0.3), stays

at zero for a while and jumps up to 1 (predicted by the theorem at b = 2
d

= 0.2). Addi-
tional simulations zooming in to the different thresholds are given in Appendix F.2.
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SUPPLEMENTARY MATERIAL

Supplement to “Asymptotic distribution and detection thresholds for two-sample
tests based on geometric graphs” (DOI: 10.1214/19-AOS1913SUPP; .pdf). The proofs
of the results are given in the supplementary material, which is organized as follows: The
consistency of tests based on stabilizing graphs (Proposition 2.1), and the central limit the-
orems of the test statistic under general alternatives (Theorem 3.1, Proposition 3.2 and The-
orem 3.3) are proved in Appendix A. The detection thresholds for the test based on the K-
NN graph (Theorem 4.2) is proved in Appendix B. Calculations for the normal location and
the spherical normal examples are given in Appendix C and Appendix D, respectively. The
symmetrized K-NN test is discussed in Appendix E. Additional simulations are given in
Appendix F.
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