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Functional data analysis is typically conducted within the L2-Hilbert
space framework. There is by now a fully developed statistical toolbox al-
lowing for the principled application of the functional data machinery to
real-world problems, often based on dimension reduction techniques such
as functional principal component analysis. At the same time, there have re-
cently been a number of publications that sidestep dimension reduction steps
and focus on a fully functional L2-methodology. This paper goes one step
further and develops data analysis methodology for functional time series in
the space of all continuous functions. The work is motivated by the fact that
objects with rather different shapes may still have a small L2-distance and
are therefore identified as similar when using a L2-metric. However, in ap-
plications it is often desirable to use metrics reflecting the visualization of
the curves in the statistical analysis. The methodological contributions are
focused on developing two-sample and change-point tests as well as con-
fidence bands, as these procedures appear to be conducive to the proposed
setting. Particular interest is put on relevant differences; that is, on not trying
to test for exact equality, but rather for prespecified deviations under the null
hypothesis.

The procedures are justified through large-sample theory. To ensure prac-
ticability, nonstandard bootstrap procedures are developed and investigated
addressing particular features that arise in the problem of testing relevant
hypotheses. The finite sample properties are explored through a simulation
study and an application to annual temperature profiles.

1. Introduction. Due to the recent dramatic evolution in advanced data collection tech-
nologies, the development of statistical methodology for the analysis of functional data sam-
pled over time and/or space has become an active field of research. Most of the literature
has dealt with developing Hilbert space-based methodology for which there exists by now
a fully fledged theory. The interested reader is referred to the various monographs of Bosq
[11], Ferraty and Vieu [23], Horváth and Kokoszka [28] and Ramsay and Silverman [40] for
up-to-date accounts. However, the integral role of smoothness has been discussed at length in
Ramsay and Silverman [40] and virtually all functions fit in practice are at least continuous.
In such cases, dimension reduction techniques can incur a loss of information and fully func-
tional methods can prove advantageous. More recently, Aue et al. [6], Bucchia and Wendler
[13] and Horváth et al. [30] discussed fully functional methodology in a Hilbert space frame-
work.

Since all functions utilized for practical purposes are at least continuous, and often
smoother than that, it might be more natural to develop methodology for functional data
in the space of continuous functions. This is the approach pursued in the present paper, in
particular in two-sample and change-point problems for Banach space-valued time series
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satisfying mixing conditions. While it might thus be reasonable to build statistical analysis
adopting this point of view, there are certain difficulties associated with it. Giving up on the
theoretically convenient Hilbert space setting means that substantially more effort has to be
put into the derivation of theoretical results, especially if one is interested in the incorporation
of dependent functional observations. Section 2 of this paper gives an introduction to Banach
space methodology and states some basic results, in particular an invariance principle for a
sequential process in the space of continuous functions.

The theoretical contributions will be utilized for the development of relevant two-sample
and change-point tests in Sections 3 and 4, respectively. Here, the usefulness of the proposed
approach becomes more apparent as differences between two smooth curves are hard to detect
in practice. Additionally, small discrepancies might perhaps not even be of importance in
many applied situations. Therefore, the “relevant” setting is adopted that is not trying to test
for exact equality under the null hypothesis, but allows for prespecified deviations from an
assumed null function. For example, if C([0,1]), the space of continuous functions on the
compact interval [0,1], is equipped with the sup-norm ‖f ‖ = supt∈[0,1] |f (t)|, and μ1 and
μ2 are the mean functions corresponding to two samples, interest is in hypotheses of the form

(1.1) H0 : ‖μ1 − μ2‖ ≤ � and H1 : ‖μ1 − μ2‖ > �,

where � ≥ 0 denotes a prespecified constant. The classical case of testing perfect equality,
obtained by the choice � = 0, is therefore a special case of (1.1). However, in applications
it might be reasonable to think about this choice carefully and to define precisely the size
of change which one is really interested in. In particular, testing relevant hypotheses avoids
the consistency problem as mentioned in Berkson [9], that is, any consistent test will detect
any arbitrary small change in the mean functions if the sample size is sufficiently large.
One may also view this perspective as a particular form of a bias-variance trade-off. The
problem of testing for a relevant difference between two (one-dimensional) means and other
(finite-dimensional) parameters has been discussed by numerous authors in biostatistics (see
Wellek [44] for a recent review), but to the best of our knowledge these testing problems have
not been considered in the context of functional data. It turns out that from a mathematical
point of view the problem of testing relevant (i.e., � > 0) hypotheses is substantially more
difficult than the classical problem (i.e., � = 0). In particular, it is not possible to work
with stationarity under the null hypothesis, making the derivation of a limit distribution of
a corresponding test statistic or the construction of a bootstrap procedure substantially more
difficult.

Section 3 develops corresponding two-sample tests for the Banach space C([0,1]). Sec-
tion 4 extends these results to the change-point setting (see Aue and Horváth [4] for a recent
review of change-point methodology for time series). Here, one has to deal with the addi-
tional complexity of locating the unknown time of change. Several new results for change-
point analysis of functional data in C([0,1]) are put forward. A specific challenge here is
the fact that the asymptotic null distribution of test statistics for hypotheses of the type (1.1)
depends on the set of extremal points of the unknown difference μ1 −μ2, and is therefore not
distribution-free. Most notable for both the two-sample and the change-point problem is the
construction of nonstandard bootstrap tests for relevant hypotheses to solve this problem. The
bootstrap is theoretically validated and then used to determine cut-off values for the proposed
procedures.

Another area of application that lends itself naturally to Banach space methodology is that
of constructing confidence bands for the mean function of a collection of potentially tem-
porally dependent, continuous functions. There has been recent work by Choi and Reimherr
[17] on this topic in a Hilbert space framework for functional parameters of independent
functions based on geometric considerations. Here, results for confidence bands for the mean
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difference in a two-sample framework are added in Section 3.1.2. Natural modifications al-
low for the inclusion of the one-sample case. One of the main differences between the two
approaches is that the proposed bands hold pointwise, while those constructed from Hilbert
space theory are valid only in an L2-sense. This property is appealing for practitioners, be-
cause two mean curves can have a rather different shape, yet the L2-norm of their difference
might be very small.

The finite-sample properties of the relevant two-sample and change-point tests and, in par-
ticular, the performance of the bootstrap procedures are evaluated with the help of a Monte
Carlo simulation study in Section A of the Supplementary Material [21]. A number of sce-
narios are investigated, with the outcomes showing that the proposed methodology performs
reasonably well. Furthermore, in Section 5 an application to a prototypical data example is
given, namely two-sample and change-point tests for annual temperature profiles recorded at
measuring stations in Australia.

The outline of the rest of this paper is as follows. Section 2 introduces the basic notions
of the proposed Banach space methodology and gives some preliminary results. Section 3
discusses the two-sample problem and Section 4 is concerned with change-point analysis.
Empirical aspects are highlighted in Section 5 and in Section A of the Supplementary Ma-
terial. Proofs of the main results can also be found in see Section B of the Supplementary
Material.

2. C(T )-Valued random variables. In this section, some basic facts are provided about
central limit theorems and invariance principles for C(T )-valued random variables, where
C(T ) is the set of continuous functions from T into the real line R. In what follows, unless
otherwise mentioned, C(T ) will be equipped with the sup norm ‖ · ‖, defined by ‖f ‖ =
supt∈T |f (t)|, thus making (C(T ),‖ · ‖) a Banach space. The natural Borel σ -field B(T )

over C(T ) is then generated by the open sets relative to the sup norm ‖ · ‖. Measurability
of random variables on (�,A,P ) taking values in C(T ) is understood to be with respect to
B(T ). The underlying probability space (�,A,P) is assumed complete. It is further assumed
that there is a metric ρ on T such that (T ,ρ) is totally bounded. The fact that T is metrizable
implies that C(T ) is separable and measurability issues are avoided (see Theorem 11.7 in
Janson and Kaijser [32]). Moreover, any random variable X in C(T ) is tight (see Theorem 1.3
in Billingsley [10]).

Let X be a random variable on (�,A,P ) taking values in C(T ). There are different ways
to formally introduce expectations and higher-order moments of Banach space-valued ran-
dom variables (see Janson and Kaijser [32]). The expectation E[X] of a random variable X in
C(T ) exists as an element of C(T ) whenever E[‖X‖] < ∞. The kth moment exists whenever
E[‖X‖k] = E[supt∈T |X(t)|k] < ∞. As pointed out in Chapter 11 of Janson and Kaijser [32],
kth order moments may be computed through pointwise evaluation as E[X(t1) · · ·X(tk)]. The
case k = 2 is important as it allows for the computation of covariance kernels in a pointwise
fashion.

A sequence of random variables (Xn : n ∈ N) converges in distribution or weakly to a
random variable X in C(T ), whenever it is asymptotically tight and its finite-dimensional
distributions converge weakly to the finite-dimensional distributions of X, that is,(

Xn(t1), . . . ,Xn(tk)
) ⇒ (

X(t1), . . . ,X(tk)
)

for any t1, . . . , tk ∈ T and any k ∈ N, where the symbol “⇒” indicates convergence in distri-
bution in R

k .
A centered random variable X in C(T ) is said to be Gaussian if its finite-dimensional dis-

tributions are multivariate normal, that is, for any t1, . . . , tk , (X(t1), . . . ,X(tk)) ∼ Nk(0,�),
where the (i, j)th entry of the covariance matrix � is given by E[X(ti)X(tj )], i, j = 1, . . . , k.
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The distribution of X is hence completely characterized by its covariance function k(t, t ′) =
E[X(t)X(t ′)]; see Chapter 2 of Billingsley [10].

In general Banach spaces, deriving conditions under which the central limit theorem (CLT)
holds is a difficult task, significantly more complex than the counterpart for real-valued ran-
dom variables. In Banach spaces, finiteness of second moments of the underlying random
variables does not provide a necessary and sufficient condition. Elaborate theory has been
developed to resolve the issue, resulting in notions of Banach spaces of type 2 and cotype 2
(see the book by Ledoux and Talagrand [35] for an overview). However, the Banach space
of continuous functions on a compact interval does not possess the requisite type and cotype
properties and further assumptions are needed in order to obtain the CLT, especially to in-
corporate time series of continuous functions into the framework. To model the dependence
of the observations, the notion of ϕ-mixing sequences (ηj : j ∈ N) of C(T )-valued random
variables is introduced; see, for example, Bradley [12]. First, for any two σ -fields F and G,
define

φ(F,G) = sup
{∣∣P(G|F) − P(G)

∣∣ : F ∈F,G ∈ G,P(F ) > 0
}
,

where P(G|F) denotes the conditional probability of G given F . Next, denote by Fk′
k the

σ -field generated by (ηj : k ≤ j ≤ k′). Then define the ϕ-mixing coefficient as

ϕ(k) = sup
k′∈N

φ
(
Fk′

1 ,F∞
k′+k

)
and call the sequence (ηj : j ∈ N) ϕ-mixing whenever limk→∞ ϕ(k) = 0.

In order to obtain a CLT as well as an invariance principle for sequences of ϕ-mixing
random elements in C(T ), the following conditions are imposed.

ASSUMPTION 2.1. (Xn,j : n ∈N, j = 1, . . . , n) is an array of C(T )-valued random vari-
ables where, for any j = 1, . . . , n and n ∈ N,

(2.1) Xn,j = ηj + μn,j

with expectations E[Xn,j ] = μn,j and error process (ηj : j ∈ N) ⊂ C(T ). Furthermore, the
following conditions are assumed to hold:

(A1) There is a constant K such that, for all j ∈ N,

E
[‖ηj‖2+ν] ≤ K, E

[‖ηj‖J ]
< ∞

for some ν > 0 and some even integer J ≥ 2.
(A2) The error process (ηj : j ∈N) is stationary.
(A3) There exists a real-valued nonnegative random variable M with E[MJ ] < ∞, such

that, for any n ∈ N and j = 1, . . . , n, the inequality∣∣Xn,j (t) − Xn,j

(
t ′

)∣∣ ≤ Mρ
(
t, t ′

)
holds almost surely for all t, t ′ ∈ T . The constant J is the same as in (A1).

(A4) (ηj : j ∈ N) is ϕ-mixing with mixing coefficients satisfying for some τ̄ ∈ (1/(2 +
2ν),1/2) the condition

∞∑
k=1

k1/(1/2−τ̄ )ϕ(k)1/2 < ∞,

∞∑
k=1

(k + 1)J/2−1ϕ(k)1/J < ∞,

where the constants ν and J are the same as in (A1).
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Note that these assumptions can be formulated for sequences of random variables (Xn : n ∈
N) in C(T ) in a similar way. Since triangular arrays satisfying Assumption 2.1 only differ in
their means from row to row, it follows that the covariance structure is the same in each row,
that is,

Cov
(
Xn,j (t),Xn,j ′

(
t ′

)) = Cov
(
ηj (t), ηj ′

(
t ′

)) = γ
(
j − j ′, t, t ′

)
for all n ∈ N and j, j ′ = 1, . . . , n (note that γ (−j, t, t ′) = γ (j, t ′, t)). Assumption 2.1 implies
the following CLT which is proved in Section B.2 of the Supplementary Material. Throughout
this paper, the symbol � denotes weak convergence in (C(T ))k or (C([0,1]×T ))k for some
k ∈ N and D(ω,ρ) is the packing number with respect to the metric ρ that is the maximal
number of ω-separated points in T (see van der Vaart and Wellner [43]).

THEOREM 2.1. Let (Xn,j : n ∈ N, j = 1, . . . , n) denote a triangular array of random
variables in C(T ) with expectations E[Xn,j ] = μn,j such that Assumption 2.1 is satisfied
and

∫ τ
0 D(ω,ρ)1/J dω < ∞ for some τ > 0. Then

Gn = 1√
n

n∑
j=1

(Xn,j − μn,j ) � Z

in C(T ), where Z is a centered Gaussian random variable with covariance function

C(s, t) = Cov
(
Z(s),Z(t)

) =
∞∑

i=−∞
γ (i, s, t).(2.2)

REMARK 2.1.

(a) Condition (A4) in Assumption 2.1 is satisfied for ϕ-mixing processes with exponen-
tially decreasing mixing coefficients, that is, ϕ(k) ≤ cak (k ∈N) for some a ∈ (0,1).

(b) In the following sections, we focus on the interval T = [0,1] equipped with the metric
ρ(s, t) = |s − t |θ for a positive constant θ ∈ (0,1]. In this case, the packing number satisfies
D(ω,ρ) � 
τ−1/θ�, which implies

∫ τ

0
D(ω,ρ)1/J dω �

∫ τ

0

⌈
ω−1/θ⌉1/J

dω � τ 1−1/(J θ)

1 − 1/(J θ)
< ∞,

whenever the even integer J satisfies J > 1/θ . Consequently, Theorem 2.1 can be applied to
Hölder continuous processes under this assumption. For example, the paths of the Brownian
motion on the interval [0,1] are Hölder continuous of order θ for any θ ∈ (0,1/2), and in
this case we have to assume J ≥ 4 in Assumption 2.1. In general, less smoothness requires
a stronger summability assumption on the mixing coefficients. For processes with Hölder
continuous paths with θ > 1/2, thus including Lipschitz continuity, J = 2 is sufficient to
obtain the CLT in Theorem 2.1.

Next, we will verify a weak invariance principle for the process (V̂n : n ∈ N) given by

V̂n(s) = 1√
n

�sn�∑
j=1

(Xn,j − μn,j )

+ √
n

(
s − �sn�

n

)
(Xn,�sn�+1 − μn,�sn�+1),

(2.3)
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useful for the change-point analysis proposed in Section 4. Note that the process (V̂n(s) : s ∈
[0,1]) is an element of the Banach space C([0,1],C(T )) = {φ : [0,1] → C(T ) | φ is
continuous}, where the norm on this space is given by

(2.4) sup
s∈[0,1]

sup
t∈T

∣∣φ(s, t)
∣∣ = ‖φ‖C([0,1]×T ).

Note also that for any s ∈ [0,1] the quantity φ(s) is an element of C(T ) (i.e., a real-valued
continuous function with domain T ). Denote by φ(s, t) the value of φ(s) at the point t ∈ T .
Moreover, each element of C([0,1],C(T )) can equivalently be regarded as an element of
C([0,1] × T ). Here and throughout this paper, the notation ‖ · ‖ is used to denote any of
the arising sup-norms as the corresponding space can be identified from the context. We also
make frequently use of the notation s ∧ s ′ = min{s, s′}. The proof of the following result is
postponed to Section B.2 of the Supplementary Material.

THEOREM 2.2. Let the assumptions of Theorem 2.1 be satisfied. Then the weak invari-
ance principle holds, that is,

V̂n �V(2.5)

in C([0,1]×T ), where V is a centered Gaussian measure on C([0,1]×T ) characterized by

Cov
(
V(s, t),V

(
s′, t ′

)) = (
s ∧ s′)C(

t, t ′
)
,(2.6)

and the long-run covariance function C is given in (2.2).

REMARK 2.2. It was pointed out by the referees that it might be of interest to investigate
if similar statements hold for other dependency concepts. There is a large amount of literature
discussing a CLT (often as a consequence of strong approximations) for Banach space valued
random variables under mixing conditions as stated in Theorem 2.1. The discussion of the
sufficient conditions for such statements is very sophisticated and we refer exemplarily to the
work of Kuelbs and Philipp [34], Dehling and Philipp [20] and Dehling [19]. For example, it
can be shown using the results in Dehling [19], page 400, that under Assumption 2.1 a central
limit theorem is valid for absolute regular sequences if the corresponding mixing coefficients
β(k) satisfy similar conditions as considered here. Therefore, Theorem 2.1 also holds under
this concept of dependency. As this statement is used intensively for the asymptotic analysis
in the following sections the statistical methodology for the two sample case as studied in
Section 3 can also be developed for absolute regular sequences.

Another dependency concept is Lp-m-approximability, which is frequently used for
Hilbert space valued time series (see Hörmann and Kokoszka [27], Berkes et al. [8]). One
can define a similar concept for the situation of C(T )-valued time series considered here
where we essentially require that the error process in model (2.1) can be approximated by an
m-dependent process. More precisely, this means that it admits a representation of the form
ηj = f (εj , εj−1, εj−2, . . .) with a sequence (εn : n ∈N) of random variables and there exists,

for each j , an independent copy (ε
(j)
n : n ∈ N) of (εn : n ∈ N) such that the random variables

ηj,m = f (εj , . . . , εj−m+1, ε
(j)
j−m, ε

(j)
j−m−1, . . .) satisfy

∞∑
m=1

E
[‖ηm − ηm,m‖2]1/2

< ∞

(note that ‖ · ‖ is the sup-norm on C(T )). Replacing in Assumption 2.1 the condition (A4) by
∞∑

m=1

m1/(1/2−τ̄ )
E

[‖ηm − ηm,m‖2]1/2
< ∞,
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∞∑
m=1

(m + 1)J/2−1
E

[‖ηm − ηm,m‖J ]1/J
< ∞,

a CLT can be proved for Banach space-valued time series of the form (2.1) with an m-
approximable error process in C(T ). These results can then be used to develop similar statisti-
cal methodology as in Section 3 for m-approximable C([0,1])-valued time series. Moreover,
it can be shown by similar arguments as given in Example 2.1 in Hörmann and Kokoszka
[27] that this dependency concept includes fAR(1) processes.

On the other hand, the step from a CLT to an invariance principle as stated in Theorem 2.2
is more complicated and has not been studied so intensively in the literature (see Kuelbs
[33] or Garling [25] for some early references for independent sequences). For the proof of
Theorem 2.2 in the Supplementary Material, we use results of Samur [41, 42], which require
the assumption of ϕ-mixing sequences. An extension of these results to other mixing concepts
might be possible, but is beyond the scope of the present paper.

3. The two-sample problem. From now on, consider the case T = [0,1], as this is
the canonical choice for functional data analysis. The corresponding metric is given by
ρ(s, t) = |s − t |θ (for some θ ∈ (0,1]). Two-sample problems have a long history in statistics
and the corresponding tests are among the most applied statistical procedures. For the func-
tional setting, there have been a number of contributions as well. Two are worth mentioning
in the present context. Hall and van Keilegom [26] studied the effect of smoothing when con-
verting discrete observations into functional data. Horváth et al. [29] introduced two-sample
tests for Lp-m approximable functional time series based on Hilbert-space theory. In the fol-
lowing, a two-sample test is proposed in the Banach-space framework of Section 2. To this
end, consider two independent samples X1, . . . ,Xm and Y1, . . . , Yn of C([0,1])-valued ran-
dom variables. Under (A2) in Assumption 2.1, expectation functions and covariance kernels
exist and are denoted by μ1 = E[X1] and μ2 = E[Y1], and k1(t, t

′) = Cov(X1(t),X1(t
′))

and k2(t, t
′) = Cov(Y1(t), Y1(t

′)), respectively. Interest is then in the size of the maximal
deviation

d∞ = ‖μ1 − μ2‖ = sup
t∈[0,1]

∣∣μ1(t) − μ2(t)
∣∣

between the two mean curves, that is, in testing the hypotheses of a relevant difference

(3.1) H0 : d∞ ≤ � versus H1 : d∞ > �,

where � ≥ 0 is a prespecified constant determined by the user of the test. Note again that the
“classical” two-sample problem H0 : μ1 = μ2 versus H0 : μ1 �= μ2—which, to the best of
our knowledge, has not been investigated for C([0,1])-valued data yet—is contained in this
setup as the special case � = 0. Observe also that tests for relevant differences between two
finite-dimensional parameters corresponding to different populations have been considered
mainly in the biostatistical literature, for example, in Wellek [44]. It is assumed throughout
this section that the samples are balanced in the sense that

(3.2)
m

n + m
−→ λ ∈ (0,1)

as m,n → ∞. Additionally, let X1, . . . ,Xm and Y1, . . . , Yn be sampled from independent
time series (Xj : j ∈ N) and (Yj : j ∈ N) that satisfy Assumption 2.1 with J > 1/θ . Under
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these conditions, both functional time series satisfy the CLT and it then follows from Theo-
rem 2.1 that

√
n + m

(
1

m

m∑
j=1

(Xj − μ1),
1

n

n∑
j=1

(Yj − μ2)

)

�
(

1√
λ
Z1,

1√
1 − λ

Z2

)
,

(3.3)

where Z1 and Z2 are independent, centered Gaussian processes possessing covariance func-
tions

(3.4) C1
(
t, t ′

) =
∞∑

j=−∞
γ1

(
j, t, t ′

)
and C2

(
t, t ′

) =
∞∑

j=−∞
γ2

(
j, t, t ′

)
,

respectively. Here, γ1 and γ2, correspond to the respective sequences (Xj : j ∈ N) and
(Yj : j ∈ N) and are defined in the discussion after Assumption 2.1. Now, the weak con-
vergence in (3.3) and the independence of the samples imply immediately that

(3.5) Zm,n = √
n + m

(
1

m

m∑
j=1

Xj − 1

n

n∑
j=1

Yj − (μ1 − μ2)

)
� Z

in C([0,1]) as m,n → ∞, where Z = Z1/
√

λ + Z2/
√

1 − λ is a centered Gaussian process
with covariance function

(3.6) C
(
t, t ′

) = Cov
(
Z(t),Z

(
t ′

)) = 1

λ
C1

(
t, t ′

) + 1

1 − λ
C2

(
t, t ′

)
.

Under the convergence in (3.5), the statistic

(3.7) d̂∞ =
∥∥∥∥∥ 1

m

m∑
j=1

Xj − 1

n

n∑
j=1

Yj

∥∥∥∥∥
is a reasonable estimator of the maximal deviation d∞ = ‖μ1 − μ2‖, and the null hypothesis
in (3.1) is rejected for large values of d̂∞. In order to develop a test with a prespecified
asymptotic level, the limit distribution of d̂∞ is determined in the following. For this purpose,
let

(3.8) E± = {
t ∈ [0,1] : μ1(t) − μ2(t) = ±d∞

}
if d∞ > 0, and define E+ = E− = [0,1] if d∞ = 0. Finally, denote by E = E+ ∪ E− the set
of extremal points of the difference μ1 − μ2 of the two mean functions. The first main result
establishes the asymptotic distribution of the statistic d̂∞.

THEOREM 3.1. If X1, . . . ,Xm and Y1, . . . , Yn are sampled from independent time se-
ries (Xj : j ∈ N) and (Yj : j ∈ N) in C([0,1]), each satisfying Assumption 2.1 with metric
ρ(s, t) = |s − t |θ , θ ∈ (0,1], Jθ > 1, then

(3.9) Tm,n = √
n + m(d̂∞ − d∞)

D−→ T (E),

where

(3.10) T (E) = max
{

sup
t∈E+

Z(t), sup
t∈E−

−Z(t)
}
,

and the centered Gaussian process Z is given by (3.6) and the sets E+ and E− are defined in
(3.8).
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It should be emphasized that the limit distribution depends in a complicated way on the
set E of extremal points of the difference μ1 − μ2 and is therefore not distribution-free, even
in the case of i.i.d. data. In particular, there can be two sets of processes with corresponding
mean functions μ1, μ2 and μ̃1, μ̃2 such that ‖μ1 − μ2‖ = ‖μ̃1 − μ̃2‖. However, the respec-
tive limit distributions in Theorem 3.1 will be entirely different if the corresponding sets of
extremal points E and Ẽ do not coincide. The proof of Theorem 3.1 is given in Section B.3
of the Supplementary Material. In the case d∞ = 0, E+ = E− = [0,1] and it follows for the
random variable T ([0,1]) in Theorem 3.1 that

(3.11) T = max
t∈[0,1]

∣∣Z(t)
∣∣.

Here, the result is a simple consequence of the weak convergence (3.5) of the process Zm,n

(see Theorem 2.1) and the continuous mapping theorem.
However, Theorem 3.1 provides also the distributional properties of the statistic d̂∞ in the

case d∞ > 0. This is required for testing the hypotheses of a relevant difference between the
two mean functions (i.e., the hypotheses in (3.1) with � > 0), which is of primary interest
here. In this case, the weak convergence of an appropriately standardized version of d̂∞ does
not follow from the weak convergence (3.5), as the process inside the supremum in (3.7) is
not centered. In fact, additional complexity enters in the proofs because even under the null
hypothesis observations cannot be easily centered. For details, refer to Section B.3 of the
Supplementary Material.

3.1. Asymptotic inference.

3.1.1. Testing the classical hypothesis H0 : μ1 ≡ μ2. Theorem 3.1 also provides the
asymptotic distributions of the test statistic d̂∞ in the case of two identical mean functions,
that is, if μ1 ≡ μ2. This is the situation investigated in Hall and Van Keilegom [26] and
Horváth et al. [29] in Hilbert-space settings. Here, it corresponds to the special case � = 0,
and thus d∞ = 0, E± = [0,1]. Consequently,

Tm,n
D−→ T (m,n → ∞),

where the random variable T is defined in (3.11). An asymptotic level α test for the classical
hypotheses

(3.12) H0 : μ1 = μ2 versus H1 : μ1 �= μ2

may hence be obtained by rejecting H0 whenever

(3.13) d̂∞ >
u1−α√
n + m

,

where u1−α is the (1 − α)-quantile of the distribution of the random variable T defined in
(3.11). Note that this quantile only depends on the long-run covariance operator, which has
to be estimated in applications (see, e.g., Horváth et al. [29] for such an estimator). Using
Theorem 3.1, it is easy to see that the test defined by (3.13) is consistent and has asymptotic
level α.

3.1.2. Confidence bands. The methodology developed so far can easily be applied to
the construction of simultaneous asymptotic confidence bands for the difference of the mean
functions. There is a rich literature on confidence bands for functional data in Hilbert spaces.
The available work includes Degras [18], who dealt with confidence bands for nonparametric
regression with functional data; Cao et al. [16], who studied simultaneous confidence bands
for the mean of dense functional data based on polynomial spline estimators; Cao [15], who
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developed simultaneous confidence bands for derivatives of functional data when multiple
realizations are at hand for each function, exploiting within-curve correlation; and Zheng
et al. [45] who treated the sparse case. Most recently, Choi and Reimherr [17] extracted
geometric features akin to Mahalanobis distances to build confidence bands for functional
parameters.

The results presented here are the first of their kind relating to Banach space-valued func-
tional data. The first theorem uses the limit distribution obtained in Theorem 3.1 to construct
asymptotic simultaneous confidence bands for the two-sample case. A corresponding boot-
strap analog will be developed in the next section. Confidence bands for the one-sample case
can be constructed in a similar fashion using standard arguments and the corresponding re-
sults are consequently omitted.

THEOREM 3.2. Let the assumptions of Theorem 3.1 be satisfied and, for α ∈ (0,1),
denote by u1−α the (1 − α)-quantile of the random variable T defined in (3.11) and define
the functions

μ±
m,n(t) = 1

m

m∑
j=1

Xj − 1

n

n∑
j=1

Yj ± u1−α√
n + m

.

Then the set

Cα,m,n = {
μ ∈ C

([0,1]) : μ−
m,n(t) ≤ μ(t) ≤ μ+

m,n(t) for all t ∈ [0,1]}
defines a simultaneous asymptotic (1 − α) confidence band for μ1 − μ2, that is,

lim
m,n→∞P(μ1 − μ2 ∈ Cα,m,n) = 1 − α.

Note that, unlike their Hilbert-space counterparts, the simultaneous confidence bands given
in Theorem 3.2 (and their bootstrap analogs in Section 3.2.1) hold for all t ∈ [0,1] and not
only almost everywhere, making the proposed bands more easily interpretable and perhaps
more useful for applications.

REMARK 3.1. As pointed out by a referee there might be situations, where pointwise
(instead of uniform) confidence bands are of interest. These bands can easily be derived from
the theory developed so far. For example, for a fixed t0 ∈ [0,1] it follows from (3.5) and the
continuous mapping theorem that Zm,n(t0) is asymptotically normal distributed with mean 0
and variance σ 2 = C(t0, t0), where C is defined in (3.6). Therefore, if zβ is the β-quantile
of the N (0,1) distribution, and σ̂ 2 is an estimator of the long-run variance, an asymptotic
confidence interval for the difference μ1(t0) − μ2(t0) is given by [d−

m,n, d
+
m,n], where

d±
m,n = 1

m

m∑
j=1

Xj(t0) − 1

n

n∑
j=1

Yj (t0) ± z1−α/2
σ̂√

n + m
.

3.1.3. Testing for a relevant difference. Recall the definition of the random variable T (E)

in Theorem 3.1, then the null hypothesis of no relevant difference in (3.1) is rejected at level
α, whenever the inequality

(3.14) d̂∞ > � + u1−α,E√
n + m

holds, where uα,E denotes the α-quantile of the distribution of T (E) (α ∈ (0,1)). A conser-
vative test avoiding the use of quantiles depending on the set of extremal points E can be
obtained observing the inequality

(3.15) T (E) ≤ T ,
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where the random variable T is defined in (3.11). If uα denotes the α-quantile of the distri-
bution of T , then (3.15) implies

uα,E ≤ uα

and a conservative asymptotic level α test is given by rejecting the null hypothesis in (3.1),
whenever the inequality

(3.16) d̂∞ > � + u1−α√
n + m

holds. The properties of the tests (3.14) and (3.16) depend on the size of the distance d∞ and
will be explained below. In particular, observe the following properties for the test (3.16):

(a) If d∞ < �, Slutsky’s theorem yields that

lim
n,m→∞P

(
d̂∞ > � + u1−α√

n + m

)

= lim
n,m→∞P

(√
n + m(d̂∞ − d∞) >

√
n + m(� − d∞) + u1−α

) = 0.

(b) If d∞ = �, we have

lim sup
n,m→∞

P

(
d̂∞ > � + u1−α√

n + m

)

= lim sup
n,m→∞

P
(√

n + m(d̂∞ − d∞) >
√

n + m(� − d∞) + u1−α

)
≤ lim

n,m→∞P
(√

n + m(d̂∞ − d∞) > u1−α,E
) = α.

(3.17)

(c) If d∞ > �, the same calculation as in (a) implies

lim
n,m→∞P

(
d̂∞ > � + u1−α√

n + m

)
= 1,

proving that the test defined in (3.16) is consistent.
(d) If the mean functions μ1 and μ2 define a boundary point of the hypotheses, that is,

d∞ = � and either E+ = [0,1] or E− = [0,1], then

T (E) = max
t∈[0,1]Z(t) or T (E) = max

t∈[0,1]−Z(t),

and consequently

lim
n,m→∞P

(
d̂∞ > � + u1−α√

m + n

)
= α

2
.

Using similar arguments, it can be shown that the test (3.14) satisfies

(3.18) lim
n,m→∞P

(
d̂∞ > � + u1−α,E√

n + m

)
=

⎧⎪⎪⎨
⎪⎪⎩

0 if d∞ < �,

α if d∞ = �,

1 if d∞ ≥ �.

Summarizing, the tests for the hypothesis (3.1) of no relevant difference between the two
mean functions defined in (3.14) and (3.16) have asymptotic level at most α and are consis-
tent. However, the discussion given above also shows that the test (3.16) is conservative, even
when E = [0,1].

The quantile u1−α,E of the test (3.14) can be estimated as follows. Let Ĉn,m denote an
estimator of the long-run covariance kernel defined in (3.6) (see, e.g., Horváth et al. [29]) and
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let Ê+
m,n and Ê−

m,n denote consistent estimates of the extremal sets E+ and E−, respectively
(see, e.g., the definition (3.25) and Theorem 3.6 in the following section). Now let û1−α,m,n

denote the (1 − α)-quantile of the distribution of the statistic

max
{

sup
t∈Ê+

m,n

Ĝn,m(t), sup
t∈Ê−

m,n

−Ĝn,m(t)
}
,

where Ĝn,m is a centered Gaussian process with covariance kernel Ĉn, then it can be shown
that the test, which rejects the null hypothesis, whenever

d̂∞ > � + û1−α,m,n/
√

n + m

has asymptotic level α and is consistent. However, it turns out that the finite sample properties
of this test are very sensitive with respect to the estimate Ĉn,m of the long-run covariance
operator and for this reason we discuss a bootstrap approach in the following section.

3.2. Bootstrap. In order to use the tests (3.13), (3.14) and (3.16) for classical and rele-
vant hypotheses, the quantiles of the distribution of the random variables T (E) and T defined
in (3.10) and (3.11) need to be estimated, which depend on certain features of the data gener-
ating process. The law T (E) involves the unknown set of extremal points E of the differences
of the mean functions. Moreover, the distributions of T (E) and T depend on the long-run co-
variance function (3.6). There are methods available in the literature to consistently estimate
the covariance function (see, e.g., Horváth et al. [29]). In practice, however, it is difficult to
reliably approximate the infinite sums in (3.6) and, therefore, an easily implementable boot-
strap procedure is proposed in the following.

It turns out that a different and nonstandard bootstrap procedure will be required for testing
relevant hypotheses than for classical hypotheses (and the construction of confidence bands)
as in this case the null distribution depends on the set of extremal points E . The correspond-
ing resampling procedure requires a substantially more sophisticated analysis. Therefore,
the analysis of bootstrap tests for the classical hypothesis and bootstrap confidence intervals
is given first and discussion of bootstrap tests for relevant hypotheses is deferred to Sec-
tion 3.2.2.

3.2.1. Bootstrap confidence intervals and tests for the classical hypothesis H0 : μ1 = μ2.
Following Bücher and Kojadinovic [14], the use of a multiplier block bootstrap is proposed,
noting in passing that other resampling concepts such as the stationary bootstrap (see, e.g.,
Politis and Romano [37]) or the tapered bootstrap (see, e.g., Paparoditis and Politis [36])
can be adjusted as well to address the problem of testing for hypotheses with respect to the
sup-norm.

To be precise, let (
ξ

(1)
k : k ∈ N

)
, . . . ,

(
ξ

(R)
k : k ∈ N

)
and (

ζ
(1)
k : k ∈ N

)
, . . . ,

(
ζ

(R)
k : k ∈ N

)
denote independent sequences of independent random variables with mean 0 and variance 1,
and define the C([0,1])-valued processes B̂

(1)
m,n, . . . , B̂

(R)
m,n through

B̂(r)
m,n(t) = √

n + m

{
1

m

m−l1+1∑
k=1

1√
l1

(
k+l1−1∑

j=k

Xj (t) − l1

m

m∑
j=1

Xj(t)

)
ξ

(r)
k

− 1

n

n−l2+1∑
k=1

1√
l2

(
k+l2−1∑

j=k

Yj (t) − l2

n

n∑
j=1

Yj (t)

)
ζ

(r)
k

}
(r = 1, . . . ,R)

(3.19)
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for t ∈ [0,1], where l1, l2 ∈ N denote window sizes such that l1/m → 0 and l2/n → 0 as
l1, l2,m,n → ∞. Note that the dependence on l1 and l2 is not reflected in our notation.

The intuition of this definition is as follows. We center every (local) mean X
(�)

k =
�−1 ∑k+�−1

j=k Xj using the global mean Xm = m−1 ∑m
j=1 Xj . Then we do the same for the

second sample (Yj : j = 1, . . . , n). Consequently, the inflated differences

Dk,X = √
l1

(
X

(l1)

k − Xm

)
and Dk,Y = √

l2
(
Y

(l2)

k − Yn

)
have approximately the same mean function (namely 0) and, as l1, l2 → ∞, their long-run
covariances are given by the kernels C1 and C2 in (3.4), respectively. Now the multiplication
with the independent random variables ξ

(r)
k and ζ

(r)
k yields an analog of the process Zm,n

in (3.5), where the summands are conditionally independent, approximately centered and
have asymptotically correct long-run covariance. The following result makes these heuristic
arguments precise and is a fundamental tool for the theoretical investigations of all bootstrap
procedures proposed in this paper. It is proved in Section B.3 of the Supplementary Material.

THEOREM 3.3. Suppose that (Xj : j ∈ N) and (Yj : j ∈ N) satisfy Assumption 2.1 with

metric ρ(s, t) = |s − t |θ , θ ∈ (0,1], Jθ > 1 and let B̂
(1)
m,n, . . . , B̂

(R)
m,n denote the bootstrap

processes defined by (3.19) such that l1 = mβ1 , l2 = nβ2 with

0 < βi < νi/(2 + νi), τ̄ >
(
βi(2 + νi) + 1

)
/(2 + 2νi),

and νi given in Assumption 2.1, i = 1,2. Moreover, assume for the multipliers in (3.19)
E|ξ (r)

1 |J < ∞ and E|ζ (r)
1 |J < ∞. Then(

Zm,n, B̂
(1)
m,n, . . . , B̂

(R)
m,n

)
�

(
Z,Z(1), . . . ,Z(R))(3.20)

in C([0,1])R+1 as m,n → ∞, where Zm,n is defined in (3.5) and Z(1), . . . ,Z(R) are inde-
pendent copies of the centered Gaussian process Z defined by (3.6).

Note that Theorem 3.3 holds under the null hypothesis and alternative. It leads to the
following results regarding confidence bands and tests for the classical hypothesis (3.12)
based on the multiplier bootstrap. To this end, observe that for the statistics

T (r)
m,n = ∥∥B̂(r)

m,n

∥∥, r = 1, . . . ,R,

the continuous mapping theorem yields(√
n + md̂∞, T (1)

m,n, . . . , T
(R)
m,n

) ⇒ (
T ,T (1), . . . , T (R)),(3.21)

where the random variables T (1), . . . , T (R) are independent copies of the statistic T de-
fined in (3.11). Now, if T

{�R(1−α)�}
m,n is the empirical (1 − α)-quantile of the bootstrap sample

T
(1)
m,n, . . . , T

(R)
m,n , the following results are obtained.

THEOREM 3.4. Let the assumptions of Theorem 3.3 be satisfied and define the functions

μR,±
m,n (t) = 1

m

m∑
j=1

Xj − 1

n

n∑
j=1

Yj ± T
{�R(1−α)�}
m,n√

n + m
.

Then

ĈR
α,m.n = {

μ ∈ C
([0,1]) : μR,−

m,n (t) ≤ μ(t) ≤ μR,+
m,n (t) for all t ∈ [0,1]}

defines a simultaneous asymptotic (1 − α) confidence band for μ1 − μ2, that is,

lim
R→∞ lim inf

m,n→∞P
(
μ1 − μ2 ∈ ĈR

α,m.n

) ≥ 1 − α.
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Pointwise bootstrap confidence intervals can be constructed similarly as indicated in Re-
mark 3.1 using the weak convergence in equation (3.20) and the continuous mapping theo-
rem. The details are omitted for the sake of brevity.

This section is concluded with a corresponding statement regarding the bootstrap test for
the classical hypotheses in (3.12), which rejects the null hypothesis whenever

d̂∞ >
T

{�R(1−α)�}
m,n√

n + m
,(3.22)

where the statistic d̂∞ is defined in (3.7).

THEOREM 3.5. Let the assumptions of Theorem 3.3 be satisfied, then the test (3.22) has
asymptotic level α and is consistent for the hypotheses (3.12). More precisely, under the null
hypothesis of no difference in the mean functions,

lim
R→∞ lim sup

m,n→∞
P

(
d̂∞ >

T
{�R(1−α)�}
m,n√

n + m

)
= α,(3.23)

and, under the alternative, for any R ∈ N,

lim inf
m,n→∞P

(
d̂∞ >

T
{�R(1−α)�}
m,n√

n + m

)
= 1.(3.24)

3.2.2. Testing for relevant differences in the mean functions. The problem of construct-
ing an appropriate bootstrap test for the hypotheses of no relevant difference in the mean
functions is substantially more complicated. The reason for these difficulties consists in the
fact that in the case of relevant hypotheses the limit distribution of the corresponding test
statistic is complicated. In contrast to the problem of testing the classical hypotheses (3.12),
where it is sufficient to mimic the distribution of the statistic T in (3.11) (corresponding to
the case μ1 ≡ μ2) one requires the distribution of the statistic T (E), which depends in a so-
phisticated way on the set of extreme points of the (unknown) difference μ1 − μ2. Under the
null hypothesis ‖μ1 − μ2‖ ≤ �, these sets can be very different, ranging from a singleton
to the full interval [0,1]. As a consequence, the construction of a valid bootstrap procedure
requires appropriate consistent estimates of the sets E+ and E− introduced in Theorem 3.1.

For this purpose, recall the definition of the Haussdorff distance between two sets A,B ⊂
R, given by

dH (A,B) = max
{

sup
x∈A

inf
y∈B

|x − y|, sup
y∈B

inf
x∈A

|x − y|
}

and denote by K([0,1]) the set of all compact subsets of the interval [0,1]. First, define
estimates of the extremal sets E+ and E− by

Ê±
m,n =

{
t ∈ [0,1] : ± (

μ̂1(t) − μ̂2(t)
) ≥ d̂∞ − cm,n√

m + n

}
,(3.25)

where limm,n→∞ cm,n/ log(m + n) = c for some c > 0. Our first result shows that the esti-
mated sets Ê+

m,n and Ê−
m,n are consistent for E+ and E−, respectively.

THEOREM 3.6. Let the assumptions of Theorem 3.3 be satisfied, then

dH

(
Ê±

m,n,E±) P−→ 0,

where the sets Ê±
m,n are defined by (3.25).
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The main implication of Theorem 3.6 consists in the fact that the random variable

max
t∈Ê+

m,n

B̂m,n(t)

converges weakly to the random variable maxt∈E+ Z(t). Note that B̂m,n � Z by Theorem 3.3
and that dH (Ê+

m,n, Ê+) → 0 in probability by the previous theorem, but the combination of
both statements is more delicate and requires a continuity argument which is given in Sec-
tion B.3 of the Supplementary Material, where the following result is proved.

THEOREM 3.7. Let the assumptions of Theorem 3.3 be satisfied and define, for r =
1, . . . ,R,

K(r)
m,n = max

{
max
t∈Ê+

m,n

B̂(r)
m,n(t), max

t∈Ê−
m,n

(−B̂(r)
m,n(t)

)}
.(3.26)

Then (√
n + m(d̂∞ − d∞),K(1)

m,n, . . . ,K
(R)
m,n

)
⇒ (

T (E), T (1)(E), . . . , T (R)(E)
)
,

(3.27)

in R
R+1, where d∞ = ‖μ1 − μ2‖, the statistic d̂∞ is defined in (3.7) and the variables

T (1)(E), . . . , T (R)(E) are independent copies of T (E) defined in Theorem 3.1.

Theorem 3.7 leads to a simple bootstrap test for the hypothesis of no relevant change.
To be precise, let K

{�R(1−α)�}
m,n denote the empirical (1 − α)-quantile of the bootstrap sam-

ple K
(1)
m,n, . . . ,K

(R)
m,n, then the null hypothesis of no relevant change is rejected at level α,

whenever

d̂∞ > � + K
{�R(1−α)�}
m,n√

n + m
.(3.28)

The final result of this section shows that the test (3.28) is consistent and has asymptotic
level α. The proof is obtained by similar arguments as given in the proof of Theorem 3.5,
which are omitted for the sake of brevity.

THEOREM 3.8. Let the assumptions of Theorem 3.3 be satisfied. Then, under the null
hypothesis of no relevant difference in the mean functions,

lim
R→∞ lim sup

m,n→∞
P

(
d̂∞ > � + K

{�R(1−α)�}
m,n√

n + m

)
≤ α,

and, under the alternative of a relevant difference in the mean functions, for any R ∈ N,

lim inf
m,n→∞P

(
d̂∞ > � + K

{�R(1−α)�}
m,n√

n + m

)
= 1.

4. Change-point analysis. Change-point problems arise naturally in a number of appli-
cations (e.g., in quality control, economics and finance; see Aue and Horváth [4] for a recent
review). In the functional framework, applications have centered around environmental and
climate observations (see Aue et al. [5, 6]) and intra-day finance data (see Horváth et al. [28]).
One of the first contributions in the area are Berkes et al. [7] and Aue et al. [3] who devel-
oped change-point analysis in a Hilbert space setting for independent data. Generalizations to
time series of functional data in Hilbert spaces are due to Aston and Kirch [1, 2]. For Banach
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spaces, to the best of our knowledge, the only contributions to change-point analysis available
in the literature are due to Račkauskas and Suquet [38, 39], who have provided theoretical
work analyzing epidemic alternatives for independent functions based on Hölder norms and
dyadic interval decompositions. This section details new results on change-point analysis for
C([0,1])-valued functional data. The work is the first to systematically exploit a time series
structure of the functions as laid out in Section 2.

4.1. Asymptotic inference. More specifically, the problem of testing for a (potentially
relevant) change-point is considered for triangular arrays (Xn.j : n ∈ N, j = 1, . . . , n) of
C([0,1])-valued random variables satisfying Assumption 2.1 with corresponding metric
given by ρ(s, t) = |s − t |θ (for some θ ∈ (0,1]). Denote by μn,j = E[Xn,j ] ∈ C([0,1]) the
expectation of Xn,j and assume (as in the discussion after Assumption 2.1) that

γ
(
j − j ′, t, t ′

) = Cov
(
Xn,j (t),Xn,j ′

(
t ′

))
is the covariance kernel common to all random functions in the sample. Parametrize with
s∗ ∈ (ϑ,1 − ϑ), where ϑ ∈ (0,1) is a constant, the location of the change-point, so that the
mean functions satisfy

(4.1) μ1 = μn,1 = · · · = μn,�ns∗� and μ2 = μn,�ns∗�+1 = · · · = μn,n.

Then, for any n ∈ N, both Xn,1, . . . ,Xn,�ns∗� and Xn,�ns∗�+1, . . . ,Xn,n consist of (asymptoti-
cally) identically distributed but potentially dependent random functions. Let again

d∞ = ‖μ1 − μ2‖
denote the maximal deviation between the mean functions before and after the change-point.
Interest is then in testing the hypotheses of a relevant change, that is,

(4.2) H0 : d∞ ≤ � versus H1 : d∞ > �,

where � ≥ 0 is a prespecified constant. The relevant change-point test setting may be viewed
in the context of a bias-variance trade-off. In the time series setting, one is often interested
in accurate predictions of future realizations. However, if the stretch of observed functions
suffers from a structural break, then only those functions sampled after the change-point
should be included in the prediction algorithm because these typically require stationarity.
This reduction of observations, however, inevitably leads to an increased variability that may
be partially offset with a bias incurred through the relevant approach: if the maximal dis-
crepancy d∞ in the mean functions remains below a suitably chosen threshold �, then the
mean-squared prediction error obtained from predicting with the whole sample might be
smaller than the one obtained from using only the noncontaminated post-change sample. In
applications to financial data, the size of the allowable bias could also be dictated by regula-
tions imposed on, say, investment strategies (Dette and Wied [22] specifically mention Value
at Risk as one such example).

Recall the definition of the sequential empirical process in (2.3), where the argument
s ∈ [0,1] of this process is used to search over all potential change locations. Note that
(V̂n(s, t) : (s, t) ∈ [0,1]2) can be regarded as an element of the Banach space C([0,1]2) (see
the discussion before Theorem 2.2). Define the C([0,1]2)-valued process

(4.3) Ŵn(s, t) = V̂n(s, t) − sV̂n(1, t), s, t ∈ [0,1],
then, under the assumptions in Theorem 2.1, Theorem 2.2 and the continuous mapping theo-
rem show that

(4.4) Ŵn �W
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in C([0,1]2), where

W(s, t) =V(s, t) − sV(1, t).

In particular, W is a centered Gaussian measure on C([0,1]2) defined by

(4.5) Cov
(
W(s, t),W

(
s′, t ′

)) = (
s ∧ s′ − ss′)C(

t, t ′
)
.

In order to define a test for the hypothesis of a relevant change-point defined by (4.2) consider
the sequential empirical process (Ûn : n ∈ N) on C([0,1]2) given by

(4.6) Ûn(s, t) = 1

n

(�sn�∑
j=1

Xn,j (t) + n

(
s − �sn�

n

)
Xn,�sn�+1(t) − s

n∑
j=1

Xn,j (t)

)
.

Evaluating its expected value shows that, in contrast to Ŵn, the process Ûn is typically not
centered and the equality

√
nÛn = Ŵn

holds only in the case μ1 = μ2. A straightforward calculation shows that

E
[
Ûn(s, t)

] = (
s ∧ s∗ − ss∗)(

μ1(t) − μ2(t)
) + oP(1)

uniformly in (s, t) ∈ [0,1]2. As the function s �→ s ∧ s∗ − ss∗ attains its maximum in the
interval [0,1] at the point s∗, the statistic

(4.7) M̂n = sup
s∈[0,1]

sup
t∈[0,1]

∣∣Ûn(s, t)
∣∣

is a reasonable estimate of

s∗(
1 − s∗)

d∞ = s∗(
1 − s∗)‖μ1 − μ2‖.

It is therefore proposed to reject the null hypothesis in (4.2) for large values of the statistic
M̂n. The following result specifies the asymptotic distribution of M̂n.

THEOREM 4.1. Assume d∞ > 0, s∗ ∈ (0,1) and let (Xn,j : n ∈ N, j = 1, . . . , n) be an
array of C([0,1])-valued random variables satisfying Assumption 2.1 with ρ(s, t) = |s − t |θ ,
θ ∈ (0,1] and Jθ > 1. Then

Dn = √
n
(
M̂n − s∗(

1 − s∗)
d∞

)
D−→ D(E) = max

{
sup
t∈E+

W
(
s∗, t

)
, sup
t∈E−

−W
(
s∗, t

)}
,

(4.8)

where the statistic M̂n is defined in (4.7), W is the centered Gaussian measure on C([0,1]2)

characterized by (4.5), E = E+ ∪ E− and the sets E+ and E− are defined in (3.8).

The proof of Theorem 4.1 is given in Section B.4 of the Supplementary Material. The limit
distribution of Dn is rather complicated and depends on the set E which might be different
for functions μ1 − μ2 with the same sup-norm d∞ but different corresponding set E . It is
also worthwhile to mention that the condition d∞ > 0 is essential in Theorem 4.1. In the
remaining case d∞ = 0, the weak convergence of M̂n simply follows from

√
nÛn = Ŵn,

(4.4) and the continuous mapping theorem, that is,
√

nM̂n
D−→ Ť = sup

(s,t)∈[0,1]2

∣∣W(s, t)
∣∣(4.9)
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whenever d∞ = 0.
If d∞ > 0, the true location of the change-point s∗ is unknown and, therefore, has to be

estimated from the available data. The next theorem, which is proved in Section B.4 of the
Supplementary Material, proposes one such estimator and specifies its large-sample behavior
in form of a rate of convergence.

THEOREM 4.2. Assume d∞ > 0, s∗ ∈ (0,1) and let (Xn,j : n ∈ N, j = 1, . . . , n) be an
array of C([0,1])-valued random variables satisfying Assumption 2.1, where the random
variable M in Assumption (A3) is bounded and ρ(s, t) = |s − t |θ with θ ∈ (0,1], Jθ > 1.
Then the estimator

s̃ = 1

n
arg max

1≤k<n

∥∥Ûn(k/n, ·)∥∥(4.10)

satisfies |s̃ − s∗| = OP(n
−1).

Recall that the possible range of change locations is restricted to the open interval (ϑ,1 −
ϑ) and define the modified change-point estimator

ŝ = max
{
ϑ,min{s̃,1 − ϑ}},(4.11)

where s̃ is given by (4.10). Since |ŝ − s∗| ≤ |s̃ − s∗|, it follows that∣∣ŝ − s∗∣∣ = OP

(
n−1)

if d∞ > 0, and, if d∞ = 0 suppose that ŝ converges weakly to a [ϑ,1 − ϑ]-valued random
variable smax.

COROLLARY 4.1. Let the assumptions of Theorem 4.2 be satisfied and define

d̂∞ = M̂n

ŝ(1 − ŝ)
(4.12)

as an estimator of d∞. Then√
n(d̂∞ − d∞) ⇒ T (E) = D(E)/

[
s∗(

1 − s∗)]
,

where D(E) is defined in (4.8).

REMARK 4.1. A consistent level α test for the hypotheses (4.2) is constructed along the
lines of the two-sample case discussed in Section 3.

(a) Consider first the case � > 0, that is, a relevant hypothesis. If d∞ > 0, implying the
existence of a change-point s∗ ∈ (0,1), then the inequality

(4.13) T (E) ≤ T = 1

s∗(1 − s∗)
sup

t∈[0,1]
∣∣W(

s∗, t
)∣∣

holds. If uα,E denotes the quantile of T (E), then

uα,E ≤ uα

for all α ∈ (0,1). Consequently, similar arguments as given in Section 3.1.3 show that the test
which rejects the null hypothesis of no relevant change if

d̂∞ > � + u1−α√
n

(4.14)

is consistent and has asymptotic level α. Note that an estimator of the long-run covariance
function is needed in order to obtain the α-quantile uα of the distribution of T . Moreover, the
test (4.14) is conservative, even when the set E of extremal points of the unknown difference
μ1 − μ2 is the whole interval [0,1] (in this case the level is in fact α/2 instead of α—see the
discussion at the end of Section 3.1.3).
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(b) In the case of testing, the classical hypotheses

H0 : μ1 = μ2 versus H1 : μ1 �= μ2,

that is, � = 0, the test described in (4.14) needs to be slightly altered. The asymptotic distri-
bution of M̂n under H0 can be obtained from (4.9) and now it can be seen that rejecting H0
whenever

d̂∞ >
ǔ1−α√

n
,

where ǔ1−α denotes the (1 −α)-quantile of the distribution of the random variable Ť defined
by (4.9), yields a consistent asymptotic level α test. Again an estimator of the long-run co-
variance function is required to simulate the quantile ǔ1−α from the corresponding Gaussian
process.

4.2. Bootstrap. In order to avoid the difficulties mentioned in the previous remark, a
bootstrap procedure is developed and its consistency is shown. To be precise, denote by

μ̂1 = 1

�ŝn�
�ŝn�∑
j=1

Xn,j and μ̂2 = 1

�(1 − ŝ)n�
n∑

j=�ŝn�+1

Xn,j

estimators for the expectation before and after the change-point. Let (ξ
(1)
k : k ∈ N), . . . ,

(ξ
(R)
k : k ∈ N) denote R independent sequences of independent sub-Gaussian random

variables with mean 0 and variance 1, and consider the C([0,1]2)-valued processes
B̂

(1)
n , . . . , B̂

(R)
n defined by

B̂(r)
n (s, t) = 1√

n

�sn�∑
k=1

1√
l

(
k+l−1∑
j=k

Ŷn,j (t) − l

n

n∑
j=1

Ŷn,j (t)

)
ξ

(r)
k

+ √
n

(
s − �sn�

n

)
1√
l

( �sn�+l∑
j=�sn�+1

Ŷn,j (t) − l

n

n∑
j=1

Ŷn,j (t)

)
ξ

(r)
�sn�+1,

(4.15)

where l ∈N is a bandwidth parameter satisfying l/n → 0 as l, n → ∞ and

Ŷn,j = Xn,j − (μ̂2 − μ̂1)1
{
j > �ŝn�}

for j = 1, . . . , n (n ∈ N). Note that it is implicitly assumed that

B̂(r)
n

(
(n − l)/n, t

) = B̂(r)
n (s, t)

for any t ∈ [0,1] and any s ∈ [0,1] such that �sn� > n − l. Next, define

Ŵ
(r)
n (s, t) = B̂(r)

n (s, t) − sB̂(r)
n (1, t); r = 1, . . . ,R.

THEOREM 4.3. Let B̂
(1)
n , . . . , B̂

(R)
n denote the bootstrap processes defined by (4.15),

where l = nβ for some β ∈ (1/5,2/7) and assume that the underlying array (Xn,j : j =
1, . . . , n;n ∈ N) satisfies Assumption 2.1 with metric ρ(s, t) = |s − t |θ , θ ∈ (0,1], Jθ > 1 in
(A3) and ν ≥ 2 in (A1) and (

β(2 + ν) + 1
)
/(2 + 2ν) < τ̄ < 1/2

in (A4). Moreover, assume additionally for the multipliers in (4.15) E|ξ (r)
1 |J < ∞ Then(

Ŵn,Ŵ
(1)
n , . . . ,Ŵ(R)

n

)
�

(
W,W(1), . . . ,W(R))

in C([0,1]2)R+1, where Ŵn and W are defined in (4.3) and (4.5), respectively, and
W

(1), . . . ,W(R) are independent copies of W.
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The proof of Theorem 4.3 is provided in Section B.4 of the Supplementary Material.
We now consider a resampling procedure for the classical hypotheses, that is, � = 0 in

(4.2). For that purpose, define, for r = 1, . . . ,R,

Ť (r)
n = max

{∣∣Ŵ(r)
n (s, t)

∣∣ : s, t ∈ [0,1]}.(4.16)

Then, by the continuous mapping theorem,
(√

nM̂n, Ť
(1)
n , . . . , Ť (R)

n

) ⇒ (
Ť , Ť (1), . . . , Ť (R))

in R
R+1, where Ť (1), . . . , Ť (R) are independent copies of the random variable Ť de-

fined in (4.9). If Ť
{�R(1−α)�}
n is the empirical (1 − α)-quantile of the bootstrap sample

Ť
(1)
n , Ť

(2)
n , . . . , Ť

(R)
n , the classical null hypothesis H0 : μ1 = μ2 of no change-point is re-

jected, whenever

M̂n >
Ť

{�R(1−α)�}
n √

n
.(4.17)

It follows by similar arguments, as given in Section B.3 of the Supplementary Material, that
this test is consistent and has asymptotic level α in the sense of Theorem 3.5, that is,

lim
R→∞ lim sup

n→∞
PH0

(
M̂n >

Ť
{�R(1−α)�}
n √

n

)
= α,

lim inf
n→∞ PH1

(
M̂n >

Ť
{�R(1−α)�}
n √

n

)
= 1,

for any R ∈ N. The details are omitted for the sake of brevity.
We now continue developing bootstrap methodology for the problem of testing for a rel-

evant change-point, that is, � > 0 in (4.9). It turns out that the theoretical analysis is sub-
stantially more complicated as the null hypothesis defines a set in in C([0,1]). Similar as in
(3.25), the estimates of the extremal sets E+ and E− are defined by

Ê±
n =

{
t ∈ [0,1] : ± (

μ̂1(t) − μ̂2(t)
) ≥ d̂∞ − cn√

n

}
,(4.18)

where limn→∞ cn/ log(n) = c > 0 and d̂∞ is given in (4.12). Consider bootstrap analogs

T (r)
n = 1

ŝ(1 − ŝ)
max

{
sup
t∈Ê+

n

Ŵ (r)
n (ŝ, t), sup

t∈Ê−
n

(−Ŵ (r)
n (ŝ, t)

)}
(4.19)

(r = 1, . . . ,R) of the statistic
√

n(d̂∞ − d∞)

in Corollary 4.1, where d∞ = ‖μ1 − μ2‖.

THEOREM 4.4. Let the assumptions of Theorem 4.3 be satisfied, then if d∞ > 0,(√
n(d̂∞ − d∞), T (1)

n , . . . , T (R)
n

) ⇒ (
T (E), T (1), . . . , T (R))

in R
R+1, where T (1), . . . , T (R) are independent copies of the random variable T (E) defined

in Corollary 4.1.
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A test for the hypothesis of a relevant change-point in time series of continuous functions
is now obtained by rejecting the null hypothesis in (4.2), whenever

d̂∞ > � + T
{�R(1−α)�}
n √

n
,(4.20)

where T
{�R(1−α)�}
n is the empirical (1 − α)-quantile of the bootstrap sample T

(1)
n , T

(2)
n , . . . ,

T
(R)
n . It follows by similar arguments, as given in Section B.3 of the Supplementary Material,

that this test is consistent and has asymptotic level α in the sense of Theorem 3.8, that is,

lim
R→∞ lim sup

n→∞
PH0

(
d̂∞ > � + T

{�R(1−α)�}
n √

n

)
≤ α

and

lim inf
n→∞ PH1

(
d̂∞ > � + T

{�R(1−α)�}
n √

n

)
= 1,

for any R ∈ N. The details are omitted for the sake of brevity.

5. Data example. A detailed simulation study investigating the finite sample properties
of the new methodology is given in the Supplementary Material. In this section, we illus-
trate the new approach in two applications to annual temperature profiles are reported in this
section. Data of this kind were recently used in Fremdt et al. [24] in support of methodol-
ogy designed to choose the dimension of the projection space obtained with fPCA. For all
examples, functions were generated from daily values through representation in a Fourier
basis consisting of 49 basis functions, where reasonable deviations from this preset do not
qualitatively change the outcome of the analyses to follow.

5.1. Two-sample tests. For the two-sample testing problem, annual temperature profiles
were obtained from daily temperatures recorded at measuring stations in Cape Otway (1865–
2011), a location close to the southernmost point of Australia, and Sydney (1859–2011), a
city on the eastern coast of Australia. This led to m = 147, respectively, n = 153 functions for
the two samples. Differences in the temperature profiles are expected due to different climate
conditions, so the focus of the relevant tests is on working out how big the discrepancy might
be.

To set up the test for the hypotheses (3.1), the statistic in (3.7) was computed, resulting in
the value d̂∞ = 5.73. To see whether this is significant, the proposed bootstrap methodology
was applied. To estimate the extremal sets in (3.8), the estimators in (3.25) were utilized
with cm,n = 0.1 log(m+n) = 0.570 and as bandwidth parameters l1 = l2 = 1 were used. The
resulting bootstrap quantiles are reported in the second row of Table 1. Also reported in this
table are the results of the bootstrap procedure in (3.28) for various levels α and relevance �.
Note that the maximum difference in mean the functions is achieved at t = 0.99, toward the
end of December, and consequently during the Australian summer. The results show that
there is strong evidence in the data to support the hypothesis that the maximal difference is
at least � = 5.4, but that there is no evidence that the maximal difference is even larger than
� = 5.6. Several intermediate values of � led to weaker support of the alternative. The left
panel of Figure 1 displays the difference in mean functions graphically.
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TABLE 1
Summary of the bootstrap two sample procedure for relevant hypotheses with varying � for the annual

temperature curves. The label TRUE refers to a rejection of the null, the label FALSE to a failure to reject the null

� 99% 97.5% 95% 90%

q 5.138 4.201 3.757 3.009

5.4 TRUE TRUE TRUE TRUE
5.45 FALSE TRUE TRUE TRUE
5.5 FALSE FALSE TRUE TRUE
5.55 FALSE FALSE TRUE TRUE
5.6 FALSE FALSE FALSE FALSE

5.2. Change-point tests. Following Fremdt et al. [24], annual temperature curves were
obtained from daily minimum temperatures recorded in Melbourne, Australia. This led to
156 annual temperature profiles ranging from 1856 to 2011 to which the change-point test
for the relevant hypotheses in (4.2) was applied based on the rejection decision in (4.14). To
compute the test statistic d̂∞ in (4.12), note that the estimated change-point in (4.11) was
ŝ = 0.62 (corresponding to the year 1952). This gives d̂∞ = 1.765. To see whether this value
leads to a rejection of the null, the multiplier bootstrap procedure was utilized with bandwidth
parameter l = 1, leading to the rejection rule in (4.20). In order to apply this procedure, first
the extremal sets Ê+ and Ê− in (4.18) were selected, choosing cn = 0.1 logn = 0.504. This
yielded the bootstrap quantiles reported in the second row of Table 2.

Several values for �, determining which deviations are to be considered relevant, were
then examined. The results of the bootstrap testing procedure are summarized in Table 2.
It can be seen that the null hypothesis of no relevant change was rejected at all considered
levels for the smaller choice � = 1.2. On the other extreme, for � = 1.4, the test never
rejected. For the intermediate values � = 1.25,1.3,1.35, the null was rejected at the 2.5%,
5% and 10% level, at the 5% and 10% level, and at the 10% level, respectively. Estimating
the mean functions before and after ŝ (1962) shows that the maximum difference of the mean
functions is approximately 1.765, lending further credibility to the conducted analyses. The
right panel of Figure 1 displays both mean functions for illustration. It can be seen that the
mean difference is maximal during the Australian summer (in February), indicating that the
mean functions of minimum temperature profiles have been most drastically changed during
the hottest part of the year. The results here are in agreement with the findings put forward
in Hughes et al. [31], who reported that average temperatures in Antarctica have risen due to
increases in minimum temperatures.

FIG. 1. Mean functions for the Australian temperature data. Left panel: Estimated mean functions of the Cape
Otway and Sydney series for the two-sample case. Right panel: Estimated mean functions before and after the
estimated change-point for the Melbourne temperature series.
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TABLE 2
Summary of the bootstrap change-point procedure for relevant hypotheses with varying � for the annual

temperature curves. The label TRUE refers to a rejection of the null, the label FALSE to a failure to reject the null

� 99% 97.5% 95% 90%

q 6.632 6.278 5.603 4.697

1.2 TRUE TRUE TRUE TRUE
1.25 FALSE TRUE TRUE TRUE
1.3 FALSE FALSE TRUE TRUE
1.35 FALSE FALSE FALSE TRUE
1.4 FALSE FALSE FALSE FALSE

In summary, the results in this section highlight that there is strong evidence in the data
for an increase in the mean function of Melbourne annual temperature profiles, with the
maximum difference between “before” and “after” mean functions being at least 1.25 degrees
centigrade. There is weak evidence that this difference is at least 1.35 degrees centigrade, but
there is no support for the relevant hypothesis that it is even larger than that.
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SUPPLEMENTARY MATERIAL

Monte Carlo study and proofs (DOI: 10.1214/19-AOS1842SUPPA; .pdf). This supple-
ment contains a detailed simulation study investigating the finite sample properties of the
methodology introduced in this paper. Furthermore, the proofs of the theorems can be found
here.

R code (DOI: 10.1214/19-AOS1842SUPPB; .zip). This supplement contains all the R-
scripts which were used for the simulations in this paper.
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