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The eigenvector empirical spectral distribution (VESD) is a useful tool
in studying the limiting behavior of eigenvalues and eigenvectors of covari-
ance matrices. In this paper, we study the convergence rate of the VESD
of sample covariance matrices to the deformed Marčenko–Pastur (MP) dis-
tribution. Consider sample covariance matrices of the form �1/2XX∗�1/2,
where X = (xij ) is an M × N random matrix whose entries are independent

random variables with mean zero and variance N−1, and � is a deterministic
positive-definite matrix. We prove that the Kolmogorov distance between the
expected VESD and the deformed MP distribution is bounded by N−1+ε for
any fixed ε > 0, provided that the entries

√
Nxij have uniformly bounded 6th

moments and |N/M − 1| ≥ τ for some constant τ > 0. This result improves
the previous one obtained in (Ann. Statist. 41 (2013) 2572–2607), which gave
the convergence rate O(N−1/2) assuming i.i.d. X entries, bounded 10th mo-
ment, � = I and M < N . Moreover, we also prove that under the finite 8th
moment assumption, the convergence rate of the VESD is O(N−1/2+ε) al-
most surely for any fixed ε > 0, which improves the previous bound N−1/4+ε

in (Ann. Statist. 41 (2013) 2572–2607).

1. Introduction and main results. Sample covariance matrices are fundamental ob-
jects in multivariate statistics. The population covariance matrix of a centered random vector
y ∈ R

M is � = Eyy∗. Given N independent samples (y1, . . . ,yN) of y, the sample covariance
matrix Q := N−1 ∑

i yiy∗
i is the simplest estimator for �. In fact, if M is fixed, then Q con-

verges almost surely to � as N → ∞. However, in many modern applications, the advance
of technology has led to high-dimensional data where M is comparable to or even larger
than N . In this setting, � cannot be estimated through Q directly, but some properties of �

can be inferred from the eigenvalue and eigenvector statistics of Q. The large dimensional
covariance matrices have more and more applications in various fields, such as statistics [13,
25–27], economics [39] and population genetics [40].

In this paper, we consider sample covariance matrices of the form Q1 := �1/2XX∗�1/2,
where X = (xij ) is an M ×N real or complex data matrix whose entries are independent (but
not necessarily identically distributed) random variables satisfying

Exij = 0, E|xij |2 = N−1, 1 ≤ i ≤ M,1 ≤ j ≤ N,(1.1)

and the population covariance matrix � := diag(σ1, σ2, . . . , σM), σ1 ≥ · · · ≥ σM ≥ 0, is a
deterministic positive-definite matrix. If the entries of X are complex, then we assume in
addition that

(1.2) Ex2
ij = 0, 1 ≤ i ≤ M,1 ≤ j ≤ N.
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Define the aspect ratio dN := N/M . We are interested in the high-dimensional case with
limN→∞ dN = d ∈ (0,∞). We will also consider the N × N matrix Q2 := X∗�X, which
share the same nonzero eigenvalues with Q1.

A simple but important example is the sample covariance matrix with � = σ 2I (i.e., the
null case). In applications of spectral analysis of large dimensional random matrices, one
important problem is the convergence rate of the empirical spectral distributions (ESD). It is
well known that the ESD F

(M)
XX∗ of XX∗ converges weakly to the Marčenko–Pastur (MP) law

FMP [35]. One way to measure the convergence rate of the ESD is to use the Kolmogorov
distance ∥∥F (M)

XX∗ − FMP
∥∥ := sup

x

∣∣F (M)
XX∗(x) − FMP(x)

∣∣.
The convergence rate for sample covariance matrices was first established in [3], and later
improved in [22] to O(N−1/2) in probability under the finite 8th moment condition. In [43],
the authors proved an almost optimal bound that ‖F (M)

XX∗ − FMP‖ = O(N−1+ε) with high
probability for any fixed ε > 0 under the subexponential decay assumption.

The research on the asymptotic properties of eigenvectors of large dimensional random
matrices is generally harder and much less developed. However, the eigenvectors play an
important role in high-dimensional statistics. In particular, the principal component analysis
(PCA) is now favorably recognized as a powerful technique for dimensionality reduction, and
the eigenvectors corresponding to the largest eigenvalues are the directions of the principal
components. The earlier work on the properties of eigenvectors goes back to Anderson [1],
where the author proved that the eigenvectors of the Wishart matrix are asymptotically nor-
mal and isotropic when M is fixed and N → ∞. For the high-dimensional case, Johnstone
[25] proposed the spiked model to test the existence of principal components. Then Paul [41]
studied the directions of eigenvectors corresponding to spiked eigenvalues. In [34], Ma pro-
posed an iterative thresholding approach to estimate sparse principal subspaces in the setting
of a high-dimensional spiked covariance model. Using a reduction scheme which reduces the
sparse PCA problem to a high-dimensional multivariate regression problem, [11] established
the optimal rates of convergence for estimating the principal subspace for a large class of
spiked covariance matrices. One can see the references in [11, 34] for more literatures on
sparse PCA and spiked covariance matrices.

For the test of the existence of spiked eigenvalues, we first need to study the properties
of the eigenmatrices in the null case. If � = σ 2I , then the eigenmatrix is expected to be
asymptotically Haar distributed (i.e., uniformly distributed over the unitary group). However,
formulating the terminology “asymptotically Haar distributed” is far from trivial since the
dimension M is increasing. Following the approach in [4, 44, 45, 51, 52], we will use the
eigenvector empirical spectral distribution (VESD) to characterize the asymptotical Haar
property. Suppose

(1.3) �1/2X = ∑
1≤k≤N∧M

√
λkξkζ

∗
k

is a singular value decomposition of �1/2X, where

λ1 ≥ λ2 ≥ · · · ≥ λN∧M ≥ 0 = λN∧M+1 = · · · = λN∨M,

{ξk}Mk=1 are the left-singular vectors, and {ζk}Nk=1 are the right-singular vectors. Then for
deterministic unit vectors u ∈ C

M and v ∈ C
N , we define the VESD of Q1,2 as

(1.4) F
(M)
Q1,u(x) =

M∑
k=1

∣∣〈ξk,u〉∣∣21{λk≤x}, F
(N)
Q2,v(x) =

N∑
k=1

∣∣〈ζk,v〉∣∣21{λk≤x}.
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Now we apply the above formulations to the null case. Adopting the ideas of [44, 45], we
define the stochastic process as

XM,u(t) :=
√

M

2

�Mt�∑
k=1

(∣∣〈ξk,u〉∣∣2 − M−1)
.

If the eigenmatrix of XX∗ is Haar distributed, then the vector y := (〈ξk,u〉)Mk=1 is uniformly
distributed over the unit sphere, and XM,u(t) would converge to a Brownian bridge by
Donsker’s theorem. Thus the convergence of XM,u to a Brownian bridge characterizes the
asymptotical Haar property of the eigenmatrix. For convenience, we can consider the time
transformation

XM,u
(
F

(M)
XX∗(x)

) =
√

M

2

(
F

(M)
XX∗,u(x) − F

(M)
XX∗(x)

)
.

Thus the problem is reduced to the study of the difference between the VESD and the ESD.
It was already proved in [4, 9] that F

(M)
XX∗,u also converges weakly to the MP law for any

sequence of unit vectors u ∈ R
M . On the other hand, compared with ESD, much less has

been known about the convergence rate of the VESD. The best result so far was obtained in
[52], where the authors proved that if dN > 1 and the entries of X are i.i.d. centered random
variables, then ‖EF

(M)
XX∗,u − FMP‖ = O(N−1/2) under the finite 10th moment assumption,

and ‖F (M)
XX∗,u − FMP‖ = O(N−1/4+ε) almost surely under the finite 8th moment assumption.

However, we find that both of these bounds are far away from being optimal, and can be
improved with a different method. This is one of the purposes of this paper.

We will also extend the above formulation to include sample covariance matrices with
general population �. For a nonscalar �, the eigenmatrix of Q1 is not asymptotically
Haar distributed anymore. For its distribution, we conjecture that the eigenvectors of Q1
are asymptotically independent, and each ξk is asymptotically normal with covariance ma-
trix given by some Dk . In fact, our results in this paper suggest that Dk takes the form
F1c(γk) − F1c(γk+1), where γk is defined in (1.15) to denote the classical location for λk ,
and F1c is a matrix-valued function defined in (1.18) with the property that 〈u,F1cu〉 is the
asymptotic distribution of the VESD FQ1,u for any u ∈ C

M . Again, since the dimension M

increases to infinity, the above property is hard to formulate. One way is to consider the finite-
dimensional restriction in the following sense: given m ∈N, for any fixed unit vector u ∈ C

M

and {i1, . . . , im} ⊆ {1, . . . ,N ∧ M}, we should have asymptotically

(1.5)
(〈ξi1,u〉, . . . , 〈ξim,u〉) ∼Nm

(
0, 〈u,Di1u〉, . . . , 〈u,Dimu〉).

(In fact, for a nice choice of � in the sense of Definition 1.2, 〈u,Dku〉 is typically of order
N−1.) We can also adopt the approach as above, that is, to investigate the stochastic process

(1.6) X�
M,u(t) :=

√
M

2

�Mt�∑
k=1

(∣∣〈ξk,u〉∣∣2 − 〈u,Dku〉).
If M < N , we conjecture that X�

M,u(t) converges to the following Gaussian process for 0 ≤
t ≤ 1:

(1.7) B�
u (t) :=

∫ t

0
〈u,F1cu〉 ◦ F−1

1c dBt conditioning on B�
u (1) = 0,

where Bt is a standard Brownian motion, F1c is the asymptotic ESD of Q1 defined in (1.12),
and F−1

1c denotes the quantile function. As before, we can study the process (1.6) through
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the time transformation X�
M,u(FQ1(x)), where FQ1 is the ESD of Q1. Due to the rigidity of

eigenvalues (see Theorem 3.7), we have for all x,√
2

M
X�

M,u
(
FQ1(x)

) = FQ1,u(x) − 〈
u,F1c(x)u

〉 + O
(
N−1+ε)

with very high probability for any fixed ε > 0. Thus we need to study the convergence rate
of FQ1,u to 〈u,F1cu〉, and this is our main goal. In fact, we will prove that the convergence
rate of EFQ1,u is O(N−1+ε) for any fixed ε > 0, which shows that the limiting process is
centered, and the convergence rate of FQ1,u is O(N−1/2+ε), which partially verify the

√
M

scaling.

1.1. Main results. We consider sample covariance matrices with a general diagonal �,
whose empirical spectral distribution is denoted by

(1.8) π ≡ πM := M−1
∑

1≤i≤M

δσi
.

We assume that there exists a small constant τ > 0 such that

(1.9) σ1 ≤ τ−1 and πM

([0, τ ]) ≤ 1 − τ for all M.

The first condition means that the operator norm of � is bounded, and the second condition
means that the spectrum of � cannot concentrate at zero. If πM converges weakly to some
distribution π̂ as M → ∞, then it was shown in [35] that the ESD of Q2 converges in proba-
bility to some deterministic distribution, which is called the deformed Marčenko–Pastur law.
For any N , we describe the deformed MP law F

(N)
2c through its Stieltjes transform

m2c(z) ≡ m
(N)
2c (z) :=

∫
R

dF
(N)
2c (x)

x − z
, z = E + iη ∈ C+.

We define m2c as the unique solution to the self-consistent equation

(1.10)
1

m2c(z)
= −z + d−1

N

∫
t

1 + m2c(z)t
π(dt),

subject to the conditions that Imm2c(z) ≥ 0 and Im zm2c(z) ≥ 0 for z ∈ C+. It is well known
that the functional equation (1.10) has a unique solution that is uniformly bounded on C+
under the assumption (1.9) [35]. Letting η ↓ 0, we can recover the asymptotic eigenvalue
density ρ2c (which further gives F

(N)
2c ) with the inverse formula

(1.11) ρ2c(E) = π−1 lim
η↓0

Imm2c(E + iη).

Since Q1 share the same nonzero eigenvalues with Q2 and has M −N more (or N −M less)
zero eigenvalues, we can obtain the asymptotic ESD for Q1:

(1.12) F
(M)
1c = dNF

(N)
2c + (1 − dN)1[0,∞).

In the rest of this paper, we will often omit the superindices N and M from our notation. The
properties of m2c and ρ2c have been studied extensively; see, for example, [2, 5, 7, 23, 30,
46, 47]. The following Lemma 1.1 describes the basic structure of ρ2c. For its proof, one can
refer to [30], Appendix A.
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LEMMA 1.1 (Support of the deformed MP law). The density ρ2c is a disjoint union of
connected components:

(1.13) suppρ2c ∩ (0,∞) =
L⋃

k=1

[a2k, a2k−1] ∩ (0,∞),

where L ∈ N depends only on πM . Moreover, N
∫ a2k−1
a2k

ρ2c(x)dx is an integer for any k =
1, . . . ,L, which give the classical number of eigenvalues in the bulk component [a2k, a2k−1].

We shall call ak the edges of ρ2c. For any 1 ≤ k ≤ 2L, we define

(1.14) Nk := ∑
l:2l≤k

N

∫ a2l−1

a2l

ρ2c(x)dx.

Then we define the classical locations γj for the eigenvalues of Q2 through

(1.15) 1 − F2c(γj ) = j − 1/2

N
, 1 ≤ j ≤ K,

where we abbreviate K := M ∧N . Note that (1.15) is well defined since the Nk’s are integers.
For convenience, we also denote γ0 := +∞ and γK+1 := 0.

To establish our main result, we need to make some extra assumptions on � and πM ,
which takes the form of the following regularity conditions.

DEFINITION 1.2 (Regularity).

(i) Fix a (small) constant τ > 0. We say that the edge ak , k = 1, . . . ,2L, is τ -regular if

(1.16) ak ≥ τ, min
l �=k

|ak − al| ≥ τ, min
i

∣∣1 + m2c(ak)σi

∣∣ ≥ τ,

where m2c(ak) := m2c(ak + i0+).
(ii) We say that the bulk components [a2k, a2k−1] is regular if for any fixed τ ′ > 0 there exists

a constant c ≡ cτ ′ > 0 such that the density of ρ2c in [a2k + τ ′, a2k−1 − τ ′] is bounded
from below by c.

REMARK 1.3. The edge regularity conditions (i) has previously appeared (in slightly
different forms) in several works on sample covariance matrices [6, 15, 23, 30, 32, 38]. The
condition (1.16) ensures a regular square-root behavior of ρ2c near ak . The bulk regularity
condition (ii) was introduced in [30], and it imposes a lower bound on the density of eigen-
values away from the edges. These conditions are satisfied by quite general classes of �; see,
for example, [30], Examples 2.8 and 2.9.

For any u ∈ C
M and z ∈ C+, we define

(1.17) m1c,u(z) := −〈
u, z−1(

1 + m2c(z)�
)−1u

〉
.

Then m1c,u is the Stieltjes transform of a distribution, which we shall denote by F1c,u. From
(1.17), it is easy to see that there exists a matrix-valued function F1c depending on � such
that F1c,u = 〈u,F1cu〉, that is, we have

(1.18) m1c,u(z) =
∫
R

dF1c,u(x)

x − z
=

〈
u,

∫
R

dF1c(x)

x − z
u
〉
.

It was already proved in [30] that for any sequence of unit vectors u ∈ C
M and v ∈C

N , F (M)
Q1,u

converges weakly to F1c,u and F
(N)
Q2,v(x) converges weakly to F2c. Now we are ready to state

our main results, that is, Theorem 1.5. We first give the main assumptions.
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ASSUMPTION 1.4. Fix a (small) constant τ > 0.

(i) X = (xij ) is a M × N real or complex matrix whose entries are independent random
variables that satisfy the following moment conditions: there exist constants C0, c0 > 0 such
that for all 1 ≤ i ≤ M , 1 ≤ j ≤ N ,

|Exij | ≤ C0N
−2−c0,(1.19) ∣∣E|xij |2 − N−1∣∣ ≤ C0N
−2−c0,(1.20) ∣∣Ex2

ij

∣∣ ≤ C0N
−2−c0, if xij is complex,(1.21)

E|xij |4 ≤ C0N
−2.(1.22)

Note that (1.19)–(1.21) are slightly more general than (1.1) and (1.2).
(ii) τ ≤ dN ≤ τ−1 and |dN − 1| ≥ τ .

(iii) � = diag(σ1, σ2, . . . , σM) is a deterministic positive semi-definite matrix. We assume
that (1.9) holds, all the edges of ρ2c are τ -regular, and all the bulk components of ρ2c are
regular in the sense of Definition 1.2.

THEOREM 1.5. Suppose dN , X and � satisfy the Assumption 1.4. Suppose there exist
constants C1, φ > 0 such that

(1.23) max
1≤i≤M,1≤j≤N

|xij | ≤ C1N
−φ.

Let u ≡ uM ∈ C
M and v ≡ vN ∈ C

N denote sequences of deterministic unit vectors. Then for
any fixed (small) ε > 0 and (large) D > 0, we have

(1.24)
∥∥EF

(M)
Q1,u − F

(M)
1c,u

∥∥ + ∥∥EF
(N)
Q2,v − F

(N)
2c

∥∥ ≤ N−1+ε

for sufficiently large N , and for a := min(2φ,1/2),

(1.25) P
(∥∥F (M)

Q1,u − F
(M)
1c,u

∥∥ + ∥∥F (N)
Q2,v − F

(N)
2c

∥∥ ≥ N−a+ε) ≤ N−D.

As an immediate corollary of Theorem 1.5, we have the following result.

COROLLARY 1.6. Suppose dN and � satisfy the Assumption 1.4. Let X = (xij ) be a
M × N random matrix whose entries are independent and satisfy (1.1) and (1.2). Suppose
there exist constants a,A > 0 such that

(1.26) lim sup
s→∞

sa max
i,j

P
(|√Nxij | ≥ s

) ≤ A

for all N . Let u ≡ uM ∈ C
M and v ≡ vN ∈ C

N denote sequences of deterministic unit vectors.
Then for any fixed ε > 0, if a ≥ 6, we have

(1.27)
∥∥EF

(M)
Q1,u − F

(M)
1c,u

∥∥ + ∥∥EF
(N)
Q2,v − F

(N)
2c

∥∥ ≤ N−1+ε

for sufficiently large N ; if a ≥ 8, we have

(1.28) P

(
lim sup
N→∞

N1/2−ε(∥∥F (M)
Q1,u − F

(M)
1c,u

∥∥ + ∥∥F (N)
Q2,v − F

(N)
2c

∥∥) ≤ 1
)

= 1.

PROOF OF COROLLARY 1.6. We use a standard cutoff argument. We fix a > 4 and
choose a constant φ > 0 small enough such that (N1/2−φ)a ≥ N2+ω for some constant ω > 0.
Then we introduce the following truncation:

X̃ := 1�X, � := {|xij | ≤ N−φ for all 1 ≤ i ≤ M,1 ≤ j ≤ N
}
.
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By the tail condition (1.26), we have

(1.29) P(X̃ �= X) = O
(
N2−a/2+aφ)

.

Moreover, we have

P(X̃ �= X i.o.) = lim
k→∞P

( ∞⋃
N=k

M⋃
i=1

N⋃
j=1

{|xij | ≥ N−φ})

= lim
k→∞P

( ∞⋃
t=k

⋃
N∈[2t ,2t+1)

M⋃
i=1

N⋃
j=1

{|xij | ≥ N−φ})

≤ C lim
k→∞

∞∑
t=k

(
2t+1)2(

2t (1/2−φ))−a ≤ C lim
k→∞

∞∑
t=k

2−ωt = 0,

(1.30)

that is, X̃ = X almost surely as N → ∞. Here in the above derivation, we regard M = N/dN

as a function depending on N .
Using (1.26) and integration by parts, it is easy to verify that

E|xij |1|xij |>N−φ = O
(
N−2−ω/2)

, E|xij |21|xij |>N−φ = O
(
N−2−ω/2)

,

which imply that

|Ex̃ij | = O
(
N−2−ω/2)

, E|x̃ij |2 = N−1 + O
(
N−2−ω/2)

,∣∣Ex̃2
ij

∣∣ = O
(
N−2−ω/2)

, if xij is complex.

Moreover, we trivially have

E|x̃ij |4 ≤ E|xij |4 = O
(
N−2)

.

Hence X̃ is a random matrix satisfying Assumption 1.4. Then using (1.24) and (1.29) with
a = 6 and φ = ε/6, we conclude (1.27); using (1.25) and (1.30) with φ = (1 − ε)/4 and
a = 8, we conclude (1.28). �

REMARK 1.7. The estimates (1.27) and (1.28) improve the bounds obtained in [52], and
relax the assumptions on moments and � as well. The convergence rates in (1.27) and (1.28)
are optimal up to an Nε factor. In fact, it was proved in [4] that for an analytic function f ,

(1.31)
√

N

∫
f (x)d

(
FQ1,u(x) − F1c,u(x)

) → N (0, σf,u),

where N (0, σf,u) denotes the Gaussian distribution with mean zero and variance σf,u. This
shows that the fluctuation of FQ1,u(x) is of order N−1/2 and suggests the bound in (1.28).
Taking expectation of (1.31), one can see that the order of |EFQ1,u(x) − F1c,u(x)| should be
even smaller. Moreover, the fluctuation of eigenvalues on the microscopic scale will lead to
an error of order at least N−1 by the universality of eigenvalues [6, 32, 43]. This shows that
the bound (1.27) should be close to being optimal. We check the bounds (1.27) and (1.28)
below with some numerical simulations; see Figure 1.

REMARK 1.8. In [52], the authors only handle the M < N (i.e., dN > 1) case for Q1,
while our proof works for both the dN > 1 and dN < 1 cases. However, in the case with
dN → 1, we will encounter some difficulties near the leftmost edge a2L, which converges to
0 as N → ∞ and violates the regularity condition (1.16). We will try to relax this assumption
in the future.
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FIG. 1. The left figures of (a) and (b) plot ‖F(N)
Q2,v

− F
(N)
2c ‖ as N increases from 50 to 2000, and we choose f

to fit the upper envelope of the data. The right figures plot ‖EF
(N)
Q2,v

− F
(N)
2c ‖ as N increases from 50 to 800.

REMARK 1.9. In Theorem 1.5, we have assumed that � is diagonal. But our results
can be extended immediately to the case with a general nondiagonal population covariance
matrix C for multivariate normal data. More precisely, let X be a random matrix with i.i.d.
Gaussian entries and suppose C has eigendecomposition C = U∗�U . Then we have

(1.32) C1/2XX∗C1/2 = U∗(
�1/2XX∗�1/2)

U in distribution.

Hence for any unit test vector u, our results can be applied to the VESD of �1/2XX∗�1/2

with test vector Uu.
For generally distributed data, under sufficiently strong moment assumptions, it is possible

to prove the same results for the case with nondiagonal population covariance matrix C. In
particular, if the entries of

√
NX have arbitrarily high moments, it can be proved that (1.27)

and (1.28) hold for the VESD of C1/2XX∗C1/2. The main inputs for the proof will include:
(a) the local law in [30], Theorem 3.6 (which generalizes the one in Theorem 3.4 to the
nondiagonal C case with generally distributed data), (b) Theorem 1.5 (proved for the diagonal
C case), (c) a comparison argument in [30], Section 7 (which extends Theorem 1.5 to the
nondiagonal case through comparison with the diagonal case), and (d) the Helffer–Sjöstrand
arguments in Section 3.2. However, under weaker moment assumptions as in Corollary 1.6,
the proof will be much harder. For step (a), we need to use the local law proved in [53],
which further generalizes the one in [30] to the heavy-tailed case. The main issue will be that
the error bounds in steps (a) and (c) are not sharp enough, which does not give the optimal
convergence rates as in (1.27) and (1.28). We would like to deal with this problem in the
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future, and focus on proving a sharp bound for the convergence rate of VESD in the diagonal
C case in this article.

REMARK 1.10. As discussed above, the convergence of the stochastic process X�
M,u

defined in (1.6) to the Gaussian process B�
u in (1.7) is also a very important question, which

is complementary to the results in Corollary 1.6. The convergence of XI
M,u to the Brownian

bridge was first proved in the null case � = I , for some special vectors of the form u =
M−1/2(±1, . . . ,±1) in [45]. The result was later extended to the case with a general fixed
vector u in [4]. More precisely, it was proved in [4] that for any fixed vector u and analytic
functions g1, . . . , gk , the random vector(

X̂M,u(g1), . . . , X̂M,u(gk)
)
, X̂M,u(gi) :=

∫
gi(x)dXI

M,u
(
FQ1(x)

)
, 1 ≤ i ≤ k,

converges to a Gaussian vector with mean zero and certain covariance function. We expect
that combining the method in [4] and the new tools in this paper, one can prove a similar
convergence result for X�

M,u in the case with a nonscalar �. This will be studied in a future
paper.

The rest of this paper is organized as follows. In Section 2, we check the results in Corol-
lary 1.6 with some numerical simulations, and then introduce some applications of our results
in high-dimensional statistical inference. We prove Theorem 1.5 in Section 3 using Stieltjes
transforms. In the proof, we mainly use Theorems 3.4–3.6, which give the desired anisotropic
local laws for the resolvents of Q1 and Q2. Theorem 3.5 constitutes the main novelty of this
paper, and its proof will be given in Section 4. The proofs of Theorem 3.4 and Theorem 3.6
will be given in the Supplementary Material [50].

2. Simulations and applications. In this section, we first check the convergence rate of
the (expected) VESD to the deformed MP law with some numerical simulations. Then we
will discuss briefly the applications of our results in high-dimensional statistical inference
procedures.

2.1. Simulations. The simulations are performed under the following setting: M = 2N ,
that is, dN = 0.5; the entries

√
Nxij are drawn from a distribution ξ with mean zero, variance

1 and tail P(|ξ | ≥ s) ∼ s−6 for large s; the unit vector v is randomly chosen for each N .
In Figure 1, we plot the Kolmogorov distances ‖FQ2,v − F2c‖ and ‖EFQ2,v − F2c‖ for the
following two choices of �: � = I with ESD π = δ1, and

(2.1) � = diag(1, . . . ,1︸ ︷︷ ︸
M/2

,4, . . . ,4︸ ︷︷ ︸
M/2

), with ESD π = 0.5δ1 + 0.5δ4.

For each N , we take an average over 10 repetitions to represent F
(N)
Q2,v and an average over

4N2 repetitions to approximate EF
(N)
Q2,v. Under each setting, we choose an appropriate func-

tion f (x) to fit the simulation data. It is easy to observe that the convergence rate of the
VESD is bounded by O(N−1/2), while the convergence rate of the expected VESD has order
N−1. This verifies the results in Corollary 1.6.

As discussed before, the convergence of FQ2,v to F2c for any sequence of deterministic
unit vectors v can be used to characterize the asymptotical Haar property of the eigenma-
trix of Q2 = X∗�X (which also implies the asymptotical Haar property of the eigenmatrix
of Q1 when � = σ 2I ). On the other hand, for a general �, the eigenmatrix of Q1 is not
asymptotically Haar distributed anymore and the VESD of Q1 will depend on v. Moreover,
(1.17) gives an explicit dependence of F1c on �, which should be of interest to statistical
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FIG. 2. The plots for FQ1,v(x) and F1c,v(x) with N = 2000, M = 2N and under the settings in Figure 1.
We take v1 = √

2/M(1, . . . ,1︸ ︷︷ ︸
M/2

,0, . . . ,0), v3 = √
2/M(0, . . . ,0,1, . . . ,1︸ ︷︷ ︸

M/2

), v2 = (v1 + v3)/
√

2, and wi = Uvi ,

i = 1,2,3. The vertical dashed lines mark the places of the left edge γN and the right edge γ1 of the spectrum
(recall (1.15)).

applications. (For more details on the application of this principle, the reader can refer to
the discussions in Section 2.2.3.) In Figure 2(a), we plot FQ1,v for � in (2.1) and different
choices of vi , i = 1,2,3. One can observe a transition of FQ1,v when v changes from the
direction corresponding to the smaller eigenvalues of � to the direction corresponding to the
larger eigenvalues of �. In Figure 2(b), we take � = UDU∗, where D is as in (2.1), U is a
randomly chosen unitary matrix, and wi = Uvi . One can see that even if � is nondiagonal,
the convergence of the VESD of Q1 still holds (see Remark 1.9).

2.2. Statistical applications.

2.2.1. Detection of signals in noise. Consider the following model:

(2.2) x = As + z,

where A is an M × k deterministic matrix, s is a k-dimensional mean zero signal vector,
and z is an M-dimensional noise vector with i.i.d. centered entries. Moreover, the signal
vector and the noise vector are assumed to be independent. In practice, suppose we observe
N such i.i.d. samples and set the matrix X = (x1, . . . ,xN). This signal-plus-noise model is a
standard model in classic signal processing [28]. A fundamental task is to detect the signals
via observed samples, and the very first step is to know whether there exists any such signal,
that is

(2.3) H0 : k = 0 versus H1 : k ≥ 1.

The model (2.2) is also widely used in various other fields, such as multivariate statistics,
wireless communications, bioinformatics and finance. For example, in multivariate statistics
one wants to determine whether there exists any relation between two sets of variables. To
test the independence, we can adopt the multivariate multiple regression model (2.2), where
x and s are the two sets of variables for testing [24]. Then we can test the null hypothesis that
these regression coefficients are all zero:

(2.4) H0 : A = 0 versus H1 : A �= 0.

Another example is from financial studies [19–21]. In the empirical research of finance, (2.2)
is the factor model, where s is the common factor, � is the factor loading matrix and z is the
idiosyncratic component. In order to analyze the stock return x, we first need to know if the
factor s is significant for the prediction. Then a statistical test can be also constructed as (2.4).
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FIG. 3. ‖F(M)
Q1,ei

− FMP‖ for Q1 = XX∗, where X is the sample matrix of x in (2.2).

For the above hypothesis testing problems (2.3) and (2.4), under the null hypothesis H0, we
have that F

(M)
Q1,u = FMP +O(M−1/2+ε) for any unit vector u independent of X by our results.

As an example, we perform a simulation under the following setting: M = 2000, N = 2M ;
the entries

√
Nzij are i.i.d. Gaussian with mean 0 and variance 1; the entries

√
Nsij are

i.i.d. Bernoulli ±1 random variables. We choose A = DV , where V is a randomly chosen
unitary matrix and D is an M ×k matrix satisfying the following: all the entries of D are zero
except Dn(i)i , and each Dn(i)i is sampled uniformly from [0.4,0.8]. Here, n(i), 1 ≤ i ≤ k,
are k values sampled uniformly at random from the integers 1 to M . In Figure 3, we plot the
Kolmogorov distances ‖FQ1,ei

− FMP‖ with respect to i, where ei denotes the standard unit
vector along i-axis. Comparing the k = 10 case with the null case, we observe 10 obvious
peaks. Moreover, the positions of the peaks correspond to the values of n(i), and the heights
of the peaks give the strengths of the signals. Note that if one use the bound M−1/4 in [52],
then the estimated noise would be of order 0.15, which does not allow one to detect the
smallest few signals.

For Gaussian noise, some classical statistical procedures to test the number of signals usu-
ally use the largest eigenvalue of the sample covariance matrix [8, 36, 37]. The key property
is that the largest eigenvalue converges to the Gaussian distribution under the N1/2 scaling if
it is an outlier, and the Tracy–Widom distribution under the N2/3 scaling otherwise. Onatski
proposed to use the test statistic R = (λ1 − λ2)/(λ2 − λ3), which is asymptotically pivotal
[39]. Our method is more general in the sense that it can be also applied in the case with-
out outliers. For example, one can check numerically that the sample covariance matrices in
Figure 3 has no outliers.

2.2.2. Separable covariance matrices. Consider data matrices of the form

(2.5) Y = �
1/2
1 X�

1/2
2 ,

where X is an M × N random matrix as in Corollary 1.6, and �1 and �2 are M × M and
N × N deterministic positive-definite matrices, respectively. Then Q1 := YY ∗ is called a
separable covariance matrix, and it is widely used to model the spatiotemporal sampling
data [16, 42, 48]. Without loss of generality, we shall call �1 the spatial covariance matrix
and �2 the temporal covariance matrix. Suppose we want to determine whether the spatial
identity holds, that is,

H0 : �1 ∝ I vs. H1 : �1 �∝ I.

For this hypothesis testing problem, under H0, we have that F
(M)
Q1,u1

= F
(M)
Q1,u2

+O(M−1/2+ε)

for any unit vectors u1,2 independent of X. More generally, we can test whether �1 = �0 for
some given positive definite matrix �0 by using �

−1/2
0 Y . Similarly, the temporal identity can
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FIG. 4. We plot ‖F(M)
Q1,ek

− M−1 ∑
k FQ1,ek

‖ for Q1 = YY ∗ with �1,2 in (2.6). We take M = 4000, N = 2M ,
A as in (2.7) in the left figure, and A as in (2.8) in the right figure.

also be tested using the VESD of Q2 := Y ∗Y . Note that our error bound allows us to test very
weak signals up to order M−1/2 with one sample. The precision can be further improved
if one can take average over many samples. We now illustrate this application with some
numerical simulations. The simulations are performed under the following setting: N = 2M ;
the entries

√
Nxij are i.i.d. Gaussian with mean 0 and variance 1. We consider separable

covariance matrices of the form (2.5) with

(2.6) �
1/2
2 = diag(1, . . . ,1︸ ︷︷ ︸

N/2

,2, . . . ,2︸ ︷︷ ︸
N/2

), �
1/2
1 = I + aA,

where

(2.7) A = diag(1, . . . ,1︸ ︷︷ ︸
200

,−1, . . . ,−1︸ ︷︷ ︸
200

,1, . . . ,1︸ ︷︷ ︸
200

, . . .),

or for i.i.d. sequence of random variables b1, b2, . . . ∼ unif(−1,1),

(2.8) A = diag(b1, . . . , b1︸ ︷︷ ︸
200

, b2, . . . , b2︸ ︷︷ ︸
200

, b3, . . . , b3︸ ︷︷ ︸
200

, . . .).

In Figure 4, for M = 4000, a = 0.1 and the above two choices of A, we plot the Kolmogorov
distances ‖FQ1,ek

− M−1 ∑
k FQ1,ek

‖ with respect to k. We compare them with the results in
the null case with a = 0, and observe very obvious signals. Note that if one use the bound
M−1/4 in [52], then the estimated noise would be of order 0.126, which does not allow one
to detect such “weak” signals.

For this problem, [6] proposed to use the largest eigenvalue λ1(YY ∗) as a test statistic. But
it has the disadvantage that the limiting distribution of λ1 depends on the unknown matrices
�1 and �2, and hence is not asymptotically pivotal. Moreover, it was proved in [53] that the
behavior of λ1 in the nonidentity �1 case is similar to the one in the identity case, which is
not good for test purpose. On the other hand, our procedure tests the isotropic property of �1
directly.

2.2.3. Eigenvectors of population covariance matrices. Now we go back to consider the
sample covariance matrices Q1 = �1/2XX∗�1/2. By Corollary 1.6, we know that the VESD
F

(M)
Q1,u converges to F

(M)
1c,u , which is defined through the Stieltjes transform (1.17). It is easy

to observe that the matrix F(M)
1c is diagonal in the eigenbasis of �, and the diagonal entries

depend on the eigenvalues of � in an explicit way. This allows one to use the VESD of Q1 to
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FIG. 5. The plots for FQ1,vi
(x) with M = 1000 and i = 1, . . . ,5.

detect the leading eigenvectors (or eigenspaces) of �. More precisely, if ui is the eigenvector
of � with eigenvalue σi , then with (1.17) and the inverse formula we can get that

ρ
(M)
1c,ui

(E) = 1

π
lim
η↓0

Imm
(M)
1c,ui

(E + iη) = ρ2c(E)

E(σ−1
i + 2 Rem2c(E) + |m2c(E)|2σi)

,

where E ∈ R, ρ
(M)
1c,ui

is the density of F
(M)
1c,ui

, and we abbreviate m2c(E) ≡ m2c(E + i0+).

Near the right edge γ1, we know that −σ−1
1 < m2c(E) < 0 (see [30], Appendix A). Hence it

is easy to see that there exists a constant c > 0 such that for γ1 − c < E < γ1, ρ
(M)
1c,ui

(E) is

monotone with respect to σi . In particular, ρ
(M)
1c,u(E) is maximized if u = u1. Thus our results

shows that measuring the density (i.e., the slope) of F
(M)
Q1,u allows one to make some inference

on the overlaps between the test vectors and the population eigenvectors corresponding to the
leading eigenvalues of �.

In Figure 5, we give two examples of VESD of spiked covariance matrices. In the sim-
ulations, we take M = 1000 and the entries

√
Nxij to be i.i.d. Gaussian with mean 0 and

variance 1. One can take the population covariance matrix to be a general positive definite
matrix, but for simplicity we assume that it is diagonal by properly rotating the test vectors;
see Remark 1.9 and (1.32). In Figure 5(a), we take N = 2M , and

�1/2 = diag(1, . . . ,1︸ ︷︷ ︸
0.9M

,2, . . . ,2︸ ︷︷ ︸
0.1M

).

In Figure 5(b), we take N = 10M , and

�1/2 = diag(1, . . . ,1︸ ︷︷ ︸
0.6M

,3, . . . ,3︸ ︷︷ ︸
0.3M

,5, . . . ,5︸ ︷︷ ︸
0.1M

).

Moreover, we take the following test vectors (up to normalization):

v1 ∝ (1, . . . ,1︸ ︷︷ ︸
M/2

,0, . . . ,0︸ ︷︷ ︸
M/2

), v2 ∝ (1, . . . ,1), v3 ∝ (0, . . . ,0︸ ︷︷ ︸
M/2

,1, . . . ,1︸ ︷︷ ︸
M/2

),

v4 ∝ (0, . . . ,0︸ ︷︷ ︸
0.7M

,1, . . . ,1︸ ︷︷ ︸
0.3M

), v5 ∝ (0, . . . ,0︸ ︷︷ ︸
0.9M

,1, . . . ,1︸ ︷︷ ︸
0.1M

).

For each choice of vi , we take an average over 10 repetitions to get F
(M)
Q1,vi

.
Note that the flat parts of the curves in Figure 5 correspond to the gaps between different

components of the eigenvalue spectrum of Q1. Hence the spectral densities in Figures 5(a)
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and 5(b) have two and three components, respectively. The rightmost components can be
formally regarded as the outlier component caused by the large eigenvalues of �. It is easy
to see that for x near the right edge (e.g., the x marked by the dashed line), the slope of the
VESD FQ1,vi

(x) increases as i changes from 1 to 5. This verifies our previous conclusion,
that is, the density ρ1c,v increases if v has more overlap with the leading eigenvectors of �.
Note that since all the VESD curves reach 1 at the right edge γ1, the lower curves have larger
densities.

Here, we have only considered examples with diagonal �. However, our results is possible
to be applied to more general and complicated sample covariance matrices with nonzero
correlations between rows, that is, nondiagonal population covariance matrix C (see Remark
1.9). This gives much more insight into future applications of our results in high-dimensional
statistical inference. We also remark that in [31], the overlaps between sample eigenvectors
and population eigenvectors are studied through certain functionals that are closely related
to VESD (with test vectors being specified to be the population eigenvectors). Based on the
results in [31], certain estimator was proposed to estimate the population covariance C [10].
However, this estimator does not provide much information about the population eigenvectors
since it uses the same eigenvectors as the sample covariance matrix Q1.

3. Proof of Theorem 1.5. For definiteness, we will focus on real sample covariance ma-
trices during the proof. However, our proof also applies, after minor changes, to the complex
case if we include the extra assumption (1.2) or (1.21).

3.1. Anisotropic local Marčenko–Pastur law. A basic tool for the proof is the Stieltjes
transform. For any z = E + iη ∈ C+, we define the resolvents (the Green functions) of Q1
and Q2 as

(3.1) G1(X, z) := (Q1 − z)−1, G2(X, z) := (Q2 − z)−1.

Then the Stieltjes transforms of the ESD of Q1,2 are equal to

m1(X, z) := M−1TrG1(X, z), m2(X, z) := N−1TrG2(X, z),

and the Stieltjes transforms of F
(M)
Q1,u and F

(N)
Q2,v are equal to 〈u,G1(X, z)u〉 and 〈v,G2(X, z)v〉,

respectively. The main goal of this subsection is to establish the following asymptotic esti-
mate for z ∈ C+ (recall (1.17)):

(3.2)
〈
u,G1(X, z)u

〉 ≈ m1c,u(z),
〈
v,G2(X, z)v

〉 ≈ m2c(z).

By taking the imaginary part, it is easy to see that a control of the Stieltjes transforms
〈u,G1(X, z)u〉 and 〈v,G2(X, z)v〉 yields a control of the VESD on the scale of order Im z

around E. An anisotropic local law is an estimate of the form (3.2) for all Im z � N−1. Such
local law was first established in [9, 29, 30] for sample covariance matrices, assuming that
the matrix entries have arbitrarily high moments. In Section 3.2, we will complete the proof
of Theorem 1.5 with the (almost) optimal anisotropic local laws for G1 and G2.

Our anisotropic local law can be stated in a simple and unified fashion using the following
(N + M) × (N + M) self-adjoint matrix H :

(3.3) H :=
(

0 �1/2X(
�1/2X

)∗ 0

)
.

We define the resolvent of H as

(3.4) G(X,z) :=
(

−IM×M �1/2X(
�1/2X

)∗ −zIN×N

)−1

, z ∈ C+.
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Using Schur complement formula, it is easy to check that

(3.5) G =
(

zG1 G1
(
�1/2X

)(
�1/2X

)∗G1 G2

)
=

(
zG1

(
�1/2X

)
G2

G2
(
�1/2X

)∗ G2

)
.

Thus a control of G yields directly a control of the resolvents G1 and G2. For simplicity of
notation, we define the index sets

I1 := {1, . . . ,M}, I2 := {M + 1, . . . ,M + N}, I := I1 ∪ I2.

We shall consistently use the latin letters i, j ∈ I1, greek letters μ,ν ∈ I2, and a, b ∈ I . Then
we label the indices of X as X = (Xiμ : i ∈ I1,μ ∈ I2).

We will use the following notion of stochastic domination, which was first introduced
in [17] and subsequently used in many works on random matrix theory, such as [9, 30]. It
simplifies the presentation of the results and their proofs by systematizing statements of the
form “ξ is bounded with high probability by ζ up to a small power of N .”

DEFINITION 3.1 (Stochastic domination).

(i) Let

ξ = (
ξ (N)(u) : N ∈ N, u ∈ U(N)), ζ = (

ζ (N)(u) : N ∈ N, u ∈ U(N))
be two families of nonnegative random variables, where U(N) is a possibly N -dependent
parameter set. We say ξ is stochastically dominated by ζ , uniformly in u, if for any (small)
ε > 0 and (large) D > 0,

sup
u∈U(N)

P
[
ξ (N)(u) > Nεζ (N)(u)

] ≤ N−D

for large enough N ≥ N0(ε,D).
(ii) If ξ is stochastically dominated by ζ , uniformly in u, we use the notation ξ ≺ ζ .

Moreover, if for some complex family ξ we have |ξ | ≺ ζ , we also write ξ ≺ ζ or ξ = O≺(ζ ).
(iii) We say that an event � holds with high probability if for any constant D > 0, P(�) ≥

1 − N−D for large enough N .

The following lemma collects basic properties of stochastic domination, which will be
used tacitly throughout the proof.

LEMMA 3.2 (Lemma 3.2 in [9]).

(i) Let ξ and ζ be families of nonnegative random variables. Suppose that ξ(u, v) ≺
ζ(u, v) uniformly in u ∈ U and v ∈ V . If |V | ≤ NC for some constant C, then

∑
v∈V ξ(u, v) ≺∑

v∈V ζ(u, v) uniformly in u.
(ii) If 0 ≤ ξ1(u) ≺ ζ1(u) and 0 ≤ ξ2(u) ≺ ζ2(u) uniformly in u ∈ U , then ξ1(u)ξ2(u) ≺

ζ1(u)ζ2(u) uniformly in u ∈ U .
(iii) Suppose that �(u) ≥ N−C is deterministic and ξ(u) satisfies Eξ(u)2 ≤ NC for all u.

Then if ξ(u) ≺ �(u) uniformly in u, we have Eξ(u) ≺ �(u) uniformly in u.

Throughout the rest of this paper, we will consistently use the notation z = E + iη for
the spectral parameter z. In the following proof, we always assume that z lies in the spectral
domain

(3.6) D(ω,N) := {
z ∈C+ : ω ≤ E ≤ 2γ1,N

−1+ω ≤ η ≤ ω−1}
,
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for some small constant ω > 0, unless otherwise indicated. Recall the condition (1.16), we
can take ω to be sufficiently small such that ω ≤ γK/2. Define the distance to the spectral
edges as κ := min1≤k≤2L |E − ak|. Then we have the following estimates for m2c:

(3.7)
∣∣m2c(z)

∣∣ ∼ 1, Imm2c(z) ∼
{
η/

√
κ + η, if E /∈ suppρ2c,√

κ + η, if E ∈ suppρ2c,

and

(3.8) max
i∈I1

∣∣(1 + m2c(z)σi

)−1∣∣ = O(1)

for z ∈ D. The reader can refer to [30], Appendix A, for the proof.
We define the deterministic limit

(3.9) �(z) :=
(
−(

1 + m2c(z)�
)−1 0

0 m2c(z)IN×N

)
,

and the control parameter

(3.10) �(z) :=
√

Imm2c(z)

Nη
+ 1

Nη
.

Note that by (3.7) and (3.8), we have for z ∈ D,

(3.11) ‖�‖ = O(1), � � N−1/2, �2 � (Nη)−1.

DEFINITION 3.3 (Bounded support condition). We say a random matrix X satisfies the
bounded support condition with q , if

(3.12) max
i∈I1,μ∈I2

|Xiμ| ≺ q.

Here, q ≡ q(N) is a deterministic parameter and usually satisfies N−1/2 ≤ q ≤ N−φ for some
(small) constant φ > 0. Whenever (3.12) holds, we say that X has support q . Obviously, if
the entries of X satisfy (1.23), then X trivially satisfies the bounded support condition with
q = N−φ .

Now we are ready to state the local laws for the resolvent G(X,z). Here, and through-
out the following, whenever we say “uniformly in any deterministic vectors,” we mean that
“uniformly in any deterministic vectors belonging to some fixed set of cardinality NO(1).”

THEOREM 3.4 (Local MP law). Suppose dN , X and � satisfy the Assumption 1.4. Sup-
pose X is real and satisfies (3.12) with q ≤ N−φ for some constant φ > 0. Then the following
estimates hold for z ∈ D:

(1) the averaged local law,

(3.13)
∣∣m2(X, z) − m2c(z)

∣∣ + ∣∣∣∣M−1
∑
i∈I1

σi(Gii − �ii)

∣∣∣∣ ≺ (Nη)−1;

(2) the anisotropic local law: for deterministic unit vectors u,v ∈C
I ,

(3.14)
∣∣〈u,G(X, z)v

〉 − 〈
u,�(z)v

〉∣∣ ≺ q + �(z);
(3) for deterministic unit vectors u,v ∈ C

I1 or u,v ∈ C
I2 ,

(3.15)
∣∣〈u,G(X, z)v

〉 − 〈
u,�(z)v

〉∣∣ ≺ q2 + (Nη)−1/2.

All of the above estimates are uniform in the spectral parameter z and the deterministic
vectors u, v.
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The proof for Theorem 3.4 will be given in the Supplementary Material. Here, we make
some brief comments on it. If we assume (1.1) (instead of (1.19) and (1.20)) and q = N−1/2,
then (3.13) and (3.14) have been proved in [30]. If we have (1.1) and q ≤ N−φ , then it was
proved in Lemma 3.11 and Theorem 3.14 of [14] that the averaged local law (3.13) and the
entrywise local law

(3.16) max
a,b∈I

∣∣Gab(X, z) − �ab(z)
∣∣ ≺ q + �(z)

hold uniformly in z ∈ D. With (3.16) and the moment assumption (1.22), one can repeat the
arguments in [9], Section 5, or [49], Section 5, to get the anisotropic local law (3.14). The
main novelty of this theorem is the bound (3.15), which is the main focus in the proof in
Supplementary Material. Finally, if the variance assumption in (1.1) is relaxed to the one in
(1.20), we can repeat the previous arguments to get the desired estimates (3.13)–(3.15). In
fact, it is easy to check that the O(N−2−c0) term leads to a negligible error at each step, and
the whole proof remains unchanged. The relaxation of the mean zero assumption in (1.1) to
the assumption (1.19) can be handled with the centralization Lemma 4.4.

After taking expectation, we have the following crucial improvement from (3.15) to (3.17),
which is the main reason why we can improve the bound in [52] to the almost optimal one
in (1.24). In fact, the leading order terms of (〈u,G1u〉 − m1c,u) and (〈v,G2v〉 − m2c) vanish
after taking expectation, and hence leads to a bound that is one order smaller than the one
in (3.15). The proof of Theorem 3.5 will be given in Sections 4, which constitutes the main
novelty of this paper.

THEOREM 3.5. Suppose the assumptions in Theorem 3.4 hold. Then we have

(3.17)
∣∣E〈

u,G(X, z)v
〉 − 〈

u,�(z)v
〉∣∣ ≺ q4 + (Nη)−1

uniformly in z ∈ D and deterministic unit vectors u,v ∈ C
I1 or u,v ∈ C

I2 .

If q = N−1/4, then (3.15) and (3.17) already give that∣∣〈u,G1u〉 − m1c,u
∣∣ + ∣∣〈v,G2v〉 − m2c

∣∣ ≺ (Nη)−1/2,∣∣E〈u,G1u〉 − m1c,u
∣∣ + ∣∣E〈v,G2v〉 − m2c

∣∣ ≺ (Nη)−1,

which are sufficient to conclude Theorem 1.5. However, we find that the second bound on the
expected VESD is still valid under a much weaker support assumption. More specifically, we
have the following theorem, whose proof will be given in the Supplementary Material.

THEOREM 3.6. Suppose the assumptions in Theorem 3.4 hold. Then we have

(3.18)
∣∣E〈

u,G(X, z)v
〉 − 〈

u,�(z)v
〉∣∣ ≺ (Nη)−1,

uniformly in z ∈ D and deterministic unit vectors u,v ∈ C
I1 or u,v ∈ C

I2 .

As a corollary of (3.13), we have the following rigidity result for the eigenvalues. The
reader can refer to [30], Theorem 3.12, for the proof. Recall the notation in (1.14) and (1.15).

THEOREM 3.7 (Rigidity of eigenvalues). Suppose Theorem 3.4 and the regularity con-
dition (1.16) hold. Then for γj ∈ [a2k, a2k−1], we have

(3.19) |λj − γj | ≺ [
(N2k + 1 − j) ∧ (j + 1 − N2k−1)

]−1/3
N−2/3.
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3.2. Convergence rate of the VESD. In this subsection, we complete the proof of Theo-
rem 1.5 using Theorems 3.4–3.7. The following arguments have been used previously to con-
trol the Kolmogorov distance between the ESD of a random matrix and the limiting law. For
example, the reader can refer to [18], Lemma 6.1, and [43], Lemma 8.1. By the remark below
(3.6), we can choose the constant ω > 0 such that γK/2 > ω. Also for simplicity, we will only
prove the bounds for ‖EFQ2,v − F2c‖ and ‖FQ2,v − F2c‖. The bounds for ‖EFQ1,u − F1c,u‖
and ‖FQ1,u − F1c,u‖ can be proved in the same way.

PROOF OF (1.24). The key inputs are the bounds (3.18) and (3.19). Suppose 〈v,

G2(X, z)v〉 is the Stieltjes transform of ρ̂v. Then we define

(3.20) n̂v(E) :=
∫

1[0,E](x)ρ̂v dx, nc(E) :=
∫

1[0,E](x)ρ2c dx,

and ρv := Eρ̂v, nv := En̂v. Hence we would like to bound

‖EFQ2,v − F2c‖ = sup
E

∣∣nv(E) − nc(E)
∣∣.

For simplicity, we denote �ρ := ρv − ρ2c and its Stieltjes transform by

�m(z) := E
〈
v,G2(X, z)v

〉 − m2c(z).

Let χ(y) be a smooth cutoff function with support in [−1,1], with χ(y) = 1 for |y| ≤
1/2 and with bounded derivatives. Fix η0 = N−1+ω and 3γK/4 ≤ E1 < E2 ≤ 3γ1/2. Let
f ≡ fE1,E2,η0 be a smooth function supported in [E1 − η0,E2 + η0] such that f (x) = 1 if
x ∈ [E1 + η0,E2 − η0], and |f ′| ≤ Cη−1

0 , |f ′′| ≤ Cη−2
0 if |x − Ei | ≤ η0. Using the Helffer–

Sjöstrand calculus (see, e.g., [12]), we have

f (E) = 1

2π

∫
R2

iyf ′′(x)χ(y) + i(f (x) + iyf ′(x))χ ′(y)

E − x − iy
dx dy.

Then we obtain that∣∣∣∣
∫

f (E)�ρ(E)dE

∣∣∣∣
≤ C

∫
R2

(∣∣f (x)
∣∣ + |y|∣∣f ′(x)

∣∣)∣∣χ ′(y)
∣∣∣∣�m(x + iy)

∣∣ dx dy(3.21)

+ C
∑
i

∣∣∣∣
∫
|y|≤η0

∫
|x−Ei |≤η0

yf ′′(x)χ(y) Im�m(x + iy)dx dy

∣∣∣∣(3.22)

+ C
∑
i

∣∣∣∣
∫
|y|≥η0

∫
|x−Ei |≤η0

yf ′′(x)χ(y) Im�m(x + iy)dx dy

∣∣∣∣.(3.23)

By (3.18) with η = η0, we have

(3.24) η0 ImE
〈
v,G2(X,E + iη0)v

〉 ≺ N−1+ω.

Since η ImE〈v,G2(X,E + iη)v〉 and η Imm2c(E + iη) are increasing with η, we obtain that

(3.25) η
∣∣Im�m(E + iη)

∣∣ ≺ N−1+ω for all 0 ≤ η ≤ η0.

Moreover, since G(X,z)∗ = G(X, z̄), the estimates (3.18) and (3.25) also hold for z ∈ C−.
Now we bound the terms (3.21), (3.22) and (3.23). Using (3.18) and that the support of χ ′

is in 1 ≥ |y| ≥ 1/2, the term (3.21) can be bounded by∫
R2

(∣∣f (x)
∣∣ + |y|∣∣f ′(x)

∣∣)∣∣χ ′(y)
∣∣∣∣�m(x + iy)

∣∣ dx dy ≺ N−1.(3.26)
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Using |f ′′| ≤ Cη−2
0 and (3.25), we can bound the terms in (3.22) by∣∣∣∣

∫
|y|≤η0

∫
|x−Ei |≤η0

yf ′′(x)χ(y) Im�m(x + iy)dx dy

∣∣∣∣ ≺ N−1+ω.(3.27)

Finally, we integrate the term (3.23) by parts first in x, and then in y (and use the Cauchy–
Riemann equation ∂ Im(�m)/∂x = −∂ Re(�m)/∂y) to get∫

y≥η0

∫
|x−Ei |≤η0

yf ′′(x)χ(y) Im�m(x + iy)dx dy

= −
∫
|x−Ei |≤η0

η0χ(η0)f
′(x)Re�m(x + iη0)dx(3.28)

−
∫
y≥η0

∫
|x−Ei |≤η0

(
yχ ′(y) + χ(y)

)
f ′(x)Re�m(x + iy)dx dy.(3.29)

We bound the term in (3.28) by O≺(N−1) using (3.18) and |f ′| ≤ Cη−1
0 . The first term in

(3.29) can be estimated by O≺(N−1) as in (3.26). For the second term in (3.29), we again
use (3.18) and |f ′| ≤ Cη−1

0 to get that∣∣∣∣
∫
y≥η0

∫
|x−Ei |≤η0

χ(y)f ′(x)Re�m(x + iy)dx dy

∣∣∣∣ ≺
∫ 1

η0

1

Ny
dy ≺ N−1.

Combining the above estimates, we obtain that∣∣∣∣
∫
y≥η0

∫
|x−Ei |≤η0

yf ′′(x)χ(y) Im�m(x + iy)dx dy

∣∣∣∣ ≺ N−1.

Obviously, the same estimate also holds for the y ≤ −η0 part. Together with (3.26) and (3.27),
we conclude that ∣∣∣∣

∫
f (E)�ρ(E)dE

∣∣∣∣ ≺ N−1+ω.(3.30)

For any interval I := [E − η0,E + η0] with E ∈ [γK/2,2γ1], we have

n̂v(E + η0) − n̂v(E − η0) = ∑
λk∈(E−η0,E+η0]

∣∣〈ζk,v〉∣∣2

≤ 2η0

N∑
k=1

|〈ζk,v〉|2η0

(λk − E)2 + η2
0

= 2η0 Im
〈
v,G2(X,E + iη0)v

〉
,

(3.31)

where in the last step we used the spectral decomposition

G2(X,E + iη) =
N∑

k=1

ζkζ
∗
k

λk − E − iη
,

which follows from (1.3). Then by (3.24) and Lemma 3.2, we get that

(3.32) nv(E + η0) − nv(E − η0) ≺ N−1+ω.

On the other hand, since ρ2c is bounded, we trivially have

(3.33) nc(E + η0) − nc(E − η0) ≤ Cη0 = CN−1+ω.

Now we set E2 = 3γ1/2. With (3.30), (3.32) and (3.33), we get that for any E ∈
[3γK/4,E2],
(3.34)

∣∣(nv(E2) − nv(E)
) − (

nc(E2) − nc(E)
)∣∣ ≺ N−1+ω.
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Note that by (3.19), the eigenvalues of Q2 are inside {0}∪ [3γK/4,E2] with high probability.
Hence we have that with high probability,

(3.35) n̂v(E2) = nc(E2) = 1, n̂v(3γK/4) = n̂v(0).

Together with (3.34), we get that

(3.36) sup
E≥0

∣∣nv(E) − nc(E)
∣∣ ≺ N−1+ω.

This concludes (1.24) since ω can be arbitrarily small. �

PROOF OF (1.25). The proof for (1.25) is similar except that we shall use the estimate
(3.15) instead of (3.18). By (3.15), we have for any v ∈ C

I2 ,

(3.37)
∣∣〈v,G2(X, z)v

〉 − m2c(z)
∣∣ ≺ N−2φ + (Nη)−1/2

uniformly in z ∈ D. Then we would like to bound (recall (3.20))∥∥F (M)
Q2,v − F2c

∥∥ = sup
E

∣∣n̂v(E) − nc(E)
∣∣,

where n̂v is defined in (3.20). We denote

�ρ̂ := ρ̂v − ρ1c, �m̂ := 〈
v,G2(X, z)v

〉 − m2c(z).

Then for fE1,E2,η0 defined above, we can repeat the Helffer–Sjöstrand argument with the
estimate (3.37) to get that

sup
E1,E2

∣∣∣∣
∫

fE1,E2,η0(E)�ρ̂(E)dE

∣∣∣∣ ≺ N−2φ + N−1/2,(3.38)

which, together with (3.31) and (3.35), implies that

sup
E≥0

∣∣n̂v(E) − nc(E)
∣∣ ≺ N−2φ + N−1/2.

This concludes (1.25) by the Definition 3.1. �

4. Proof of Theorem 3.5. We first collect some useful identities from linear algebra and
some simple resolvent estimates. For simplicity, we denote Y := �1/2X.

DEFINITION 4.1 (Minors). For T ⊆ I , we define the minor H(T) := (Hab : a, b ∈ I \T)

obtained by removing all rows and columns of H indexed by a, b ∈ T. Note that we keep the
names of indices when defining H(T), that is, (H (T))ab = 1{a,b/∈T}Hab. Correspondingly, we
define the Green function

G(T) := (
H(T))−1 =

(
zG(T)

1 G(T)
1 Y (T)(

Y (T))∗G(T)
1 G(T)

2

)
=

(
zG(T)

1 Y (T)G(T)
2

G(T)
2

(
Y (T))∗ G(T)

2

)
,

and the partial traces

m
(T)
1 := 1

M
TrG(T)

1 = 1

Mz

∑
i∈I1

G
(T)
ii , m

(T)
2 := 1

N
TrG(T)

2 = 1

N

∑
μ∈I2

G(T)
μμ,

where we adopt the convention that G
(T)
ab = 0 if a ∈ T or b ∈ T. For simplicity, we will

abbreviate ({a}) ≡ (a) and ({a, b}) ≡ (ab).
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LEMMA 4.2 (Resolvent identities).

(i) For a ∈ I and b, c ∈ I \ {a},

(4.1) Gbc = G
(a)
bc + GbaGac

Gaa

,
1

Gbb

= 1

G
(a)
bb

− GbaGab

GbbG
(a)
bb Gaa

.

(ii) For i ∈ I1 and μ ∈ I2, we have

(4.2)
1

Gii

= −1 − (
YG(i)Y ∗)

ii ,
1

Gμμ

= −z − (
Y ∗G(μ)Y

)
μμ.

(iii) For i �= j ∈ I1 and μ �= ν ∈ I2, we have

(4.3) Gij = GiiG
(i)
jj

(
YG(ij)Y ∗)

ij , Gμν = GμμG(μ)
νν

(
Y ∗G(μν)Y

)
μν.

(iv) All of the above identities hold for G(T) instead of G for T ⊂ I .

PROOF. These identities can be proved using Schur complement formula. The reader can
refer to, for example, [9], Lemmas 3.6 and 3.8, or [30], Lemma 4.4. �

LEMMA 4.3. Suppose �̃(z) is a deterministic function on D satisfying N−1/2 ≤ �̃(z) ≤
N−c for some constant c > 0. Suppose |Gab(z) − �ab(z)| ≺ �̃(z) uniformly in a, b ∈ I and
z ∈ D. Then for any T ⊆ I with |T| = O(1), we have uniformly in z ∈ D,

(4.4) max
a,b∈I\T

∣∣Gab(z) − G
(T)
ab (z)

∣∣ ≺ �̃2(z).

PROOF. The bound (4.4) can be proved by repeatedly applying the first resolvent expan-
sion in (4.1) with respect to the indices in T. �

For X satisfying the assumptions in Theorem 3.4, we write X = X1 + B , where X1 :=
X −EX is a real random matrix satisfying (1.20), (1.22) and

(4.5) E(X1)iμ = 0, i ∈ I1, μ ∈ I2,

and B := EX is a deterministic matrix such that

(4.6) max
i,μ

|Biμ| ≤ C0N
−2−c0 .

The next lemma shows that G(X,z) is very close to G(X1, z) in the sense of anisotropic local
law. Its proof will be given in the Supplementary Material.

LEMMA 4.4. If (3.14) holds for G(X1, z), then we have

(4.7)
∣∣〈u,G(X, z)v

〉 − 〈
u,G(X1, z)v

〉∣∣ ≺ (Nη)−1

uniformly in z ∈ D and deterministic unit vectors u,v ∈ C
I .

4.1. Sketch of the proof for Theorem 3.5. In this subsection, we start proving our main
resolvent estimate (3.17). For simplicity, we denote � := q2 + (Nη)−1/2. By Lemma 4.4, we
can assume that the entries of X are centered without loss of generality. We will only prove
(3.17) for u,v ∈ C

I2 , while the proof in the case of u,v ∈ C
I1 is exactly the same. Also by

polarization, it suffices to prove the following estimate:

(4.8)
∣∣E〈

v,G2(X, z)v
〉 − m2c(z)

∣∣ ≺ q4 + (Nη)−1, v ∈ C
I2 .
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We can obtain the more general bound (3.17) by applying (4.8) to the vectors u + v and
u + iv, respectively. Note that (3.15) gives the a priori bound∣∣∣∣∑

μ,ν

v̄μvνE(G2)μν − m2c

∣∣∣∣ ≺ �.

We will show that after taking expectation, the leading order term in (G2)μν − m2cδμν van-
ishes and leads to the better estimate (4.8). We deal with the diagonal and off-diagonal parts
separately: ∑

μ

|vμ|2[
E(G2)μμ − m2c

]
,

∑
μ�=ν

v̄μvνE(G2)μν.

For any T⊆ I , we define the Z variables

(4.9) Z(T)
μ := (1 −Eμ)

(
G(T))−1

μμ = 1

N

∑
i∈I1

σiG
(Tμ)
ii − (

Y ∗G(Tμ)Y
)
μμ, μ /∈ T,

where Eμ[·] := E[·|H(μ)], that is, it is the partial expectation in the randomness of the μ-th
row and column of H , and we used (4.2) in the second step. If T = ∅, we shall abbreviate
Zi ≡ Z

(∅)
i . Note that by (3.15), (4.4) (with �̃ = q + � by (3.14)), and Lemma 3.2, we have

(4.10) Z(T)
μ := (1 −Eμ)

[(
G(T))−1

μμ − m−1
2c

] ≺ �,

for any T ⊆ I with |T| = O(1). Then using (4.2) we get that

EGμμ − m2c = E
1

−z − N−1 ∑
i σi�ii − N−1 ∑

i σi(G
(μ)
ii − �ii) + Zμ

− m2c

= −m2
2cEZμ + O≺

(
�2 + (Nη)−1) = O≺

(
�2)

,

where in the second step we used (3.13), (4.4), (4.10) and

(4.11) −z − N−1
∑
i

σi�ii = m−1
2c ,

which follows from (3.9) and (1.10). So we can bound the diagonal part by

(4.12)
∑
μ

|vμ|2[
E(G2)μμ − m2c(z)

] = ∑
μ

|vμ|2[
EGμμ − m2c(z)

] ≺ q4 + 1

Nη
.

For the off-diagonal part, we claim that for μ �= ν ∈ I2,

(4.13)
∣∣E(G2)μν

∣∣ ≺ N−1�2.

Then using (4.13) and ‖v‖1 ≤ √
N , we obtain that∣∣∣∣∑

μ�=ν

v̄μvνE(G2)μν

∣∣∣∣ ≺ ‖v‖2
1N

−1�2 ≤ C

(
q4 + 1

Nη

)
.

This concludes (4.8) together with (4.12).
To prove (4.13), we extend the arguments in [9], Section 5 and [49], Section 5. We illustrate

the basic idea with some simplified calculations. Using the resolvent identities (4.3) and (4.1),
we get

EGμν = EGμμG(μ)
νν

(
Y ∗G(μν)Y

)
μν

= EG(ν)
μμG(μ)

νν

(
Y ∗G(μν)Y

)
μν

+E
GμνGνμ

Gνν

G(μ)
νν

(
Y ∗G(μν)Y

)
μν.

(4.14)
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We now focus on the first term. Applying (4.2) gives that

EG(ν)
μμG(μ)

νν

(
Y ∗G(μν)Y

)
μν

= E
(Y ∗G(μν)Y )μν

[−z − (Y ∗G(μν)Y )μμ][−z − (XG(μν)X∗)νν]

= E
(Y ∗G(μν)Y )μν

(m−1
2c + εμ)(m−1

2c + εν)
,

(4.15)

where we have

(4.16)

εμ := 1

N

∑
i∈I1

σi�ii − (
Y ∗G(μν)Y

)
μμ

= 1

N

∑
i∈I1

σi

(
�ii − G

(μν)
ii

) + Z(ν)
μ ≺ �

by (4.11), (3.13), (4.4) (with �̃ = q + �) and (4.10). We now expand the fractions in (4.15)
in order to take the expectation. Note that the G(μν) entries are independent of the X entries
in the μ,νth rows and columns. Thus to attain a nonzero expectation, each X entry must
appear at least twice in the expression. Due to this reason, the leading and next-to-leading
order terms in the expansion vanish. The “real” leading order term is

Em4
2cεμεν

(
Y ∗G(μν)Y

)
μν = m4

2cE
(
Y ∗G(μν)Y

)
μμ

(
Y ∗G(μν)Y

)
νν

(
Y ∗G(μν)Y

)
μν

= m4
2c

∑
μ,ν

Ci,j

N3 EG
(μν)
ii G

(μν)
jj G

(μν)
ij(4.17)

= m4
2c

∑
i �=j

Ci,j

N3 �ii�jjEG
(μν)
ij + O≺

(
N−1�2)

,

where the constants Ci,j depend on σi , σj and the 3rd moments of Xiμ and Xjμ (recall

(1.22)). Here in the last step, we used |G(μν)
ii − �ii | ≺ � (by (3.15) and (4.4)) and |�ii | =

O(1) (by (3.8)), and bounded the i = j terms by O≺(N−2) = O≺(N−1�2). Now applying
(4.3) to G

(μν)
ij , we get that

EG
(μν)
ij = EG

(μν)
ii G

(iμν)
jj

(
YG(ijμν)Y ∗)

ij

= �ii�jjE
(
YG(ijμν)Y ∗)

ij + O≺
(
�2) = O≺

(
�2)

,
(4.18)

where in the second step we used |G(μν)
ii − �ii | + |G(iμν)

jj − �jj | ≺ � and(
YG(ijμν)Y ∗)

ij = G
(μν)
ij

(
G

(μν)
ii G

(iμν)
jj

)−1 ≺ �,

which follow easily from (3.15) and (4.4), and in the last step the leading order term vanishes
since the two X entries are independent for i �= j . Then with (4.18), the terms in (4.17) can
be bounded by O≺(N−1�2).

In general, after the expansion of the two fractions in (4.15), we get a summation of terms
of the form

Am,n := Eεm
μ εn

ν

(
Y ∗G(μν)Y

)
μν, μ �= ν,

up to some deterministic coefficients of order O(1). Since |εμ,ν | ≺ � � N−ω/2 for z ∈ D
(we can take ω small enough such that N−ω/2 ≥ q2), we only need to include the terms with
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m + n ≤ 2 + 2/ω and the tail terms will be smaller than N−1�2. Note that in Am,n, the X∗μ

entries, X∗ν entries and G(μν) entries are mutually independent. Moreover, both the number
of X∗μ entries and the number of X∗ν entries are odd. Thus to attain a nonzero expectation,
we must pair the X entries such that there are products of the forms X

n1
iμ and X

n2
jν for some

n1, n2 ≥ 3. As a result, we lose (n1 − 2)/2 + (n2 − 2)/2 ≥ 1 free indices, and this contributes
an N−1 factor. On the other hand, for the product of G entries, we have the following three
cases: (1) if there are at least 2 off-diagonal G entries, then we bound them with O≺(�2);
(2) if there is only 1 off-diagonal G entry, then we can use the trick in (4.17) and the bound
(4.18); (3) if there is no off-diagonal G entry, then we lose one more free index and get an
extra N−1 factor. This leads to the estimate (4.13) for the term in (4.15).

For the second term in (4.14), we again use Lemma 4.2 to expand the Gμν , Gνμ and G−1
νν

entries. Our goal is to expand all the G entries into polynomials of the random variables

(4.19) Sαβ := (
Y ∗G(μν)Y

)
αβ, α,β ∈ {μ,ν},

so that the X entries and G(μν) entries are independent in the resulting expression. In partic-
ular, the maximally expanded terms (see (4.20)) can be expanded into Sαβ variables directly
through (4.2) and (4.3). However, nonmaximally expanded terms are also created along the
expansions in (4.3) and (4.1). Then we need to further expand these newly appeared terms.
In general, this process will not terminate. However, we will show in Lemma 4.8 that after
sufficiently many expansions, the resulting expression either has enough off-diagonal terms,
or is maximally expanded. In the former case, it suffices to bound each off-diagonal term
by O≺(�). In the latter case, the expression will only consist of Sαβ variables. Following
the argument in the previous paragraph, the expectation over the X entries produces an N−1

factor, while the expectation over the G entries produces a �2 factor.
Next, we give a rigorous proof based on the above arguments.

4.2. Resolvent expansion. To perform the resolvent expansion in a systematic way, we
introduce the following notions of string and string operator.

DEFINITION 4.5 (Strings). Let A be the alphabet containing all symbols that will appear
during the expansion:

A= {
Gαβ,G−1

αα , Sαβ with α,β ∈ {μ,ν}} ∪ {
G(ν)

μμ,G(μ)
νν ,

(
G(ν)

μμ

)−1
,
(
G(μ)

νν

)−1}
.

We define a string s to be a concatenation of the symbols from A, and we use �s� to denote
the random variable represented by s. We denote an empty string by ∅ with value �∅� = 0.

REMARK 4.6. It is important to distinguish a string s from its value �s�. For example,
“Gμν” and “GμμG

(μ)
νν Sμν” are different strings, but they represent the same random variable

by (4.3).

We shall call the following symbols the maximally expanded symbols:

(4.20) Amax = {
Gμν,Gνμ,G(ν)

μμ,G(μ)
νν ,

(
G(ν)

μμ

)−1
,
(
G(μ)

νν

)−1
, Sμμ,Sνν, Sμν, Sνμ

}
.

A string s is said to be maximally expanded if all of its symbols are in Amax. We shall call
Gμν , Gνμ, Sμν , Sνμ the off-diagonal symbols and all the other symbols diagonal. By (3.15)
and (4.4), we have �ao� ≺ � if ao is off-diagonal (we have Sμν ≺ � using (4.3)) and �ad � ≺
1 if ad is diagonal. We use Fn-max(s) and Foff(s) to denote the number of nonmaximally
expanded symbols and the number of off-diagonal symbols, respectively, in s.

DEFINITION 4.7 (String operators). Let α �= β ∈ {μ,ν}.
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(i) We define an operator τ0 acting on a string s in the following sense. Find the first Gαα

or G−1
αα in s. If Gαα is found, replace it with G

(β)
αα ; if G−1

αα is found, replace it with (G
(β)
αα )−1;

if neither is found, set τ0(s) = s and we say that τ0 is trivial for s.
(ii) We define an operator τ1 acting on a string s in the following sense. Find the first

Gαα or G−1
αα in s. If Gαα is found, replace it with GαβGβα

Gββ
; if G−1

αα is found, replace it with

− GαβGβα

GααG
(β)
αα Gββ

; if neither is found, set τ1(s) =∅ and we say that τ1 is null for s.

(iii) The operator ρ replaces each Gαβ in the string s with GααG
(α)
ββ Sαβ .

By Lemma 4.2, it is clear that for any string s,

(4.21) �τ0(s)� + �τ1(s)� = �s�, �ρ(s)� = �s�.

Moreover, a string s is trivial under τ0 and null under τ1 if and only if s is maximally ex-
panded. Given a string s, we abbreviate s0 := τ0(s) and s1 := ρ(τ1(s)). For any sequence
w = a1a2 · · ·am with ai ∈ {0,1}, we denote

sw := ρamτam · · ·ρa2τa2ρ
a1τa1(s), where ρ0 := 1.

Then by (4.21) we have

(4.22)
∑

|w|=m

�sw � = �s�,

where the summation is over all binary sequences w with length |w| = m.

LEMMA 4.8. Consider the string s = “GμμG
(μ)
νν Sμν”. Let w be any binary sequence

with |w| = 4l0 and such that sw �= ∅. Then either Foff(sw) ≥ 2l0 or sw is maximally ex-
panded.

PROOF. It suffices to show that any nonempty string sw with Foff(sw) < 2l0 is maximally
expanded. By Definition 4.7, a nontrivial τ0 reduces the number of nonmaximally expanded
symbols by 1, and keeps the number of off-diagonal symbols the same; a ρτ1 increases the
number of nonmaximally expanded symbols by 2 or 3, and increases the number of off-
diagonal symbols by 2. Hence Foff(sw) < 2l0 implies that there are at most (l0 − 1) 1’s in w.
Those ρτ1 operators increase Fn-max at most by 3(l0 −1) in total. On the other hand, there are
at least 3l0 0’s in w, which is sufficient to eliminate all the nonmaximally expanded symbols
(whose number is at most 3(l0 − 1) + 1 = 3l0 − 2 in total since Fn-max(s) = 1 for the initial
string). �

Now we choose l0 = 1 + 1/ω. Then using � = O(N−ω/2), we have∑
|w|=4l0

�sw � · 1
(
Foff(sw) ≥ 2l0

) ≺ 24l0�2l0 ≺ N−1�2.

By Lemma 4.8, we see that to prove (4.13), it suffices to show that

(4.23)
∣∣E�sw �

∣∣ ≺ N−1�2

for any maximally expanded string sw with |w| = 4l0. Note that the maximally expanded
string sw thus obtained consists only of the symbols

G(β)
αα ,

(
G(β)

αα

)−1
, Sαβ, with α �= β ∈ {μ,ν}.

By (4.2), we can replace (G
(β)
αα )−1 with

(4.24)
(
G(β)

αα

)−1 = −z − Sαα.
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Note that |Sαα − N−1 ∑
i σi�ii | ≺ � by (4.16). Then we can expand G

(β)
αα as

G(β)
αα = m2c

2l0∑
k=0

mk
2c

(
Sαα − N−1

∑
i

σi�ii

)k

+ O≺
(
N−1�2)

.(4.25)

We apply the expansions (4.24) and (4.25) to the G symbols in sw , disregard the sufficiently
small tails, and denote the resulting polynomial (in terms of the symbols Sαβ ) by Pw . Then
Pw can be written as a finite sum of maximally expanded strings (or monomials) consisting
of the Sαβ symbols. Moreover, the number of such monomials depends only on l0. Hence we
only need to prove that for any such monomial Mw ,

(4.26)
∣∣E�Mw �

∣∣ ≺ N−1�2.

Let Nμ (Nν) be the number of times that μ (ν) appears as a lower index of the S symbols

in Mw . We have Nμ = Nν = 3 for the initial string s = “GμμG
(μ)
νν Sμν”. From Definition 4.7,

it is easy to see that the operators τ0, τ1 and ρ do not change the parity of Nμ and Nν . The
expansions (4.24) and (4.25) also do not change the parity of Nμ and Nν . This leads to the
following key observation:

(4.27) both Nμ and Nν are odd in Mw.

4.3. A graphical proof. In this subsection, we complete the proof of (4.26). Suppose
Mw = C(z)(Sμμ)m1(Sνν)

m2(Sμν)
m3(Sνμ)m4 , where C(z) denotes a deterministic function of

order 1 for all z ∈ D. Then we write

�Mw � ∼ ∑
i
(∗)∗ ,j

(∗)∗ ∈I1

m1∏
a=1

X
i
(1)
a μ

G
(μν)

i
(1)
a j

(1)
a

X
j

(1)
a μ

m2∏
b=1

X
i
(2)
b ν

G
(μν)

i
(2)
b j

(2)
b

X
j

(2)
b ν

×
m3∏
c=1

X
i
(3)
c μ

G
(μν)

i
(3)
c j

(3)
c

X
j

(3)
c ν

m4∏
d=1

X
i
(4)
d ν

G
(μν)

i
(4)
d j

(4)
d

X
j

(4)
d μ

.

(4.28)

To avoid heavy expressions, we introduce the following graphical notation. We use a con-
nected graph (V ,E) to represent the string Mw , where the vertex set V consists of the indices
in (4.28) and the edge set E consists of the X and G variables. The indices μ,ν are repre-
sented by the black vertices in the graph, while the i, j indices are represented by the white
vertices. The X edges are represented by the zig-zag lines and the G edges are represented
by the straight lines. One can refer to Figure 6 for an example of such a graph.

We organize the summation in (4.28) in the following way. We first partition the white
vertices into blocks by requiring that any pair of white vertices take the same value if they are
in the same block, and take different values otherwise. Then we take the summation over the
white blocks which take values in I2. Finally, we sum over all possible partitions. Note that

FIG. 6. This graph represents Sμμ(Sμν)3(Sνν)2.
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the number of different partitions depends only on the total number of S variables in Mw ,
which in turn depends only on l0.

Fix a partition � of the white vertices. We denote its blocks by b1, . . . , bk , where k gives
the number of distinct blocks in �. We denote by n

μ
l (nν

l ) the number of white vertices in
bl that are connected to the vertex μ (ν). Let G(�) be the product of all the G edges in the
graph. Then we have

(4.29) �Mw � ∼ ∑
�

∗∑
b1,...,bk

G(�)

k∏
l=1

(Xblμ)n
μ
l (Xblν)

nν
l ,

where
∑∗ denotes the summation subject to the condition that b1, . . . , bk all take distinct

values. Note that k, bl , n
μ
l and nν

l all depend on �, and we have omitted the � dependence
for simplicity of notation.

From (4.28), it is easy to observe that the X edges are independent of G(�). Thus taking
expectation of (4.29) gives that

∣∣E�Mw �
∣∣ ≤ C

∑
�

∗∑
b1,...,bk

∣∣EG(�)
∣∣ k∏
l=1

∣∣E(Xblμ)n
μ
l
∣∣∣∣E(Xblν)

nν
l
∣∣

≤ C
∑
�

∗∑
b1,...,bk

∣∣EG(�)
∣∣ k∏
l=1

E|Xblμ|nμ
l

×E|Xblν |n
ν
l 1

(
n

μ
l �= 1, nν

l �= 1
)
.

(4.30)

Note that we must have n
μ
l + nν

l ≥ 2 for 1 ≤ l ≤ k, because we only consider nonempty
blocks. On the other hand, if all n

μ
l are even, then Nμ = ∑k

l=1 n
μ
l must be even, which con-

tradicts (4.27). Hence we can find some 1 ≤ l1 ≤ k such that n
μ
l1

is odd and n
μ
l1

≥ 3. Similarly,
we can also find some 1 ≤ l2 ≤ k such that nν

l2
is odd and nν

l2
≥ 3. We abbreviate n̂

μ
l := n

μ
l ∧3

and n̂ν
l := nν

l ∧ 3. From the above discussions, we see that

(4.31)
1

2

k∑
l=1

(
n̂

μ
l + n̂ν

l

) ≥ 1

2

k∑
l �=l1,l2

(
n̂

μ
l + n̂ν

l

) + 3

2
+ 3

2
≥ (k − 2) + 3 = k + 1.

Now using the moment assumption (1.22), we can bound (4.30) by

∣∣E�Mw �
∣∣ ≤ C

∑
�

∗∑
b1,...,bk

∣∣EG(�)
∣∣N−∑k

l=1(n̂
μ
l +n̂ν

l )/2.(4.32)

Next, we deal with |EG(�)|. We consider the following 3 cases separately: (i) there are at
least 2 off-diagonal G-edges in G(�); (ii) there is only 1 off-diagonal G-edge in G(�); (iii)
there is no off-diagonal G-edge in G(�).

In case (i), we trivially have |EG(�)| ≺ �2. In case (ii), we use the same trick as in
(4.17). Let the off-diagonal G-edge be G

(μν)
ij . For each diagonal G

(μν)
kk , we replace it with

(G
(μν)
kk − �kk) + �kk = �kk + O≺(�). Plugging these expansions into EG(�), we obtain

that |EG(�)| ≺ �2 +|EG
(μν)
ij | ≺ �2, where we used (4.18) in the second step. Finally, in case

(iii), we have |EG(�)| ≺ 1. Moreover, n
μ
l + nν

l is even for any 1 ≤ l ≤ k. Take 1 ≤ l1, l2 ≤ k

such that n
μ
l1

, nν
l2

are odd and n
μ
l1
, nν

l2
≥ 3. If l1 �= l2, then we must have n̂

μ
l1

+ n̂ν
l1

≥ 4,
n̂

μ
l2

+ n̂ν
l2

≥ 4, and hence

1

2

k∑
l=1

(
n̂

μ
l + n̂ν

l

) ≥ 1

2

k∑
l �=l1,l2

(
n̂

μ
l + n̂ν

l

) + 4 ≥ k + 2.
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Otherwise, if l1 = l2, then

1

2

k∑
l=1

(
n̂

μ
l + n̂ν

l

) ≥ 1

2

k∑
l �=l1

(
n̂

μ
l + n̂ν

l

) + 3 ≥ k + 2.

Now applying the above estimates and (4.31) to (4.32), we obtain that∣∣E�Mw �
∣∣ ≺ ∑

� in Case (1), (2)

�2Nk−∑k
l=1(n̂

μ
l +n̂ν

l )/2

+ ∑
� in Case (3)

Nk−∑k
l=1(n̂

μ
l +n̂ν

l )/2

≤ C
(
N−1�2 + N−2) ≤ CN−1�2.

This concludes the proof of (4.26), and hence completes the proof of (4.13).
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