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Median-of-means (MOM) based procedures have been recently intro-
duced in learning theory (Lugosi and Mendelson (2019); Lecué and Lerasle
(2017)). These estimators outperform classical least-squares estimators when
data are heavy-tailed and/or are corrupted. None of these procedures can be
implemented, which is the major issue of current MOM procedures (Ann.
Statist. 47 (2019) 783-794).

In this paper, we introduce minmax MOM estimators and show that they
achieve the same sub-Gaussian deviation bounds as the alternatives (Lugosi
and Mendelson (2019); Lecué and Lerasle (2017)), both in small and high-
dimensional statistics. In particular, these estimators are efficient under mo-
ments assumptions on data that may have been corrupted by a few outliers.

Besides these theoretical guarantees, the definition of minmax MOM esti-
mators suggests simple and systematic modifications of standard algorithms
used to approximate least-squares estimators and their regularized versions.
As a proof of concept, we perform an extensive simulation study of these
algorithms for robust versions of the LASSO.

1. Introduction. Consider the least-squares regression problem where, given a dataset
(Xi, Y)ieq,...,.ny of points in X x R and a new input X € X', one wants to predict the as-
sociated real valued output ¥ € R. A classical approach is to consider (X, Y) as a random
variable with values in X x R and, given a set F' of functions f : X — R, to look for the
oracle in F, which is defined by

f* eargmin P(Y — f(X))*.
feF
To estimate f*, we have a dataset (X;,Y;)ie(1,....n) for which there exists a partition
{1,..., N} =OUZ such that data (X;, Y;),c7 are inliers or informative and data (X;, Y)ico
are “outliers” in the sense that nothing is assumed on these data. On inliers, one grants in-
dependence and finiteness of some moments, allowing for “heavy-tailed” data. Moreover,
departing from the independent and identically distributed (i.i.d.) setup, we also allow inliers
to have different distributions than (X, Y). We assume that, foralli e Z and all f € F,

E[(Y; — fFXD)(f = fH)XD]=E[(Y = £*X))(f — f1)X)],

E[(f — /*)*(XD] =E[(f — /) 0].

These assumptions imply that the distribution P of (X, Y) and the distribution P; of
(X;, Y;) for i € Z induce the same L2-geometry on F — f* ={f — f*: f € F} and, there-
fore, in particular, that the oracles w.r.t. P and P; for any i € Z are the same. Of course, the
sets O and Z are unknown to the statistician.

Regression problems with possibly heavy-tailed inliers cannot be handled by classical
least-squares estimators, which are particular instances of empirical risk minimizers (ERM)
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FI1G. 1. Estimation error of the LASSO (blue curve) and MOM LASSO (red curve) after one outliers was added
at observation 100.

of Vapnik [65]. Least-squares estimators have sub-Gaussian deviations under stronger as-
sumptions, such as boundedness [44] or sub-Gaussian [37] assumptions on the noise and the
design. In this paper, the main hypothesis is the small ball assumption of [32, 48] which
says that L?(P) and L;(P) norms are equivalent over F — f*; see Section 3.1 for details.
Although sometimes restrictive [26, 56], this assumption does not involve high moment con-
ditions unnecessary for the problem to make sense.

Least-squares estimators and their regularized versions are also useless in corrupted en-
vironments. This has been known for a long time and can easily be checked in practice.
Figure 1, for example, shows estimation bounds of the LASSO [58] on a dataset containing
a single outlier in the outputs.

These restrictions of least-squares estimators gave rise in the 1960s to the theory of robust
statistics of John Tukey [59, 60], Peter Huber [27, 28] and Frank Hampel [24, 25]. The most
classical alternatives to least-squares estimators are M -estimators, which are ERM based on
loss functions £ (X, Y) less sensitive to outliers than the square loss, such as a truncated
version of the square loss. The idea is that, while (¥; — f (X;))? can be very large for some
outliers data and influence all the empirical mean N -1 ZINZ1 Y — f(X )2, the influence of
these anomalies will be asymptotically null if £¢(X;, ;) is bounded. Recent works study
deviation properties of M -estimators: [2, 21, 22, 69] considered the Huber-loss in linear re-
gression with heavy-tailed noise and sub-Gaussian design. They obtain minimax optimal de-
viation bounds in this setting. The limitation on the design is not surprising: it is well known
that M -estimators using loss functions such as Huber or L loss are not robust to outliers in
the inputs X;. This problem is called the“leverage points problem” [29]. In a slightly different
approach than M -estimation, [6] proposed a minmax estimator based on losses introduced in
[18] in a least-squares regression framework and prove optimal sub-Gaussian bounds under
a L, assumption on the noise and a L4/L, assumption on the design, which is close to the
assumptions we grant on inliers.

This paper focuses on Median-of-means (MOM) [1, 30, 53], which provide alternatives to
M -estimators. MOM estimators of the real valued expectation [E[Z] are built as follows: the
dataset Z1, ..., Zy is partitioned into blocks (Z;);ecp,, k =1, ..., K of the same cardinality.
The MOM estimator is the median of the K empirical means constructed on each block:

ZZ,-,k:l,...,K}.

MOMk (Z) = median{
i€By

1
| B |

Sub-Gaussian properties of these estimators can be found in [20, 40].
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Asin [35, 43], MOM estimators are used to estimate real valued increments of square risks
P[(Y — f(X))2 —(Y — g(X))z], where f, g € F. This construction does not require a notion
of median in dimension larger than 1, contrary to “geometric median-of-means” approach
presented in [50, 51]. In [35, 43], each f € F receives a score which is the L?(P)-diameter
A(f) of the set B(f), where g € B(f) if MOMg (£ — £,) < 0. The approach of [35, 43]
requires therefore an evaluation of the diameter of the sets B( f) for all f € F, which makes
the procedure impossible to implement.

This paper presents an alternative to [35, 43] which relies on the following minmax for-
mulation. By linearity of P, f* is a solution of

f* eargminsup P[(Y — £(X))* — (¥ — g(X))*].
feF geF

Replacing the real valued means P[(Y — f(X )2 — (Y — g(X ))2] in this equation by their
MOM estimators produces the minmax MOM estimators of f* which are rigorously intro-
duced in Section 2.3. Compared with [35, 43], minmax MOM estimators do not require an
estimation of L>-distances between elements in F and are therefore simpler to define. Min-
max strategies have also been considered in [6] and [9, 10]. The idea of building estimators
of f* from estimators of increments goes back to seminal works by Le Cam [33, 34] and
was further developed by Birgé with the 7 -estimators [14]. In Le Cam and Birgé’s works,
the authors used “robust tests” to compare densities f and g and deduce from these an alter-
native to the nonrobust maximum likelihood estimators. Baraud [8] showed that robust tests
could be obtained by estimating the difference of Hellinger risks of f and g and used a vari-
ational formula to build these new tests. Finally, Baraud, Birgé and Sart [10] used Baraud’s
estimators of increments in a minmax procedure to build p-estimators.

The first aim of this paper is to show that minmax MOM estimators satisfy the same sub-
Gaussian deviation bounds as other MOM estimators [35, 42]. The analysis of minmax MOM
estimators is conceptually and technically simpler: an adaptation of Lemmas 5.1 and 5.5 in
[43] or Lemmas 2 and 3 [35] is sufficient to prove sub-Gaussian bound for minmax MOM
estimators while a robust estimation (based on MOM estimates) of the L2(P)-metric was
required in [35, 42].

Another advantage of the minmax MOM approach lies in the Lepski-step (see Theorem 2),
which selects adaptively the number K of blocks. This step is way easier to implement and
to study than the one presented in [35], as only one confidence region is sufficient to grant
adaptation with respect to the excess risk, the regularization and L2 norms. Recall that, in cor-
rupted environments, a data-driven choice of K has to be performed since K must be larger
than twice the (unknown) number of outliers. Note that the idea of aggregating estimators
built on blocks of data and selecting the number of blocks by Lepski’s method was already
present in Birgé [13], proof of Theorem 1. It was also used in [20] to build “multiple-6”
sub-Gaussian estimators of univariate means.

In our opinion, the most interesting feature of the minmax formulation is that it suggests
a generic method to modify descent algorithms designed to approximate ERM and their reg-
ularized versions and make them efficient even if run on corrupted datasets. Let us give a
rough presentation of a “MOM version” of descent algorithms: at each time-step ¢, all em-
pirical means Pp, (Y — f;(X )2 fork=1,..., K are evaluated and one computes the index
kmed € [ K] of the block such that

P, (Y = (X))’ =med{Pg (Y — fi(X))> k=1,..., K}.

The descent direction is the opposite gradient —V(f — ngmed Y - f(X ))2)|f: f,- This de-
scent algorithm can be turned into a descent-ascent algorithm approximating minmax MOM
estimators. Section 5 presents several examples of modifications of classical algorithms.
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In practice, these basic algorithms perform poorly when applied on a fixed partition of
the dataset. However, empirical performance are improved when the partition is chosen uni-
formly at random at each descent step of the algorithm; cf. Section 6.2. In particular, the
shuffling step prevents the algorithms to converge to local minimaxima. Besides, randomized
algorithms define a notion of depth of data: each time a data belongs to the median block, its
“score” is incremented by 1. The higher the final score is, the deeper is the data. This notion
of depth is based on the risk function which is natural in a learning framework and should
probably be investigated more carefully in future works. It also suggests an empirical defini-
tion of outliers and, therefore, an outliers detection algorithm. This by-product is presented
in Section 6.2.

The paper is organized as follows. Section 2 introduces the framework and presents the
minmax MOM estimator, Section 3 details the main theoretical results. These are illustrated
in Section 4 on some classical problems of machine learning. Many robust versions of stan-
dard optimization algorithms are presented in Section 5. An extensive simulation study il-
lustrating our results is performed in Section 6. Proofs of the main results, complementary
theorems showing minimax optimality of our bounds are postponed to the Supplementary
Material [36].

2. Setting. Let X denote a measurable space. Let (X;, Y;)ic(1,...n}, (X, Y) denote ran-
dom variables taking values in X x R. Let P denote the distribution of (X, Y) and, for
i€{l,..., N}, let P; denote the distribution of (X;, Y;). Let F denote a convex class of func-
tions f : X — R and suppose that E[Y?] < oco. For any Q € {P, (P;)ierNy} and any p > 1,
let L’é denote the set of functions f such that the norm ||f||L,é = (Q|f|p)1/l), where Qg =

Ez~0lg(Z)]. Assume that F C L%,. For any (x,y) e X x R, let £(x,y) = (y — f(x))2
denote the square loss and let f* denote an oracle

(1) f* e argmin P¢; whereVg e Lh, Pg=E[g(X,Y)].
feF

Let R(f) = P{y denote the risk. The goal is to build estimators f satisfying: with proba-
bility at least 1 — §,

RO <min RO+’ and | f = 1] <r

The residue rl(\,l) of the oracle inequality, the estimation rate rl(vz) and the confidence level &

should be as small as possible. Oracle inequalities provide risk bounds for the estimation the
regression function f(x) =E[Y|X =x]: R(f) <R(f"+ rj(\}) is equivalent to

17 = Al < U7 =175 +ry-

Finally, let || - || be a norm defined on the span of F'; || - || will be used as a regularization
norm to induce some low-dimensional structure or some regularity, such as the £; or SLOPE
norm (see Section 4).

2.1. Minmaximization. The oracle f* is solution of the minmax problem:

() f* € argmin P¢; = argminsup P(£y — £g).

feF feF geF
Any estimator of real valued expectations P£ ¢ or P({£ s — £,) can be plugged in (2) to obtain
estimators of f*. Plugging the empirical means (in both the min and the minmax problems)
yields the classical ERM over F, for example. In general, plugging nonlinear (robust or not)
estimators of the mean in the minmax problem or in the min problem in (2) does not yield the
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same estimator of f* though. The main advantage of the minmax formulation is that it allows
to bound the risk of the estimator using the complexity of F around f*. This “localization”
idea is central to derive optimal (fast) rates for the ERM [15, 31, 44] and cannot be used
directly when empirical means are simply replaced by nonlinear estimators of the mean in a
minimization formulation.

2.2. MOM estimators. Let K denote an integer smaller than N/2 and let By, ..., Bx
denote a partition of [N] = {1, ..., N} into blocks of equal size N/K (w.l.0o.g. we assume
that K divides N). For all functions £: X x R— Rand k e [K]={1,..., K}, let P, L =
| Bl ™' Yiep, L(Xi, Vo).

For all @ € (0, 1) and real numbers xi, ..., xg, denote by Q,(x1,...,xg) the set of a-
quantiles of {x1,...,xg}:

{ueR:|{kelK]:xx>u}|>

ke [KT:xk <ul|>at)

and let Q4 (x) denote any point in Qg (x1,...,xg). For x = (x1,...,xk) € RX and t e R,
we say that Q,(x) >t when there exists J C [K] such that |J| > (1 — «)K and for all
ke J,x; >t; we write Qy(x) <t if there exists J C [K] such that |J| > «K and for all
kel xp <t.

Lety = (y1,..., yk) € RK. We write O12(x —y) < Q3/4(x) — Q1/4(y) when there exist
u,l € Rsuchthat Q12(x —y) <u—1, Q3/4(x) <uand Q1/4(y) > 1.

DEFINITION 1. Leta € (0,1), K € [N]. For any L : X x R — R the a-quantile on K
blocks of L is Qu,k (L) = Qu((Pp, L)ke[k])- In particular, the Median-of-Means (MOM) of
L on K blocks is defined as MOMg (£) = Q1,2,x (£). For all f, g € F, the MOM estimator
on K blocks of the loss increment from g to f is defined by

Tk (g, f) =MOMk (£ — L)
and, for a given regularization parameter A > 0, its regularized version is

Tk (g, f) = MOMk (€ — L) + A(IL £ 1l — llgll)-

2.3. Minmax MOM estimators. Minmax MOM estimators are obtained by replacing the
unknown expectations P (£ — £,) in (2) by their MOM estimators.

DEFINITION 2. For any K € [N/2], let

3) fx € argminmax Tk (g, f) and fo € argminmax Tk ,.(g, f).
feF 8€F feF 8€F

We shall provide results for fK, » only in the main text. The estimators fK are studied in
the Supplementary Material [36] in Section 7.

REMARK 1 (K =1 and ERM). If one chooses K =1, then forall f, g € F, Tk (g, f) =
Py (€ —{g) and itis straightforward to check that fK and fK 5 are respectively the Empirical
risk Minimization (ERM) and its regularized version (RERM).

3. Assumptions and main results. Denote by {0, 7} a partition of [N] and by |O| the
cardinality of O. On (X, Y;)ico, no assumptions is granted, these data are outliers. They may
not be independent, nor independent from the remaining data (not even random). (X;, Y;),i €
T are called inliers or informative data. They are hereafter assumed independent. The sets
O, T are unknown.
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3.1. Assumptions. The main assumptions involve first and second moments of the func-
tions in F and Y under the distributions P, (P;);cz.

ASSUMPTION 1. Forall fe Fandalli €Z,

P(f = =P(f=f*) and Pc(f—f*)]=Pl(f- 1]
where (x,y) = (y — f*(x)) forall x € X and y € R.

Assumption 1 holds in the i.i.d. framework, with Z = [N] but it covers also other cases
where inliers follow different distributions (see, for instance, multimodal datasets such as in
[45] or heteroscedastic noise [4]). It is also possible to weaken Assumption 1 such as in [35].
The second assumption bounds the correlation between {; = Y; — f*(X;) and the shifted
class F — f*.

ASSUMPTION 2. There exists 6, > 0 such that, foranyi € Z and f € F,
2
var(si(f = f)X0) <6211 = 1135

Assumption 2 holds when data are i.i.d. and ¥ — f*(X) has uniformly bounded L>-
moments conditionally to X. This last assumption holds when ¥ — f*(X) is independent
of X and has a L?-moment bounded by 6,,. Assumption 2 also holds if, for all i € Z,
||§||L4 <6, < oco—where {(x,y) =y — f* (x) for all x € X and y € R—and, for every

fe F Nf— f*||L4 <O0ilf — f*IILz Actually, in this case,

Jvar(@i(f = £9)(X0) < gty [ = F* 1oy, =6:160:0F = 1.2,

so Assumption 2 holds for 6,, = 616,. The third assumption states that the norms L%, and L},
are equivalent over F — f*,

ASSUMPTION 3. There exists 6y > 1 such that forall f € F andi € Z,

“f_f*HL%J SQO”f_f*”L}Di‘

Under Assumption 1, || f — f*||L1 <|f- f*||Lz =|f- f*||Lz forall f € Fandi € Z,

hence, Assumptions 1 and 3 imply that the norms L1 , L%,, L%, , L}D ,i € 1 are equivalent over
F — f*. Assumption 3 is equivalent to the small ball property (cf [32 48)); see Proposition 1
in [35].

3.2. Complexity measures. Forall p,r >0, let
B(f*.p)={feF:|f-f|<nr}
Ba(f*r)={feF:|f =z =<rl.
DEFINITION 3. Let (¢;);¢[n] be independent random variables uniformly distributed in
{—1, 1}, independent from (X, Y,-)INZI. Forall f € F,r > 0and p € (0, +00], let
Breg(f.p.r)={g € F:lig—flz =rlg—fl=p}
Let; =Y; — f*(X;) forall i € Z and for vo,ym > 0 define rg(p, yg) as

inf{r>0 sup E sup Zéz f=r"

JCTIJI=N/2  feBueg(fo.0 ] 17

< ‘)/Qr}
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and ry(p, ym) as
1
Wi Y oedi(f — )X

ieJ

inf {r >0: sup E sup

= )/MFZ}-
JCZI,|J|=N/2 fEBreg(f*,,Ovr)

Let p — r(p, Y0, ym) be a continuous and nondecreasing function such that for every p > 0,
r(p) =r(p,vo,ym) =max{rg(p, o), rm(p, ym)}.

It follows from Lemma 2.3 in [37] that r); and rp are continuous and nondecreasing
functions, that depend on f*. According to [37], for appropriate choice of yg, ym, r(p) =
max(ry(p, ¥m),ro(p, yo)) is the minimax rate of convergence over B(f*, p). Note also
that rp and ), are well defined when |Z| > N /2, meaning that at least half data should be
informative.

3.3. The sparsity equation. Risk bounds follow from upper bounds on Tk ,(f, f*) for
functions f far from f* either in L% -norm or for the regularization norm || - ||. Let f € F
andlet p = || f — f*||. When || f — f*”Li, is small, Tk , has to be bounded from above by
AU = ILFID. To bound || f*|| — || f|| from below, introduce the subdifferentials of || - ||.
Let (E*, | - I*) be the dual normed space of (E, || - ||) and for all f € F,let

@I-1)p={z"€ E*:Yhe E, | f +hl = | f] + " (W)}

For any p > 0, let H, denote the set of functions “close” to f* in L%, and at distance p
from f* in regularization norm and let I' + (o) denote the set of subdifferentials of all vectors
closeto f*:

T p(p) = U @1-1),
JEF:|f—f*lI<p/20

and Hy={feF:|f—fll=pand]|f — f*lIL% <r(p)}. If there exists f** such that
| f*— f**I < p/20 and (3] - ||) p+« is almost all the unit dual sphere, then || f|| — || f**]| is
large forany f e Hyso || fIl =1 f* Il = I fIl =N f** I =l f*— f**| is large as well. Formally,
for all p > 0, let

A(p)= inf sup Z*(f — f7).
€Hp zxel 1+ (p)

The sparsity equation, introduced in [39], quantifies these notions of “large.”

DEFINITION 4. A radius p > 0 is said to satisfy the sparsity equation when A(p) >
4p/5.

If p* satisfies the sparsity equation, so do all p > p*. Let

4
oF =inf<,o >0:A(p) > ?'0)

If p > 20| f*||, then 0 € T s+ (p). Moreover, (3| - ||)o is the unit ball of (E*, || - [|*), so A(p) =
p. This implies that any p > 20| f*| satisfies the sparsity equation. This simple observation
can be used to get “complexity-dependent rates of convergence” [38].
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3.4. Main results. The first results give risk bounds for f}( 1. Similar bounds have been
obtained for other MOM estimators [35, 42].

THEOREM 1. Grant Assumptions 1,2 and 3 and let rg, ry denote the complexity func-
tions introduced in Definition 3. Assume that N > 38403 and 0| < N/(76803). Let p* be
solution to the sparsity equation from Definition 4. Let € = 1/(83303) and r?(-) is defined in
Definition 3 for yg = (38460) " and yyr = €/192. Let K* denote the smallest integer such
that

" Ne?
= 5T
38402
For any K > K*, define the radius pg and the regularization parameter as
38402 K 16er?
r2(pk) = 2’"— and k:w.
e N PK

Then, for all K € [max(K*,8|(’)|),N/(969§)], with probability larger than 1 —
4exp(—7K /9216), the estimator fK 2 defined in Section 2.3 satisfies
| Fko = £ =20k | ko= 2 =r@ex),

R(fx.2) < R(f*) + (1 +526)r*2pk).

2(10*).

The function r is used to define the regularization parameter in Theorem 1, so it cannot
depend on f*. When ry, ro depend on f*, r should be a computable upper bound indepen-
dent from f*. The best rates of estimation and prediction that follow from Theorem 1 are
obtained for K = K* when |O| < K*/8 ~ Nr?(p*). In that case, it is proved in Section 4
on two examples that the rate px+ and the residue r(2pg+) are minimax optimal. In a setup
where data only induce the same L? metric as P and may have been corrupted by up to
K*/8 ~ Nr2(p*) outliers, Theorem 1 shows that our estimators achieve the sub-Gaussian
deviations bounds of the ERM when data are i.i.d. with a noise ¢ independent of X and both
X and ¢ have Gaussian distributions (see Section 8 in the Supplementary Material [36]).

3.4.1. Adaptive choice of K. In Theorem 1, all rates depend on K, which has to be
larger than the number of outliers and Nr?(p*). These quantities are unknown in general,
for instance, Nr2(p*) ~ s log(ed/s) in high-dimensional statistics where s is the unknown
sparsity parameter. This section presents an adaptive choice of K inspired from Lepski’s
method that allows to bypass this issue. However, this construction requires the knowledge
of constants 6y and 6,, (see Section 6.1 for a fully data driven choice of K in practice).

Forall J € [K],A >0, f € F and cqgq > 0, let

A C
Cralh) = supTyate. f) and Ricy=|reFicsnin=ren).
geF 0

~ PAYIN
Let K., = inf(K € [1, N/O66D)]: ) 2 Ry .., # @} and

N/(9663)
@) Fur€ [ Ricu
T=Ke,q
The following theorem gives risk bounds for these estimators. Bounds in regularization and

L%) norms have been proved for Le Cam test estimators in [35]. To the best of our knowledge,
adaptive bounds in excess risk have never been proved before.
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THEOREM 2. Grant the assumptions of Theorem 1. Choose c,q = 18/833 in (4) and let
€ =(83303)". For any K € [max(K*, 8|0|), N/(9663)1, with probability larger than

1 —4exp(—K /2304) = 1 — dexp(—€>Nr?(pg)/884736)
one has || fe,g — f*II 20K | fews — [*lla, =rQpx) and

R(fo,)) < R(f*) + (14 526)r22pk).
In particular, for K = K*, we have r 2pg+) = max(r (2p*), /|O|/N).

Theorem 2 shows that f,., achieves similar performance as fx; simultaneously for all K
from K* to O(N). For K = K*, these rates match the optimal minimax rates of convergence;
see Section 4. The main difference with Theorem 1 is that the knowledge of K* and |O] is
not necessary to design ﬁa .- This is very useful in applications where these quantities are
typically unknown. Moreover, both the construction and the analysis are much simpler for
ﬁa , than the adaptive estimator in [35] since they are based on the analysis of confidence
regions for Cj ; only, instead of multiple criteria in [35].

REMARK 2 (Deviation parameter). Note that r(-) can be any continuous, nonde-
creasing function such that r(p) > max(rgo(p, o), rm(p, ym)). In particular, if ry : p —
max(rg(p, ¥0), rm(p, ym)) is continuous, as it is clearly nondecreasing, then for every
x >0, r(p) =max(rg(p, vo),rm(p, ¥m)) + x/N is another nondecreasing upper bound.
Therefore, one can derive results similar to Theorem 2 but with an extra confidence parame-
ter: for all x > 0, with probability at least 1 — 4exp(—coN rf (pk*) + cox),

X

”.f"\cgd_f*”Ssz’ ”ﬁad_f*”L%,Sr*(2pK)+N

R(fe)) R(f*) + (1 + 526)(}’2(2/)K) + %)

In that case, ﬁad depends on x since A = 16€(r«(px) +x/N)/pk.

4. Examples of applications. This section presents two examples of regularization in
high-dimensional statistics: the £; and the SLOPE norms.

4.1. The LASSO. The LASSO is obtained when F = {(¢, -) : t € R?} and the regulariza-
tion function is the £1-norm:

. ] 1 N d
e argmm(—Z((t, X;) — Y,-)2 +k||t||1) where ||t|; = Z 1#].

teRd i=1 i=1

Even if recent advances show some limitations of LASSO [54, 62, 67], it remains the
benchmark estimator in high-dimensional statistics because a high-dimensional parameter
space does not significantly affect its performance as long as #* is sparse. One can refer to
[12,41,47,52, 61, 63, 64] for estimation and sparse oracle inequalities, [7, 46, 68] for support
recovery results; more results and references on LASSO can be found in [17, 31].

4.2. SLOPE. SLOPE is an estimator introduced in [16, 57]. The class F is still F =
{(t,-) 1t € R?} and the regularization function is defined for parameters §; > 8y > --- >

Ba > 0 by |t|lsLopE = Z?Zl ,B,-tiu, where (z‘iﬁ)fl:1 denotes the nonincreasing rearrange-
ment of (|t,-|);.1: - SLOPE norm is a weighted £;-norm that coincide with £;-norm when

Br,....Ba)=(1,...,1).
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4.3. Classical results for LASSO and SLOPE. Typical results for LASSO and SLOPE
have been obtained when data are i.i.d. with sub-Gaussian design X and, most of the time,
sub-Gaussian noise ¢ as well.

DEFINITION 5. Let 6‘21 be a d-dimensional inner product space and let X be a ran-
dom variable with values in Ed We say that X is isotropic when for every r € £4,
(X, t)||Lz = ||t||2d and it is L-sub-Gaussian if for every ¢ € (i and every p > 2,

X, Ol <L\/_II (X, 0l 2 -

The covariance structure of an isotropic random variable coincides with the inner product
in Ed If X is a L-sub-Gaussian random vector, the Lp norms of all linear forms do not grow
faster than the Lp norm of a Gaussian variable. When dealing with the LASSO and SLOPE,
the natural Euchdean structure is used in R¥.

ASSUMPTION 4.

1. Data are i.i.d. (in particular, |Z| = N and |O| = 0, that is, there is no outlier),
2. X is isotropic and L-sub-Gaussian,
3. for f*=(t*,), 6 =Y — f*(X) € LY for some g > 2.

Assumption 4 requires a L9 for gp > 2 moment on the noise. LASSO and SLOPE still
achieve optimal rates of convergence under this assumption but with a severely deteriorated
probability estimate.

THEOREM 3 (Theorem 1.4 in [39]). Grant Assumption 4. Let s € [d]. Assume that N >
c1slog(ed/s) and that there is some v € R? supported on at most s coordinates for which
% — vl < Cz||§||quS«/10g(ed)/N. The Lasso estimator t with regularization parameter

P

A =c3ll§ll a0 ~/log(ed) /N is such that with probability at least
P

calog® N

) T N90/2-1

foreveryl < p <2

—2exp(—csslog(ed/s))

N log(ed)
1/

|7 =], = colls Nl gos ™7y | =5

The constants (c j)?:l depend only on L and qq.

Theorem 3 shows that LASSO achieves its optimal rate (cf. [12]) if £* is close to a sparse
vector and the noise { may be heavy tailed and may not be independent from X. On the
other hand, the dataset cannot contain outliers and the data should be i.i.d. with sub-Gaussian
design matrix X.

Turning to SLOPE, recall the following result for the regularization norm W(¢) =

>4_, Bjt} when B; = C/log(ed]}).

THEOREM 4 (Theorem 1.6 in [39]). Consider the SLOPE under Assumption 4. Assume
that N > cislog(ed/s) and that there is v € RY such that |supp(v)| < s and Y (* —v) <
2§l a0 log(ed /s)/~/N. The SLOPE estimator with A = c3|§||,a0/~' N satisfies, with

P P

probability at least (5),
N s ed ed
\I-’(t—t*)§C4||§||L‘§J()ﬁ10g<T>, ||f_t ||2§C5||§||L40 IOg( )

The constants (c J');:l depend only on L and qq.
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4.4. Minmax MOM LASSO and SLOPE. In this section, Theorem 2 is applied to the set
F of linear functionals indexed by R with regularization functions being either the £1 or the
SLOPE norm. The aim is to show that the results from Section 4.3 hold and are sometimes
even improved by MOM versions of LASSO and SLOPE under weaker assumptions and with
a better probability deviation. Start with the new set of assumptions.

ASSUMPTION 5. Denote by (e j)‘J’-':] the canonical basis of R¢ and assume

1. (X, Y), (Xl', Yi)iel' are 1.1.d.

2. X is isotropic and for every t € R4, p € [Colog(ed)] and j € [d], (X, ej)||L;;) <
LyPIKX. ej)l2,

3.6=Y—(*"X)e L‘;? for some ¢gg > 2.

4. there exists 6y such that for all 7 € R, ||(X, 1) ||L%, <O|l{X,1t) ||L}J,

5. there exists 6, such that var(& (X, t)) < 0,,|(X, t) ||L%).

In order to apply Theorem 2, we have to compute the fixed-point functions rg(-), 7 (-)
and solve the sparsity equation in both cases. To compute the fixed point functions, recall
the definition of Gaussian mean widths: for a set V C RY, the Gaussian mean width of V is
defined as

(6) 0*(V)=Esup(G,v) where G~ Ny(0,1;).

veV

The dual norm of the Eil—norm is the £¢_-norm which is I1-unconditional with respect to the
canonical basis of R¢ [49], Definition 1.4. Therefore, [49], Theorem 1.6, applies under the
following assumption.

ASSUMPTION 6. There exist constants gg > 2, Cg and L such that £ € LY Xis isotropic
and for every j € [d] and 1 < p < Cplogd, | (X, ej)||L1; <L.pl{X, ej)||L%:.

Under Assumption 6, if o = [|§]| 0, [49], Theorem 1.6, shows that for ; = Y; — (X;, t¥)
P
and for every p > 0,

<V Ne*(pBY NrBY),

Y €ilv. X))

i€[N]

E sup

veprﬂng

E sup <20V NE*(oB{ NrBY).

veprﬂrBé’

D €di(v, X;)

i€[N]

Local Gaussian mean widths K*(pB{i N ng) are bounded from above in [39], Lemma 5.3,
and computations of 7/ (-) and ro(-) follow

d
o2 if ,02N > o2d?,
2 < N
a1 (0) SLoqovm 1 i ( eod ) herwi
o |—1lo otherwise,
P N g /N
=0 ifN 2L,y d,

oy P g(c(L,yQ)d

) otherwise.
N
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Therefore, one can take

( L (eod) azd) N d
max pa T Og s T ar 1 ~L G,
M e~ N_ApINT N
") Lo vo.vm 1 ead \ p? d
max(pa v log(m) N log(ﬁ>> otherwise.

Now we turn to a solution of the sparsity equation for the E‘lj-norm. This equation has been
solved in [39], Lemma 4.2, we recall this result.

LEMMA 1. If there exists v € RY such that v € t* + (p/20)B{ and |supp(v)| <
cp*/r*(p), then

4
Ap)= inf sup (h, g — %)= =,
hepS{~nr(p)BY geTpx (p) 5

where Sf_l is the unit sphere of the Z‘li—norm and Bg is the unit Euclidean ball in R?.

As a consequence, if N 2 slog(ed/s) and if there exists a s-sparse vector in t* +
(,o/ZO)Bd, Lemma 1 and the choice of (-) in (7) imply that for o = ||| 140,

1 ed os ed
o~ —1lo (—) and r%(p*)~—1lo (—)

P* L 08y 3 1og( = ro(p%) ~ - log| ~
then p* satisfies the sparsity equation and r2(p*) is the rate of convergence of the LASSO
for A ~ rz(p*)/p* ~ 1§l 90 ~/log(ed /s)/N. This choice of X requires to know the sparsity

P

parameter s. That is the reason why we either need to choose a larger value for the r(-)
function as in [39]—this results in the suboptimal /log(ed)/N rates of convergence from

Theorem 3—or to use an adaptation step as in Section 3.4.1. This results in the better minimax

rate +/log(ed/s)/N. Finally, one needs to compute the radii px and A ~ rz(pK)/pK. Let
K €[N]and o = ||&| L. The equation K = cr(pg)>N is solved by

K |1 1 o2d
() PK ~Lao \| y log (7)
for the r(-) function defined in (7). Therefore,
r2(pk) 1 eod 1 ec?d
9 A~ ~ —1 ~ —1 .
® ok PP %YN Og(PK\/N> Lao %\ Og( K )

The regularization parameter depends on the L‘IIJO—norm of £. This parameter is unknown in
practice. Nevertheless, it can be replaced by an estimator in the regularization parameter as
in [23], Sections 5.4 and 5.6.2.

The following result follows from Theorem 2 together with the previous computation of

p*,ro(), ru (), r(-) and A.

THEOREM 5. Grant Assumption 5. Let s € [d]. Assume that N > cislog(ed/s) and
that there is some v € R4 supported on at most s coordinates for which ||t* — v|; <
ca2l€llLaos~/1og(ed)/N. Assume that |Z| > N /2 and |O| < c3slog(ed/s). The MOM-LASSO
estimator t with the adaptively chosen number of blocks K (and 1) from Section 3.4.1 satis-
fies, with probability at least 1 — caexp(—csslog(ed/s)), for every 1 < p <2,

1 ed
2 1
I =1, < collel,s/7, | log ()

where (CJ)?:1 depends only on 6y, 6,, and qo.
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PROOF. It follows from Theorem 2, the comp_utation of r(pg) from (7) and pg in (8) that
with probability at least 1 — cgexp(—cr(pg)>N/C), |If —t*|l1 < px+ and ||f —t*||2 < r(pk).

The result follows since pe ~ p* ~1.gy 05/ 3 log(51) and o], < lvlly /7 [ull3™" for

alveRYand 1< p<2. O

Theoretical properties of MOM LASSO (cf. Theorem 5) outperform those of LASSO (cf.
Theorem 3) in several ways:

e Estimation rates achieved by MOM-LASSO are the actual minimax rates s log(ed/s)/N
(see [11]), while classical LASSO estimators achieve the rate s log(ed)/N. This improve-
ment is possible thanks to the adaptation step in MOM-LASSO.

e the probability deviation in (5) is polynomial — 1/N@0/2=D whereas it is exponentially
small for MOM LASSO. Exponential rates for LASSO hold only if & is sub-Gaussian
(IEllz, = C/Pl&llL, forall p > 2).

e MOM LASSO is insensitive to data corruption by up to slog(ed/s) outliers while only
one outlier can be responsible of a dramatic breakdown of the performance of LASSO (cf.
Figure 1).

e Assumptions on X are weaker for MOM LASSO than for LASSO. In the LASSO case,
we assume that X is sub-Gaussian whereas for the MOM LASSO we assume that the
coordinates of X have Cplog(ed) sub-Gaussian moments and that X satisfies a L2/L1
equivalence assumption.

Let us now turn to the study of a “minmax MOM version” of the SLOPE estimator. The
computation of the fixed point functions r¢(-) and ry(-) rely on [49], Theorem 1.6, and the
computation from [39]. Again, the SLOPE norm has a dual norm which is 1-unconditional
with respect to the canonical basis of R4, [49], Definition 1.4. Therefore, it follows from [49],
Theorem 1.6, that under Assumption 6, one has

Z €i (v, Xi)’ =< Cz«/ﬁﬂ*(pBﬂng),
i€[N]

E sup
vepBﬂng

Z €;Gi (v, Xi)’ < CQU\/NE*(/OB N ng),
ie[N]

E sup
vepBNr Bg

where B is the unit ball of the SLOPE norm and ¢ = Y; — (X;,t*). Local Gaussian
mean widths £*(pB N ng) are bounded from above in [39], Lemma 5.3: £*(pB N ng) <
min{Cp, Jdr} when Bj = Cy/log(ed)/j forall j € [d] and computations of ry;(-) and rg(-)
follow

0 iftN2>pd,
rp(0) Sef p? _ and
N otherwise,

d .
, 1€17, PN 2e.qs €N,
rv(P) SL.g.s .
otherwise.

0
||€||Lqﬁ

The sparsity equation has been solved in [39], Lemma 4.3.

LEMMA 2. Let 1 <s <d and set By =} Bj/\i-If t* is p/20 approximated (rela-
tive to the SLOPE norm) by an s-sparse vector and if 40B; < p/r(p) then A(p) > 4p/5.
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For B; < C\log(ed/)), By = X<, Bj//j S C«/slog(ed/s). The condition By <
p/r(p) holds when N 21 4, slog(ed/s), p ZrL.q40 6L, ﬁ log(%). Lemma 2 implies that

A(p) > 4p/5 when there is an s-sparse vector in t* + (p/20) By. Therefore, Theorem 1
applies for A ~r2(p)/p ~L.q.5 I€llL,/v'N.

The final ingredient is to compute the pg solution to K = cr(pg)*N. It is solved for
pk ~ K /(o+/N) and, therefore, 1 ~ r?(px)/pk ~L.q.5 |&llL,/VN.

The following result follows from Theorem 2 together with the previous computations of
p*, pk,ro(-), ru(-) and r(-). The proof, similar to Theorem 5, is omitted.

THEOREM 6. Grant Assumption 5. Let s € [d]. Assume that N > c1slog(ed/s) and
that there is v € R? such that |supp(v)| < s and V(1* — v) < c2||€ ||z, s log(ed/s)//N.
Assume that |I] > N/2 and |O| < c3slog(ed/s). The MOM-SLOPE estimator t with
the adaptive number of blocks K from Section 3.4.1 satisfies, with probability at least
1 — cqexp(—csslog(ed/s)),

A w2 5 S ed
Ii =13 <ol log( ).
where (Cj)?:1 depends only on 6y, 6,, and qo.

MOM-SLOPE has the same advantages upon SLOPE as MOM-LASSO upon LASSO.
These improvements, listed below Theorem 5 are not repeated. The only difference is that
SLOPE, unlike LASSO, already achieves the minimax rate s log(ed/s)/N whereas, without
an extra adaptation step as in [11], the LASSO is not known to achieve a rate better than
slog(ed)/N.

5. Algorithms for minmax MOM LASSO. The aim of this section is to show that
there is a systematic way to transform classical descent based algorithms (such as Newton
or gradient descent algorithm, or proximal gradient descent algorithms, etc.) into robust ones
using MOM approach. This section provides several examples of such modifications.

These algorithms are tested in high-dimensional frameworks. In this setup, there exists
an important number of algorithms approximating LASSO. The aim of this section is to
show that there is a natural modification of these algorithms that makes them more robust
to outliers. The choice of hyper-parameters like the number of blocks or the regularization
parameter cannot be done via classical Cross-Validation (CV) because of possible outliers in
the test sets. CV procedures are also adapted using MOM’s principle in Section 6. We also
advocate for using random blocks at every iterations of the algorithms, to bypasses a problem
of “local saddle points” we have identified. A byproduct of the latter approach is a definition
of depth adapted to the learning task and, therefore, of an outliers detection algorithm. This
material and a simulation study are given in Section 6 of the Supplementary Material [36].

5.1. From algorithms for LASSO to MOM LASSO. Each algorithm designed for the
LASSO can be transformed into a robust algorithm for the minmax MOM estimator. Recall
that minmax MOM LASSO estimator is

(10) fK,A € argmin sup TK,)L(I/, Z),
teRd  t'eRd

where Tk ;. (t',1) = MOMg (¢, — £;) + A(||t]l1 — |It]l1), MOMk (¢, — £,) is a median of the
set of real numbers {Pp, (¢; — £y), ..., Pp, (€ — £y)} and for all k € [K],

1
Py, (b — b)) = B (Y; — (X, t))2 — (Y — (Xi, t/))z.
i€By
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A natural idea to implement (10) is to consider algorithms based on a sequence of alter-
nating descents (in 7) and ascents (in ') steps with possible proximal/projection steps and for
various choices of step sizes. A key issue here is that t — TK,A(I(), 1) (resp., t' — Tk (1, 1)),
for some given (7o, t(/)) e R4 x R4, may not be convex (resp., concave). Nevertheless, one can
still compute the steepest descent by assuming that the index in [K] of the block achieving
the median in MOMg (¢,, — Et(/)) remains constant on a convex open set containing (#o, t(/)),

for almost all (zg, t(’)). The median is set as the minimal value of the median interval.

ASSUMPTION 7. Almost surely (with respect to (X;, Yl')f.vzl) for almost all (19, t()) €

R? x R? (with respect to the Lebesgue measure on R? x R?), there exists a convex open set
B containing (19, t(/)) and k € [K] such that forall (t,1') € B, P (£; —€y) € MOMk (£; —£;7).

Under Assumption 7, for almost all couples (1o, 1)) € R?Y xRY, t — Tk, 2 (19, 1) is “locally
convex” and t' — Tk , (7, 1) is “locally concave.” Therefore, for k such that Pp, Ly — E,(/)) €
MOMg (¢4, — Eté),

(11) ViMOM (& — €)=y = —2(X®) T (r® — xWpg),

where Y = (Y;)iep, and X® is the | Bx| x d matrix with rows given by Xl.—r fori € By. The
integer k € [K] is the index of the median of K real numbers Pg, ({; —£;), ..., Pp, ({; —4£y),
which is straightforward to compute. The gradient —2(X ®) T (Y ® — X ®¢4) in (11) depends
on ¢, only through the index k.

REMARK 3 (Block gradient descent). Algorithms developed for the minmax estimator
using steepest descent steps such as (11) are special instances of Block Gradient Descent
(BGD). The major difference with standard BGD (which takes sequentially all blocks), is
that the index of the block is chosen here as Pp, (¢4, — E,(/)) € MOMk (44, — Eté). In particular,
we expect blocks corrupted by outliers to be avoided which is not the case in the classical
BGD. Moreover, choosing the “descent/ascent” block k using its centrality, we also expect
Pp, (£y, — Z,(/)) to be close to the objective function P({;, — E,(/)). This should make every
descent (resp., ascent) steps particularly efficient.

REMARK 4 (Map-reduce). The algorithms presented in this section particularly fits the
map-reduce paradigm [19], where data are spread out in a cluster of servers and are there-
fore naturally split into blocks. Our procedures use for mapper a mean and for reducer a
median. This makes our algorithms easily scalable into the big data framework even when
some servers have crashed down (making blocks of outliers data). The median identifies the
correct block of data onto which one should make a descent or an ascent and leaves aside
servers which have crashed down.

REMARK 5 (Normalization). In the i.i.d. setup, the design matrix X (i.e., the N x d
matrix with row vectors X, ..., Xn) is normalized to make EQ’ -norms of the columns equal
to one. In a corrupted setup, one row of X may be corrupted and normalizing each column of
X would corrupt the entire matrix X. We therefore do not normalize the design matrix in the
following.

5.2. Subgradient descent algorithm. LASSO is solution of the minimization problem
min, cpa ¥ (t) where ¥ is defined for all # € RY by ¥ (1) = |Y — Xt |13 + Allt|ly with Y =
;) lN:  and X'is the N x d matrix with row vectors X1, ..., Xy. LASSO can be approximated
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input : (1, 1)) € R? x R?: initial point, € > 0: a stopping parameter, (1 pp> (Bp)p: two
step size sequences
output: approximated solution to the min—-max problem (10)

1 while [[z,11 — 1,2 > € or ||t;)+1 —t,l2> € do
2 find k € [K] such that Ppg, (Etp — E,};) = MOMg (K;p — E,]r?)
3

tpr1 =ty + 20X (Y — Xgt,) — Anp sign(t,)
4 find k € [K] such that Ppg, (E,p+1 — Z,[r?) =MOMg (K,p+1 — Z,[r))

oy =1, 4+ 2B,X] (Yi — Xt),) — A sign(t))

6 end
7 Return (7,, t;,)

Algorithm 1: A “minmax MOM version” of the subgradient descent

by a subgradient descent procedure: given fo € R? and step sizes (¥p)p (e, yp >0and (vp),
decreases), at step p we update

(12) Ip+1 :tp_ypaw(tp),

where 9V (¢,) is a subgradient of v at ¢, like 0y (7)) = —2XT(Y — Xt,) + Asign(t,) where
sign(t,) is the vector of signs of the coordinates of ¢, with the convention sign(0) = 0.
The subgradient descent algorithm (12) can be turned into an alternating subgradient as-
cent/descent algorithm for the min—max estimator (10): let

(13) Yir=(Yi)iep, and X;= (XiT)ieBk c RIBcIxd_

The key insight in Algorithm 1 are steps 2 and 4 where the blocks number have been
chosen by the median operator. Those steps are expected (1) to remove outliers from the
descent/ascent directions, (2) to improve the accuracy of the latter directions.

A classical choice of step size y, in (12) is y, = 1/L where L = ||X||2oo (IIX]| s, 1s the
operator norm of X). Another possible choice follows from the Armijo—Goldstein condition
with the following backtracking line search: y is decreased geometrically while the Armijo—
Goldstein condition is not satisfied

while (1, + 00V (1)) > ¥(t,) + 8y 0w () |2 do yes1 = pye

for some given p € (0, 1), 8 = 10~ and initial point yo = 1.

Of course, the same choices of step size cannot be made for (n,), and (8,), in Al-
gorithm 1 because X may be corrupted but it can be adapted. In the first case, one can
take 7, =1 /”Xkll%oo where k € [K] is the index defined in line 2 of Algorithm 1 and

Bp =1/ ||Xk||%oo where k € [K] is the index defined in line 4 of Algorithm 1. In the other
backtracking line search case, the Armijo—Goldstein condition adapted for Algorithm 1 reads
like
. 2
while ¥y (1) + yed Vi (1p)) > Vi (tp) + 8ve|[ayn(tp) |3 do neyr = pne,

where ¥ (1) = | Y — XkIII% + Allz]|1 where k € [K] is defined in line 2 of Algorithm 1 and,
for B, with k € [K'] defined in line 4 of Algorithm 1.
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input : (7o, t(’)) € R? x R?: initial point, € > 0 : a stopping parameter, (nx)x, (Br)k: tWo
step size sequences
output: approximated solution to the min—max problem (10)

1 while |[z,11 — 1,2 > € or ||t;7+1 —t,l2> € do

2 find k € [K] such that Pg, (Z,p — Et[r)) =MOMg (th — Et[g)
30| tppr =proxg .y, (1p + 2mX] (Yi — Xtp))
4 find k € [K] such that Pp, (¢;,,, — Et;,) =MOMk (4, — Et;,)
5| 14 =proxy ., (6, + 28X (Y — Xgt),))
6 end
7 Return (7,, t;,)
Algorithm 2: A “minmax MOM version” of ISTA

5.3. Proximal gradient descent algorithms. This section provides MOM versions of
ISTA (Iterative Shrinkage-Thresholding Algorithm) and its accelerated version FISTA. ISTA
and FISTA are proximal gradient descent where the objective function ¥ (¢) = f(¢) + g(¢)
with f(t) =Y — thl% (convex and differentiable) and g(¢) = A||#||; (convex). ISTA alter-
nates between a descent in the direction of the gradient of f and a projection through the
proximal operator of g, which, for the £{-norm, is the soft-thresholding:

(14) tpr1 = prox(t, + 2y, X" (Y — Xt,)),
M-l
where prox; |, (1) = (sign(t;) max(|t;| — A, 0))3?:1 forall r = (¢;)4_, e R,
A natural “MOM version” for ISTA is in Algorithm 2 given by the following alternating

method where the step sizes sequences (1,), and (8,), may be chosen according to the
remarks below Algorithm 1 or chosen a posteriori.

5.4. Douglas—Racheford/ADMM. This section presents the Alternating Direction
Method of Multipliers (ADMM) algorithm. It is also a splitting algorithm which reads as
follows in the LASSO case: at step p,

Ipy1 = (XTX + p]dxd)fl(XTY-i- pPZp —Up),

Zp+1 =pﬁX(tp+1 +up/p),
M-l

Upr1=up+ plptr1 — Zp+1)s

where p is a tuning parameter. ADMM algorithm returns ¢, after a stopping criteria is met.
In Algorithm 3, we provide a MOM version of this algorithm.

6. Simulations study. This section provides an extensive simulation study based on al-
gorithms of Section 5. In particular, their robustness and their convergence properties are
illustrated on simulated data. The algorithms depend on hyperparameters that need to be
tuned. Due to possible corruption, classical approaches relying on test samples cannot be
trusted. The section starts therefore by introducing a robust CV procedure based on MOM
principle.

6.1. Adaptive choice of hyperparameters via MOM V-fold CV. MOM’s principles can be
combined with the idea of multiple splitting into training/test datasets in cross-validation.
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input : (1, 1)) € R? x R? : initial point, € > 0 : a stopping parameter, p: a parameter
output: approximated solution to the min—-max problem (10)

1 while [[z,11 —1,]2 > € or ||t;ﬂr1 —t,l2> € do

2 | find k € [K] such that Pg, (€;, — £;,) = MOM (&, — £17)

tprr = (X Xk + plaxa) ™ (X{Yh + pzp — 1),

Zp+1 =pﬁX(tp+1 +up/p),
M

Upri =up+ pp+1 — Zp+1),

3 find k € [K] such that Pg, (¢;,,, — €y) =MOMk (&, — Ly)
t[,7+1 = (X;Xk + PIdxd)_l(X;ij + pz;, — uiD),
St = PIOX(1psy + 4 /p).

1

/ I / /

4 end
5 Return (7,, t;)

Algorithm 3: A “minmax MOM version” of ADMM

Let V € [N] be such that N can be divided by V. Let also Gx C [N] and G, C (0, 1]. The
aim is to select an optimal number of blocks and regularization parameter within both grids.
The dataset is split into V disjoints blocks Dy, ..., Dy. For each v € [V], U#v D, is used
to train a family of estimators

(15) (f) K €Gk.heGy).

The remaining D, of the dataset is used to test the performance of each estimator in the fam-
ily (15). Using these notation, we define a MOM version of the cross-validation procedure.

_ DEFINITION 6. The Median of Means V-fold CV associated to the estimators (15) is
% 3 Where (K, 1) is a minimizer of

(K, )\.) (S gK X Q;L — MOITICVV(K, }\.) = Ql/z(MOM%/) (Zf[((v;)ve[V]),
where, forall ve [V]and f € F,

(16) MOMY) (¢ ) =MOMg/(Pyrly, ., Ppiyty)

and va) U-.-u Bg}/) is a partition of the test set D,, into K’ blocks where K’ € [N/ V] such
that K’ divides N/ V.

The difference with standard V-fold CV is that empirical means in classical V-fold CV are
replaced by MOM estimators in (16). Moreover, the mean over all V splits in the classical
V-fold CV is replaced by a median.

The choice of V raises the same issues for MOM CV as for classical V-fold CV [3, 5].
In the simulations, we use V = 5. The construction of MOM-CYV requires to choose another
parameter: K’, the number of blocks used to build MOM criteria (16) over the test set. One
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FI1G. 2.  Adaptively chosen number of blocks K for the minmax MOM LASSO.

can choose K’ = K/V to make only one split of D into K blocks and use, for each round,
(V — 1)K/ V blocks to build estimators (15) and K/ V blocks to test them.

In Figure 2, hyperparameters K (i.e., the number of blocks) and A (i.e., the regularization
parameter) have been chosen for MOM LASSO estimators via MOM V-fold CV. Only the
evolution of K in function of the proportion of outliers has been depicted (the choice of
the adaptively chosen regularization parameter is more erratic and may first require a more
deeper understanding of CV in the classical i.i.d. before the study of MOM CV inthe OUZ
framework). The adaptive K grows with the number of outliers as expected, since the number
of blocks has to be at least twice the number of outliers. In particular, when there are no
outliers in the dataset, MOMCYV selects K = 1 so minmax MOM LASSO is the LASSO. The
algorithm learns that splitting the database is useless in the absence of outliers: LASSO is the
best choice among all minmax MOM LASSO estimators for K € [N /2].

REMARK 6. Median of Means V-fold CV introduced in Definition 6 aims at testing the
performance of estimators on a possibly corrupted test set. This is done by excluding outliers
from the test set thanks to the median operator. However, there are situations, for instance in
image recognition, where the test set is corrupted but still we expect estimators to perform
well even on these corrupted data in the test set. This is a classical robustness issue in Deep
Learning [66]. Indeed, deep learning methods are known to fail if a small Gaussian noise
is added to images even with a small variance undetectable by human eyes. Even though
minmax MOM estimators introduced in this paper have been initially designed to be robust to
outliers in the train set, one can use classical tricks to be also robust to corruption in the test set
by training minmax MOM estimators onto an augmented database: in practice, given a (clean
or not) dataset (X;, Y,-)lN: |» One can construct an augmented dataset where each data (X;, ;)
is replicated m times with an added Gaussian noise: (X; + Z;1, Yi), ..., (Xi + Zim, Yi)—
where (Z;j: 1 <i < N,1 < j <m) are i.i.d. Gaussian variable, and then a minmax MOM
estimator can be trained onto the dataset

(X,'—I-Z,‘j,Yl‘), i=1,....,n,j=1,...,m.

By doing so, we expect the minmax MOM estimator to improve its robustness performance
evaluated on a corrupted test set.

6.2. Saddle-point, random blocks, outliers detection and depth. The aim of this section
is to show some advantages of choosing randomly the blocks at every (descent and ascent)
steps of the algorithm and how this modified version works on the example of ADMM. As a
byproduct, it is possible to define an outliers detection algorithm.
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Let us first explain a problem of “local saddle point” in the case of fixed blocks. Minmax
MOM estimators are based on the observation that the oracle f* is solution to the minmax
problem f* € argmin feFSUPger P(Ly — Lg). Likewise, f * is solution of the maxmin prob-
lem: f* e argmax, ¢ p infscp P(£f — £g). One can also define the maxmin MOM estimator

(17) K .. € argmax lnf Tk (8, f)-

geF feF
Following the proofs of Section 6 in the Supplementary Material [36], one can prove the same
results for gx , and fg , (see Section 7 in the Supplementary Material for a proof in small

dimension). However, gk  and fx ; may differ since, in general

(18) argminsup Tx (g, f) # argmax mf Tk (g, f).
feF geF cF [f€F

In other words, the duality gap may not be null. Since Tk )(g, f) = —Tk .1 (f, g) for all

f, g € F, (18) holds if and only if

inf sup T 5.(f.8) =
feF geF

In that case, f is a saddle-point estimator and minmax and maxmin estimators are equal. The
left-hand side of Figure 3 shows a simulation where this happens. The choice of fixed blocks
Bq, ..., Bk may result in a problem of “local saddle points” and the algorithms remain close
to suboptimal local saddle points. To see this, consider the vector case (i.e., for F = {f(-) =
(-,1) : t € R} and introduce, for all k € [K],

(19) Ce=|{(t,1) eRY x R : MOM (¢, — £,) = Pp, (£, — £11)).

The problem is that, if a cell Cx contains a saddle-point of (¢,t") — Pp, (¢, — £y) +
Alz]l1 — N1#’]l1) the algorithms gets stuck in that cell instead of looking for “better saddle-
point” in other cells.

To overcome this issue, the partition is chosen at random at every descent and ascent steps
of the algorithms, so the decomposition into cells Cy, ..., Cg changes at every steps. As an
example, we develop the ADMM procedure with a random choice of blocks in Algorithm 4.

In Figure 3, both MOM LASSO via ADMM with fixed and changing blocks are run. Both
the objective function and the estimation error of MOM LASSO jump with fixed blocks.
These jumps correspond to a change of cell number. The algorithm converges to local saddle-
points before jumping to other cells, thanks to the regularization of the £;-norm. On the other
hand, the algorithms with changing blocks do not suffer this drawback. Figure 3 shows that
the estimation error converges faster and more smoothly for changing blocks. The objective

5000 ES
-— MOM ADMM
30 — MOM ADMM RANDOM BLOCKS
0 B Y

-5000

N
&

3

G

-10000

Objective function
Estimation Error

-
o

-15000

w

— MOM ADMM
— MOM ADMM RANDOM BLOCKS

—-20000 0
100 200 300 400 500 100 200 300 400 500

Number of iterations Number of iterations

FIG. 3. Fixed blocks against random blocks.
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input : (1, 1)) € R? x R?: initial point, € > 0: a stopping parameter, p: parameter
output: approximated solution to the min—max problem (10)

1 while [[z,11 — 1,2 > € or ||t;ﬂr1 —t,l2> € do

2 Build an equipartition By, ..., Bg of [N] at random.

3 Find k € [K] such that Pp, (E,p — Z;[/,) = MOMg (Etp — Et[/,)
tpr1 = (X} Xp + plaxad) VX[ Yi + pzp — up)

Zp+1 = Pprox, .y, (tp+1 +up/p)

Upt1 =up + P(pt1 = 2Zp+1)

Build an equipartition By, ..., Bg of [N] at random.

Find k € [K] such that Pp, (¢, , — Et;’) =MOMk (¢, — K’;’:)
1y = XL X + plaxa) ™ X Yi + pz), — u)y)

g1 = ProXy (0,4 + 1),/ )

10 wy oy =uy+pt, =20

11 end

12 Return (7, t;)

Algorithm 4: minmax MOM ADMM with changing random blocks

=T RN B N N

score: outlier_importance

data indices

FI1G. 4. Outliers detection algorithm. The dataset has been corrupted by 4 outliers at number 1,32, 170 and
194. The score of the outliers is 0: they have not been selected even once.

function of MOM ADMM with changing blocks converges to zero so the duality gap con-
verges to zero. This gives a natural stopping criterion and shows that minmax and maxmin
MOM LASSO are solution of a saddle point problem even though the objective function is
not convex-concave.

A byproduct is an outliers detection procedure. Count the number of times each data is
selected in the selected median blocks of steps 3 and 7 of Algorithm 4. At the end of the
algorithm (for instance, Algorithm 4), every data ends up with a score revealing its central-
ity for the learning task. Aggressive outliers are likely to corrupt their respective blocks and
should therefore not be selected at steps 3 and 7 of Algorithm 4. With fixed blocks, infor-
mative data cannot be distinguished from outliers lying in the same block, therefore, this
outliers detection algorithm only makes sense when blocks are changing at every steps. Fig-
ure 4 shows performance of this strategy on synthetic data (cf. Section 6.3 for more details
on the simulations). Outliers (data 1, 32, 170 and 194) end up with a null score.

6.3. Simulations setup for the figures. All codes are available at [55] and can be used to
reproduce the figures. Many other simulations and algorithms can be found in [55].
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6.3.1. Data generating process and corruption by outliers. The algorithms introduced in
Section 5 are tested on datasets corrupted by outliers of various forms in [55]. The basic set
of informative data is called D;. The outliers are named D,, D3, D4 and Ds. These data are
merged and shuffled in the dataset D = D; U D, U D3 U Dy U D5 given to the algorithm.

1. The set D; of inliers contains Nggoq 1.1.d. data (X;, ¥;) with common distribution
(20) Y=(X,t*)+.§,

where 1* € R?, X ~ N(0, Izxq) and £ ~ N (0, 02) is independent of X.

2. D, is a dataset of Np,g—1 outliers (X;, ¥;) such that Y; =1 and X; = (1)‘;:1

3. Dj is a dataset of Np,qy—» outliers (X;, Y;) such that ¥; = 10,000 and X; = (1)?’:1

4. Dy is adataset of Np,q—3 outliers (X;, Y;) where Y; is a 0— 1-Bernoulli random variable
and X; is uniformly distributed over [0, 14

5. Ds is also a set of outliers that have been generated according to a linear model (20),
with the same target vector * and a different choice of design X and noise &. The design
X ~N(@, ) with ¥ = (,o“‘j |)1§,-, j<d and & is a heavy-tailed noise distributed according to
a Student distribution with various degrees of freedom.

The different types of outliers D;, j = 2,3,4, 5 are useless to learn the oracle t* some are
not independent nor random as in D, and Ds.

6.3.2. Simulations setup for the figures. Let us now precise the parameters of the sim-
ulations in Figure 1 and Figure 2: the number of observations is N = 200, the number of
features is d = 500, t* € R? has sparsity s = 10 and support chosen at random, with nonzero
coordinates t}k being either equal to 10, —10 or decreasing according to exp(—j/10). Infor-
mative data D1, described in Section 6.3.1, have variance o = 1. This dataset is increasingly
corrupted with outliers in Ds3.

The proportion of outliers are 0, 1/100,2/100, ..., 15/100. The ADMM algorithm is run
with adaptive A chosen by V-fold CV with V =5 for the LASSO. Then MOM ADMM is
run with adaptive K and A chosen by MOM CV with V =5 and K’ = max(gridg)/V where
gridg ={1,4,...,115/4} and grid, = {0, 10, 20, ..., 100}/@ are the search grids used
to select the best K and A during the CV and MOM CV steps. The number of iterations of
ADMM and MOM ADMM is 200. Simulations have been run 70 times and the averaged
values of the estimation error and adaptive K have been reported in Figure 1, Figure 5 and
Figure 2. The ¢, estimation error of LASSO increases roughly from 0 when there is no out-
liers and stabilize at 550 right after a single outliers enters the dataset. The value 550 comes
from the fact that ¥ = 10,000 and X = (1)?0201 satisfy that the vector ¢ with minimal E‘f norm
among all the solutions # of ¥ = (X, t) is t™* = (20)3.0:01, and ||t** — t*||» is approximately
550. This means that LASSO is trying to fit a model on the single outlier instead of solv-
ing the linear problem associated with the 200 other informative data. A single outliers is
therefore completely misleading the LASSO.

For Figure 3, we have run similar experiments with N = 200, d = 300, s =20, 0 =1,
K = 10, the number of iterations was 500 and the regularization parameter was 1/+/N.

For Figure 4, we took N =200, d = 500, s = 20, o = 1, the number of outliers is |O| =4
and the outliers are of the form ¥ = 10,000 and X = (1)‘?:1 , K = 10, the number of iterations

J
is 5.000 and A = 1/4/200.
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FIG. 5. Estimation error versus proportion of outliers for LASSO and the minmax MOM LASSO.

SUPPLEMENTARY MATERIAL

Supplementary material to “Estimation bounds and sharp oracle inequalities of reg-
ularized procedures with Lipschitz loss functions” (DOI: 10.1214/19-A0S1828SUPP;
.pdf). Section 6 gives the proof of the main results. These main results focus on the regu-
larized version of the MOM estimates of the increments presented in this Introduction that
are well suited for high-dimensional learning frameworks. We complete these results in Sec-
tion 7, providing results for the basic estimators without regularization in small dimension.
Finally, Section 8 provides minimax optimality results for our procedures.
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