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Pólya urns are urns where at each unit of time a ball is drawn and re-
placed with some other balls according to its colour. We introduce a more
general model: the replacement rule depends on the colour of the drawn ball
and the value of the time (modp). We extend the work of Flajolet et al.
on Pólya urns: the generating function encoding the evolution of the urn is
studied by methods of analytic combinatorics. We show that the initial par-
tial differential equations lead to ordinary linear differential equations which
are related to hypergeometric functions (giving the exact state of the urns at
time n). When the time goes to infinity, we prove that these periodic Pólya
urns have asymptotic fluctuations which are described by a product of gen-
eralized gamma distributions. With the additional help of what we call the
density method (a method which offers access to enumeration and random
generation of poset structures), we prove that the law of the southeast corner
of a triangular Young tableau follows asymptotically a product of generalized
gamma distributions. This allows us to tackle some questions related to the
continuous limit of random Young tableaux and links with random surfaces.
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1. Introduction.

1.1. Periodic Pólya urns. Pólya urns were introduced in a simplified version by George
Pólya and his PhD student, Florian Eggenberger, in [26, 27, 74], with applications to disease
spreading and conflagrations. They constitute a powerful model, which regularly finds new
applications; see, for example, Rivest’s recent work on auditing elections [78], or the analysis
of deanonymization in Bitcoin’s peer-to-peer network [29]. They are well-studied objects in
combinatorial and probabilistic literature [6, 31, 62], because they offer fascinatingly rich
links with numerous objects like random recursive trees, m-ary search trees and branching
random walks (see, e.g., [7, 22, 43, 44]). In this paper, we introduce a variation which leads
to new links with another important combinatorial structure: Young tableaux. What is more,
we solve the enumeration problem of this new Pólya urn model, derive the limit law for the
evolution of the urn and give some applications to Young tableaux.

In the Pólya urn model, one starts with an urn with b0 black balls and w0 white balls at
time 0. At every discrete time step, one ball is drawn uniformly at random. After inspecting
its colour, this ball is returned to the urn. If the ball is black, a black balls and b white balls
are added; if the ball is white, c black balls and d white balls are added (where a, b, c, d ∈N

are nonnegative integers). This process can be described by the so-called replacement matrix:

M =
(
a b

c d

)
, a, b, c, d ∈N.

We call an urn and its associated replacement matrix balanced if a + b = c + d . In other
words, in every step the same number of balls is added to the urn. This results in a determin-
istic number of balls after n steps: b0 + w0 + (a + b)n balls.

Now, we introduce a more general model which has rich combinatorial, probabilistic and
analytic properties.

DEFINITION 1.1. A periodic Pólya urn of period p with replacement matrices M1,M2,

. . . ,Mp is a variant of a Pólya urn in which the replacement matrix Mk is used at steps np+k.
Such a model is called balanced if each of its replacement matrices is balanced.

For p = 1, this model reduces to the classical Pólya urn model with one replacement ma-
trix. In this article, we illustrate the aforementioned rich properties via the following model.

DEFINITION 1.2. Let p,� ∈N. We call a Young–Pólya urn of period p and parameter �

the periodic Pólya urn of period p (with b0 ≥ 1 to avoid degenerate cases) and replacement
matrices

M1 = M2 = · · · = Mp−1 =
(

1 0
0 1

)
and Mp =

(
1 �

0 1 + �

)
.

EXAMPLE 1.3. Consider a Young–Pólya urn with parameters p = 2, � = 1, and initial
conditions b0 = w0 = 1. The replacement matrices are M1 := ( 1 0

0 1

)
for every odd step, and

M2 := ( 1 1
0 2

)
for every even step. This case was analysed by the authors in the extended

abstract [9]. In the sequel, we will use it as a running example to explain our results.
Let us illustrate the evolution of this urn in Figure 1. Each node of the tree corresponds

to the current composition of the urn (number of black balls, number of white balls). One
starts with b0 = 1 black ball and w0 = 1 white. In the first step, the matrix M1 is used and
leads to two different compositions. In the second step, matrix M2 is used, in the third step,
matrix M1 is used again, in the fourth step, matrix M2, etc. Thus, the possible compositions
are (2,1) and (1,2) at time 1, (3,2), (2,3) and (1,4) at time 2, (4,2), (3,3), (2,4) and (1,5)

at time 3.
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In fact, each of these states may be reached in different ways, and such a sequence of tran-
sitions is called a history. (Some authors also call it a scenario, an evolution or a trajectory.)
Each history comes with weight one. Implicitly, they induce a probability measure on the
states at step n. So, let Bn and Wn be random variables for the number of black and white
balls after n steps, respectively. As our model is balanced, Bn +Wn is a deterministic process,
reflecting the identity

Bn + Wn = b0 + w0 + n + �

⌊
n

p

⌋
.

So, from now on, we concentrate our analysis on Bn.

1.2. The generalized gamma product distribution. For the classical model of a single
balanced Pólya urn, the limit law of the random variable Bn is fully known: the possible
limit laws include a rich variety of distributions. To name a few, let us mention the uniform
distribution [30], the normal distribution [7] and the beta and Mittag-Leffler distributions
[43, 45]. Now, periodic Pólya urns (which include the classical model) lead to an even larger
variety of distributions involving a product of generalized gamma distributions [87].

DEFINITION 1.4. The generalized gamma distribution GenGamma(α,β) with real pa-
rameters α,β > 0 is defined on (0,+∞) by the density function

f (t;α,β) := βtα−1 exp(−tβ)

�(α/β)
,

where � is the classical gamma function �(z) := ∫ ∞
0 tz−1 exp(−t) dt .

The fact that f (t;α,β) is indeed a probability density function can be seen by a change of
variable t �→ tβ in the definition of the � function, or via the following link.

REMARK 1.5. Let �(α) be the gamma distribution1 of parameter α > 0, given on
(0,+∞) by

g(t;α) = tα−1 exp(−t)

�(α)
.

FIG. 1. The evolution of the Young–Pólya urn with period p = 2 and parameter � = 1 with one initial black and
one initial white ball. Black arrows mark that a black ball was drawn, dashed arrows mark that a white ball was
drawn. Straight arrows indicate that the replacement matrix M1 was used, curly arrows show that the replacement
matrix M2 was used. The number below each node is the number of possible transitions to reach this state. In this
article, we give a formula for hn (which encodes all the possible states of the urn at time n) and the corresponding
asymptotic behaviour.

1Caveat: it is traditional to use the same letter for both the � function and the � distribution. Also, some authors
add a second parameter to the � distribution, which is set to 1 here.
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Then one has �(α)
L= GenGamma(α,1), and for r > 0, the distribution of the r th power of a

random variable distributed according to �(α) is

�(α)r
L= GenGamma(α/r,1/r).

The limit distribution of our urn models is then expressed as a product of such generalized
gamma distributions. We prove in Theorem 3.8 a more general version of the following.

THEOREM 1.6 (The generalized gamma product distribution GenGammaProd for Young–
Pólya urns). The renormalized distribution of black balls in a Young–Pólya urn of period p

and parameter � is asymptotically for n → ∞ given by the following product of distributions:

(1)
pδ

p + �

Bn

nδ

L−→ Beta(b0,w0)

�−1∏
i=0

GenGamma(b0 + w0 + p + i, p + �),

with δ = p/(p + �), and Beta(b0,w0) = 1 when w0 = 0 or Beta(b0,w0) is the beta distribu-
tion with support [0,1] and density �(b0+w0)

�(b0)�(w0)
xb0−1(1 − x)w0−1 otherwise.

In the sequel, we call this distribution the generalized gamma product distribution and
denote it by GenGammaProd(p, �, b0,w0). We will see in Section 3 that this distribution is
characterized by its moments, which have a nice factorial shape given in formula (20).

EXAMPLE 1.7. In the case of the Young–Pólya urn with p = 2, � = 1, and w0 = b0 = 1,
one has δ = 2/3. Thus, the previous result shows that the number of black balls converges in
law to a generalized gamma distribution:

22/3

3

Bn

n2/3
L−→ Unif(0,1) · GenGamma(4,3) = GenGamma(1,3).

See Section 5.3 and [24], Proposition 4.2, for more identities of this type.

REMARK 1.8 (Period one). When p = 1, our results recover a classical (nonperiodic)
urn behaviour. By [45], Theorem 1.3, the renormalization for the limit distribution of Bn in
an urn with replacement matrix

( 1 �
0 1+�

)
is equal to n−1/(1+�). For � = 0 the limit distribution

is the uniform distribution, whereas for � = 1 it is a Mittag-Leffler distribution (see [45],
Example 3.1, [30], Example 7), and even simplifies to a half-normal distribution2 when b0 =
w0 = 1. Thus, the added periodicity by using this replacement matrix only every pth round
and otherwise Pólya’s replacement matrix

( 1 0
0 1

)
changes the renormalization to n−p/(p+�).

The rescaling factor n−δ with δ = p/(p + �) on the left-hand side of (1) can also be
obtained via a martingale computation. The true challenge is to get exact enumeration and
the limit law. It is interesting that there exist other families of urn models exhibiting the same
rescaling factor, however, these alternative models lead to different limit laws.

• A first natural alternative model consists in averaging the p replacement matrices. This
leads to a classical triangular Pólya urn model. The asymptotics is then

Bn

nδ

L−→ B,(2)

2See [93] for other occurrences of the half-normal distribution in combinatorics.
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FIG. 2. Left: 20 simulations (drawn in red) of the evolution of Bn, the number of black balls in the Young–Pólya
urn with period p = 2 and parameter � = 1 (first 10,000 steps, with initially b0 = 1 black and w0 = 1 white
balls), and the mean E(Bn) (drawn in blue). Right: the average (in red) of the 20 simulations, fitting neatly
(almost indistinguishable!) the limit curve E(Bn) = �(n2/3) (in blue).

where the distribution of B is, for example, analysed by Flajolet et al. [30] via an ana-
lytic combinatorics approach, or by Janson [45] and Chauvin et al. [22] via a probabilistic
approach relying on a continuous-time embedding introduced by Athreya and Karlin [5].
For example, averaging the Young–Pólya urn with p = 2, � = 1 and b0 = w0 = 1 leads
to the replacement matrix

( 1 1/2
0 3/2

)
. The corresponding classical urn model leads to a limit

distribution with moments given, for example, by Janson in [45], Theorem 1.7:

E
(
Br) = �(4/3)r!

�(2r/3 + 4/3)
.

Comparing these moments with the moments of our distribution (equation (20) hereafter)
proves that these two distributions are distinct. However, it is noteworthy that they have
similar tails: we discuss this universality phenomenon in Section 5.2.

• Another interesting alternative model, called multi-drawing Pólya urn model, consists in
drawing multiple balls at once; see Lasmar et al. [58] or Kuba and Sulzbach [56]. Grouping
p units of time into one drawing leads to a new replacement matrix. For example, for p = 2
and � = 1 we can approximate a Young–Pólya urn by an urn where at each unit of time 2
balls are drawn uniformly at random. If both of them are black we add 2 black balls and 1
white ball, if one is black and one is white we add 1 black and 2 white ball, and if both of
them are white we add 3 white balls. Then the same convergence as in equation (2) holds,
yet again with a different limit distribution, as can be seen by comparing the means and
variances; compare Kuba and Mahmoud [54], Theorem 1, with our Example 3.7.

For all these alternative models, the corresponding histories are inherently different: none
of them gives the exact generating function of periodic Pólya urns nor gives the closed form
of the underlying distribution. This also motivates the exact and asymptotic analysis of our
periodic model, which therefore enriches the urn world with new special functions.

Figure 2 shows that the distribution of Bn is spread; this is consistent with our result that the
standard deviation and the mean E(Bn) (drawn in blue) have the same order of magnitude.3

The fluctuations around this mean are given by the generalized gamma product limit law from
equation (1), as proven in Section 3. Let us first mention some articles where this distribution
has already appeared before:

3The classical urn models with replacement matrices being either M1 or M2 also have such a spread; see [30],
Figure 1.
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• in Janson [47], as an instance of distributions with moments of gamma type, like the dis-
tributions occurring for the area of the supremum process of the Brownian motion;

• in Peköz, Röllin and Ross [70], as distributions of processes on walks, trees, urns and
preferential attachments in graphs, where these authors also consider what they call a Pólya
urn with immigration, which is a special case of a periodic Pólya urn (other models or
random graphs have these distributions as limit laws [19, 84]);

• in Khodabin and Ahmadabadi [53] following a tradition to generalize special functions by
adding parameters in order to capture several probability distributions, such as, for exam-
ple, the normal, Rayleigh and half-normal distribution, as well as the MeijerG function (see
also the addendum of [47], mentioning a dozen other generalizations of special functions).

1.3. Plan of the article. Our main results are the explicit enumeration results and links
with hypergeometric functions (Theorems 2.3 and 3.1), and the limit law involving a prod-
uct of generalized gamma distributions (Theorem 3.8, or the simplified version of it given
for readability in Theorem 1.6 above). It is a nice cherry on the cake that this limit law also
describes the fluctuations of the southeast4 corner of a random triangular Young tableau (as
proven in Theorem 4.23). We believe that the methods used, that is, the generating functions
for urns (developed in Section 2), the way to access the moments (developed in Section 3),
and the density method for Young tableaux (developed in Section 4) are an original combi-
nation of tools, which should find many other applications in the future. Finally, Section 5
gives a relation between the southeast and the northwest corners of triangular Young tableaux
(Proposition 5.7) and a link with factorizations of gamma distributions. Additionally, we dis-
cuss some universality properties of random surfaces, and we show to what extent the tails
of our distributions are related to the tails of Mittag-Leffler distributions (Theorem 5.3), and
when they are sub-Gaussian (Proposition 5.6).

In the next section, we translate the evolution of the urn into the language of generating
functions by encoding the dynamics of this process into partial differential equations.

2. A functional equation for periodic Pólya urns.

2.1. Urn histories and differential operators. Let hn,b,w be the number of histories of a
periodic Pólya urn after n steps with b black balls and w white balls, with an initial state of
b0 black and w0 white balls. We define the polynomials

hn(x, y) := ∑
b,w≥0

hn,b,wxbyw.

Note that these are indeed polynomials as there is just a finite number of histories after n

steps. Due to the balanced urn model these polynomials are homogeneous. We collect all
these histories in the trivariate exponential generating function

H(x,y, z) := ∑
n≥0

hn(x, y)
zn

n! .

EXAMPLE 2.1. For the Young–Pólya urn with p = 2, � = 1, and b0 = w0 = 1, we get
for the first three terms of H(x,y, z) the expansion (compare Figure 1)

H(x,y, z) = xy + (
xy2 + x2y

)
z + (

2xy4 + 2x2y3 + 2x3y2)z2

2
+ · · · .

4In this article, we use the French convention to draw the Young tableaux; see Section 4 and [61].
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In this section, our goal is to derive a partial differential equation describing the evolution
of the periodic Pólya urn model.

The periodic nature of the problem motivates to split the number of histories into p residue
classes. Let H0(x, y, z),H1(x, y, z), . . . ,Hp−1(x, y, z) be the generating functions of histo-
ries after 0,1, . . . , p − 1 draws modulo p, respectively. In particular, we have

Hi(x, y, z) := ∑
n≥0

hpn+i (x, y)
zpn+i

(pn + i)! ,

for i = 0,1, . . . , p − 1 such that

H(x,y, z) = H0(x, y, z) + H1(x, y, z) + · · · + Hp−1(x, y, z).

Next, we associate with the two distinct replacement matrices(
1 0
0 1

)
and

(
1 �

0 1 + �

)

from Definition 1.2 the differential operators D1 and D2, respectively. We get

D1 := x2∂x + y2∂y and D2 := y�D1,

where ∂x and ∂y are defined as the partial derivatives ∂
∂x

and ∂
∂y

, respectively. This models

the evolution of the urn. For example, in the term x2∂x , the derivative ∂x represents drawing
a black ball and the multiplication by x2 returning this black ball and an additional black ball
into the urn. The other terms have analogous interpretations.

With these operators, we are able to link the consecutive drawings with the following
system:

(3)

{
∂zHi+1(x, y, z) = D1Hi(x, y, z) for i = 0,1, . . . , p − 2,

∂zH0(x, y, z) = D2Hp−1(x, y, z).

Note that the derivative ∂z models the evolution in time. We see two types of transitions:
in the first p − 1 rounds the urn behaves like a normal Pólya urn, but in the pth round we
additionally add � white balls. The first transition type is modelled by the D1 operator and
the second type by the D2 operator. This system of partial differential equations naturally
corresponds to recurrences on the level of coefficients hn,b,w , and vice versa. This philosophy
is well explained in the symbolic method part of [33] (see also [30, 31, 42, 67] for examples
of applications to urns).

As a next step, we want to eliminate the y variable in these equations. This is possible as
the number of balls in each round and the number of black and white balls are connected due
to the fact that we are dealing with balanced urns. As observed previously, one has

(4) number of balls after n steps = s0 + n + �

⌊
n

p

⌋
,

with s0 := b0 + w0 being the number of initial balls. Therefore, for any xbywzn appearing in
H(x,y, z), we have

b + w = s0 + n + �
n − i

p
if n ≡ i mod p,

which directly translates into the following system of equations (for i = 0, . . . , p − 1):

(5) x∂xHi(x, y, z) + y∂yHi(x, y, z) =
(

1 + �

p

)
z∂zHi(x, y, z) +

(
s0 − i�

p

)
Hi(x, y, z).
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These equations are contractions in the metric space of formal power series in z (see, e.g., [8]
or [33], Section A.5), so, given the initial conditions [z0]Hi(x, y, z), the Banach fixed-point
theorem entails that this system has a unique solution: our set of generating functions. Now,
because of the deterministic link between the number of black balls and the number of white
balls, it is natural to introduce the two shorthands H(x, z) := H(x,1, z) and Hi(x, z) :=
Hi(x,1, z). What is the nature of these functions? This is what we tackle now.

2.2. D-finiteness of history generating functions. Let us first give a formal definition of
the fundamental concept of D-finiteness.

DEFINITION 2.2 (D-finiteness). A power series F(z) = ∑
n≥0 fnz

n with coefficients in
some ring A is called D-finite if it satisfies a linear differential equation L.F (z) = 0, where
L �= 0 is a differential operator, L ∈ A[z, ∂z]. Equivalently, the sequence (fn)n∈N is called
P-recursive: it satisfies a linear recurrence with polynomial coefficients in n. Such functions
and sequences are also sometimes called holonomic.

D-finite functions are ubiquitous in combinatorics, computer science, probability theory,
number theory, physics, etc.; see, for example, [1] or [33], Appendix B.4. They possess clo-
sure properties galore; this provides an ideal framework for handling (via computer algebra)
sums and integrals involving such functions [15, 71]. The same idea applies to a full family
of linear operators (differentiations, recurrences, finite differences, q-shifts) and is unified
by what is called holonomy theory. This theory leads to a fascinating algorithmic universe
to deal with orthogonal polynomials, Laplace and Mellin transforms, and most of the inte-
grals of special functions: it offers powerful tools to prove identities, asymptotic expansions,
numerical values, structural properties; see [50, 68, 76].

We have seen in Section 2.1 that the dynamics of urns is intrinsically related to partial
differential equations (mixing ∂x , ∂y , and ∂z). It is therefore a nice surprise that it is also
possible to describe their evolution in many cases with ordinary differential equations (i.e.,
involving only ∂z).

THEOREM 2.3 (Differential equations for histories). The generating functions describ-
ing a Young–Pólya urn of period p and parameter � with initially s0 = b0 + w0 balls, where
b0 are black and w0 are white, satisfy the following system of p partial differential equations:

(6) ∂zHi+1(x, z) = x(x − 1)∂xHi(x, z) +
(

1 + �

p

)
z∂zHi(x, z) +

(
s0 − i�

p

)
Hi(x, z),

for i = 0, . . . , p − 1 with Hp(x, z) := H0(x, z). Moreover, if any of the corresponding gen-
erating functions (ordinary, exponential, ordinary probability or exponential probability) is
D-finite in z, then all of them are D-finite in z.

PROOF. First, let us prove the system involving ∂z and ∂x only. Combining (3) and (5),
we eliminate ∂y . Then it is legitimate to insert y = 1 as there appears no differentiation with
respect to y anymore. This gives (6).

Now, assume the ordinary generating function is D-finite. Multiplying a holonomic se-
quence by n! (or by 1/n!, or more generally by any holonomic sequence) gives a new se-
quence, which is also holonomic. In other words, the Hadamard product of two holonomic
sequences is still holonomic [89], Chapter 6.4. This proves that the ordinary and exponential
versions of our generating functions H and Hi are D-finite in z.

Finally, for the probability generating function defined as∑
n,b,w

P(Bn = b and Wn = w)xbywzn = ∑
n

hn(x, y)

hn(1,1)
zn,
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TABLE 1
Size of the D-finite equations for the four types of generating functions of histories (for the urn model of

Example 2.4). We use the abbreviations EGF (exponential generating function), OGF (ordinary generating
function), EPGF (exponential probability generating function), OPGF (ordinary probability generating

function). We omit the degree of the variable y, as, for balanced urns, it is trivially related to the degree in x

Type Generating function Order in ∂z Degree in z Degree in x

EGF
∑

n,b,w hn,b,wxbyw zn

n! 5 13 16
OGF

∑
n,b,w hn,b,wxbywzn 7 23 20

EPGF
∑

n,b,w P(Bn = b and Wn = w)xbyw zn

n! 8 4 15
OPGF

∑
n,b,w P(Bn = b and Wn = w)xbywzn 3 13 14

it is in general not the case that it is holonomic if the initial ordinary generating function
is holonomic. But in our case a miracle occurs: in each residue class of n mod p, the se-
quence (hpm+i(1,1))m∈N is hypergeometric (as shown in Theorem 3.1), therefore, the p

subsequences (1/hpm+i(1,1))m∈N are also hypergeometric, and thus the above probabil-
ity generating function (which is the sum of p holonomic functions, each one being the
Hadamard product of two holonomic functions) is holonomic. �

Experimentally, in most cases a few terms suffice to guess a holonomic sequence in z.
We believe that this sequence is always holonomic, yet we were not able to prove it in full
generality. We plan to comment more on this and other related phenomena in a forthcoming
article.

EXAMPLE 2.4. In the case of the Young–Pólya urn with p = 2, � = 1, and b0 = w0 = 1,
the differential equations for histories (6) are⎧⎪⎪⎨

⎪⎪⎩
∂zH0(x, z) = x(x − 1)∂xH1(x, z) + 3

2
z∂zH1(x, z) + 3

2
H1(x, z),

∂zH1(x, z) = x(x − 1)∂xH0(x, z) + 3

2
z∂zH0(x, z) + 2H0(x, z).

In addition to this system of partial differential equations, there exist also two ordinary
linear differential equations in z for H0 and H1 and, therefore, for their sum H := H0 + H1,
the generating function of all histories.

In Table 1, we compare the size of the D-finite equations5 for the different generating
functions. For example, for the ordinary probability generating function one has the equation
L.F (x, z) = 0, where L is the following differential operator of order 3 in ∂z:

L = 9z(z − 1)(z + 1)
(
15x13z10 + · · · + 3

)
∂3
z + 3

(
375x13z12 + · · · − 21

)
∂2
z

+ 2
(
1020x13z11 + · · · + 42

)
∂z + 600x13z10 + · · · + 1.

The singularity at z = 1 of the leading coefficient reflects the fact that F is a probability
generating function (and thus has radius of convergence equal to 1). It is noteworthy that
some roots of the indicial polynomial of L at z = 1 differ by an integer, this phenomenon
is sometimes called resonance, and often occurs in the world of hypergeometric functions;
we will come back to these facts and what they imply for the asymptotics (see also [33],
Chapter IX. 7.4).

5When we say the equation, we mean the linear differential equation of minimal order in ∂z, and then minimal
degrees in z and x, up to a constant factor for its leading term.
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Note that the fact to be D-finite has an unexpected consequence: it allows a surprisingly
fast computation of hn in time O(

√
n log2 n) (see [15], Chapter 15, for a refined complexity

analysis of the corresponding algorithm). Such efficient computations are, for example, im-
plemented in the Maple package gfun (see [83]). This package, together with some packages
for differential elimination (see [16, 35]), allows us to compute the different D-finite equa-
tions from Table 1, via the union of our Theorem 3.1 on the hypergeometric closed forms and
the closure properties mentioned above.

Another important consequence of the D-finiteness is that the type of the singularities
that the function can have is constrained. In particular, the following important subclass of
D-finite functions can be automatically analysed:

REMARK 2.5. Flajolet and Lafforgue have proven that under some “generic” conditions,
such D-finite equations lead to a Gaussian limit law (see [32], Theorem 7, and [33], Chap-
ter IX. 7.4). It is interesting that these generic conditions are not fulfilled in our case: we have
a cancellation of the leading coefficient of L at (x, z) = (1,1), a confluence for the indicial
polynomial, and the resonance phenomenon mentioned above! The natural model of periodic
Pólya urns thus leads to an original analytic situation, which offers a new (non-Gaussian)
limit law.

We thus need another strategy to determine the limit law. In the next section, we use the
system of equations (6) to iteratively derive the moments of the distribution of black balls
after n steps.

3. Moments of periodic Pólya urns. In this section, we give the proof of Theorem 1.6
and a generalization of it. As it will use the method of moments, let us introduce mr(n), the
r th factorial moment of the distribution of black balls after n steps, that is,

mr(n) := E
(
Bn(Bn − 1) · · · (Bn − r + 1)

)
.

Expressing them in terms of the generating function H(x, z), it holds that

mr(n) =
[zn] ∂r

∂xr H(x, z)

∣∣∣∣
x=1

[zn]H(1, z)
,

where [zn]∑n fnz
n := fn is the coefficient extraction operator.

We will compute the sequences of the numerator and denominator separately. We start
with the denominators, the total number of histories after n steps.

3.1. Number of histories: A hypergeometric closed form. We prove that H(1, z) satisfies
a miraculous property which does not hold for H(x, z): it is a sum of generalized hypergeo-
metric functions (see, e.g., [3] for an introduction to this important class of special functions).

THEOREM 3.1 (Hypergeometric closed forms). Let hn := n![zn]H(1, z) be the number
of histories after n steps in a Young–Pólya urn of period p and parameter � with initially
s0 = b0 + w0 balls, where b0 are black and w0 are white. Then, for each i, (hpm+i )m∈N is a
hypergeometric sequence, satisfying the recurrence

(7) hp(m+1)+i =
i−1∏
j=0

(
(p + �)(m + 1) + s0 + j

)p−1∏
j=i

(
(p + �)m + s0 + j

)
hpm+i .

Equivalent closed forms are given in equations (10), (11) and (12).
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PROOF. Substituting x = 1 into (6) and extracting the coefficient of zn for i = 0, . . . ,

p − 1 gives the recurrence

hn+1 =
((

1 + �

p

)
n + bn

)
hn with(8)

bn := s0 − �

p
(n mod p),(9)

where n mod p gives values in {0,1, . . . , p − 1}. Iterating this recurrence relation p times
gives (7). This leads to the following equivalent closed forms:

hpm+i = (p + �)pm+i∏p−1
j=0 �(

s0+j
p+�

)

i−1∏
j=0

�

(
m + 1 + s0 + j

p + �

)p−1∏
j=i

�

(
m + s0 + j

p + �

)
,(10)

hpm+i = (p + �)pm �(s0 + (p + �)m + i)

�(s0 + (p + �)m)

p−1∏
j=0

�(m + s0+j
p+�

)

�(
s0+j
p+�

)
.(11)

Accordingly, the function H(1, z) is the sum of p generalized hypergeometric functions
pFp−1:

H(1, z) =
p−1∑
i=0

(
s0 + i − 1

i

)
zi

pFp−1

(
L1(i),L2(i),

(
(p + l)z

p

)p)
,(12)

where the lists of arguments are given by L1(i) :=
[(

s0+j
p+�

+ 1
)
j=0,...,i−1

,
(

s0+j
p+�

)
j=i,...,p−1

]
and L2(i) :=

[(
j
p

+ 1
)
j=1,...,i

,
(

j
p

)
j=i+1,...,p−1

]
. �

EXAMPLE 3.2. In the case of the Young–Pólya urn with p = 2, � = 1, and b0 = w0 = 1,
one has the hypergeometric closed forms for hn := n![zn]H(1, z):

hn =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

3n
�(n

2 + 1)�(n
2 + 2

3)

�(2/3)
if n is even,

3n
�(n

2 + 1
2)�(n

2 + 7
6)

�(2/3)
if n is odd.

Alternatively, this sequence satisfies h(n + 2) = 3
2h(n + 1) + 1

4(9n2 + 21n + 12)h(n).
This sequence was not in the On-Line Encyclopedia of Integer Sequences, accessi-
ble at https://oeis.org. We added it there; it is now A293653, and it starts like this:
1,2,6,30,180,1440,12960,142560,1710720, . . . . The exponential generating function can
be written as the sum of two hypergeometric functions:

H(1, z) = 2F1

([
2

3
,1

]
,

[
1

2

]
,

(
3z

2

)2)
+ 2z 2F1

([
5

3
,1

]
,

[
3

2

]
,

(
3z

2

)2)
.

3.2. Mean and critical exponent. Let us proceed with the computation of moments. For
this purpose, define

h(r)
n := n![zn] ∂r

∂xr
H(x, z)

∣∣∣∣
x=1

,

as the coefficient of (x−1)r zn

r!n! of H(x, z). Then the r th moment is obviously computed as

mr(n) = h
(r)
n

hn
. The key idea why to use these quantities comes from the differential equations

for histories (6). The derivative of Hi(x, z) with respect to x has a factor (x − 1), which

https://oeis.org
https://oeis.org/A293653
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makes it possible to compute h
(r)
n iteratively by taking the r-th derivative with respect to x

and substituting x = 1. Let us define the auxiliary functions

H
(r)
i (z) := ∂r

∂xr
Hi(x, z)

∣∣∣∣
x=1

.

We get for i = 0, . . . , p − 1 (with bi as defined in (9)):

∂zH
(r)
i+1(z) =

(
1 + �

p

)
z∂zH

(r)
i (z) + (bi + r)H

(r)
i (z) + (r − 1)rH

(r−1)
i (z).

From this equation we extract the nth coefficient with respect to z and multiply by n! to get

h
(r)
n+1 =

((
1 + �

p

)
n + bn + r

)
h(r)

n + (r − 1)rh(r−1)
n .(13)

We reveal a perturbed version of (8). In particular, this is a nonhomogeneous linear recurrence
relation. Yet, the inhomogeneity only emerges for r ≥ 2. Thus, the mean is derived directly
with the same approach as hn previously. Note that for r = 1, equation (13) is exactly of the
same type as (8) after replacing s0 by s0 + r and h0 by b0. We get without any further work

h
(1)
pm+i = C1(p + �)pm+i

i−1∏
j=0

�

(
m + 1 + s0 + 1 + j

p + �

)p−1∏
j=i

�

(
m + s0 + 1 + j

p + �

)
,

C1 = b0

p−1∏
j=0

�

(
s0 + 1 + j

p + �

)−1
.

Combining the last two results, we get a (surprisingly) simple expression

EBpm+i = h
(1)
pm+i

hpm+i

= C1

C0

∏i−1
j=0 �(m + 1 + s0+1+j

p+�
)
∏p−1

j=i �(m + s0+1+j
p+�

)∏i−1
j=0 �(m + 1 + s0+j

p+�
)
∏p−1

j=i �(m + s0+j
p+�

)

= b0
�(

s0
p+�

)

�(
s0+p
p+�

)

(
m + s0 + i

p + �

) �(m + s0+p
p+�

)

�(m + 1 + s0
p+�

)
.

In particular, it is straightforward to compute an asymptotic expansion for the mean by Stir-
ling’s approximation. For i = 0,1, . . . , p − 1, we get

EBpm+i = b0
�(

s0
p+�

)

�(
s0+p
p+�

)
m

p
p+�

(
1 + O

(
1

m

))
.

This leads to the following proposition.

PROPOSITION 3.3 (Formula for the mean of Young–Pólya urns). The expected number
of black balls in a Young–Pólya urn of period p and parameter � with initially s0 = b0 + w0
balls, where b0 are black and w0 are white, satisfies for large n

EBn = b0
�(

s0
p+�

)

�(
s0+p
p+�

)

(
n

p

) p
p+�

(
1 + O

(
1

n

))
.

REMARK 3.4 (Critical exponent). As will be more transparent from discussions in the
next sections, the exponent δ := p

p+�
is here the crucial quantity to keep in mind. It is some-

times called “critical exponent” as such exponents can often be captured by ideas from sta-
tistical mechanics, as a signature of a phase transition phenomenon.
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EXAMPLE 3.5. For the Young–Pólya urn with p = 2, � = 1, and b0 = w0 = 1, the ex-
pected number of black balls at time n is thus

EBn = �(2/3)

�(4/3)

(
n

2

) 2
3
(

1 + O

(
1

n

))
≈ 0.9552n2/3

(
1 + O

(
1

n

))
.

This is coherent with the renormalization used for the limit law of Bn in Example 1.7.

3.3. Higher moments. When computing higher moments, the first idea is to transform the
nonhomogeneous recurrence relation (13) into a homogeneous one. To this aim, one rewrites
this equation into

yn+1 − (an + bn + r)yn = (r − 1)rh(r−1)
n and y0 = ∂r

xH(x,0)
∣∣
x=1.(14)

Note that we have yn = h
(r)
n , the r-th moment we want to determine. From now on, we speak

of the homogeneous equation to refer to the left-hand side of equation (14) set equal to 0,
whereas equation (14) itself is called the nonhomogeneous equation. In order to get h

(r)
n , we

proceed by induction on r : we assume that the (r − 1)-st moment is known (thus, we know
the right-hand side of (14)), and we want to express the r th moment h

(r)
n (i.e., we want to

solve the recurrence (14) for yn) in terms of this previously computed quantity.
As for any linear recurrence, its solution is given by a combination of a solution h

(r)
n,hom of

the homogeneous equation and of a particular solution h
(r)
n,par such that

h(r)
n = Crh

(r)
n,hom − h(r)

n,par,(15)

with Cr ∈ R such that the initial condition in (14) is satisfied. We will show that asymptot-
ically only the solution h

(r)
n,hom of the homogeneous equation is dominant. First of all, this

solution is easy to compute, as it is again of the same type as (8). We have

h
(r)
pm+i,hom = (p + �)pm+i

i−1∏
j=0

�

(
m + 1 + s0 + r + j

p + �

)p−1∏
j=i

�

(
m + s0 + r + j

p + �

)
.(16)

The next idea is to find a particular solution of the nonhomogeneous recurrence relation (14).
We will show that the equation exhibits a phenomenon similar to resonance and we will show
that the particular solution is

h(r)
n,par =

r−1∑
j=1

djh
(j)
n for constants dj ∈R.(17)

We will compute the coefficients dj by induction from r − 1 to 1. First, we observe that

the inhomogeneous part in the r th equation is a multiple of the solution h
(r−1)
n of the (r − 1)-

st equation. This motivates us to set yn = h
(r−1)
n in the homogeneous equation of the r-th

equation. Using (14) then leads to

h
(r−1)
n+1 − (an + bn + r)h(r−1)

n = (r − 1)(r − 2)h(r−2)
n − h(r−1)

n .

Thus, by linearity we choose h
(r)
n,par = zn − (r − 1)rh

(r−1)
n , that is, dr−1 = (r − 1)r , as a first

candidate for a particular solution where zn is (still) an undetermined sequence. Inserting this
into (14), we get a recurrence relation for zn, where we reduced the order of the inhomogene-
ity by one in r (in comparison with (14)):

zn+1 − (an + bn + r)zn = r(r − 1)2(r − 2)h(r−2)
n .
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Continuing this approach, we compute all dj ’s inductively. As the order in r decreases, this
approach terminates at r = 1. One thus identifies the constants dj of formula (17):

dj =
r∏

i=j+1

(i − 1)i

r − i + 1
=

(
r − 1
j − 1

)
r!
j ! = L(r, j),

with L(r, j) being the Lah numbers, which express the rising factorials in terms of falling
factorials6 (see [57] and [77], page 43):

r∑
j=1

L(r, j)xj = xr .(18)

Then, by (15) we get the general solution of the r th moment

h(r)
n = Crh

(r)
n,hom −

r−1∑
j=1

L(r, j)h(j)
n .(19)

For n = 0, equation (19) becomes

h
(r)
0 = ∂r

xH(x,0)
∣∣
x=1 = b0

r = Crh
(r)
0,hom −

r−1∑
j=1

L(r, j)b0
j ,

which gives together with (18) that Crh
(r)
0,hom = b0

r .
Finally, we are now able to compute the asymptotic expansion of the r th (factorial) mo-

ment. Using Stirling’s approximation, the quotient of the quantities given by (19) and (16)

gives that h
(j)
n

h
(r)
n,hom

= O(n
− (r−j)p

p+� ), for j = 1, . . . , r − 1. Hence, for the r th moment given by

(19), we proved that the contribution of h
(r)
n,hom is the asymptotically dominant one. This leads

to the main result on the asymptotics of the moments.

PROPOSITION 3.6 (Moments of Young–Pólya urns). The r th (factorial) moment of Bn

(the number of black balls in the Young–Pólya urn of period p and parameter � with initially
s0 = b0 + w0 balls, where b0 are black and w0 are white) for large n satisfies6

mr(n) = γrn
δr

(
1 + O

(
1

n

))
with γr = b0

r

pδr

p−1∏
j=0

�(
s0+j
p+�

)

�(
s0+r+j

p+�
)

and δ = p

p + �
.

EXAMPLE 3.7. For the Young–Pólya urn with p = 2, � = 1, and b0 = w0 = 1, the vari-
ance of the number of black balls at time n is thus

VBn = 27

8

�(2
3)2(3�(4

3) − �(2
3)2)

21/3π2 n4/3
(

1 + O

(
1

n

))
≈ 0.42068n4/3

(
1 + O

(
1

n

))
.

NOTA BENE. The reasoning following equation (19) shows that these asymptotics are
the same for the moments and the factorial moments, so in the sequel we refer to this result
indifferently from both points of view.

6The falling factorial xr is defined by xr := x(x − 1) · · · (x − r + 1) = �(x + 1)/�(x − r + 1), while the rising

factorial xr is defined by xr := �(x + r)/�(x) = x(x + 1) · · · (x + r − 1). These two notations were introduced
as an alternative to the Pochhammer symbols by Graham, Knuth and Patashnik in [39].
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3.4. Limit distribution for periodic Pólya urns. We use the method of moments to prove
Theorem 1.6 (the generalized gamma product distribution for Young–Pólya urns). The nat-
ural factors occurring in the constant γr of Proposition 3.6, may they be 1/�(

s+r+j
p+�

) or

(b0
r )1/p/�(

s+r+j
p+�

), do not satisfy the determinant/finite difference positivity tests for the
Stieltjes/Hamburger/Hausdorff moment problems, therefore, no continuous distribution has
such moments (see [92]). However, the full product does correspond to moments of a dis-
tribution which is easier to identify if we start by transforming the constant γr by the Gauss
multiplication formula of the gamma function; this gives

γr = (p + �)r

pδr

�(b0 + r)�(s0)

�(b0)�(s0 + r)

�−1∏
j=0

�(
s0+r+p+j

p+�
)

�(
s0+p+j

p+�
)

.

Combining this result with the rth (factorial) moment mr(n) from Proposition 3.6, we see

that the moments E(B∗
n

r) of the rescaled random variable B∗
n := pδ

p+�
Bn

nδ converge for n → ∞
to the limit

mr := �(b0 + r)�(s0)

�(b0)�(s0 + r)

�−1∏
j=0

�(
s0+r+p+j

p+�
)

�(
s0+p+j

p+�
)

,(20)

a simple formula involving the parameters (p, �, b0,w0) of the model (with s0 := b0 + w0).
Next, note that the following sum diverges (recall that 0 ≤ (1 − δ) < 1):

∑
r>0

m−1/(2r)
r = ∑

r>0

(
(p + �)e

r

)(1−δ)/2(
1 + o(1)

) = +∞.

Therefore, a result by Carleman (see [21], pages 189–220) implies that there exists a unique
distribution (let us call it D) with such moments mr . Then, by the limit theorem of Fréchet
and Shohat [34], page 536,7 B∗

n converges to D.
Finally, we use the shape of the moments in (20) in order to express this distribution D

in terms of the main functions defined in Section 1. First, note that if for some independent
random variables X, Y , Z, one has E(Xr) = E(Y r)E(Zr) (and if Y and Z are determined by

their moments), then X
L= YZ. Therefore, we treat the factors independently. The first factor

corresponds to a beta distribution Beta(b0,w0). For the other factors, it is easy to check that
if X ∼ GenGamma(α,β) is a generalized gamma distributed random variable (as defined
in Definition 1.4), then it is a distribution determined by its moments, which are given by

E(Xr) = �(α+r
β

)

�( α
β
)

. Therefore, the expression in (20) characterizes the GenGammaProd distri-

bution. This completes the proof of Theorem 1.6.
For reasons which would be clear in Section 4, it was natural to focus first on Young–Pólya

urns. However, the method presented is this section allows us to handle more general models.
It would have been quite indigestible to present directly the general proof with heavy notation
and many variables but now that the reader got the key steps of the method, she should be
delighted to recycle all of this for free in the following much more general result.

THEOREM 3.8 (The generalized gamma product distribution for triangular balanced urns).
Let p ≥ 1 and �1, . . . , �p ≥ 0 be nonnegative integers. Consider a periodic Pólya urn of pe-

riod p with replacement matrices M1, . . . ,Mp given by Mj := ( 1 �j

0 1+�j

)
. Then the renormal-

ized distribution of black balls is asymptotically for n → ∞ given by the following product

7As a funny coincidence, Fréchet and Shohat mention in [34] that the generalized gamma distribution with
parameter p ≥ 1/2 is uniquely characterized by its moments.
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of distributions:

pδ

p + �

Bn

nδ

L−→ Beta(b0,w0)

p+�−1∏
i=1

i �=�1+···+�j+j with 1≤j≤p−1

GenGamma(b0 + w0 + i, p + �)

with � = �1 + · · · + �p , δ = p/(p + �), and Beta(b0,w0) = 1 when w0 = 0.

In the sequel, we denote this distribution by GenGammaProd([�1, . . . , �p];b0,w0).

PROOF. The proof relies on the same steps as in Sections 2 and 3 with some minor
technical changes, so we only point out the main differences.

The behaviour of the urn is now modeled by the p differential operators Dj = y�j (x2∂x +
y2∂y). As the matrices are balanced, there is (like in equation (4)) a direct link between the
number of black balls and the total number of balls. This allows to eliminate the y variable
and leads to the following system of partial differential equations (which generalizes equation
(6)):

∂zHi+1(x, z) = x(x − 1)∂xHi(x, z) +
(

1 + �

p

)
z∂zHi(x, z) +

(
s0 −

i∑
j=1

�j − i�

p

)
Hi(x, z),

for i = 0, . . . , p − 1 with Hp(x, z) := H0(x, z). Here, one again applies the method of mo-
ments used in this Section 3. In particular, equation (8) remains the same. Only the coeffi-
cients bn in equation (9) change to s0 − ∑i

j=1 �j − �
p
(i mod p).

Hence, we get the following asymptotic result for the moments generalizing Proposi-
tion 3.6:

mr(n) = γrn
δr

(
1 + O

(
1

n

))
with γr = b0

r

pδr

p−1∏
j=0

�(
s0

p+�
+ j+∑j

k=1 �k

p+�
)

�(
s0+r
p+�

+ j+∑j
k=1 �k

p+�
)

.(21)

After rewriting γr via the Gauss multiplication formula, we recognize the product of distri-
butions (characterized by their moments) which we wanted to prove. �

Let us illustrate this theorem with what we call the staircase periodic Pólya urn (this model
will reappear later in the article).

EXAMPLE 3.9 (Staircase periodic Pólya urn). For the Pólya urn of period 3 with replace-
ment matrices

M1 :=
(

1 0
0 1

)
, M2 :=

(
1 1
0 2

)
and M3 :=

(
1 2
0 3

)
,

the number Bn of black balls has the limit law GenGammaProd([0,1,2];b0,w0):
√

3

6

Bn√
n

L−→ Beta(b0,w0)
∏

i=2,4,5

GenGamma(b0 + w0 + i,6).

In the next section, we will see what are the implications of our results for urns on an
apparently unrelated topic: Young tableaux.
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4. Urns, trees and Young tableaux. As predicted by Anatoly Vershik in [90], the
twenty-first century should see a lot of challenges and advances on the links between prob-
ability theory and (algebraic) combinatorics. A key rôle is played here by Young tableaux8

because of their ubiquity in representation theory. Many results on their asymptotic shape
have been collected, but very few results are known on their asymptotic content when the
shape is fixed (see, e.g., the works by Pittel and Romik, Angel et al., Marchal [4, 63, 73, 81],
who have studied the distribution of the values of the cells in random rectangular or staircase
Young tableaux, while the case of Young tableaux with a more general shape seems to be
very intricate). It is therefore pleasant that our work on periodic Pólya urns allows us to get
advances on the case of a triangular shape, with any rational slope.

DEFINITION 4.1. For any fixed integers n, �,p ≥ 1, we define a triangular Young
tableau of parameters (�,p,n) as a classical Young tableau with N := p�n(n + 1)/2 cells,
with length n�, and height np such that the first � columns have np cells, the next � columns
have (n − 1)p cells, and so on (see Figure 3).

For such a tableau, we now study what is the typical value of its southeast corner (with
the French convention of drawing tableaux; see [61] but, however, take care that on page 2
therein, Macdonald advises readers preferring the French convention to “read this book up-
side down in a mirror!” Some French authors quickly propagated the joke that Macdonald
was welcome to apply his own advice while reading their articles!).

It could be expected (e.g., via the Greene–Nijenhuis–Wilf hook walk algorithm for gen-
erating Young tableaux; see [40]) that the entries near the hypotenuse should be N − o(N).
Can we expect a more precise description of these o(N) fluctuations? Our result on periodic
urns enables us to exhibit the right critical exponent, and the limit law in the corner.

THEOREM 4.2. Choose a uniform random triangular Young tableau of parameters
(�,p,n) and of size N = p�n(n + 1)/2 and put δ = p/(p + �). Let Xn be the entry of
the southeast corner. Then (N −Xn)/n1+δ converges in law to the same limiting distribution
as the number of black balls in the periodic Young–Pólya urn with initial conditions b0 = p,
w0 = � and with replacement matrices M1 = · · · = Mp−1 = ( 1 0

0 1

)
and Mp = ( 1 �

0 1+�

)
, that is,

we have the convergence in law, as n goes to infinity, towards GenGammaProd (the distribu-
tion defined by formula (1), page 1924):

2

p�

N − Xn

n1+δ

L−→ GenGammaProd(p, �,p, �).

REMARK 4.3. The case p = 1 corresponds to a classical (nonperiodic) urn; see Re-
mark 1.8. The case p = 2 and � = 1 corresponds to our running example of a Young–Pólya
urn; see Example 1.7.

REMARK 4.4. If we replace the parameters (�,p,n) by (K�,Kp,n) for some integer
K > 1, we are basically modelling the same triangle, yet the limit law is GenGammaProd(Kp,

K�,Kp,K�), which differs from GenGammaProd(p, �,p, �). It is noteworthy that one still
has some universality: the critical exponent δ remains the same and, besides, the limit laws
are closely related in the sense that they have similar tails. We address these questions in
Section 5.2.

8A Young tableau of size n is an array with columns of (weakly) decreasing height, in which each cell is
labelled, and where the labels run from 1 to n and are strictly increasing along rows from left to right and columns
from bottom to top; see Figure 3. We refer to [61] for a thorough discussion on these objects.
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FIG. 3. In this section, we see that there is a relation between Young tableaux with a given periodic shape, some
trees and the periodic Young–Pólya urns. The key observation is that the cells (in grey) in the first row of the
tableaux have the same hook lengths as the nodes (in grey) in the leftmost branch of the tree. The southeast cell
v (in black) of this Young tableau has also the same hook length as the node vm (in black) in the tree, and is
following the same distribution we proved for urns (generalized gamma product distribution).
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PROOF. As this proof involves several technical lemmas (which we prove in the next
subsections), we first present its structure so that the reader gets a better understanding of
the key ideas. Our proof starts by establishing a link between Young tableaux and linear
extensions of trees. After that, we will be able to conclude via a second link between these
trees and periodic Pólya urns.

Let us begin with Figure 3 which describes the link between the main characters of this
proof: the Young tableau Y and the “big” tree T (which contains the “small” tree S). More
precisely, we define the rooted planar tree S as follows:

• The leftmost branch of S is a sequence of vertices which we call v1, v2, . . . .
• Set m := n�. The vertex vm (the one in black in Figure 3) has p − 1 children.
• For 2 ≤ k ≤ n − 1, the vertex vk� has p + 1 children.
• All other vertices vj (for j < m, j �= k�) have exactly one child.

Now, define T as the “big” tree obtained from the “small” tree S by adding a vertex v0
as the parent of v1 and adding a set S ′ of children to v0. The size of S ′ is chosen such that
|T | = 1 + |S| + |S ′| = 1 + N , where N is the number of cells of the Young tableau Y .
Moreover, the hook length of each cell (in grey) in the first row of Y is equal to the hook
length9 of the corresponding vertex (in grey also) in the leftmost branch of S .

Let us now introduce a linear extension ET of T , that is, a bijection from the set of vertices
of T to {1, . . . ,N + 1} such that ET (u) < ET (u′) whenever u is an ancestor of u′. A key
result, which we prove hereafter in Proposition 4.9, is the following: if ET is a uniformly
random linear extension of T , then EY(v) (the entry of the southeast corner v in a uniformly
random Young tableau Y) has the same law as ET (vm):

(22) 1 + EY(v)
L= ET (vm).

Note that in the statement of the theorem, EY(v) is denoted by Xn to initially help the
reader to follow the dependency on n.

Furthermore, recall that T was obtained from S by adding a root and some children to this
root. Therefore, one can obtain a linear extension of the “big” tree T from a linear extension
of the “small” tree S . In Section 4.4, we show that this allows us to construct a uniformly
random linear extension ET of T and a uniformly random linear extension ES of S such that

(23) |T | − ET (vm)
L= n

(|S| − ES(vm) + smaller order error terms
)
.

The last step, which we prove in Proposition 4.17, is that

(24) |S| − ES(vm)
L= distribution of periodic Pólya urn + deterministic quantity.

Indeed, more precisely |S| − ES(vm) has the same law as the number of black balls in a
periodic urn after (n − 1)p steps (an urn with period p, with parameter �, and with initial
conditions b0 = p and w0 = �). Thus, our results on periodic urns from Section 3 and the
conjunction of equations (22), (23) and (24) give the convergence in law for EY(v) which we
wanted to prove. �

The subsequent sections are dedicated to the proofs of the auxiliary propositions that are
crucial for the proof of Theorem 4.2. First, we establish a link between our problem on
Young tableaux and a related problem on trees. Second, we explain the connection between
the related problem on trees and the model of periodic urns.

9The hook length of a vertex in a tree is the size of the subtree rooted at this vertex.
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4.1. The link between Young tableaux and trees. We will need the following definitions.

DEFINITION 4.5 (The shape of a tableau10). We say that a tableau has shape λ
i1
1 · · ·λin

n

(with λ1 > · · · > λn) if it has (from left to right) first i1 columns of height λ1, etc., and ends
with in columns of height λn.

As an illustration, the tableau on the top of Figure 3 has shape 946434.

DEFINITION 4.6 (The shape of a tree). Consider a rooted planar tree T with at least two
vertices and having the shape of a “comb”: at each level only the leftmost node can have
children. It has shape (i0, j0; i1, j1; . . . ; in, jn) if

• when n = 0, then T is the tree with j0 leaves and i0 internal nodes, all of them unary except
for the last one which has j0 children;

• when n ≥ 1, then T is the tree with shape (i0, j0; i1, j1; . . . ; in−1, jn−1) to which we attach
a tree of shape (in, jn) as a new leftmost subtree to the parent of the leftmost leaf.

Figure 4 illustrates the recursive construction of a tree of shape (1,4;1,2;2,2). As another
example, the tree T in Figure 3 has shape (1, |S ′|;4,3;4,3;4,2), where |S ′| stands for the
number of leaves in S ′.

FIG. 4. The recursive construction of a tree of shape (1,4;1,2;2,2). First, a tree of shape (1,4), second, a tree
of shape (1,4;1,2), third, a tree of shape (1,4;1,2;2,2).

Let us end this small collection of definitions with a more classical one.

DEFINITION 4.7 (Linear extension of a poset and of a tree). A linear extension E of a
poset A of size N is a bijection between this poset and {1, . . . ,N} satisfying E(u) ≤ E(v)

whenever u ≤ v. Accordingly, a linear extension of a tree A with N vertices is a bijection E

between the vertices of A and {1, . . . ,N} satisfying E(u) ≤ E(v) whenever u is a child of v.
We denote by ext(A) the number of linear extensions of A.

REMARK 4.8. In combinatorics, a linear extension is also called an increasing labelling.
In the sequel, we will sometimes say “(increasing) labelling” instead of “linear extension”,
hoping that this less precise terminology will help the intuition of the reader.

We are now ready to state the following result.

10Some authors define the shape of a tableau as its row lengths from bottom to top. In this article, we use the list
of column lengths, as it directly gives the natural quantities to state our results in terms of trees and urns.
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PROPOSITION 4.9 (Link between the southeast corner of Young tableaux and linear exten-
sions of trees). Fix a tableau with shape λ

i1
1 · · ·λin

n and consider a random uniform Young
tableau Y with this given shape. Let EY(v) be the entry of the southeast corner of this Young
tableau. Let T be a tree with shape (1,N −m−λ1 +1; i1, λ1 −λ2; i2, λ2 −λ3; . . . ; in, λn−1),
where N = ∑

λkik is the size of the tableau Y and m = i1 + · · · + in is the number of its
columns. Let ET be a random uniform linear extension of T , and vm be the mth vertex in the
leftmost branch of this tree T . Then ET (vm) and 1 + EY(v) have the same law.

PROOF. The proof will be given on page 1948, as it requires two ingredients, which have
their own interest and which are presented in the two next sections (Section 4.2 on the density
method for Young tableaux, and Section 4.3 on the density method for trees). �

EXAMPLE 4.10. Let us apply the previous result to the tree of shape (1,4;1,2;2,2)

from Figure 4. There we have n = 2, m = 3. Then this tree corresponds to a Young tableau
of shape 5132 and size N = 11.

REMARK 4.11. In the simplest case when the tableau is a rectangle (i.e., it has shape
λ

i1
1 ), the associated tree has shape (1, (λ1 − 1)(i1 − 1); i1, λ1 − 1). In that case, the law of

ET (vm) is easy to compute and we get an alternative proof of the following formula, first
established in [63]:

P
(
EY(v) = k

) =
(k−1
i1−1

)(λ1i1−k
λ1−1

)
( λ1i1
λ1+i1−1

) .

The fact that Y and T are related is obvious from the construction of T , but it is not a priori
granted that it will lead to a simple, nice link between the distributions of v and vm (the two

black cells in Figure 3). So, ET (vm)
L= 1+EY(v) deserves a detailed proof: it will be the topic

of the next subsections. The proof has a nice feature: it uses a generic method, which we call
the density method and which was introduced in our articles [10, 64]. In fact, en passant, these
next subsections also illustrate the efficiency of the density method in order to enumerate
(and to perform uniform random generation) of combinatorial structures (like we did in the
two aforementioned articles for permutations with some given pattern, or rectangular Young
tableaux with “local decreases”).

The advantage of Proposition 4.9 is that linear extensions of a tree are easier to study
than Young tableaux and can, in fact, be related to our periodic urn models, as shown in
Section 4.3.

4.2. The density method for Young tableaux. Trees and Young tableaux can be viewed
as posets [88]. We will use this point of view to prove Proposition 4.9. We recall here some
general facts that will be useful in the sequel.

DEFINITION 4.12 (Order polytope of a poset). Let A be a general poset with cardinality
N and order relation ≤. We can associate with A a polytope P ⊂ [0,1]A defined by the
condition (Ye)e∈A ∈ P if and only if Ye ≤ Ye′ whenever e ≤ e′. Then P is called the order
polytope of the poset A.

EXAMPLE 4.13. Let A be the set of subsets of {a, b} ordered by inclusion. Then its
order polytope is given by P = {(Y∅, Y{a}, Y{b}, Y{a,b}) ∈ [0,1]4 : Y∅ ≤ Y{a}, Y∅ ≤ Y{b}, Y∅ ≤
Y{a,b}, Y{a} ≤ Y{a,b}, Y{b} ≤ Y{a,b}}.
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Let Y = (Ye)e∈A ∈ [0,1]A be a tuple of random variables11 chosen according to the uni-
form measure on the polytope P . Then we consider the function X having integer values,
defined by Xe := k if Ye is the kth smallest real in the set of reals {Ye : e ∈ A}. It is some-
times called order statistic. Note that X is a random variable, defined almost surely as we
have a zero probability that some marginals of Y have the same value, and X is uniformly
distributed on the set of all linear extensions of A. The last claim holds because the wedges
of each linear extension have equal size 1/N ! for N = |A| being the size of the poset A.

EXAMPLE 4.14. Continuing Example 4.13, there are two linear extensions of A:
(X∅,X{a},X{b},X{a,b}) = (1,2,3,4) and (X∅,X{a},X{b},X{a,b}) = (1,3,2,4). They cor-
respond to the following two wedges in P : Y∅ ≤ Y{a} ≤ Y{b} ≤ Y{a,b} and Y∅ ≤ Y{b} ≤ Y{a} ≤
Y{a,b}. The volume of each of them is 1/24, while the volume of P is 1/12.

Conversely, if X is a random uniform increasing labelling of A, one gets a random variable
Y on the polytope P via Ye := TXe , where T is a random uniform N -tuple from the set
{(T1, . . . , TN) ∈ [0,1]N : T1 < · · · < TN }. Therefore, Y is uniformly distributed on P . What
is more, Tk is the kth largest uniform random variable among N independent uniform random
variables. Thus, it has density k

(N
k

)
xk−1(1 − x)N−k . As a consequence, for any e ∈ A, Ye has

density

(25) ge(x) =
N∑

k=1

P(Xe = k)k

(
N

k

)
xk−1(1 − x)N−k.

This formula can be read as two different writings of the same polynomial in two different
bases; thus, by elementary linear algebra, it implies that P(Xe = k) can be deduced from the
polynomial ge. In particular, we have the following property.

LEMMA 4.15. Let A, A′ be two posets with the same cardinality, and let P , P ′ be their
respective order polytopes. Let X (resp., X′) be a random linear extension of A (resp., A′).
Let Y (resp., Y ′) be a uniform random variable on P (resp., P ′). Then, for any e ∈ A and
e′ ∈ A′, such that Ye and Y ′

e′ have the same density, Xe and X′
e′ have the same law.

Let Y be a tableau with shape λ
i1
1 . . . λ

in
n and total size N = ∑

k λkik . We view Y as a poset:
Y is a set of N cells equipped with a partial order “≤”, where c ≤ c′ if one can go from c

to c′ with only north and east steps. We denote by P the order polytope of the tableau Y .
We will introduce an algorithm generating a random element of P according to the uniform

measure. In order to do so, we fill the diagonals one by one. Let us introduce some notation.
The tableau Y can be sliced into M = λ1 + i1 +· · ·+ in −1 diagonals D1, . . . ,DM as follows:
D1 is the northwest corner and recursively, Dk+1 is the set of cells which are adjacent to one
of the cells of D1 ∪ · · · ∪ Dk and which are not in D1 ∪ · · · ∪ Dk . In particular, DM is the
southeast corner. For example, Figure 3 has M = 20 such diagonals.

Note that between two consecutive diagonals Dk and Dk+1 (let us denote their cell entries
by y1 < · · · < yj and x1 < · · · < xj ′ ), there exist four different interlocking relations illus-
trated by Figure 5. The shape of the tableau implies that for each k we are in one of these
four possibilities, each of them thus corresponds to a polytope Pk defined as:

case 1: Pk := {y1 < x1 < · · · < yj < xj },(26)

case 2: Pk := {x1 < y1 < · · · < xj < yj },(27)

case 3: Pk := {y1 < x1 < · · · < xj−1 < yj },(28)

case 4: Pk := {x1 < y1 < · · · < xj < yj < xj+1}.(29)

11When the poset is a Young tableau, this corresponds to what is called a Poissonized Young tableau in [37].
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FIG. 5. Young tableaux of any shape can be generated by a sequence of “diagonals,” which interlock according
to the four possibilities above.

Our algorithm will make use of conditional densities along the M diagonals of Y . For this
purpose, for every k ∈ {1, . . . ,M} we define a polynomial gk in |Dk| variables as follows.
First, one sets g1 := 1; the next polynomials are defined by induction. Suppose that 1 ≤ k ≤
M − 1 and Dk = (y1 < · · · < yj). The four above-mentioned possibilities for Dk+1 lead to
the definition of the following polynomials:

1. In the first case (interlocking given by (26)), this gives

gk+1(x1, . . . , xj ) :=
∫ x1

0
dy1

∫ x2

x1

dy2 · · ·
∫ xj

xj−1

dyjgk(y1, . . . , yj ).

2. In the second case (interlocking given by (27)), this gives

gk+1(x1, . . . , xj ) :=
∫ x2

x1

dy1

∫ x3

x2

dy2 · · ·
∫ xj

xj−1

dyj−1

∫ 1

xj

dyjgk(y1, . . . , yj ).

3. In the third case (interlocking given by (28)), this gives

gk+1(x1, . . . , xj−1) :=
∫ x1

0
dy1

∫ x2

x1

dy2 · · ·
∫ 1

xj−1

dyjgk(y1, . . . , yj ).

4. In the fourth case (interlocking given by (29)), this gives

gk+1(x1, . . . , xj+1) :=
∫ x2

x1

dy1

∫ x3

x2

dy2 · · ·
∫ xj+1

xj

dyjgk(y1, . . . , yj ).

Now, we use these polynomials to formulate a random generation algorithm which will
also be able to enumerate the corresponding Young tableaux. Note that faster random gener-
ation algorithms are known (like the hook walk from [40]), but it is striking that the above
polynomials gk will be the key to relate the distributions of different combinatorial structures,
allowing us to capture second order fluctuations in Young tableaux, trees and urns. It is also
noteworthy that our density method is in some cases the most efficient way to enumerate
and generate combinatorial objects (see [10] for applications on variants of Young tableaux,
where the hook length formula is no more available, and see [23] for algorithmic subtleties
related to sampling conditional multivariate densities).

Recall that P is the order polytope of the tableau Y and that we want to generate a random
element of P according to the uniform measure. The algorithm is the following. We generate
by descending induction on k, for each diagonal Dk , a |Dk|-tuple of reals in [0,1] which will
be the entries of the cells of Dk .

First, remark that the functions defined by (30) and (31) in Algorithm 1 are indeed prob-
ability densities. That is, they are measurable, positive functions and their integral is equal
to 1. To prove this, remark first that these functions are polynomials and, therefore, measur-
able. Next, by definition, as integrals of positive functions, they are positive. Finally, the fact
that the integral is equal to 1 follows from their definition.
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ALGORITHM 1 (Output: a random uniform Young tableau Y , via the density method).

Step 1. Recall that DM is the southeast corner. Generate the corresponding cell entry
at random with probability density

(30)
gM(x)∫ 1

0 gM(y)dy
.

Step 2. By descending induction on k from M − 1 down to 1, generate the diagonal Dk

(seen as a tuple of |Dk| reals in [0,1]) according to the density

(31)
gk(x1, . . . , x|Dk |)

gk+1(Dk+1)
1Pk

,

where gk and 1Pk
are chosen according to the cases given by (26), (27), (28), (29).

We then claim that Algorithm 1 yields a random element (D1, . . . ,DM) of P with the uni-
form measure. Indeed, by construction, its density is the product of the conditional densities
of the diagonals D1, . . . ,DM . The crucial observation now is that the product of the condi-
tional densities (31) is a telescopic product, so the algorithm generates each Young tableau
Y with the same “probability” (or more rigorously, as we have continuous variables, with the
same density):

(32)
gM(DM)∫ 1

0 gM(y)dy

M−1∏
k=1

gk(Dk)

gk+1(Dk+1)
1Pk

= 1{Y∈P}∫ 1
0 gM(y)dy

.

This indeed means that our algorithm yields a uniform random variable on the order poly-
tope P . Alternatively, one can say that the Young tableau Y is a random variable on [0,1]N
with density given by (32), therefore,∫

[0,1]N
1{Z∈P} dZ =

∫ 1

0
gM(y)dy.

Now, suppose that we pick uniformly at random an element Z′ of [0,1]N . Then one has

P
(
Z′ ∈P

) =
∫
[0,1]N

1{Z∈P} dZ = ext(Y)

N ! ,

where ext(Y) is the number of increasing labellings (linear extensions) of the tableau Y .
Thus,

ext(Y) = N !
∫ 1

0
gM(y)dy.

In the next section, we turn our attention to the density method for trees.

4.3. The density method for trees. Let the tree T , its subtree S , and the vertices
v0, . . . , vm be defined as on page 1939 (see Figure 3). As in Section 4.2, it is possible to
construct a random linear extension of S by using a uniform random variable Y on the order
polytope of S . The vertex vm has then a random value Yvm between 0 and 1, and we want to
compute its density. To this aim, we associate to each internal node vk a polynomial fk (in
σk variables, where σk is the number of siblings of vk). These polynomials fk are defined by
induction starting with f1 := 1, while f2, . . . , fm−1 are defined by

fk(x0, . . . , xσk
) :=

∫ inf{x0,...,xσk
}

0
dy0

∫ 1

0
dy1 · · ·

∫ 1

0
dyσk−1fk−1(y0, y1, . . . , yσk−1).
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The last polynomial, fm, additionally depends on the number j of children of vm:

fm(x0, . . . , xσm)

:= (1 − x0)
j
∫ inf{x0,...,xσm }

0
dy0

∫ 1

0
dy1 · · ·

∫ 1

0
dyσm−1fm−1(y0, y1, . . . , yσm−1).

(33)

We also define hvm :

hvm(x) :=
∫ 1

0
dx1 · · ·

∫ 1

0
dxσmfm(x, x1, . . . , xσm).

We claim that hvm(x) is (up to a multiplicative constant) the density of Yvm . This is shown as
in Section 4.2 using Algorithm 2, which generates uniformly at random a labelling of S .

ALGORITHM 2 (Output: a random uniform increasing labelling Y of the tree S).

Step 1. Generate Yvm according to the density

hvm(x)∫ 1
0 hvm(x) dx

.

Step 2. If vm has j children s1, . . . , sj , then generate (Ys1, . . . , Ysj ) according to the
density ∏j

i=1 1{yi>Yvm }
(1 − Yvm)j

.

Step 3. If vm has j siblings s1, . . . , sj , then generate (Ys1, . . . , Ysj ) according to the
density

fm(Yvm, y1, . . . , yj )∫ 1
0 dy1 · · · ∫ 1

0 dyjfm(Yvm, y1, . . . , yj )
.

Step 4. By descending induction for k from m − 1 down to 1, if vk has j siblings
s1, . . . , sj , then generate the tuple Yk = (Yvk

, Ys1, . . . , Ysj ) according to the density

fk(y0, . . . , yj )

fk+1(Yk+1)
1{y0<min Yk+1}.

Indeed, the random tuple Y generated by this algorithm is by construction an element of
the order polytope. What is more, we have the uniform distribution, as the probabilities of
all Y ’s are equal to a telescopic product similar to formula (32). Therefore, hm(x) is (up to a
multiplicative constant) the density of Yvm and the number ext(S) of linear extensions of S
is given by

ext(S) = |S|!
∫ 1

0
hvm(x) dx.

It remains to connect the densities of v in Y and vm in S ; we do this in the following
lemma.
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LEMMA 4.16. The polynomial gM(x) (which gives the density of v, the southeast corner
of the Young tableau Y) and the polynomial hvm(x) (which gives the density of vm in the
tree S) are equal up to a multiplicative constant:

hvm(x) = cgM(x) with c = |Y|!
|S|!

ext(S)

ext(Y)
.

PROOF. The main idea of the proof consists in adding a filament to the tree and to the
tableau, and inspecting the consequences via the density method.

Part 1 (adding a filament to the tableau). Let YL be the tableau obtained by adding to
Y L cells horizontally to the right of its southeast corner v (and denote these new cells by
e1, . . . , eL). We can generate a random element of the order polytope of YL as follows: remark
that Y is a subtableau of YL and that the first M diagonals D1, . . . ,DM of YL are the same as
the first M diagonals of Y (recall that the diagonals are lines with positive slope +1, starting
from each cell of the first column and row). In particular, DM is the southeast corner cell v.
Then we can extend Algorithm 1 in the following way:

ALGORITHM 3 (Output: a random uniform increasing labelling X of the tableau with L

added cells).

Step 1. Generate XM,L the entry of the cell v according to the density

gM,L(x)∫ 1
0 gM,L(y) dy

where gM,L(x) := gM(x)(1 − x)L

L! .

Step 2. Generate the entries of the diagonals DM−1, . . . ,D1 as in Algorithm 1.
Step 3. Generate the entry X1 of e1 with density

L
(1 − x)L−1

(1 − XM,L)L
1{x>XM,L}.

Step 4. For i from 1 to L − 1, generate the entry Xi+1 of ei+1 with density

(L − i)
(1 − x)L−i−1

(1 − Xi)L−i
1{x>Xi}.

Using the same arguments as for Algorithm 1, we can show that Algorithm 3 yields a
uniform random variable on the order polytope of YL and that the number of increasing
labellings of YL is

ext(YL) = (N + L)!
∫ 1

0
gM,L(y) dy = (N + L)!

∫ 1

0

gM(y)(1 − y)L

L! dy.

On the other hand, using the hook length formula, we see that the hook lengths of YL are
the same as those of Y , except for the first row. A straightforward computation shows that

ext(Y)

N ! = ext(YL)

(N + L)! × GL,

where, as Y has shape λ
i1
1 · · ·λin

n , the constant GL is given by

(34) GL = L!
n∏

k=1

(i1 + · · · + ik + L + λk − 1)ik

(i1 + · · · + ik + λk − 1)ik
,
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where we reuse the falling factorial notation ab = a(a − 1) · · · (a − b + 1). This leads to

(35)
∫ 1

0
gM(y)(1 − y)L dy = L!

GL

ext(Y)

N ! .

Part 2 (adding a filament to the tree). Suppose that we extend the tree S by adding a fila-
ment of length L. Let SL be the tree obtained from S by attaching to vm a subtree consisting
of a line with L vertices. Put

fL(x) := (1 − x)Lhvm(x)

L! .

With the same arguments as for the function hvm defined in (33), we see that fL/
∫ 1

0 fL(x) dx

is the density of YL(vm) where YL is a uniform random variable on the order polytope of SL.
Following the same reasoning, we can show that the number of linear extensions of SL is

ext(SL) = (|S| + L
)!∫ 1

0
fL(y) dy.

On the other hand, recall that a version of the hook length formula holds for trees (see, e.g.,
[41, 55, 82]): the number of linear extensions of a tree of size N is given by

N !∏
v∈S hook(v)

,

where here hook(v) is the number of descendants of v (including v itself).
Applying this formula to the tree S yields

ext(S)

|S|! = ext(SL)

(|S| + L)! × GL,

with the same GL as in (34). Indeed, the most crucial point is that the hook lengths of the
Young tableau on the first row are the same as the hook lengths of the tree along the leftmost
branch. This key construction allows us to connect these two structures. Hence, one has

(36)
∫ 1

0
hvm(y)(1 − y)L dy = L!

GL

ext(S)

|S|! .

Part 3 (linking tableaux and trees). Comparing (35) and (36), we get for any integer L ≥ 1,∫ 1

0
hvm(y)(1 − y)L dy = c

∫ 1

0
gM(y)(1 − y)L dy,

where c is the constant given by

c = |Y|!
|S|!

ext(S)

ext(Y)
.

Since hvm(x) and gM(x) are polynomials, this implies that hvm = cgM . �

Before establishing the final link between Young tableaux and urns, we start by collecting
what we got via the density method: this gives the proof of Proposition 4.9, which we now
restate.

PROPOSITION 4.9 (Link between the corner of a Young tableau and linear extensions of
trees). Fix a tableau with shape λ

i1
1 · · ·λin

n and consider a random uniform Young tableau Y
with this given shape. Let EY(v) be the entry of the southeast corner of this Young tableau.
Let T be a tree with shape (1,N −m−λ1 +1; i1, λ1 −λ2; i2, λ2 −λ3; . . . ; in, λn −1), where
N = ∑

λkik is the size of the tableau Y and m = i1 + · · · + in is the number of its columns.
Let ET be a random uniform linear extension of T , and vm be the mth vertex in the leftmost
branch of this tree T . Then ET (vm) and 1 + EY(v) have the same law.
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PROOF. The reader is invited to have a new look on Figure 3 (page 1938), which illus-
trates for this proof the idea of the trees T , S and the set of leaves S ′. We first introduce a
forest T ∗ := S ∪ S ′ obtained by adding N − m − λ1 + 1 vertices without any order relation
to the tree S . T ∗ has an order relation inherited from the order relation ≤ on S : two nodes x,
y of T ∗ are comparable if and only if they belong to S and in that case, the order relation on
T ∗ is the same as the one on S .

Let P ′ be the order polytope of S . Then it is clear that the order polytope of T ∗ is

P = P ′ × [0,1]N−m−λ1+1.

In particular, if Y ′ is a uniform random variable on P ′ and if Y is a uniform random variable
on P , then Y ′

v and Yv have the same density. This density is proportional to the function hvm

computed in Section 4.3. Next, recall the notation gM and DM from Section 4.2. Lemma 4.16
gives that hvm = cgM . Thus, the density of Yvm is the same as the density of DM . Moreover,
T ∗ and Y have the same cardinality. Therefore, Lemma 4.15 entails that if ET ∗ is a random
uniform linear extension of T ∗ and if EY(v) is the entry of the southeast corner in a random
increasing labelling of Y , then ET ∗(vm) and EY(v) have the same distribution.

Now, it is easy to deduce from ET ∗ a random uniform linear extension ET of T : set
ET (u) = 1 if u is the root of T , and set ET (u) = 1 + ET ∗(u) for the other nodes (since any
such node u can be identified as a node of T ). Applying this to the vertex vm completes the
proof of Proposition 4.9. �

4.4. The link between trees and urns. In order to end the proof of Theorem 4.2, we need
two more propositions.

PROPOSITION 4.17 (Link between trees and urns). Consider a tree S with shape
(i1, j1; . . . ; in, jn). Let v be the parent of the leftmost leaf if jn ≥ 1, or the leftmost leaf if
jn = 0. Let ES be a random uniform linear extension of S .

Let X = |S|−ES(v). Then X has the same law as the number of black balls in the follow-
ing urn process:

• Initialize the urn with b0 := jn + 1 black balls and w0 := in white balls.
• For k from n − 1 to 1, perform the following steps:

1. Perform jk − 1 times the classical Pólya urn with replacement matrix
( 1 0

0 1

)
.

2. Make one transition with the replacement matrix
( 1 ik

0 1+ik

)
.

REMARK 4.18. Note that the urn scheme described in the proposition is precisely the
model of periodic Pólya urns covered by Theorem 3.8. For Young–Pólya urns, one has ik = �

and jk = p for k < n, and in = � and jn = p − 1, compare Figure 3.

PROOF OF PROPOSITION 4.17. First, consider the transition probabilities in the classical
Pólya urn. At step i > 0, the composition (Bi,Wi) is obtained from (Bi−1,Wi−1) by adding
a black ball with probability Bi−1

Bi−1+Wi−1
and a white ball with probability Wi−1

Bi−1+Wi−1
. We will

now show that the same transition probabilities are imposed by the linear extension of the
tree.

We start with a definition. If R ⊂ S we define ER : R → {1, . . . , |R|} as the only bijection
preserving the order relation induced by ES . That is, ER(u) = k if and only if ES(u) is the
kth smallest value in the set {ES(r) : r ∈ R}. It is easy to check that ER is a uniform linear
extension of R seen as a poset equipped with the order relation inherited from S .

Let us prove our claim. On the one hand, for every vertex w which is one of the jn children
of v, we have ES(w) > ES(v). On the other hand, for every vertex u which is one of the in−1
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FIG. 6. Proposition 4.17 relates the labels in the tree S with a Pólya urn process. For periodic shapes, it gives a
periodic Pólya urn. The initial conditions are given by S0. The tree is traversed bottom to top, along vertices not
in the leftmost branch, starting at un,1. Each of these nodes corresponds to a classical Pólya urn step, whereas
each vertex in the leftmost branch corresponds to an additionally added white ball.

most recent ancestors of v, we have ES(u) < ES(v). Let S0 be the set consisting of v, all its
children and its in − 1 most recent ancestors; see Figure 6.

We will perform two nested inductions. The outer one is decreasing from k = n − 1 to 1,
and each inner one increasing from 1 to jk .

We start with k = n − 1. First, let un be the in-th most recent ancestor of v. The
node un has jn−1 children which are not ancestors of v. Call these un,1, . . . , un,jn−1 . Let
S1 := S0 ∪{un,1}, then ES1(un,1) is uniformly distributed on {1, . . . , |S1|}. As a consequence,
ES1(un,1) > ES1(v) with probability (jn +1)/(jn +1+ in). This probability can be expressed
as b0

b0+w0
, where b0 is the number of vertices u in S0 such that ES(u) ≥ ES(v) and w0 is the

number of vertices u in S0 such that ES(u) ≤ ES(v). Conditionally on the initial configura-
tion S0, this defines two random variables: let B1 be the number of vertices u in S1 satisfying
ES(u) ≥ ES(v) and W1 be the number of vertices u in S1 satisfying ES(u) ≤ ES(v).

Next, let S2 := S1 ∪ {un,2}, then ES2(un,2) is uniformly distributed on {1, . . . , |S2|}. Then,
conditionally on B1 and W1, one has ES2(un,2) ≥ ES2(v), with probability B1

B1+W1
. This pro-

cess is then continued by induction until Sjn−1 . After that in−1 white balls are added.
Continuing this process via a decreasing induction in k from n − 2 to 1 completes the

proof. �

Our final proposition requires first the following basic lemma.

LEMMA 4.19 (Order statistics comparisons). Let (Zi,1 ≤ i ≤ N − s − 1) be indepen-
dent, uniform random variables on [0,1] and let Z be a random variable on [0,1], indepen-
dent of each Zi , and distributed like Beta(a, s + 1 − a). Let I be the number of indices i ≥ 1
such that Zi < Z. Then one has

(37) E(I ) = (N − s − 1)a

s + 1

and

(38) E
(
I 2) = a(N − s − 1)((a + 1)N − (s + 2)a)

(s + 1)(s + 2)
.
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PROOF. The density of the beta distribution Z was already encountered in Equation (25);
Z is thus the ath order statistic of the uniform distribution. It is easily seen that for all 1 ≤
i < j ≤ N − s − 1,

P(Zi < Z) = a

s + 1
and P(Zi < Z,Zj < Z) = a(a + 1)

(s + 1)(s + 2)
.

Moreover, writing the random variable I as I = ∑N−s−1
i=1 1{Zi<Z}, we get

E(I ) =
N−s−1∑

i=1

P(Zi < Z) = (N − s − 1)a

s + 1
,

E
(
I 2) = ∑

1≤i �=j≤N−s−1

P(Zi < Z,Zj < Z) +
N−s−1∑

i=1

P(Zi < Z)

= (N − s − 1)(N − s − 2)
a(a + 1)

(s + 1)(s + 2)
+ (N − s − 1)a

s + 1
. �

In order to complete the proof of Theorem 4.2, we still have to relate |S| − ES(vm) to the
quantity that we are interested in, namely N − ET (vm).

PROPOSITION 4.20 (Same asymptotic densities). The random variables ES(vm) and
ET (vm) satisfy asymptotically the following link: for any s, t ∈ R

+, one has

(39) lim
n→∞P

(
s <

|S| − ES(vm)

nδ
< t

)
= lim

n→∞P

(
s <

2(p + �)

p�

N − ET (vm)

n1+δ
< t

)
.

PROOF. Let T ∗ = S ∪ S ′ be the graph obtained from T by removing the root. Then T ∗
is a poset where there is no order relation between any vertex of S ′ and any other vertex from
T ∗. Due to this independence, the order polytope of T ∗ is the Cartesian product of the order
polytope of S and [0,1]|S ′|. Now, let a > 0 be an integer and let Fa be the event that

|S| − ES(vm) = a.

In other words, a is the number of vertices in S with a label greater than ES(vm). Let I be
the random variable counting the number of vertices in S ′ with a label greater than ET (vm).
Then, conditionally on the event Fa , the random variable N − ET (vm) has the same law as
I + a. Indeed, N − ET (vm) counts the number of vertices in T with a label greater than
ET (vm). Note that I satisfies the conditions of Lemma 4.19 (with s := |S| therein), due to
the order polytope independence mentioned above.

Recall that |S| = �(n) while N = �(n2) (in fact, |S| = (p + �)n − 1 and |T | = N =
1
2p�n(n + 1)). Therefore, if (an)n≥1 is a sequence of integers tending to +∞ and such that
an = o(n), then thanks to (37), we have the estimates for the conditional expectation

(40) E(I |Fan) ∼ anN

|S| ∼ cnan,

with the constant c = p�
2(p+�)

and, thanks to (38), for the conditional variance

(41) var(I |Fan) = E
(
I 2|Fan

) − (
E(I |Fan)

)2 ∼ c2n2an.

Combining (40) and (41), the Bienaymé–Chebyshev inequality gives that (for any κ > 0):

(42) P

({∣∣∣∣ I

cnan

− 1
∣∣∣∣ > κ

}∣∣∣Fan

)
≤ 1 + εn

κ2an

,
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where εn is a sequence converging to 0 as n → ∞. Since we have

N − ET (vm)

nan

= I + an

nan

= I

nan

+ 1

n
,

the inequality (42) can be rewritten into

(43) P

({∣∣∣∣N − ET (vm)

cnan

− 1
∣∣∣∣ > κ

}∣∣∣Fan

)
≤ 1 + ε′

n

κ2an

,

where ε′
n is a sequence converging to 0 as n → ∞. In particular, for any t > 0 and 0 < δ < 1,

setting an = �tnδ� in (43) gives

(44) P

({∣∣∣∣N − ET (vm)

cn1+δ
− t

∣∣∣∣ > κt

}∣∣∣Fan

)
≤ 1 + o(1)

κ2tnδ
.

Finally, for all reals 0 < s < t , define the event

Fs,t = ⋃
snδ<a<tnδ

Fa =
{
s <

|S| − ES(vm)

nδ
< t

}
.

According to (44) (set κ = ε/t for any ε > 0), we have for n → ∞

P

({
s <

N − ET (vm)

cn1+δ
< t

}∣∣∣Fs,t

)
→ 1.

Thus, conditioning on the complementary event F̄s,t , we have

(45) lim
n→∞P

({
s <

N − ET (vm)

cn1+δ
< t

}
∩ F̄s,t

)
= 0,

whereas conditioning on Fs,t gives

(46) lim
n→∞P

({
s <

N − ET (vm)

cn1+δ
< t

}
∩ Fs,t

)
= lim

n→∞P

(
s <

|S| − ES(vm)

nδ
< t

)
.

Summing (45) and (46) leads to (39). �

In summary, in this section we have proven that the four following quantities have asymp-
totically the same distribution:

(47)

2

p�

N − EY(v)

n1+δ
= 2

p�

N − ET (vm)

n1+δ
Prop. 4.9 (density method)

∼ 1

p + �

|S| − ES(vm)

nδ
Prop. 4.20 (order statistics)

= 1

p + �

B(n−1)p

nδ
. Prop. 4.17 (Pólya urn)

In conjunction with Theorem 1.6 proven via analytic combinatorics methods, this implies that
the four quantities in (47) converge in law to the distribution GenGammaProd(p, �, b0,w0),
when δ = p/(p + �). This is exactly the statement of Theorem 4.2.

NOTA BENE. It should be stressed that the sequence of transformations in (47) is not a
bijection between Young tableaux and urns, it is only asymptotically that the corresponding
distributions are equal.
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The perspicacious reader would have noted that in the previous pages, we used several
small lemmas and propositions which were stated with slightly more generality than what was
a priori needed. In fact, this now allows us to state an even stronger version of Theorem 4.2.
(It would have been not unpedagogical to introduce it first: we think it would have been harder
for the reader to digest the different key steps/definitions/figures used in the proof.) In order
to state this generalization to any Young tableau with a more general periodic shape, we need
a slight extension of the shape λ

i1
1 · · ·λin

n introduced in Definition 4.5: we allow some of the
indices ik to be equal to zero, in which case there is no column of height λk .

DEFINITION 4.21 (Periodic tableau). For any tuple of nonnegative integers (�1, . . . , �p),
a tableau with periodic pattern shape (�1, . . . , �p;n) is a tableau with shape(

(np)�p(np − 1)�p−1 · · · (np − p + 1)�1
)

× ((
(n − 1)p

)�p · · · ((n − 1)p − p + 1
)�1

) × · · · × (
p�p · · ·1�1

)
.

A uniform random Young tableau with periodic pattern shape (�1, . . . , �p;n) is a uniform
random filling of a tableau with periodic pattern shape (�1, . . . , �p;n).

Let us put the previous pattern in words: we have a tableau made of n blocks, each of these
blocks consisting of p smaller blocks of length �p, . . . , �1, and the height decreases by 1
between each of these smaller blocks. This leads to a tableau length (�1 + · · · + �p)n, which
repeats periodically the same subshape along its hypotenuse.

Note that the triangular Young tableau of parameters (�,p,n) from Definition 4.1 corre-
sponds to Definition 4.21 for the (p + 1)-tuple (0, . . . ,0, �;n). In order to state our main
result in full generality, we extend the above defined Young tableau by additional rows from
below.

DEFINITION 4.22. Let b0,w0 > 0. A tableau of shape λ
i1
1 · · ·λin

n shifted by a block b
w0
0

is a tableau of shape (λ1 + b0)
i1 · · · (λn + b0)

inb
w0
0 .

We can now state the main theorem of this section.

THEOREM 4.23 (The distribution of the southeast entry in periodic Young tableaux).
Choose a uniform random Young tableau with periodic pattern shape (�1, . . . , �p;n) shifted
by a block b

w0
0 . Let N be its size, set � := �1 + · · · + �p and δ := p/(p + �). Let Xn be the

entry of the southeast corner. Then (N −Xn)/n1+δ converges in law to the same limiting dis-
tribution as the number of black balls in the periodic Young–Pólya urn with initial conditions
(b0,w0) and with replacement matrices Mi = ( 1 �i

0 1+�i

)
:

2

p�

N − Xn

n1+δ

L−→ Beta(b0,w0)

p+�−1∏
i=1

i �=�1+···+�j+j

with 1≤j≤p−1

GenGamma(b0 + w0 + i, p + �).

PROOF. One just follows the same steps as in (47). The final proof holds verbatim, only
the equality N = p�

2 n(n + 1) has to be replaced by an asymptotic N ∼ pl
2 n, which is anyway

the only information that is used. One then concludes via Theorem 3.8. �

In the next section, we discuss some consequences of our results in the context of limit
shapes of random Young tableaux.
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5. Random Young tableaux and random surfaces. There is a vast and fascinating lit-
erature related to the asymptotics of Young tableaux when their shape is free, but the number
of cells is going to infinity: it even originates from the considerations of Erdős, Szekeres and
Ulam on longest increasing subsequences in permutations (see [2, 81] for a nice presentation
of these fascinating aspects). There algebraic combinatorics and variational calculus appear
to play a key rôle, as became obvious with the seminal works of Vershik and Kerov, Logan
and Shepp [60, 91]. The asymptotics of Young tableaux when the shape is constrained is
harder to handle, and this section tackles some of these aspects.

5.1. Random surfaces. Figure 7 illustrates some known results and some conjectures on
“the continuous” limit of Young tableaux (see also the notion of continual Young tableaux
in [52]). Let us now explain a little bit what is summarized by this figure, which, in fact,
refers to different levels of renormalization in order to catch the right fluctuations. It should
also be pinpointed that some results are established under the Plancherel distribution, while
some others are established under the uniform distribution (like in the present work).

First, our Theorem 4.2 can be seen as a result on random surfaces arising from Young
tableaux with a fixed shape. Let us be more specific. Consider a fixed rectangular triangle Tr
where the size of the edges meeting at the right angle are p and q , respectively, where p

and q are integers. One can approximate Tr by a sequence of tableaux (Yn)n≥0 of the same
form as Y in Section 4 where the size of the sides meeting at the right angle are pn and qn.

For each of these tableaux, one can pick a random standard filling and one can interpret it
as a random discretized surface. More precisely, if 0 ≤ x ≤ p and 0 ≤ y ≤ q are two reals and
if the entry of the cell (�xn�, �yn�) is z, then we set fn(x, y) := 2z/(pqn2). Thereby, we con-
struct a random function fn : Tr → [0,1] which is discontinuous but it is to be expected that,
in the limit, the functions fn converge in probability to a deterministic, continuous function f

(see Figure 8). Intuitively, for every point (x, y) on the hypotenuse, one will have f (x, y) = 1
and this is the case in particular for the southeast corner, that is, the point (p,0). Then one
can view Theorem 4.2 as a result on the fluctuations of the random quantity fn(p,0) away
from its deterministic limit, which is 1.

As a matter of fact, the convergence of fn to f has only been studied when the shape of
the tableau is fixed. The convergence toward a limiting surface was first proven when the

FIG. 7. Known and conjectured limit laws of random Young tableaux. Would it one day lead to a nice notion of
“continuous Young tableau”?
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FIG. 8. Random generation of Young tableaux, seen as random surfaces (the colours correspond to level lines):
• top: triangular Young tableaux (size 60 × 60, seen as histogram, and 200 × 200),
• bottom: rectangular and triangular Young tableaux (400 × 200 and 410 × 20).

If one watches such surfaces from above, then one sees exactly the triangular/rectangular shapes, but one loses the
3D effect. The images are generated via our own Maple package available at https:// lipn.fr/~cb/YoungTableaux,
relying on a variant of the hook-length walk of [40].

limit shape is a finite union of rectangles; see Biane [13]. There the limiting surface can be
interpreted in terms of characters of the symmetric group and free probability but this leads
to complicated computations from which it is difficult to extract explicit expressions.

For rectangular Young tableaux, the limiting surface is described more precisely by Pittel
and Romik [73]. A limiting surface also exists for staircase tableaux: it can be obtained by tak-
ing the limiting surface of a square tableau and cutting it along the diagonal; see [4, 59]. This
idea does not work for rectangular (nonsquare) Young tableaux: if one cuts such tableaux
along the diagonal, one does not get the limiting surface of triangular Young tableaux (the
hypotenuse would have been the level line 1, but the diagonal is in fact not even a level line,
as visible in Figure 8 and proven in [73]).

Apart from the particular cases mentioned above, convergence results for surfaces arising
from Young tableau seem to be lacking. There are also very few results about the fluctuations
away from the limiting surface. For rectangular shapes, these fluctuations were studied by
Marchal [63]: they are Gaussian in the southeast and northwest corner, while the fluctuations
on each edge follow a Tracy–Widom limit law, at least when the rectangle is a square (for
general rectangles, there remain some technicalities, although the expected behaviour is the
same). For staircase triangles, Gorin and Rahman [37] use a sorting network representation
to obtain asymptotic formulas using double integrals. In particular, they find the limit law on
the edge. Their approach may be generalizable to other triangular shapes. Also, instead of
renormalized limits, one may be interested in local limits, there are then nice links with the
famous jeu de taquin [86] and characters of symmetric groups [14].

There is another framework where random surfaces naturally arise, namely random tilings
and related structures (see, e.g., [85]). Indeed, one can associate a height function with a

https://lipn.fr/~cb/YoungTableaux
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tiling: this gives an interpretation as a surface. In this framework, there are results on the
fluctuations of these surfaces, which are similar to the ones on Young tableaux. In the case
of the Aztec diamond shape, Johansson and Nordenstam [48] proved that the fluctuations of
the Artic curve are related to eigenvalues of GUE minors (and are therefore Gaussian near
the places where the curve is touching the edges, whereas they are Tracy–Widomian when
the curve is far away from the edges). Note that this gives the same limit laws as for the
Artic curve of a TASEP jump process associated to rectangular Young tableaux [63, 80].
Similar results were also obtained for pyramid partitions [17, 18]. Moreover, in other models
of lozenge tilings, it is proven that for some singular points, other limit laws appear: they are
called cusp-Airy distributions, and are related to the Airy kernel [25]. It has to be noticed
that, up to our knowledge, the generalized gamma distributions, which appear in our results,
have not been found in the framework of random tilings.

A major challenge would be to capture the fluctuations of the surface in the interior of the
domain. For Young tableaux, it is reasonable to conjecture that these fluctuations could be
similar to those observed for random tilings: in this framework, Kenyon [51] and Petrov [72]
proved that the fluctuations are given by the Gaussian free field (see also [20]).

Finally, a dual question would be: in which cell does a given entry lie in a random filling
of the tableau? In the case of triangular shapes like ours, if we look at the largest entry, we
get the following.

PROPOSITION 5.1 (Limit law for the location of the maximum in a triangular Young
tableau). Choose a uniform random triangular Young tableau of parameters (�,p,n) (see
Definition 4.1). Let Posin ∈ {1, . . . , �n} be the x-coordinate of the cell containing the largest
entry. Then one has

Posin
�n

L−→ Arcsine(δ) where δ := p/(p + �).

PROOF. Remove from the Young tableau Y the cell containing its largest entry, and
call Y∗ this new tableau. Then, using the hook length formula, the probability that the largest
entry of Y is situated at x-coordinate k� is

P(Posin = k�) =
∏

c∈Y∗ hookY∗(c)∏
c∈Y hookY(c)

= ∏
c∈Y∗with (x-coord of c) = k�

or (y-coord of c) = (n − k + 1)p

hookY∗(c)

1 + hookY∗(c)
.

An easy computation then gives (with δ = p/(p + �)):

P(Posin = k�) ∼ (k/n)δ−1(1 − k/n)−δ

�(δ)�(1 − δ)

1

n
.

Here, one recognizes an instance of the generalized arcsine law on [0,1] with density

xδ−1(1 − x)−δ

�(δ)�(1 − δ)
. �

So, if we compare models with different p and �, then the largest entry will have the
tendency to be on the top of the hypotenuse when � is much larger than p, while it will be
on its bottom if p is much larger than � (and on the bottom or the top with equally high
probabilities when p ≈ �); see Figure 8. This is in sharp contrast with the case of an n ×
n square tableau where, for t ∈ (0,1), the cell containing the entry tn2 is asymptotically
distributed according to the Wigner semicircle law on its level line; see [73]. We also refer
to Romik [79] for further discussions on Young tableau landscapes and to Morales, Pak and
Panova [66] for recent results on skew-shaped tableaux.
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FIG. 9. Different discrete models converge toward a tableau of slope −p/�. As usual for problems related to
urns, many statistics have a sensibility to the initial conditions; it is therefore nice that some universality holds:
the distributions (depending on p, � and the “zoom factor” K) of our statistics have similar tails compared to
Mittag-Leffler distributions.

5.2. From microscopic to macroscopic models: Universality of the tails. As mentioned in
the previous section, we can approximate a triangle of slope −p/� by a tableau of parameters
(�,p,n) but what happens if we approximate it by a tableau of parameters (K�,Kp,n) for
any “zoom factor” K ∈ N? (See Figure 9.) In the first case, we obtain as a limit law in
the southeast corner GenGammaProd(p, �,p, �) whereas in the second case, we get the law
GenGammaProd(Kp,K�,Kp,K�) and these two distributions are different.

In fact, we could even imagine more general periodic patterns as in Theorem 4.23 cor-
responding to the same macroscopic object. All these models lead to different asymptotic
distributions. However, we partially have some universal phenomenon in the sense that, al-
though these limit distributions are different, they are closely related by the fact that their
tails are similar to the tail of a Mittag-Leffler distribution.

DEFINITION 5.2 (Similar tails). One says that two random variables X and Y have sim-
ilar tails and one writes X � Y if

log E(Xr)
E(Y r )

r
→ 0 as r → ∞.

This definition has the advantage to induce an equivalence relation between random vari-
ables which have moments of all orders: if X, Y are in the same equivalence class, then for
every ε ∈ (0,1), for r large enough, one has

E
((

(1 − ε)X
)r) ≤ E

(
Y r) ≤ E

((
(1 + ε)X

)r)
.

In the proof of the following theorem, we give much finer asymptotics than the above bounds.

THEOREM 5.3 (Similarity with the tail of a Mittag-Leffler distribution). Let X be a ran-
dom variable distributed as GenGammaProd([�1, . . . , �p];b0,w0) and put � = �1 +· · ·+ �p ,
δ = p/(p + �). Let Y := ML(δ, β) (where ML is the Mittag-Leffler distribution defined as
in (48) hereafter, with any β > −δ). Then X and δpδ−1Y have similar tails in the sense of
Definition 5.2.

PROOF. First, recall from, for example, [36], page 8, that the Mittag-Leffler distribution
ML(α,β) (where 0 < α < 1 and β > −α) is determined by its moments. Its r th moment has
two equally useful closed forms:

mML,r = �(β)�(β/α + r)

�(β/α)�(β + αr)
= �(β + 1)�(β/α + r + 1)

�(β/α + 1)�(β + αr + 1)
.(48)

Now, we prove that, for a fixed α, the Mittag-Leffler distributions have similar tails. From the
Stirling’s approximation formula, we have

(49) log�(αr +β) = αr log(r)+ (
α log(α)−α

)
r +

(
β − 1

2

)
log(αr)+ log(2π)

2
+O

(
1

r

)
.
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Applying this to the moments (48) of the Mittag-Leffler distribution Y = ML(α,β), we get

logE
(
Y r) = (1 − α)r log(r) + (−α log(α) + α − 1

)
r +

(
β

α
− β

)
log(r) + O(1),(50)

and thus if one compares with another distribution Y ′ = ML(α,β ′), this leads to Y � Y ′.
Next, we prove that GenGammaProd distributions with the same δ have similar tails. The

moments of X = GenGammaProd([�1, . . . , �p];b0,w0) are given by formula (21). Using the
approximation (49), we get

logE
(
Xr) = (1 − δ)r log(r) + (1 − δ)

(
log

(
δ

p

)
− 1

)
r

+
(
b0 + s0δ + (1 + δ)(p − 1)

2
− δ

p

p−1∑
j=0

j∑
k=1

�k

)
log(r) + O(1).

(51)

Here, we see that in fact up to order O(r) only the slope δ and the period length p play a
rôle; it is only at order o(r) that b0, s0, and the �k really occur. Thus, if we now also consider
X′ = GenGammaProd([�′

1, . . . , �
′
p′ ];b′

0,w
′
0), we directly deduce X � (

p
p′ )δ−1X′.

Finally, we can compare the moments of X (any GenGammaProd distribution associated to
a slope δ and period p) and Y (any Mittag-Leffler distribution with α := δ) via formulas (50)
and (51), this leads to X � δpδ−1Y . �

REMARK 5.4. The tails of this distribution are universal: they depend only on the slope
δ and the period length p. They depend neither on the initial conditions b0 and w0, nor on
further details of the geometry of the periodic pattern (the �i ’s).

One more universal property which holds for some families of urn distributions is that they
possess sub-Gaussian tails, a notion introduced by Kahane in [49] (see also [56] for some urn
models exhibiting this behaviour).

DEFINITION 5.5. A random variable X has sub-Gaussian tails if there exist two con-
stants c,C > 0, such that

P
(|X| ≥ t

) ≤ Ce−ct2
, t > 0.

PROPOSITION 5.6. The GenGammaProd(p, �, b0,w0) distributions have subGaussian
tails if and only if p ≥ �.

PROOF. The GenGammaProd distribution, as defined in equation (1), has moments given
in equation (20). As derived thereafter, it has moments asymptotically equivalent to

(mr)
1/r = (

(p + �)e
)(δ−1)

r(1−δ)(1 + o(1)
)
.

By [49], Proposition 9, a random variable X has sub-Gaussian tails if and only if there exists
a constant K > 0 such that for all r > 0 we have (E(Xr))1/r ≤ K

√
r . As δ = p

p+�
the claim

follows. �

Another useful notion which helps to gain insight into the limit of Young tableaux is the
notion of a level line: let Cv be the curve separating the cells with an entry bigger than v and
the cells with an entry smaller than v (and to get a continuous curve, one follows the border
of the Young tableau if needed; see Figure 10).
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FIG. 10. The level line (in red) of the southeast corner Xn: it separates all the entries smaller than Xn from
the other ones. On the left: one example with the level line of Xn = 42. One the right: the level line of Xn, for a
very large Young tableau of size N of triangular shape. The area between this level line and the hypotenuse is the
quantity N − Xn analysed in Section 4.

When n → ∞, one may ask whether the level line CXn converges in distribution to some
limiting random curve C. If so, the limit laws we computed in Theorem 4.2 would give the
(renormalized) area between the macroscopic curve C and the hypotenuse. In particular, the
law of C would depend on the microscopic details of the model, since we find for the renor-
malized area a whole family of distributions GenGammaProd(p, �, b0,w0) depending on 4
parameters. Besides, note that we could imagine even more general microscopic models for
the same macroscopic triangle. For instance, for a slope −1, starting from the southeast cor-
ner we could have a periodic pattern (1 step north, 2 steps west, 2 steps north, 1 step west).
All shapes leading to the same slope are covered by Theorem 3.8 (see also Example 3.9), and
our method then gives similar, but distinct, limit laws. Such models thus yield another limit
law for the area, and thus another limiting random curve C.

Note that the renormalized area between C and the hypotenuse does not have the same dis-
tribution as the area below the positive part of a Brownian meander [46]. Funnily, Brownian
motion theory is cocking a snook at us: another one of Janson’s papers [47] studies the area
below curves which are related to the Brownian supremum process and, here, one observes
more similarities with our problem, as the moments of the corresponding distribution involve
the gamma function. However, these moments grow faster than in the limit laws found in
Theorem 4.2. It is widely open if there is some framework unifying all these points of view.

5.3. Factorizations of gamma distributions. With respect to the asymptotic landscape of
random Young tableaux, let us add one last result: our results on the southeast corner directly
imply similar results on the northwest corner. In particular, the critical exponent for the upper
left corner is 1 − δ. In fact, it is a nice surprise that there is even more structure: any periodic
pattern shape is naturally associated with a family of patterns such that the limit laws of the
southeast corners of the corresponding Young tableaux are related to each other.

First, let us describe the periodic pattern via a shape path (i1, j1; . . . ; im, jm): it starts at
the northwest corner of the tableau described by the pattern with i1 right steps, followed by
j1 down steps, etc.; see Figure 11. Then its cyclic shift is defined by (jm, i1; . . . ; jm−1, im).

Furthermore, this notion is equivalent to Definition 4.21 of a periodic tableau via the fol-
lowing formula:

(�1, . . . , �p) = (0, . . . ,0, jm︸ ︷︷ ︸
im elements

,0, . . . ,0, jm−1︸ ︷︷ ︸
im−1 elements

, . . . ,0, . . . ,0, j1︸ ︷︷ ︸
i1 elements

).

Then the cyclic shift is given by(
�′

1, . . . , �
′
p′
) := (0, . . . ,0, im︸ ︷︷ ︸

jm−1 elements

, . . . ,0, . . . ,0, i2︸ ︷︷ ︸
j1 elements

,0, . . . ,0, i1︸ ︷︷ ︸
jm elements

).
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FIG. 11. Example of a cyclic shift on a periodic pattern. On the left: one sees the shape path (3,2;1,3;2,2;3,1), it
corresponds to the pattern (�1, . . . , �8) = (3,0,2,0,0,1,0,3) (as sequence of consecutive heights, from right to
left). On the right: one sees its cyclic shift, which corresponds to the pattern (�′

1, . . . , �′
9) = (0,0,2,0,3,2,0,0,1).

In grey, we see the size of the subrectangles described by the shape path, that is, the kth rectangle has size ik × jk .

In particular, we have p′ = � and �′ = p.
Appending n copies of the shape path (i1, j1; . . . ; im, jm) to each other corresponds to n

repetitions of the pattern and, therefore, gives a periodic tableau. Note that this new sequence
is then equal to the shape of its associated tree, similarly to Figure 3 and in accordance with
Definition 4.6.

PROPOSITION 5.7 (Factorization of gamma distributions). Let two sequences (�1, . . . , �p)

and (�′
1, . . . , �

′
p′) be defined as above and let jm be the smallest index such that �jm > 0. Let

b0, w0 be two positive integers, and Y and Y ′ be independent random variables with respec-
tive distribution GenGammaProd([�1, . . . , �p];b0,w0) and GenGammaProd([�′

1, . . . , �
′
p′ ];

b0 + w0, jm) from Theorem 3.8. Then we have the factorization:

(52) YY ′ L= 1

p + �
�(b0).

PROOF. The equality in distribution is obtained by checking the equality of the r th
moments and then applying Carleman’s theorem: using formula (20) for the moments of
GenGammaProd indeed leads (after simplification via the Gauss multiplication formula on
the gamma function) to E(Y r)E((Y ′)r ) = 1

(p+�)r
E(Zr), where Z is a random variable dis-

tributed according to �(b0). �

REMARK 5.8 (A duality between corners). One case of special interest is the case of
Young tableaux having the mirror symmetry (�jm, . . . , �p) = (�p, . . . , �jm), where jm is again
the smallest index such that �jm > 0. Indeed, Y and Y ′ then correspond to the limit laws for
the southeast (resp., northwest) corner of the same tableau. In this case, we can think of (52)
as expressing a kind of duality between the corners of the tableau.

Similar factorizations of the exponential law, which is a particular case of the gamma
distribution, have appeared recently in relation with functionals of Lévy processes, following
[12]. These formulas are also some probabilistic echoes of identities satisfied by the gamma
function.
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We can mention one last result in this direction: indeed, Theorem 4.23 used for the Young
tableau with periodic pattern shape (�1, . . . , �p;2n) and the (same) Young tableau with peri-
odic pattern shape (�1, . . . , �p, �1, . . . , �p;n) leads to two different closed forms of the same
limit distribution, and one also gets other closed forms if one repeats m times the pattern
(�1, . . . , �p). For example, if one takes all the �′

is equal to 1, this gives

GenGamma(3,2) = √
2 GenGamma(3,4)GenGamma(5,4),

and, more generally,

GenGamma(s0 + 1,2) = √
m

m∏
k=1

GenGamma(s0 + 2k − 1,2m).

Using the fact that GenGamma(a,1/b) = �(ab)b, we can rephrase this identity in terms of
powers of � distributions (the notation �, in bold, stands for the distribution, while � stands
for the function; below, we have only occurrences in bold):

�

(
s0 + 1

2

) 1
2 = √

m

m∏
k=1

�

(
s0 + 2k − 1

2m

) 1
2m

.

With x := s0+1
2m

, one gets the following formula equivalent to the Gauss multiplication for-
mula:

�(mx)m = mm
m∏

k=1

�

(
x + k − 1

m

)
.

Choosing other values for the �i ’s leads to more identities:

p+�−1∏
i=1

i �=�1+···+�j+j

with 1≤j≤p−1

GenGamma(s0 + i, p + �)

= m1−δ
m(p+�)−1∏

i=1
i �=�′

1+···+�′
j+j

with 1≤j≤mp−1

GenGamma
(
s0 + i,m(p + �)

)
.

It is pleasant that it is possible to reverse engineer such identities, and thus obtain a proba-
bilistic proof of the Gauss multiplication formula (see [24]).

This ends our journey in the realm of urns and Young tableaux; in the next final section,
we conclude with a few words on possible extensions of the methods used in this article.

A method is a trick used twice.
George Pólya (1887–1985)

After this the reader who wishes to do so will have no difficulty in developing the theory of urns12

when they are regarded as differential operators.
Alfred Young (1873–1940)

12The reader is invited to compare with the original citations of Pólya and Young in [75], page 208, and [38],
page 366.
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6. Conclusion and further work. In this article, we introduced Pólya urns with periodic
replacements and showed that they can be exactly solved with generating function techniques.
The initial partial differential equation encoding their dynamics leads to D-finite moment
generating functions, which we identify as the signature of a generalized gamma product
distribution. It is also pleasant that it finds applications for some statistics of Young tableaux.

Many extensions of this work are possible:

• The density method which we introduced in [10, 64] can be used to analyse other combi-
natorial structures, like we did already on permutations, trees, Young tableaux and Young
tableaux with local decreases. In fact, the idea to use integral representations of order
polytope volumes in order to enumerate poset structures is quite natural, and was used, for
example, in [11, 28, 69]. Our approach, which uses this idea while following at the same
time the densities of some parameter, allows us to solve both enumeration and random
generation. We hope that some readers will give it a try on their favourite poset structure.

• In [31], Flajolet et al. analyse an urn model which leads to a remarkably simple factor-
ization for the history generating function; see Theorem 1 therein and also Theorem 1 in
[30]. This greatly helps them to perform the asymptotic analysis via analytic combina-
torics tools. Our model does not possess such a factorization; this makes the proofs more
involved. It is nice that our new approach remains generic and can be applied to more
general periodic urn models (with weights, negative entries, random entries, unbalanced
schemes, triangular urns with more colours, multiple drawings, . . . ). It is a full programme
to investigate these variants, in order to get a better characterization of the zoo of special
functions (combination of generalized hypergeometric, etc.) and distributions occurring
for the different models.

• There exists a theory of elimination for partial differential equations, chiefly developed in
the 1920s by Janet, Riquier and Thomas (see, e.g., [16, 35] for modern approaches). In our
case, these approaches however fail to get the linear ordinary differential equations satisfied
by our generating functions. It is thus an interesting challenge for computer algebra to get
an efficient algorithm taking as input the PDE and its boundary conditions, and giving as
output the D-finite equation (if any). Is it possible to extend holonomy theory beyond its
apparent linear frontiers? (See the last part of [71].) Also, as an extension of Remark 2.5, it
is natural to ask: is it possible to extend the work of Flajolet and Lafforgue to the full class
of D-finite equations, thus exhibiting new universal limit laws like we did here?

• Our approach can also be used to analyse the fluctuations of further cells in a random
Young tableau. It remains a challenge to understand the full asymptotic landscape of sur-
faces associated with random Young tableaux, even if it could be globally expected that
they behave like a Gaussian free field, like many other random surfaces [51]. Understand-
ing the fluctuations and the universality of the critical exponent at the corner could help
to get a more global picture. The Arctic circle phenomenon (see [80]) and the study of
the level lines C in random Young tableaux and their possible limits in distribution, as
discussed in Section 5.2, seems to be an interesting but very challenging problem.
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