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We study level-set percolation for Gaussian free fields on metric graphs.
In two dimensions, we give an upper bound on the chemical distance between
the two boundaries of a macroscopic annulus. Our bound holds with high
probability conditioned on connectivity and is sharp up to a poly-logarithmic
factor with an exponent of one-quarter. This substantially improves a previ-
ous result by Li and the first author. In three dimensions and higher, we pro-
vide rather precise estimates of percolation probabilities in different regimes
which altogether describe a sharp phase transition.

1. Introduction.

1.1. Gaussian free fields on metric graphs. In this paper, we study Gaussian free fields
on metric graphs of integer lattices, which are closely related to (discrete) Gaussian free fields
on integer lattices. We begin with some basic definitions before stating our main results. Let
{St : t ≥ 0} be a continuous-time simple random walk on Z

d with transition rates 1
2d

. For
d ≥ 3, the (discrete) Gaussian free field on Z

d , {φv : v ∈ Z
d}, is defined as a mean-zero

Gaussian process with covariance E(φuφv) given by (denoting below by 1A the indicator
function of the event A)

(1) G(u,v) = Eu

[∫ ∞
0

1St=v dt

]
, u, v ∈ Z

d .

It is clear that the preceding definition cannot extend to d = 2 because simple random walk
is recurrent in the two-dimensional lattice. For this reason (as usual), for d = 2 we define the
Gaussian free field on a finite set V ⊂ Z

2 with Dirichlet boundary conditions, denoted by
{φv : v ∈ V }, to be a mean zero Gaussian process with covariance E(φuφv) given by

(2) G(u,v) = Eu

[∫ ζ

0
1St=v dt

]
, u, v ∈ V,

where ζ = inf{t ≥ 0 : St ∈ ∂V } is the hitting time of the internal boundary ∂V = {v ∈ V :
∃u ∈ V c, |u − v| = 1}.

Let G = G(V ,E) be the subgraph of Zd on V , where we usually let V be a finite box for
d = 2 and we take V = Z

d for d ≥ 3. To each e ∈ E, we associate a different compact interval
Ie of length d and identify the endpoints of this interval with the two vertices adjacent to e.
The metric graph G̃ associated to V is then defined to be G̃ = ⋃

e∈E Ie. With this definition,
it was shown in [11] that the Gaussian free field on G̃, denoted by {φ̃v : v ∈ G̃}, can be
constructed in two equivalent ways. The first is by extending φ to G̃ in the following manner:
for adjacent vertices u, v, the value of φ̃ on the edge e(u, v), conditioned on φu and φv , is
given by an independent bridge of length d of a Brownian motion with variance 2 at time 1.
We note in passing that we have chosen the convention that each edge of G has conductance
1

2d
in order to be consistent with [10].
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Alternatively, one can construct φ̃ by first defining a Brownian motion {B̃t : t ≥ 0} on G̃
as in [11], Section 2. B̃ behaves like a standard Brownian motion in the interior of the edges,
while on the vertices (i.e., lattice points) it chooses to do excursions on each incoming edge
uniformly at random (see [11] for further details). We let ζ̃ = inf{t ≥ 0 : B̃t ∈ ∂V } for d = 2,
ζ̃ = ∞ for d ≥ 3, and by an abuse of notation let {G(u,v) : u, v ∈ G̃} be the density of the
0-potential of {B̃t : 0 ≤ t < ζ̃ } (with respect to the Lebesgue measure on G̃), where u and v

are now arbitrary points in G̃ (not necessarily vertices). It was shown in [11] that the trace of
B̃ on V (when parametrized by its local time at the vertices) is exactly the continuous-time
simple random walk on V (killed at ∂V for d = 2), and that therefore the two definitions of
G coincide for u, v ∈ V , justifying the abuse of notation. The Gaussian free field {φ̃v : v ∈ G̃}
is then the continuous, mean-zero Gaussian field on G̃ with covariance given by E[φ̃uφ̃v] =
G(u,v). It was also shown in [11] that the value of G on the edges of G̃ can be obtained
by interpolation from the value on the vertices. For two pairs of adjacent vertices (u1, v1)

and (u2, v2) in V , and two points w1 ∈ e(u1, v1) and w2 ∈ e(u2, v2) on the corresponding
edges, taking the convention that either the edges are distinct or (u1, v1) = (u2, v2) and letting
r1 = |w1 − u1| and r2 = |w2 − u2| (here we are measuring the standard Euclidean distance),
we have (cf. [11], equation (2.1))

(3)

G(w1,w2)

= (1 − r1)(1 − r2)G(u1, u2) + r1r2G(v1, v2) + (1 − r1)r2G(u1, v2)

+ r1(1 − r2)G(v1, u2) + 2d(r1 ∧ r2 − r1r2)1(u1,v1)=(u2,v2).

1.2. Main results. The main goal of the present paper is to study level-set percolation for
Gaussian free fields on metric graphs. For r ≥ 1, we let

(4) Vr = [−r, r]d ∩Z
d

be the points in the lattice contained in the box of side-length 2r centered at the origin (we
choose this convention so that all boxes can be centered at the origin). For d = 2, we take
a sequence φ̃N of fields defined on the metric graphs G̃N associated to VN (with Dirichlet
boundary conditions). For h ∈ R, we let Ẽ

≥h
N = {v ∈ G̃N : φ̃N,v ≥ h} be the level set, or

excursion set, of φ̃N above h—note that our choice of level set is different from that of [6] by
a flipping symmetry, in order to be consistent with the majority of the literature. Further, for
u, v ∈ Ẽ

≥h
N , we let the chemical distance DN,h(u, v) be the graph distance between u and v in

Ẽ
≥h
N , with DN,h(u, v) = ∞ if u and v are disconnected in Ẽ

≥h
N . For two subsets A,B ⊂ G̃N ,

we let DN,h(A,B) = inf{DN,h(u, v) : u ∈ A,v ∈ B}. The following result is an upper bound
on the chemical distance between two boundaries of a macroscopic annulus, conditioned on
percolation.

THEOREM 1. For any fixed h ∈ R, and 0 < α < β < γ < 1, let Pα,γ
N,h be the law of

φ̃N conditioned on the event {DN,h(VαN, ∂VγN) < ∞}. Then for any ε > 0, there exists a
constant C such that

(5) lim sup
N→∞

P
α,γ
N,h

(
DN,h(VαN, ∂VβN) > CN(logN)

1
4
) ≤ ε.

REMARK 2. Note that P(DN,h(VαN, ∂VγN) < ∞) stays above 0 uniformly in N (See
Lemma 18). In a work in preparation by Aru–Lupu–Sepúlveda, it is expected that the follow-
ing may be deduced as a consequence of their main results: for any ε > 0, there exist δ,N0 >
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0 such that for all N > N0 and γ < β + δ, we have P
α,β
N,h(DN,h(VαN, ∂VγN) < ∞) ≥ 1 − ε.

Provided with this continuity of the percolation probability, one would then be able to derive
from Theorem 1 that

(6) lim sup
N→∞

P
α,β
N,h

(
DN,h(VαN, ∂VβN) > CN(logN)

1
4
) ≤ ε.

For d ≥ 3, we let V = Z
d , let 0 be the origin in Z

d and let G̃ be the metric graph associated

to V . In the present paper, we will focus on the behavior of pN,h = P(0
≥h←→ ∂VN) as N →

∞, where {0 ≥h←→ ∂VN } denotes the event that 0 is connected to ∂VN in Ẽ≥h = {v ∈ G̃ :
φ̃v ≥ h}. We obtain the following results for supercritical, subcritical and critical percolation,
respectively.

The first result is an explicit characterization of the probability that 0 is in an infinite
connected component of Ẽ≥−h (for the rest of this section, we take h to be positive). Below
and throughout the paper, sign(x) = 1 for x ≥ 0 and sign(x) = −1 for x < 0.

THEOREM 3. Let σ 2
d = Var[φ̃0]. Then for any h > 0,

(7) lim
N→∞pN,−h = E

[(
1 − e−2h(φ̃0+h)/σ 2

d
)
1φ̃0>−h

] = E
[
sign(φ̃0 + h)

]
.

We note that the second equality follows from an elementary calculation. The next result
establishes the exponential decay of pN,h as N → ∞ for d > 3, with an extra log factor for
d = 3.

THEOREM 4. For any h > 0 and d ≥ 3, there exists a constant c such that for N > 1,

pN,h ≤ exp
(−ch2N/ logN

)
, d = 3,(8)

pN,h ≤ exp
(−ch2N

)
, d > 3.(9)

The third result establishes the polynomial decay of p0,N as N → ∞ and provides bounds
on the exponent.

THEOREM 5. For any d ≥ 3, there exist constants C,c > 0 such that for N > 1,

c√
N

≤ pN,0 ≤ C

√
logN

N
, d = 3,(10)

c

Nd/2−1 ≤ pN,0 ≤ C√
N

, d > 3.(11)

Finally, for d = 3 we provide some bounds on the critical window for h. Below we take
hN > 0 to be a sequence of levels that converges to 0, and write p+

N for pN,hN
and p−

N for
pN,−hN

to simplify notation.

THEOREM 6. Let d = 3. Suppose that there exists a constant C > 0 such that hN ≤
CN−1/2 for N ≥ 1. Then there exists a constant c > 0 such that for N ≥ 1,

(12) p+
N ≥ c√

N
.

Conversely, there exists a constant C > 0 such that if

lim inf
N→∞ hN

√
N

logN log logN
≥ C,
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then

(13) lim
N→∞

p+
N

pN,0
= 0.

Furthermore, if there exists a constant C > 0 such that hN ≤ C(logN/N)1/2 for N ≥ 1, then
there exists a constant c > 0 such that for N > 1

(14) p−
N ≤ c

√
logN

N
.

Conversely, if limN→∞ hN

√
N

logN
= ∞, then

(15) lim
N→∞

p−
N

pN,0
= ∞.

1.3. Related work. The chemical distance on level sets for d = 2 has been previously
studied in [6] (we refer the reader to [6] for another extensive discussion of related work),
where it was proved that with positive probability the chemical distance between two bound-
aries of a macroscopic annulus is at most Ne(logN)α for any fixed α > 1/2. Our Theorem 1
improves on [6] in the following two ways:

• Instead of proving a positive probability bound as in [6], Theorem 1 states that the upper
bound on the chemical distance holds with high probability given connectivity. At the
moment, we can only show the with high probability result as in (5); as noted in Remark 2,
it is possible that with some expected future input, one would be able to derive a stronger
version as in (6).

• The upper bound is sharpened from Ne(logN)α to N(logN)1/4, which is somewhat surpris-
ing. In fact, the authors of the present article as well as a few people we talked to believed
that the chemical distance should be at least N logN .

A major difference between our proof of Theorem 1 and the proof of the corresponding
result in [6] is that our proof does not rely on Makarov’s theorem (on the dimension of the
support of planar harmonic measures) which was a fundamental ingredient in [6]. Instead of
applying Makarov’s theorem, we study the intrinsic structure of the “exploration martingale”
introduced in Section 2.

Additionally, we remark that the result proved in [6] applies to level-set percolation for
Gaussian free fields on the integer lattice (as well as on the metric graph). Since percolation
on the metric graph is dominated by the percolation on the integer lattice, our Theorem 1
implies that with nonvanishing probability the chemical distance in the level-set cluster on the
integer lattice between the boundary of the annulus is O(N(logN)1/4). We feel it is possible
that the methods we employ in proving Theorem 1 together with some technical work might
be sufficient to show that the chemical distance on the integer lattice is O(N(logN)1/4) with
high probability given connectivity. However, we prefer not to consider this problem here to
avoid further complications. Furthermore, we note that percolation clusters for level sets on
the metric graph in two dimensions are of fundamental importance since their first passage
sets converge to those of (continuous) Gaussian free fields [1, 2] (thus, we believe Theorem 1
is of substantial interest on its own). Finally, [6] also established the chemical distance for
critical random walk loop soup clusters. We chose not to consider proving an analogue of
Theorem 1 for random walk clusters in the present paper.

For d ≥ 3, level-set percolation for Gaussian free fields (on metric graphs) has been studied
in [11], which in particular computed the connectivity probability between any two points
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and showed that the critical threshold is at h = 0. Our methods allow us to improve on those
results by deriving more quantitative information on the phase transition, especially when
d = 3. In this case, we can compute the connectivity exponent at criticality (we remark that
the real contribution of the present paper is on its upper bound, since the lower bound can be
deduced easily from [11]), prove an almost exponential decay at subcriticality and provide an
explicit description of the percolation probability in the supercritical regime (which can be
rarely achieved in percolation models). Our results seem to describe the phase transition of
the percolation model for the metric graph Gaussian free field in three dimensions in rather
precise detail. This is somewhat interesting since percolation models in three dimensions are
in general rather difficult.

That being said, we would like to mention that level-set percolation for Gaussian free
fields on integer lattices for d ≥ 3 has already been extensively studied (see [5, 7, 8, 13, 14,
16–18, 20–22]). Contrary to the case of two dimensions, percolation is substantially different
on metric graphs and on integer lattices for d ≥ 3, (roughly speaking) for the reason that
there is a phase transition in higher dimensions but in two dimensions the percolation has
the same qualitative behavior for any fixed h (see Theorem 1). We remark that percolation
on integer lattices is considerably more challenging than on metric graphs. In fact, despite
intensive research, it remains an open question what the exact critical threshold is for d ≥ 3
on integer lattices (but it was proved in [7] that the critical threshold is strictly positive), as
well as whether a sharp phase transition exists. It would be difficult to apply methods in the
present paper to prove something on the integer lattices for d ≥ 3, for the reason that we do
not have a precise control over the “exploration martingale” (as introduced in Section 2) in
the case of integer lattices.

1.4. Discussions on future directions. Our work suggests a number of interesting direc-
tions for further research, which we list below:

• The factor of N(logN)1/4 in Theorem 1 reinstates the (now even more intriguing) ques-
tion of whether the chemical distance is linear or not. Our bound of N(logN)1/4 strongly
suggests that this is a highly delicate problem.

• Our method can give some nontrivial bounds on the exponent for chemical distances for
d ≥ 3 at criticality, but it seems challenging to compute the exact exponent.

• The difference of a factor of
√

logN between the upper and lower bounds of (10) hides im-
portant information about the geometry of critical clusters for d = 3. For example, whether
the capacity of the critical cluster containing 0 is of order N , conditioned on the cluster
intersecting with ∂VN . It would be interesting to prove an up-to-constants bound for the
connectivity probability at criticality.

• It would be very interesting to construct an incipient infinite cluster measure for critical
percolation in three dimensions, as has been done for Bernoulli percolation in two dimen-
sions in [9] (see also [3] for a nicely streamlined presentation).

1.5. Notation conventions and organization. For a real vector x (in any dimension), we
denote by |x| the Euclidean norm of x, by |x|�1 its �1-norm and by |x|∞ its �∞-norm. We
will also use |A| to denote the cardinality of a finite set A. The meaning will be clear from
context. We will denote by Ā and Ao the closure and interior of a subset A ⊂ G̃, respectively.
We use Ac to denote the complement of the set (or event) A.

Throughout, we will use ϕ and  to denote the density function and distribution function
of the standard normal distribution, and ̄ to denote its survival function. That is, ̄(x) =
1 − (x).

To simplify certain statements, we use the following notation to describe the asymptotic
behavior of functions of N as N tends to infinity. For two positive functions f and g, we
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say f (N) = O(g(N)) as N → ∞ if there exist constants c > 0 and N0 > 0 (possibly de-
pending on d , h or other parameters) such that for all N ≥ N0, f (N) ≤ cg(N). We say
f (N) = o(g(N)) if for every constant c > 0, there exists N0 > 0 such that for all N ≥ N0,
f (N) ≤ cg(N). Similarly, we say f (N) = �(g(N)) if g(N) = O(f (N)) and f (N) =
ω(g(N)) if g(N) = o(f (N)). Finally, we say f (N) = �(g(N)) if f (N) = O(g(N)) and
f (N) = �(g(N)).

The rest of the paper is organized as follows. In Section 2, we introduce a family of mar-
tingales which is the key to proving all the results in the present paper. In Section 3, we prove
the results concerning d ≥ 3 (as the proof is substantially simpler than that for d = 2), and
in Section 4 we prove Theorem 1 concerning d = 2 (we remark that the proof of Theorem 1
encapsulates all the technical ideas of the present article).

2. Exploration martingale. In this section, we introduce the “exploration martingale”
and demonstrate some of its basic properties. We note that the approach of applying martin-
gales in the study of percolation for Gaussian free fields has appeared before (cf. [2, 12]).

The discussion in this section applies to all dimensions, and we will denote by {φ̃v : v ∈
G̃} the Gaussian free field under consideration, without further specifying G̃. For a finite
subset A ⊂ V (as usual, G̃ is the metric graph associated to the vertex set V ), we define the
“observable” XA to be the average of φ̃ on A,

XA = 1

|A|
∑
v∈A

φ̃v.

Let I0 be a deterministic, closed, bounded, connected subset of G̃ and let It = {v :
Dh(I0, v) ≤ t} be the closed ball of radius t > 0 around I0 with respect to Dh, the graph
distance on Ẽ≥h (here we use the following convention: if u and v are distinct and u /∈ Ẽ≥h

we let Dh(u, v) = Dh(v,u) = ∞, but for any u ∈ G̃ we set Dh(u,u) = 0 even if u /∈ Ẽ≥h).
For U ⊂ G̃, let FU be the σ -field generated by {φ̃v : v ∈ U}, and

FIt = {
E ∈ FG̃ : E ∩ {It ⊂ U} ∈ FU for all open U ⊃ I0

}
.

We then define the continuous-time martingale MA by

(16) MA,t = E[XA | FIt ].
We will call MA the exploration martingale with source I0 and target A. Before proceeding
further, we show the following measurability property of It .

PROPOSITION 7. For any open subset U of G̃ containing I0 and any t ≥ 0, we have
{It ⊂ U} ∈ FU .

PROOF. Since I0 is deterministic, we assume without loss of generality that t > 0. Write
Uh = Ū ∩ Ẽ≥h, let DUh

be the graph distance on Uh, and IU,t = {u ∈ Ū : DUh
(I0, v) ≤ t}

be the closed ball of radius t around I0 with respect to DUh
. We will show that {It ⊂ U} =

{IU,t ⊂ U} ∈ FU . First, it is clear that for any u, v ∈ G̃, Dh(u, v) ≤ DUh
(u, v) so we have

IU,t ⊆ It and {It ⊂ U} ⊆ {IU,t ⊂ U}. Now, assume IU,t ⊂ U and that there exists v ∈ It

with v /∈ U . Then there exists 0 < s ≤ t and a path � : [0, s] → G̃ parametrized by Dh with
�(0) = u0 ∈ ∂I0, �(s) = v, and �([0, s]) ⊆ Ẽ≥h. Setting s′ = sup{x ∈ [0, s] : �(x) ∈ IU,t }
we have �(s′) ∈ IU,t ⊂ U and thus s′ < s. Hence, there exists an open neighborhood (a, b)

of s ′ such that �((a, b)) ⊂ U . By assumption, �((a, b)) ⊂ Ẽ≥h, so we get �((a, b)) ⊂ Uh,
and thus �((a, b)) ⊂ IU,t , which contradicts the maximality of s′. This concludes the proof
that {It ⊂ U} = {IU,t ⊂ U}, and thus the proposition follows. �
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Proposition 7, together with the following strong Markov property of the Gaussian free
field (see [19], Theorem 4 in Chapter 2, Section 2.4, for a proof) will provide useful formulas
for MA and its quadratic variation 〈MA〉.

THEOREM 8. Let K be a random compact connected subset of G̃ such that for every
deterministic open subset U of G̃, the event {K ⊆ U} ∈ FU . Then conditioned on K and
FK, {φ̃v : v ∈ G̃ \ K} is equal in distribution to {E[φ̃v | FK] + ψ̃v : v ∈ G̃ \ K} where ψ̃ is a
Gaussian free field (with Dirichlet boundary condition) on G̃ \K. Additionally, for v ∈ G̃ \K
and T = inf{t ≥ 0 : B̃t ∈ K},
(17) E[φ̃v | FK] = Ev[φ̃B̃T

1T <ζ | FK] = ∑
u∈∂K

Hm(v, u;K)φ̃u.

Here, the harmonic measure Hm is given by Hm(v, u;K) = Pv(T < ζ, B̃T = u).

Note that if v ∈K, the harmonic measure is a point mass of mass 1 at v. To avoid having to
account for this case separately, we will sometimes let the sum in (17) range over all u ∈ K.
The summation notation is justified since in either case the harmonic measure is supported
on a finite number of points. Writing Hmt (v, u) for Hm(v, u;It ) and

Hmt (A,u) = 1

|A|
∑
v∈A

Hmt (v, u),

we get from (17)

(18) MA,t = ∑
u∈It

Hmt (A,u)φ̃u.

Writing Gt for the Green’s function on G̃ \ It . We get from Theorem 8 that

Var[XA | FIt ] = 1

|A|2
∑

v,v′∈A

Gt

(
v, v′).(19)

The following lemma establishes the continuity of MA and will allow us to compute its
quadratic variation. We defer the proof to the end of this section.

LEMMA 9. MA,t and Var[XA | FIt ] are almost-surely continuous as functions of t .

Recall that for a continuous martingale M its quadratic variation 〈M〉 is the unique in-
creasing continuous process vanishing at zero such that M2 − 〈M〉 is a martingale (see [15],
Theorem 1.3 in Chapter IV). From this, we deduce the following.

COROLLARY 10. The quadratic variation of MA is given by

〈MA〉t = Var[XA | FI0] − Var[XA | FIt ].

PROOF. By definition the process Var[XA | FI0] − Var[XA | FIt ] is adapted to FIt and
vanishes at zero. It is increasing because It is increasing (so Var[XA | FIt ] is decreasing),
and it is continuous by Lemma 9. Therefore, by the characterization of 〈MA〉 we only need
to show that the process {Yt : t ≥ 0} is a martingale, where

Yt = M2
A,t − Var[XA | FI0] + Var[XA | FIt ].



1418 J. DING AND M. WIRTH

To this end, note that for any times 0 ≤ s < t ,

E
[
M2

A,t | FIs

] = M2
A,s +E

[
(MA,t − MA,s)

2 | FIs

]
,

E
[
Var[XA | FIt ] | FIs

] = E
[
(XA − MA,t )

2 | FIs

]
= Var[XA | FIs ] −E

[
(MA,t − MA,s)

2 | FIs

]
.

We can then calculate E[Yt | FIs ] as follows:

E[Yt | FIs ] = E
[
M2

A,t | FIs

] +E
[
Var[XA | FIt ] | FIs

] − Var[XA | FI0]
= M2

A,s + Var[XA | FIs ] − Var[XA | FI0]
= Ys,

completing the verification that {Yt : t ≥ 0} is a martingale. �

Next, we recall that the quadratic variation relates M to Brownian motion. In particular
[15], Theorem 1.7 in Chapter V, stated below, gives the appropriate extension of the Dubins–
Schwarz theorem for martingales of bounded quadratic variation.

THEOREM 11. Let be M a continuous martingale, Tt = inf{s : 〈M〉s > t}, and W be the
following process:

Wt =
{
MTt − M0 t < 〈M〉∞,

M∞ − M0 t ≥ 〈M〉∞.

Then W is a Brownian motion stopped at 〈M〉∞.

When applying this theorem, we will generally denote by B a Brownian motion which
satisfies Bt = MTt − M0 for t < 〈M〉∞ but is not stopped at 〈M〉∞, so that Wt = Bt∧〈M〉∞ .
We note that by Theorem 8, {MA,t − MA,0 : t ≥ 0} is independent of FI0 , so we will take B

to be independent of FI0 as well. Next, we present some formulas which will be used in the
later sections to compute the quadratic variation of exploration martingales. First, we note
that Gt may be written in terms of G and Hmt as follows:

(20) Gt

(
v, v′) = G

(
v, v′) − ∑

w∈It

Hmt (v,w)G
(
w,v′).

This can be seen, for example, by noting that for any v′ ∈ G̃, G(v, v′) − Gt(v, v′) is har-
monic in v for v /∈ It and converges to G(v, v′) as v → ∂It and that the same holds for∑

w∈It
Hmt (v,w)G(w,v′). By similar reasoning, for 0 ≤ s ≤ t and v, v′ ∈ A we have the

following two expressions for Gs(v, v′) − Gt(v, v′):

Gs

(
v, v′) − Gt

(
v, v′) = ∑

w∈It

Hmt (v,w)Gs

(
w,v′)

= ∑
w∈It

Hmt (v,w)G
(
w,v′) − ∑

w′∈Is

Hms

(
v,w′)G(

w′, v′).
In later sections, it will be useful to consider the total mass of the harmonic measure. For
a set B ⊂ G̃, we let Hm(v,B) = ∑

w∈B Hm(v,w;B). For a finite subset A ⊂ G̃, we let
Hm(A,B) = |A|−1 ∑

v∈A Hm(v,B). To simplify notation, we will write πA,t for Hm(A,It ).
Finally, we prove that MA,t and Var[XA | FIt ] are indeed continuous.
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PROOF OF LEMMA 9. It suffices to show that for any v, v′ ∈ V , E[φ̃v | FIt ] and
Cov[φ̃vφ̃

′
v | FIt ] are continuous (then it is clear that MA,t and Var[XA | FIt ] are averages

of a finite number of continuous functions and are thus continuous). Since both functions are
constant for t ≥ Dh(I0, v), we let 0 ≤ t ≤ Dh(I0, v). By (17) and (20), it suffices to show
that for any continuous function f on G̃, the following function is continuous:

F(t) = ∑
u∈∂It

Hmt (v, u)f (u).

Let D�1 denote the graph distance on G̃ (i.e., �1 distance on R
d ). Since K = |∂It | < ∞,

δ1 = min
{
D�1

(
u, (∂It ∪ V ) \ {u}) : u ∈ ∂It

}
> 0.

For s such that |t − s| < δ1/2 and u ∈ ∂It , let ψs(u) = ∂Is ∩B�1(u, δ1/2) (here B�1(u, δ1/2)

is the open ball of radius δ1/2 around u with respect to D�1 ). The sets ψs(u) are nonempty
and disjoint. If s > t , ∂Is = ⋃

u∈∂It
ψs(u); if s < t , we let Rs = ∂Is \ (

⋃
u∈∂It

ψs(u)). We
have

∣∣F(t) − F(s)
∣∣ ≤ ∑

u∈∂It

∣∣∣∣Hmt (v, u)f (u) − ∑
u′∈ψs(u)

Hms

(
v,u′)f (

u′)∣∣∣∣
+ 1s<t

∣∣∣∣ ∑
u′∈Rs

Hms

(
v,u′)f (

u′)∣∣∣∣.
Since It is compact, M = max{f (u) : u ∈ It } < ∞. Since ∂It is finite, for any ε > 0 there
exists 0 < δ2 ≤ δ1/2 such that |f (u) − f (u′)| < ε/2 for u ∈ ∂It and u′ ∈ B�1(u, δ2). Thus,
for |t − s| < δ2,

∣∣F(t) − F(s)
∣∣ ≤ M

∑
u∈∂It

∣∣Hmt (v, u) − Hms

(
v,ψs(u)

)∣∣ + 1s<tM Hms(v,Rs) + ε

2
.

Finally, it follows from the construction of B̃t (by considering the excursions of a standard
Brownian motion) that for any u ∈ G̃, b ≤ D�1(u,V \ {u}), and u′ ∈ G̃ such that a = |u −
u′|�1 ≤ b,

Hm
(
u,u′; {

u′} ∪ ∂B�1(u, b)
) ≥ b

b + (2d − 1)a
.

Combining this with the previous bound, it follows from a straightforward calculation that
there exists δ3 ≤ δ2 such that if |t − s| < δ3,∣∣F(t) − F(s)

∣∣ ≤ ε. �

3. Percolation in three and higher dimensions. In the case d ≥ 3, we let the vertex set

V = Z
d be the whole lattice and study the behavior of pN,h = P(0

≥h←→ ∂VN) as N → ∞.
The theorems characterizing the behavior of pN,h will follow from Proposition 12, stated
below. The idea is to consider a sequence of exploration martingales indexed by K , with
source set I0 = {0} and target set AK = {xK}, where xK ∈ Z

d satisfies |xK | = K , and let
K → ∞. We note that the calculations below are valid for any sequence {xK}K≥1 satisfying
this condition so we choose one such sequence arbitrarily and consider it fixed for the rest
of the section. For ease of notation, we will write MK for the exploration martingale instead
of MxK

. Recall σ 2
d = G(0,0) and note that by translation invariance σ 2

d = G(u,u) for all
u ∈ Z

d . Recall also the process πK,t = ∑
v∈It

Hmt (xK, v).
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PROPOSITION 12. Let B be a standard one-dimensional Brownian motion that is inde-
pendent of φ̃0 and τh be the following stopping time:

τh = inf
{
t ≥ 0 : Bt ≤ ht − φ̃0 − h

σ 2
d

}
.

We have

lim
K→∞P

(
πK,∞ − πK,0

G(0, xK)
≤ s

)
= P(τh ≤ s) ∀s ≥ 0.

That is, (πK,∞ − πK,0)/G(0, xK) converges in law to τh as K → ∞.

Next, we state a few results which will be needed to prove Proposition 12. The proofs are
deferred to the end of the section. First, we state a lemma that will allow us to relate the
quadratic variation of MK to the harmonic measure of It .

LEMMA 13. Let N ≥ 1 be given. Recall that for any subset I ⊂ G̃, Hm(xK,I) denotes
the probability that a metric graph Brownian motion started at xK hits I . The following holds
uniformly over all compact, connected subsets I ⊂ G̃ satisfying 0 ∈ I ⊂ G̃ ∩ [−N,N]d :

Var[φ̃xK
| F0] − Var[φ̃xK

| FI]
G(0, xK)(Hm(xK,I) − Hm(xK,0))

= 1 + O

(
1

K

)
as K → ∞.

The second lemma gives upper and lower bounds for (πK,t − πK,0)/G(0, xK) at the time
It hits ∂VN .

LEMMA 14. Let f1 and f2 be the following functions:

f1(N) = lim sup
K→∞

Hm(xK,VN) − Hm(xK,0)

G(0, xK)
,

f2(N) = lim inf
K→∞ inf

I

Hm(xK,I) − Hm(xK,0)

G(0, xK)
,

where the infimum in the definition of f2 is taken over all compact, connected subsets I ⊂ G̃
such that 0 ∈ I and I ∩ ∂VN �=∅. We have

f1(N) = O
(
Nd−2)

,

f2(N) = �

(
N

log(N)1d=3

)
.

Finally, the following proposition gives the distribution of τh, and will allow us to obtain
quantitative estimates from Proposition 12.

PROPOSITION 15 ([4], equation (2.0.2) in Part II). For m ∈ R and b > 0, let τ = inf{t >

0 : Bt ≤ mt − b}. Then for T > 0,

P(τ ≤ T ) = ̄

(
b√
T

− m
√

T

)
+ e2bm̄

(
b√
T

+ m
√

T

)
.

We note that it follows from this proposition that the function P(τ ≤ T ) is continuous in
(m,b,T ). We now turn to proving Proposition 12 using these three results.
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PROOF OF PROPOSITION 12. First, we note that the case s = 0 is trivial, as {πK,∞ =
πK,0} = {φ̃0 ≤ h} = {τh = 0}. Therefore, we will take s > 0 and assume that φ̃0 > 0. We let
f2 be as in Lemma 14, and N be such that f2(N) > 3s. By Lemma 13, for any 0 < ε < 1/2
there exists K0 such that for all K ≥ K0 the following holds almost surely. For all 0 ≤ t ≤
Dh(0, ∂VN),

(21)
πK,t − πK,0

G(0, xK)
(1 − ε) ≤ 〈MK〉t

G(0, xK)2 ≤ πK,t − πK,0

G(0, xK)
(1 + ε).

Additionally, by our choice of N we can take K0 large enough that for any K ≥ K0 and any
compact connected set I connecting 0 to ∂VN we have

Hm(xK,I) − Hm(xK,0)

G(0, xK)
> 2s.

By the definition of MK (and the assumption φ̃0 > h), we have MK ≥ hπK,t for all t ≥ 0,
with equality if and only if πK,t = πK,∞. That is, if and only if the explored set It has stopped
growing (when viewed from infinity). Letting ηh = inf{t ≥ 0 : MK,t = hπK,t } ∧ Dh(0, ∂VN)

be the time the exploration stops or reaches ∂VN , we have by our assumptions on K ,{
πK,∞ − πK,0

G(0, xK)
≤ s

}
=

{
πK,ηh

− πK,0

G(0, xK)
≤ s

}

since πK,∞ −πK,0 ≤ sG(0, xK) implies Dh(0, ∂VN) = ∞, and consequently πK,ηh
= πK,∞.

Now, we let Ts = inf{t ≥ 0 : 〈MK〉t /G(0, xK)2 > s} and BK be a standard Brownian mo-
tion satisfying BK,s = (MK,Ts − MK,0)/G(0, xK) for 0 ≤ s ≤ 〈MK〉∞/G(0, xK)2. As usual,
we take BK to be independent of φ̃0. We note that πK,0σ

2
d = Hm(xK,0)G(0,0) = G(0, xk)

which gives

ηh = inf
{
t ≥ 0 : MK,t − MK,0

G(0, xK)
≤ h

πK,t − πK,0

G(0, xK)
− φ̃0 − h

σ 2
d

}
∧ Dh(0, ∂VN).

We let τ̂K,h = 〈MK〉ηh
/G(0, xK)2 and note that by (21)

τ̂K,h

1 + ε
≤ πK,ηh

− πK,0

G(0, xK)
≤ τ̂K,h

1 − ε
.

For m ∈ R, we let τK,m = inf{t ≥ 0 : BK,t ≤ mt − (φ̃0 − h)/σ 2
d } and note that τK,h is equal

in distribution to τh. We claim that

τK,h/(1+ε) ∧ s ≤ τ̂K,h ≤ τK,h/(1−ε), h < 0,

τK,h/(1−ε) ∧ s ≤ τ̂K,h ≤ τK,h/(1+ε), h ≥ 0.

To see this, assume that h ≥ 0 (the case h < 0 is similar) and let St = 〈MK〉t /G(0, xk)
2 be

the inverse of Ts . Almost surely, St is continuous on the interval [0, ηh]. For t < ηh, we have
by the definition of ηh,

MK,t − MK,0

G(0, xK)
> h

πK,t − πK,0

G(0, xK)
− φ̃0 − h

σ 2
d

.

By (21), this is equivalent to

BK,St >
h

1 + ε
St − φ̃0 − h

σ 2
d

∀0 ≤ t < Sηh
.
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By continuity of S, τ̂K,h = Sηh
≤ τK,h/(1+ε). For the lower bound, note that if ηh =

Dh(0, ∂VN) then by (21) and our assumptions on N and K ,

τ̂K,h ≥ πK,Dh(0,∂VN ) − πK,0

G(0, xK)2 (1 − ε) > s.

If ηh < Dh(0, ∂VN), then arguing as above

BK,τ̂K,h
= h

πK,ηh
− πK,0

G(0, xK)2 − φ̃0 − h

σ 2
d

≤ h

1 − ε
τ̂K,h − φ̃0 − h

σ 2
d

.

It follows that τ̂K,h ≥ τK,h/(1−ε) ∧ s as desired.
Therefore, we conclude that for all K ≥ K0,

P

(
τK,h/(1−ε)

1 − ε
≤ s

)
≤ P

(
πK,ηh

− πK,0

G(0, xK)
≤ s

)
≤ P

(
τK,h/(1+ε)

1 + ε
≤ s

)
, h < 0,

P

(
τK,h/(1+ε)

1 − ε
≤ s

)
≤ P

(
πK,ηh

− πK,0

G(0, xK)
≤ s

)
≤ P

(
τK,h/(1−ε)

1 + ε
≤ s

)
, h ≥ 0.

Letting ε ↓ 0 and noting that P(τK,m ≤ x) is continuous in (m,x) by Proposition 15 con-
cludes the proof. �

3.1. Proof of main theorems. In this subsection, we prove Theorems 3, 4 and 5. The
following corollary of Proposition 12 will be used in each case.

COROLLARY 16. Let f1 and f2 be as in Lemma 14, and τh be as in Proposition 12. We
have

P
(
τh ≥ f1(N)

) ≤ pN,h ≤ P
(
τh ≥ f2(N)

)
.

PROOF. Let f1,K and f2,K be defined as follows:

f1,K = Hm(xK,VN) − Hm(xK,0)

G(0, xK)
, f2,K = inf

I

Hm(xK,I) − Hm(xK,0)

G(0, xK)
,

where as in Lemma 14, the infimum is over all compact connected subsets of G̃ connecting 0
to ∂VN . We have for all K ,

P

(
πK,∞ − πK,0

G(0, xK)
≥ f1,K(N)

)
≤ ph,N ≤ P

(
πK,∞ − πK,0

G(0, xK)
≥ f2,K(N)

)
.

Since P(τh ≤ s) is continuous in s by Proposition 15, taking the limit K → ∞ gives the
desired result. �

PROOF OF THEOREM 3. For h > 0 and b > 0, we obtain by letting T = ∞ in Proposi-
tion 15 that

P(Bt > −ht − b,∀t ≥ 0) = 1 − exp(−2bh).

Since f2(N), f1(N) → ∞ as N → ∞, Corollary 16 gives

lim
N→∞pN,−h = P(τ−h = ∞) = E

[(
1 − e−2h(φ̃0+h)/σ 2

d
)
1φ̃0>−h

]
. �

PROOF OF THEOREM 4. In this case, we use the following simple bound, which is a
direct consequence of Proposition 15 and the fact that ̄(x) ≤ exp(−x2/2) for all x ≥ 0,

P(τh ≥ s | F0) ≤ ̄

(
h
√

s − φ̃0 − h

σ 2
d

√
s

)
≤ exp

(
−h2s

2
+ h(φ̃0 − h)

σ 2
d

)
.
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This gives

pN,h ≤ P
(
τh ≥ f2(N)

) ≤ exp
(
−h2f2(N)

2

)
E

[
exp

(
h(φ̃0 − h)

σ 2
d

)]

= exp
[
−�

(
h2N

(logN)1d=3

)]
,

completing the proof of the theorem. �

PROOF OF THEOREM 5. As in the previous cases, we apply Proposition 15, Corollary 16
and Lemma 14 to obtain

pN,0 ≥ P
(
τ0 ≥ f1(N)

)
= E

[(


(
φ̃0

σ 2
d

√
f1(N)

)
− 

(
− φ̃0

σ 2
d

√
f1(N)

))
1φ̃0>0

]

= �

(
1

Nd/2−1

)
.

The upper bound follows by the same reasoning

pN,0 ≤ P
(
τ0 ≥ f2(N)

)
= E

[(


(
φ̃0

σ 2
d

√
f2(N)

)
− 

(
− φ̃0

σ 2
d

√
f2(N)

))
1φ̃0>0

]

= O

(√
logN

1d=3

√
N

)
,

completing the proof of the theorem. �

3.2. Critical window in three dimensions. In this section, we prove Theorem 6. That is,
we take d = 3 and give rates of decay for h (now considered as a function of N ) such that
pN,±h is of the same order as pN,0. Throughout, we let hN > 0 be a sequence such that
hN → 0. To simplify notation, we will write σ 2 for σ 2

3 , p±
N for pN,±hN

, and similarly with
other quantities. Additionally, we write (a)+ for max{a,0} and will use (φ̃0 ∓hN)+ instead of
(φ̃0 ∓hN) when applying Proposition 12 to avoid writing 1φ̃0>±hN

when taking expectations.

We first prove (12). Letting b = (φ̃0 − hN)+/σ 2, we have from Proposition 16 and Propo-
sition 15,

p+
N ≥ E

[
̄

(
hN

√
f1(N) − b√

f1(N)

)

− e2hNb̄

(
hN

√
f1(N) + b√

f1(N)

)]
.

(22)

To bound the right-hand side of the preceding inequality, we use the following lemma.

LEMMA 17. Let x ∈R and y ≥ 0. Define f and g by

f (x, y) = ̄(x − y) − e2xȳ(x + y) and g(x, y) = 1 − x̄(x + y)

ϕ(x + y)
.

We have g(x, y) > 0 and

2g(x,0)ϕ(x)(y ∧ x) ≤ f (x, y) ≤ 2g(x, y)ϕ
(
(x − y)+

)
y, x ≥ 0,

2g(x, y)ϕ(x − y)y ≤ f (x, y) ≤ 2g(x,0)ϕ(x)y, x ≤ 0.
(23)
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PROOF. It is clear that g(x, y) > 0 for x ≤ 0. For x > 0, the fact that g(x,0) > 0 is
equivalent to the well-known (and straightforward to check) bound ̄(x) < ϕ(x)/x for all
x > 0 and it directly implies g(x, y) ≥ g(x + y,0) > 0.

To prove (23), note that

∂f

∂y
(x, y) = 2ϕ(x − y) − 2xe2xȳ(x + y) = 2g(x, y)ϕ(x − y).

Using the fact that ̄(x)/ϕ(x) is decreasing in x (for all values of x), we conclude that
g(x, y) is decreasing in y for x < 0 and increasing in y for x > 0. The desired bounds follow
by integrating ∂f/∂y. For instance, for x > 0 we have

f (x, y) =
∫ y

0

∂f

∂y
(x, s) ds ≤ 2g(x, y)

∫ y

0
ϕ(x − s) ds

= 2g(x, y)
[
(x) − (x − y)

]
≤ 2g(x, y)ϕ

(
(x − y)+

)
y

The other three bounds follow by similar arguments. �

Note now that hN = O(N−1/2) implies hN

√
f1(N) = O(1) and, therefore, g(hN

√
f1(N),

0) = �(1). Recalling (22) and applying Lemma 17 with x = hN

√
f1(N) and y = b/

√
f1(N)

give

p+
N ≥ 2g

(
hN

√
f1(N),0

)
ϕ

(
hN

√
f1(N)

)
E

[
b√

f1(N)
∧ hN

√
f1(N)

]

= �

(
1√
N

)
,

which proves (12).
We turn next to (13). We let b be as above, and note the trivial bound g(x, y) ≤ 1 for x ≥ 0.

Combining this with Lemma 17, we obtain

p+
N ≤ P

(
τ+
N ≥ f2(N)

)
≤ E

[
2b√

f2(N)
ϕ

((
hN

√
f2(N) − b√

f2(N)

)
+

)]

≤ exp(−h2
Nf2(N)/2)√
f2(N)

E
[
behNb]

.

Recalling f2(N) = �(N/ logN), we have under the assumption

lim inf
N→∞

hN

√
N√

logN log logN
≥ C

for a large enough constant C, that e−h2
Nf2(N)/2 = o(

√
logN). This gives p+

N = o( 1√
N

) as
required for (13).

The bounds on p−
N are obtained by a similar argument. Let b = (φ̃0 + hN)+/σ 2, and note

that for x ≥ 0 we have g(−x,0) ≤ 1 + x/ϕ(x). Applying Lemma 17 with x = hN

√
f2(N)

and y = b/
√

f2(N), this gives

p−
N ≤ P

(
τ−
N ≥ f2(N)

)
≤ 2

ϕ(hN

√
f2(N)) + hN

√
f2(N)√

f2(N)
E[b]

= O
(
hN + f2(N)−1/2)

.
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Recalling f2(N) = �(N/ log(N)), we see that if hN = O(
√

logN/N), then the above im-

plies p−
N = O(

√
logN

N
), as required for (14).

Conversely, we have for x, y ≥ 0 that g(−x, y) ≥ x̄(y)/ϕ(−x + y) so Lemma 17 gives

̄(−x − y) − e−2xȳ(−x + y) ≥ 2xye−2xȳ(y).

Letting x = hN

√
f1(N) and y = b/

√
f1(N), we obtain

p−
N ≥ P

(
τ−
N ≥ f1(N)

)
≥ E

[
2hNbe−2hNb̄

(
b√

f1(N)

)]
.

It follows that if hN = o(1), p−
N = �(hN). In particular, hN = ω(

√
logN/N) implies p−

N =
ω(

√
logN/N), as required for (15).

3.3. Proof of technical lemmas.

PROOF OF LEMMA 13. By [10], Theorem 4.3.1, there exists a constant cd such that the
following holds:

(24) G(0, x) = cd

|x|d−2 + O

(
1

|x|d
)
.

Since G(x,y) = G(0, y − x) for x, y ∈ Z
d , we can deduce that for any point v ∈ VN ,

∣∣G(v, xK) − G(0, xK)
∣∣ = G(0, xK)O

( |v|
K

)
as K → ∞.

By this, we mean that the suppressed constant does not depend on v or K . We note that by
(3) this bound extends to v ∈ G̃ ∩ [−N,N]d , and in particular to points v on edges incident
to 0 (i.e. such that |v| < 1). From this, we obtain

Var[φ̃xK
| FI] = G(xK,xK) − ∑

v∈∂I
Hm(xK, v;I)G(v, xK)

= G(xK,xK) − G(0, xK)Hm(xK,I)

+ G(0, xK)
∑
v∈∂I

Hm(xK, v;I)O

( |v|
K

)
.

Similarly, we have Var[φ̃xK
| F0] = G(xK,xK) − G(0, xK)Hm(xK,0). Therefore,

Var[φ̃xK
| F0] − Var[φ̃xK

| FI]
G(0, xK)

= Hm(xK,I) − Hm(xK,0)

+ ∑
v∈∂I

Hm(xK, v;I)O

( |v|
K

)
.

To conclude, we bound the last term above by the difference Hm(xK,I) − Hm(xK,0). Let
τ0 = inf{t ≥ 0 : B̃t = 0} be the hitting time of 0 by a metric graph Brownian motion. We have

Hm(xK,I) − Hm(xK,0) = ∑
v∈∂I

Hm(xK, v;I)Pv(τ0 = ∞)

= ∑
v∈∂I

Hm(xK, v;I)�
(|v| ∧ 1

)
,
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where we have used the fact that there exists a constant pd > 0 such that Pv(τ0 = ∞) ≥ pd

for all v ∈ Z
d \ {0}. It follows that

Var[φ̃xK
| F0] − Var[φ̃xK

| FI]
G(0, xK)(Hm(xK,I) − Hm(xK,0))

= 1 + O

(
1

K

)
. �

PROOF OF LEMMA 14. Both bounds are proved by similar arguments so we only provide
the details for the bound on f2(N). First, note that Hm(xK,0)/G(0, xK) = 1/σ 2

d so it suffices
to show Hm(xK,I)/G(0, xK) = �(N/(logN)1d=3) uniformly over compact connected sets
I containing 0 and intersecting ∂VN and K large enough (say K ≥ 100N ). Begin by noting
that any such I contains a set U = {uj }Nj=0 where uj ∈ Z

d and |uj |∞ = j so it suffices to
lower bound Hm(xK,U). To this end, let Y be the number of visits to U by a random walk
started at xK . We have

Hm(xK,U) = P(Y > 0) = E[Y ]
E[Y | Y > 0] .

By (24), we have

E[Y ] = ∑
u∈U

G(u,xK) = �(N)G(0, xK)

On the other hand, if we let S be a simple random walk on Z
d and τU = inf{n ≥ 1 : Sn ∈ U}

be the hitting time of U , the following holds uniformly over u ∈ U ,

E[Y | SτU = u] = ∑
u′∈U

G
(
u,u′) = O

(
N∑

j=1

1

jd−2

)
= O

(
log(N)1d=3

)
.

The result follows by noting that

E[Y | Y > 0] = 1

Hm(xK,U)

∑
u∈U

E[Y | SτU = u]Hm(xK,u).
�

4. Chemical distance in two dimensions. This section is devoted to the proof of The-
orem 1. Recall that φ̃N is the Gaussian free field on the metric graph of VN with Dirichlet
boundary conditions, and that GN is Green’s function on VN as in (2). Our goal is prove that
for any constants 0 < α < β < γ < 1, the chemical distance DN,h(VαN, ∂Vβ,N) is of order at
most N(logN)1/4, conditioned on the event that VαN is connected to ∂VγN .

The proof employs the same type of exploration martingale as in the case of d ≥ 3. Below
we prove Theorem 1 while postponing proofs of a few lemmas to later subsections.

PROOF OF THEOREM 1. For h ∈ R and 0 < α < γ < 1, define EN,1 = {DN,h(VαN,

∂VγN) < ∞}. That is, EN,1 is the event that VαN is connected to ∂Vγ,N in Ẽ
≥h
N .

LEMMA 18. We have

c1 = inf
{
P(EN,1) : N ≥ 1

}
> 0,

where c1 depends on h, α and γ .

REMARK 19. Despite the fact that the statement of Lemma 18 is formally slightly
stronger than [6], Proposition 4, (since percolation on metric graph is a sub-event of perco-
lation on discrete lattice), the proof of [6], Proposition 4, adapts with essentially no change.
Thus, we omit further details of the proof.
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Now, let μ = (1 + γ )/2 and MμN be the exploration martingale with target set ∂VμN and
source set I0 = VαN , as defined in (16). That is to say,

XμN = 1

|∂VμN |
∑

v∈∂VμN

φ̃N,v and MμN,t = E[XμN | FIt ],

where It = {v ∈ VN : DN,h(VαN, v) ≤ t}. From now on, we take N large enough that the
boxes VαN , VβN , VγN , VμN are distinct. For t ≥ 0, we let ∂I+

t = ∂It ∩ Ẽ>h
N be the points on

∂It where φ̃ is strictly above h, which we will refer to as the active points at time t (by active
here we mean that these are the points from which the metric ball exploration can proceed
further), and let ∂I−

t = ∂It \ Ẽ
≥h
N be the points on ∂It where φ̃ is strictly below h. We then

define the “positive” and “negative” parts of MμN (which we denote by M±
μN ) as

M±
μN,t = ∑

u∈∂I±
t

HmN,t (∂VμN,u)(φ̃u − h),

where HmN,t (v, u) = Hm(v, u;It ∪ ∂VN). We note that ∂I−
t = ∂I−

0 for all t , which, com-
bined with the fact It is increasing, implies M−

μN is increasing. For c ∈R, define

EN,2(c) = {
M+

μN,t ≥ c for all 0 ≤ t ≤ DN,h(VαN, ∂VβN)
}
.

LEMMA 20. There exists a constant c2 = c2(h,β, γ ) > 0 such that

P
(
EN,2(c2ε) | EN,1

) ≥ 1 − ε for all ε > 0.

For the rest of the section, we let EN,2 = EN,2(c2ε/2) for convenience. The core idea in
proving Theorem 1 is to bound from below the rate at which the quadratic variation increases
as a function of M+

μN,t . Combined with an upper bound on 〈MμN 〉DN,h(VαN ,∂VβN ), this then
yields an upper bound on DN,h(VαN, ∂VβN). In order to carry out the proof, we first give the
upper bound on the quadratic variation of MμN (which is easier than the lower bound).

LEMMA 21 ([6], Lemma 2). For 0 < μ < 1, there exist constants c, c′ > 0 such that∑
v∈∂VμN

GN(u, v) ≤ cN ∀u ∈ ∂VμN ;(25)

GN(u, v) ≥ c′ ∀u, v ∈ VμN.(26)

By (25) and Corollary 10, we get that for some constant c3 = c3(μ) > 0,

(27) 〈MμN 〉∞ ≤ 1

|∂VμN |2
∑

v,v′∈∂VμN

G
(
v, v′) ≤ c3.

The remaining main task for proving Theorem 1 is to show that on some event E∗
N with

P(E∗
N | EN,1) ≥ 1 − ε, we have

(28) 〈MμN 〉DN,h(VαN ,∂VβN ) ≥ κ
DN,h(VαN, ∂VβN)2

N2
√

logN
,

for some constant κ = κ(ε,α,β, γ,h) > 0. Indeed, assuming (28), we can then combine it
with (27), and conclude that on E∗

N ,

DN,h(VαN, ∂VβN) ≤ c3κ
−1/2N(logN)

1
4 ,

completing the proof of Theorem 1.
It remains to show (28). To this end, we first bound the quadratic variation from below in

terms of the �2-norm of the harmonic measure on the active points, as in the next lemma.
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LEMMA 22. There exists a constant c4 > 0 such that the following holds almost surely
for all integers K ≥ 1:

〈MμN 〉K ≥ c4

K∑
k=1

∑
u∈∂I+

k

HmN,k(∂VμN,u)2.

Note that the chemical distance DN,h(VαN, ∂VβN) is an integer whenever it is finite since

(by our convention as in (4)) VαN, ∂VβN ⊂ Z
2. We let I+ = ⋃DN,h(VαN ,∂VβN )

k=1 ∂I+
k and since

the sets {∂I+
k : k ≥ 1} are disjoint, for u ∈ I+ we can define

W(u) = HmN,k(∂VμN,u),

where k is the unique positive integer such that u ∈ ∂I+
k . We rewrite the conclusion of

Lemma 22 as

(29) 〈MμN 〉DN(VαN ,∂VβN ) ≥ c4
∑

u∈I+
W(u)2.

In order to bound the right-hand side of (29) from below by M+
μN , we need some control on

the empirical profile of {φ̃N,v : v ∈ I+}. To this end, we define

B0 = {
u ∈ I+ : φ̃N,u − h ≤

√
logN

}
,

Bj = {
u ∈ I+ : 2j−1

√
logN < φ̃N,u − h ≤ 2j

√
logN

}
, j ≥ 1.

Here, the scale
√

logN is chosen to match the order of
√
E[φ̃2

u] for u ∈ VβN . Letting Wj =∑
u∈Bj

W(u), we get from the Cauchy–Schwartz inequality that

(30)
∑

u∈I+
W(u)2 ≥

∞∑
j=0

W2
j

|Bj | ,

where we use the convention 0/0 = 0. The appearance of |Bj | in the denominator in the
preceding inequality calls for an upper bound on |Bj |, as incorporated in the next lemma (the
reason for the specific form of the bound will be made clear below).

LEMMA 23. Let f be a function on the positive integers such that f (j) = eO(j). Then
there exists c5 = c5(α,β,h,f ) > 0 such that

sup
{
f (j)E

[|Bj |] : j ≥ 0
} ≤ c5

N2
√

logN
.

We are now ready to give a lower bound on 〈MμN 〉DN,h(VαN ,∂VβN ). By the definition of
Wj , we have

Wj ≥ 2−j (logN)−
1
2

∑
u∈Bj

W(u)(φ̃N,u − h).

In addition, on the event EN,1 ∩ EN,2 we have

∞∑
j=1

∑
u∈Bj

W(u)(φ̃N,u − h) =
DN,h(VαN ,∂VβN )∑

k=1

M+
μN,k

≥ c2εDN,h(VαN, ∂VβN)

2
.
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Letting c6 = 6/π2 so that c6
∑∞

j=0(j + 1)−2 = 1, we see that

(31) EN,1 ∩ EN,2 ⊆
∞⋃

j=0

{
Wj ≥ c6c2εDN,h(VαN, ∂VβN)

2j+1(j + 1)2
√

logN

}
.

Letting c7 = 20/(c1ε), we define EN,3 = ⋂∞
j=0 EN,3,j , where

EN,3,j = {|Bj | ≤ c7E
[|Bj |](1.1)j+1}

, j ≥ 0.

By Markov’s inequality, we get that

(32) P
(
Ec

N,3 | EN,1
) ≤ P(Ec

N,3)

c1
≤ ε

2
.

Let E∗
N = EN,1 ∩ EN,2 ∩ EN,3. By Lemma 20 and (32), we get that

(33) P
(
E∗

N | EN,1
) ≥ 1 − ε.

We deduce from (29), (30) and (31) that on E∗
N ,

〈MμN 〉DN,h(VαN ,∂VβN ) ≥ c2
6c4c

2
2c1ε

3

20
inf
j≥0

DN,h(VαN, ∂VβN)2

(4.4)j+1(j + 1)4E[|Bj |] logN
.

Combined with Lemma 23, this gives that on E∗
N ,

〈MμN 〉DN,h(VαN ,∂VβN ) ≥ c2
6c4c

2
2c1ε

3

20c5

DN,h(VαN, ∂VβN)2

N2
√

logN
.

Combining with (33), we complete the verification of (28) as promised. �

4.1. Proof of Lemma 20. We first give the main intuition behind the proof of Lemma 20
in the case when h = 0. On the event EN,1 ∩ EN,2(ε)

c, we have MμN,s ≤ ε + M−
μN,s for

some s ≤ DN,h(VαN, ∂VβN). However, we also have MμN,t ≥ M−
μN,s for all t ≥ s. Since

DN,h(VαN, ∂VγN) < ∞ on EN,1, the martingale must stay above M−
μN,s after time s and yet

accumulate an order 1 amount of quadratic variation—this happens with small probability.
The case for general h is similar but a bit more complicated. We carry out a detailed proof
below.

In this subsection and the ones that follow, we let c, c′, c′′ > 0 be arbitrary constants whose
values may change each time they appear, and may depend on h, α, β , γ but not on N .
Since M−

μN,t is increasing in t (recalling ∂I−
t = ∂I−

0 for all t), we have that for 0 ≤ s < t <

DN,h(VαN, ∂VμN),

MμN,t − MμN,s ≥ h[πμN,t − πμN,s] − M+
μN,s,

with equality if and only if M+
μN,t = M+

μN,s = 0, where πμN,t = Hm(∂VμN,It ). Next, we
claim that there exist constants c, c′ such that for any 0 ≤ s < t < DN,h(VαN, ∂VγN),

c′[πμN,t − πμN,s] ≤ 〈MμN 〉t − 〈MμN 〉s,
〈MμN 〉t − 〈MμN 〉s ≤ c[πμN,t − πμN,s].

To see this, note that we have

〈MμN 〉t − 〈MμN 〉s = 1

|∂VμN |
∑

w∈∂It

HmN,t (∂VμN,w)GN,s(w, ∂VμN),

πμN,t − πμN,s = ∑
w∈∂It

HmN,t (∂VμN,w)Pw(τ∂VN
< τIs ),
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where GN,s is the Green’s function on G̃N \ Is ,

GN,s(w, ∂VμN) = ∑
v∈∂VμN

G(w,v),

and τA is as usual the hitting time of A by a metric graph Brownian motion. By Lemma 21
and the assumption that Is ⊂ VγN ,

c′
Pw(τ∂VμN

< τIs ) ≤ GN,s(w, ∂VμN)

|∂VμN | ≤ cPw(τ∂VμN
< τIs ).

Similarly, we have by straightforward random walk considerations (namely the invariance
principle)

c′
Pw(τ∂VμN

< τIs ) ≤ Pw(τ∂VN
< τIs ) ≤ Pw(τ∂VμN

< τIs ).

Thus, the upper and lower bounds on the quadratic variation follow. Altogether, this implies

(34) MμN,t − MμN,s > ch
[〈MμN 〉t − 〈MμN 〉s] − M+

μN,s,

for all 0 ≤ s < t ≤ DN,h(VαN, ∂VγN) such that M+
μN,s > 0. For any x > 0, let ηx = inf{t :

M+
μN,t ≤ x} and define the martingale M̃x

μN (with respect to Gt = FIηx+t ) by

M̃x
μN,t =

{
MμN,ηx+t − MμN,ηx ηx < ∞,

0 ηx = ∞.

Let � = DN,h(VαN, ∂VγN) − ηx and note that on EN,1 ∩ EN,2(x)c we get from (34) that

M̃x
μN,t > ch

〈
M̃x

μN

〉
t − x, 0 ≤ t < �.

Using the lower bound on the quadratic variation by the Harmonic measure that was proven
above, we see that the following bound holds almost surely on EN,1 ∩ EN,2(x)c:〈

M̃x
μN

〉
� ≥ 〈MμN 〉DN,h(VαN ,∂VγN ) − 〈MμN 〉DN,h(VαN ,∂VβN )

≥ c′[πμN,DN,h(VαN ,∂VγN ) − πμN,DN,h(VαN ,∂VβN)] ≥ c′,

where the last inequality follows from a simple adaptation of the proof of [6], Proposition 4.
Write Tt = inf{s : 〈M̃x

μN 〉s > t} and let B be a standard Brownian motion that satisfies

Bt = M̃x
μN,Tt

− M̃x
μN,0 for t < 〈M̃x

μN 〉∞ and is independent of FIηx
. Letting τh,x = inf{t :

Bt ≤ cht − x}, it follows from Proposition 15 and Lemma 17 that for some c′′

P
(
EN,1 ∩ EN,2(x)c

) ≤ P
(
τh,x ≥ c′) ≤ c′′x.

Since P(EN,1) is bounded away from 0 by Lemma 18, the conclusion follows.

4.2. Proof of Lemma 22. Define dk = 〈MμN 〉k − 〈MμN 〉k−1 (throughout this section k

and K are positive integers), and Ak = ∂Ik \ Ik−1. Let I+,K = ⋃K
k=1 ∂I+

k , A = ⋃K
k=1 Ak ,

and note that for all k ≥ 0, ∂I+
k ⊂ Ak ∩ V . By Corollary 10, we have

dk = 1

|∂VμN |
∑

v∈∂VμN

∑
u∈Ak

HmN,k(∂VμN,u)GN,k−1(u, v)

≥ ∑
u∈Ak

(
HmN,k(∂VμN,u)

)2
GN,k−1(u,u),
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where the inequality follows from GN,k−1(u, v) ≥ HmN,k(v, u)GN,k−1(u,u). Consequently,

(35) 〈MμN 〉K ≥
K∑

k=1

∑
u∈Ak

(
HmN,k(∂VμN,u)

)2
GN,k−1(u,u).

Comparing (35) to the desired inequality in Lemma 22, we see two differences: (1) the sum-
mation in (35) is over Ak as opposed to ∂I+

k ; (2) there is a term GN,k−1(u,u) in (35) which
we need to bound from below. To address this, we will define a function ψ : I+,K → A
which, roughly speaking, allows us to bound (HmN,k(∂VμN,u))2GN,k−1(u,u) from below
by (HmN,τ (∂VμN,ψ(u)))2 (where ψ(u) ∈ Aτ ). We next carry out the details.

To specify ψ , let D�1 be �1-distance on R
2 (up to scaling, this is the graph distance on G̃),

and u ∈ ∂I+
k ⊆ Ak be an active point at time k. If D�1(u,Ik−1) ≥ 1/2, then GN,k−1(u,u) ≥

1/2 (see [11]) and we let ψ(u) = u. If, on the other hand, D�1(u,Ik−1) < 1/2, there exist
at most four points on ∂Ik−1 ∩ B�1(u,1/2) (here B�1(u, r) denotes the open ball of radius
r centered at u with respect to D�1 ). For every w ∈ ∂Ik−1 ∩ B�1(u,1/2), there is a unique
(random) integer τw ≤ k − 1 such that w ∈ Aτw . We let ψ(u) = w be the point in ∂Ik−1 ∩
B�1(u,1/2) that minimizes τw (i.e., the “oldest” w), breaking ties by distance to u (choosing
the w closest to u). With this choice, ∂Iτw ∩ B�1(u, |u − w|�1) = ∅ so HmN,τw(u,w) ≥ 1/4,
and hence

(36) HmN,τw(∂VμN,w) ≥ 1

4
HmN,k(∂VμN,u).

Also, D�1(u,Iτw−1) ≥ 1/2 so by (3) we have for δ = D�1(w,u) < 1/2,

(37) GN,τw−1(w,w) = 4δ(1 − δ) + (1 − δ)2GN,τw−1(u,u) ≥ 1

2
.

Finally, for distinct u,u′ ∈ I+,K , B�1(u,1/2)∩B�1(u
′,1/2) = ∅ so ψ is injective. Recalling

(35), we get that

〈MμN 〉K ≥
K∑

k=1

∑
u∈∂I+

k

(
HmN,τψ(u)

(
∂VμN,ψ(u)

))2
GN,τψ(u)−1

(
ψ(u),ψ(u)

)

≥ 1

32

K∑
k=1

∑
u∈∂I+

k

HmN,k(∂VμN,u)2,

where the factor of 1
32 comes from (1

4)2 (which accounts for the ratio on the square of har-
monic measures; see (36)) and 1

2 (which accounts for the Green function term; see (37)).

4.3. Proof of Lemma 23. Let AN = VβN \ VαN . We will bound E[|Bj |] by bounding the
probability that each vertex v ∈ AN belongs to Bj . Note that

I+ ⊆ {
v ∈ AN,DN,h(VαN, v) < ∞}

.

By Theorem 8, P(DN,h,β(VαN, v) < ∞ | φ̃N,v) is increasing in φ̃N,v . Therefore, letting aj =
h + 2j−1√logN1j>0 and bj = h + 2j

√
logN we have for j ≥ 0 and v ∈ AN ,

(38) P(v ∈ Bj ) ≤ P(φ̃N,v > aj )P
(
DN,h(VαN, v) < ∞ | φ̃N,v = bj

)
.

Since (see, e.g., [10], Theorem 4.4.4, Proposition 4.6.2)

(39) Var[φ̃N,v] = GN(v, v) = 2

π
logN + O(1),
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we see that there exists a constant c = c(h,β) > 0 such that for all j ≥ 0 and v ∈ AN ,

(40) P(φ̃N,v > aj ) ≤ e−c4j

.

We will bound the second term of (38) in terms of k for v ∈ ∂VαN+k . We state the result here
and defer the proof to the end of this section.

LEMMA 24. Let k∗ = (β −α)N/
√

logN . There exists a positive constant c = c(h,β,α)

such that for all j ≥ 0, k ≥ k∗ and v ∈ ∂VαN+k ,

P
(
DN,h(VαN, v) < ∞ | φ̃N,v = bj

) ≤ c2j

√
logN

√
logN − logk.

Using Lemma 24 and (40) (and the fact that E[|Bj |] = ∑
v∈AN

P(v ∈ Bj )), we have

E
[|Bj |] ≤ c2j e−c′4j

[
N2

√
logN

+ N√
logN

(β−α)N∑
k=k∗

√
logN − log k

]
,

where we used the fact that there are O(N2/
√

logN) lattice points in VαN+k∗ \VαN . Finally,
we note

(β−α)N∑
k=k∗

√
logN − log k = O(1)

∫ (β−α)N

k∗

√
logN − logx dx

= O(N)

∫ (β−α)−1 logN

(β−α)−1

√
logu

u2 du = O(N).

This completes the proof of Lemma 23.

PROOF OF LEMMA 24. As usual, the proof consists of analyzing an exploration martin-
gale. To specify the martingale, we let AN,v = ∂(V(1−γ )N + v) be the boundary of a box of
radius (1 − γ )N around v. Note that AN,v ⊂ VN for all v ∈ VβN . We then take MN,v to be
the exploration martingale with source I0 = {v} and observable XAN,v

on Ẽ
≥h
N . We also let

rN,v = k ∧ ((1 − γ )N/2) and WN,v = ∂(VrN,v
+ v), and note that{

DN,h(v,VαN) < ∞} ⊂ {
DN,h(v,WN,v) < ∞}

.

As before, we let HmN,t (u,w) = Hm(u,w;It ∪ ∂VN), HmN(u,It ) = Pu(τIt < τ∂VN
), and

πN,v,t = Hm(AN,v,It ). We have

MN,v,t − MN,v,0 ≥ h[πN,v,t − πN,v,0] − 2j
√

logNπN,v,0,

with equality if and only if πN,v,t = πN,v,∞ (recall we assume φ̃v = 2j
√

logN + h). In
particular, on {DN,h(v,WN,v) < ∞} we have strict inequality for 0 ≤ t < DN,h(v,WN,v).
Arguing as in the proof of Lemma 20, we can show that there exist constants c−, c+ > 0
(independent of v and k) such that the following holds for all 0 ≤ s ≤ t ≤ DN,h(v,WN,v):

c−[πN,v,t − πN,v,s] ≤ 〈MN,v〉t − 〈MN,v〉s ≤ c+[πN,v,t − πN,v,s].
Additionally, it follows from Lemma 21 and (39) that there exists a constant c1 > 0 (also in-
dependent of v and k) such that πN,v,0 ≤ c1/ logN . All together, this shows that the following
holds almost surely on {DN,h(v,WN,v) < ∞}:

MN,v,t − MN,v,0 ≥ c2h〈MN,v〉t − c12j

√
logN

, 0 ≤ t < DN,h(v,WN,v).



PERCOLATION OF METRIC GRAPH GFF 1433

To simplify notation, we let m = c2h and b = c12j /
√

logN . As usual, we write Tt = inf{s :
〈MN,v〉s > t} and let B be a standard Brownian motion independent of φ̃v such that Bt =
MN,v,Tt − MN,v,0 for t < 〈MN,v〉∞. Then we can define

τh,N = inf{t : Bt ≤ mt − b},
π−

N,v = inf
I

{
HmN(AN,v,I)

} − HmN(AN,v, v),

where the infimum is taken over all closed, connected subsets I ⊂ G̃N containing v and
intersecting WN,v . For notational convenience, we write T = c−π−

N,v . We have that

P
(
DN,h(v,WN,v) < ∞) ≤ P(τh,N ≥ T ).

Note that the right-hand side of the inequality is decreasing in h, so we assume h ≤ 0. Ap-
plying Proposition 15 and Lemma 17, we get that

P(τh,N ≥ T ) ≤ 2g(m
√

T ,0)ϕ(m
√

T )
b√
T

≤ 2
[
ϕ(m

√
T ) − m

√
T

] b√
T

.

To conclude the proof, we need the following bound on π−
N,v :

(41) π−
N,v ≥ c(logN − log k)−1.

Provided with (41) and noting the trivial bound T ≤ c−, we have −m
√

T = O(1) and b =
O(2j /

√
logN) which implies

P(τh,N ≥ T ) = O

(
2j

√
logN − logk√

logN

)
,

as claimed.
It remains to prove (41). In fact, we will prove

π−
N,v ≥ c(logN − log rN,v)

−1.

To this end, let u be a point on I such that rN,v/2 ≤ |u − v|�∞ < 1 + rN,v/2, and let Bu,
B ′

u, B ′′
u be boxes centered at u of side length rN,v/4, rN,v/8, rN,v/16 respectively. By [10],

Proposition 6.4.1, we get that there exists c′ = c′(α,β, γ ) > 0 such that for any x ∈ AN,v ,

HmN

(
x,B ′

u

) ≥ c′(logN − log rN,v)
−1.

It is also obvious that once the random walk arrives at ∂B ′
u, there is a probability bounded

uniformly from below that the random walk range before exiting Bu will contain a contour
in Bu \ B ′′

u . In this case, the random walk will hit at least one point in I ∩ Bu. Therefore, we
get that

HmN(x,I ∩ Bu) ≥ c′′(logN − log k)−1,

where c′′ > 0 depends on c′. In addition, for any w ∈ I ∩ Bu, we have

Hm
(
w,∂VN ; ∂VN ∪ {v}) ≥ 1/2

(see, e.g., [10], Theorem 4.4.4., Proposition 4.6.2). Altogether, this means that for any x ∈
AN,v , we have

�π(x,I) := Px(random walk hits I but not v before it hits ∂VN)

≥ c(logN − log rN,v)
−1
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for a constant c > 0. Noting that

HmN(AN,v,I) − HmN(AN,v, v) = 1

|AN,v|
∑

x∈AN,v

�π(x,I),

this completes the verification of (41). �
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