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We establish, under a moment matching hypothesis, the local universality
of the correlation functions associated with products of M independent i.i.d.
random matrices, as M is fixed, and the sizes of the matrices tend to infinity.
This generalizes an earlier result of Tao and the third author for the case
M = 1.

We also prove Gaussian limits for the centered linear spectral statistics of
products of M independent i.i.d. random matrices. This is done in two steps.
First, we establish the result for product random matrices with Gaussian en-
tries, and then extend to the general case of non-Gaussian entries by another
moment matching argument. Prior to our result, Gaussian limits were known
only for the case M = 1. In a similar fashion, we establish Gaussian limits
for the centered linear spectral statistics of products of independent truncated
random unitary matrices. In both cases, we are able to obtain explicit expres-
sions for the limiting variances.

The main difficulty in our study is that the entries of the product matrix
are no longer independent. Our key technical lemma is a lower bound on the
least singular value of the translated linearization matrix associated with the
product of M normalized independent random matrices with independent and
identically distributed sub-Gaussian entries. This lemma is of independent
interest.

1. Introduction and statement of results. Random matrices with independent entries
have been among the most central objects of study in random matrix theory since the pio-
neering work of Ginibre in 1965 [22], and many important advances and applications have
been established since that time (for a partial overview see [12], and the excellent collection
of references contained therein).

DEFINITION 1. An i.i.d. random matrix (with sub-Gaussian decay) is a n × n random
matrix Mn = (ξi,j )1≤i,j≤n where each entry ξi,j is given by an independent copy of a sub-
Gaussian random variable ξ with mean zero and unit variance, and whose real and imaginary
parts are independent.

The distribution of a single entry of an i.i.d. random matrix is commonly called the atom
distribution. The requirement that atom distributions be sub-Gaussian means that there exists
some constants C,v > 0 (independent of n) such that for each t > 0:

P
(|ξ1,1| > t

)≤ Ce−vt2
.(1)

If each entry ξi,j is given by a complex standard Gaussian random variable, the i.i.d. matrix
is said to belong to the complex Ginibre ensemble, or more briefly GinUE. If the entries are
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real Gaussians, then the matrix is said to belong to the real Ginibre ensemble, or GinOE. The
ensemble of matrices with independent centered Bernoulli entries provides another natural
example of an i.i.d. random matrix.

One of the most salient and important features of i.i.d. matrices is that they are non-
Hermitian, and the methods used to study them are therefore frequently different from those
employed in Hermitian random matrix theory. Notice that unlike in the Hermitian case we no
longer have strictly real eigenvalues, which introduces a number of difficulties (for instance,
limiting the usefulness of polynomials in studying general functions of the eigenvalues, which
in turn limits the usefulness of combinatorial methods based on moment methods [8, 12, 27]).
On the other hand, the lack of symmetry is occasionally useful and the mutual independence
of all rows (or all columns) can simplify matters considerably in certain situations [54].

In this paper, we study the product of M independent i.i.d. random matrices. The spectrum
of such a product has been an object of keen interest in random matrix theory, and many
important advances have been made in recent years. We refer the reader to [1–6, 11, 17,
20, 23–26, 32, 33, 35, 36] and references therein; however, since the subject has been so
intensively studied, the collection of references above as well as our discussion below if
far from complete. This subfield of random matrix theory is not only motivated by its own
intrinsic interest, as the study of products of matrices is a very natural generalization of the
study of a single random matrix, but is also motivated by connections to several of the applied
sciences (the interested reader is directed to the impressive survey of applications assembled
in [25]).

The first important result concerning random matrix products is the M-fold circular law,
which occupies the same position as either the semicircular law for Wigner matrices or circu-
lar law for independent entry matrices, and governs the limiting distribution of eigenvalues.
This remarkable result says that as n → ∞ the limiting distribution of the spectrum of the
product of M normalized n by n independent i.i.d. matrices (obeying certain moment assump-
tions), X = n−M/2X(1) · · ·X(M), is supported on the unit disc |z| < 1, and has the following
density [24, 36]:

1

Mπ
|z|2/M−2.(2)

Notice that, although for even somewhat sizable M the distribution of a single entry of the
product matrix X may be quite complicated, the limiting distribution is miraculously simple.

Once the global distribution has been established, the next natural questions are the lim-
iting laws of linear statistics and universality of local statistics. In this paper, we attack both
problems and solve them under certain moment conditions. Throughout the paper, we al-
ways assume all i.i.d. random matrices have atom distribution with sub-Gaussian decay as
described in Definition 1.

Our first result concerns the linear statistics of random product matrices, which describe
fluctuations of the spectrum of a random matrix around its limiting distribution—in this case,
the M-fold circular law. The centered linear statistic associated with the random matrix X

(with eigenvalues denoted by λ1, . . . , λn) and some test function f (whose regularity depends
on the ensemble under consideration) is defined by the following formula:

Nn[f ] =
n∑

j=1

f (λj ) − E

[
n∑

j=1

f (λj )

]
.(3)

The behavior of linear statistics is well understood for Wigner matrices (the unnormalized
statistic converges to a normal distribution, which implies fluctuations comparable to a con-
stant, in striking opposition to the fluctuations seen in the case of the sum of i.i.d. random
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variables, which are comparable to
√

n) up to some delicate questions about the optimal reg-
ularity constraints on the test function f [31, 43–45]. Much progress has been made in recent
years on the linear statistics of independent entry ensembles [27, 34, 37], even though due
to difficulties associated with the failure of the Hermitian condition there is still much work
to be done in that area (the failure of Hermiticity and the complex eigenvalues it implies
means that analytic test functions are no longer dense in the space of smooth test functions,
for instance, which limits the efficacy of trace methods), and substantial new ideas are likely
to be required. To the best of the authors’ knowledge, the linear statistics of products of i.i.d.
matrices have not yet been investigated.

Before we can state our result, we will need to introduce the concept of moment matching.
Two i.i.d. random matrices X and X′ with entries ξi,j and ξ ′

i,j , respectively, are said to match
moments to order k if, for all 1 ≤ i, j ≤ n, a, b ≥ 0, a + b ≤ k:

E
[
Re(ξi,j )

a Im(ξi,j )
b]= E

[
Re
(
ξ ′
i,j

)a Im
(
ξ ′
i,j

)b]
.

We will say that two product matrices, X(1,1) · · ·X(1,M) and X(2,1) · · ·X(2,M), match mo-
ments to order k if each individual pair of factor matrices (meaning X(1,j) and X(2,j) for
1 ≤ j ≤ M) do. We will also need to define a relevant Sobolev norm.

DEFINITION 2. Let f be a real valued function defined on the complex plane, and let
f̂ (k) denote the kth Fourier coefficient of the restriction of a function f to the circle |z| = R:1

f̂ (k) = 1

2π

∫ 2π

0
f
(
Re

√−1θ )e−√−1kθ dθ.(4)

The inner product 〈f,g〉H 1/2(|z|=R) is then defined to be

〈f,g〉H 1/2(|z|=R) = ∑
k∈Z

|k|f̂ (k)ĝ(k).(5)

Finally, we set the Sobolev norm ‖ · ‖H 1/2(|z|=R) to be the norm induced by this inner product.

This Sobolev norm makes an appearance in the expression of the limiting variance of linear
statistics of products of matrices matching the GinUE ensemble to four moments.

THEOREM 3. Let f : C → R be a test function with at least two continuous derivatives,
supported in the spectral bulk {z ∈ C : τ0 < |z| < 1− τ0} for some fixed τ0 > 0. Fix an integer
M ≥ 1, and let n−M/2X(1) · · ·X(M) be a matrix product such that each factor X(i) is a n by
n i.i.d. random matrix (which are all jointly independent) with an atom distribution matching
the standard complex Gaussian distribution to four moments. Then the centered linear statis-
tic associated with the test function f and the product matrix n−M/2X(1) · · ·X(M), denoted
Nn[f ], converges in distribution as n → ∞ to the mean zero normal distribution with the
following limiting variance:

1

4π

∫
|z|<1

∣∣∇f (z)
∣∣2 d2z + 1

2
‖f ‖2

H 1/2(|z|=1)
.(6)

Notice that the limiting variance does not depend on M .

We will prove this result by way of a more general result establishing four moment univer-
sality for linear statistics of products of i.i.d. matrices, along with an entirely separate result
establishing the appropriate central limit theorem for products of Ginibre matrices (the proof

1Here, we use
√−1 to denote the imaginary unit and reserve i as an index.
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of which is based on the rotary flow combinatorial approach pioneered by Rider and Virág for
a single Ginibre matrix [38]). If a central limit theorem for linear statistics was established
for products of matrices with some known sub-Gaussian distribution besides the complex
Gaussian distribution (for instance, the real Gaussian), then our machinery (specifically, The-
orem 30 appearing below) would establish the same central limit theorem for all matrices
which match that base case to four moments.

There are four remarks which must be made about the technical assumptions appearing
in the statement of Theorem 3. The first is that the condition requiring the entries of each
matrix to be identically distributed is needed only to provide an appropriate least singular
value estimate (specifically, we will need this assumption to be able to apply Theorem 7 be-
low, otherwise the condition is not needed—the substitution of an alternate condition that
preserves the statement of Theorem 7 will not affect the proof of this result). The second re-
mark concerns the sub-Gaussian decay condition on the atom distributions from Definition 1.
Naturally, we expect our main results to hold under weaker assumptions (such as subexpo-
nential tails or the existence of a high enough number of finite moments). The sub-Gaussian
decay condition is mostly used to control certain events with high enough probability, and it
seems likely that more technical methods could be utilized to relax this assumption. Due to
the already technical nature of our proofs, we have not pursued this direction.

The third remark is that the assumption of two derivatives on f , as well as the condition
requiring support in the spectral bulk, is necessary only for the moment matching argument.
If one is only interested in the linear statistics in the specific case of complex Gaussian atom
distribution, then as will be clear from the proof, both of these conditions can be relaxed (see
Theorem 26 for details).

The fourth remark concerns the assumption on the support of f , specifically that f is
supported away from both the origin and the spectral edge |z| = 1. Under this assumption,
the term ‖f ‖2

H 1/2(|z|=1)
appearing in (6) is zero; we include this term in the limiting variance

since it matches the analogous result obtained for products of complex Ginibre matrices (The-
orem 26 below), which does not feature this restriction on f . For Theorem 3, the condition on
the support of f appears to be an artifact of the proof, and is necessary mainly to ensure good
behavior of the entries of the resolvent of the Hermitian linearization of the product matrix.
Lifting this requirement is a direction for future work (a similar condition encountered in the
course of the proof of the local M-fold circular law [32] has recently been lifted [23], at least
at the origin, but the methods employed there do not appear to directly extend to our case),
and we suspect (6) to still be the limiting variance once this condition is lifted.

The same technique that establishes Theorem 3 in the base case of complex Ginibre matri-
ces can also be applied to other product matrix models, as long as the eigenvalues constitute
a rotationally invariant determinantal point process and the ensuing combinatorics work out
reasonably. As an illustration, we obtain a limit theorem for linear statistics in the case of
truncated unitary random matrices. A truncated unitary random matrix is a random matrix
produced by taking the top-left n by n submatrix of a random unitary K by K matrix (dis-
tributed according to the relevant Haar measure), where τ = (K − n)/n is a fixed parameter.
The study of these matrices is motivated in part by connections to topics such as time evolu-
tion in quantum mechanics or chaotic scattering on mesoscopic devices; the interested reader
is directed to [3, 4, 57] and the references within.

THEOREM 4. Let f : C → R be a real valued polynomial test function, and let
U(1) · · ·U(M) be the product of M n by n jointly independent truncated unitary random matri-
ces, with fixed truncation ratio τ ∈ (1/2,1). Then, for fixed M and τ , in the large dimensional
limit n → ∞ the associated centered linear statistic, Nn[f ], converges in distribution to the
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normal distribution with mean zero and the following limiting variance:

1

4π

∫
|z|≤(1/(1+τ))M/2

∣∣∇f (z)
∣∣2 d2z + 1

2
‖f ‖2

H 1/2(|z|=|1+τ |−M/2)
.(7)

Theorem 4 deals only with polynomial test functions to simplify technical aspects of the
argument; we believe a similar result should hold for more general test functions but this is
outside the scope of the paper. The restriction to the disc |z| ≤ (1/(1 + τ))M/2 is explained
by the limiting distribution of eigenvalues of products of truncated unitary matrices, which is
defined by the following formula:

φM,τ (z) = 1

πM

τ

|z|2(1−1/M)(1 − |z|2/M)2 on |z| ≤
(

1

τ + 1

)M/2
,

where φM,τ (z) vanishes on |z| > ( 1
τ+1)M/2. This formula is already in the literature [3], but

we encounter it during the course of the proof of Theorem 4.
Our next result will be the local universality of the k-point correlation functions throughout

the spectral bulk for products of i.i.d. factor matrices matching to four moments. Define the
k-point correlation function p(k), for 1 ≤ k ≤ n, of the random points λ1, . . . , λn ∈ C by way
of the following formula (with φ : Ck → C denoting any arbitrary continuous, compactly
supported test function):

E
[ ∑
i1,...,ik distinct

φ(λi1, . . . , λik )

]
=
∫
Ck

φ(z1, . . . , zk)p
(k)(z1, . . . , zk) d2z1 · · ·d2zk.

We are abusing notation here by writing p(k)(z1, . . . , zk) d2z1 · · ·d2zk , as p(k) is in general a
measure and not a function (see [51] for a complete discussion of this issue).

The following universality result holds in the case of products Zn = X
(1)
n · · ·X(M)

n of n×n

i.i.d. matrices with complex atom distributions. Before discussing the correlation functions
for the eigenvalues of Zn, we note that the largest eigenvalue of Zn is on the order of nM/2,
and we will need to first rescale the eigenvalues so that the typical spacing in the bulk is
on the order of a constant. There are several possible ways to rescale the eigenvalues. We
adopt the convention of taking the M th root of each eigenvalue of Zn to create a new point
process with Mn points. Formally, given the product Zn = X

(1)
n · · ·X(M)

n , we define the M th
root eigenvalue process associated with Zn as the point process on C consisting of the Mn

roots (counted with algebraic multiplicity) of the polynomial z → det(zMI − Zn), where I

denotes the identity matrix. Clearly, the eigenvalues of Zn can be recovered from this process
by raising each root to the M th power. Our next result proves universality of the correlation
functions corresponding to the M th root eigenvalue process.

We define the open ball of radius r > 0 centered at z0 ∈ C as

B(z0, r) := {
z ∈ C : |z − z0| < r

}
.

THEOREM 5. For β = 1,2, let Z
β
n = X

(β,1)
n · · ·X(β,M)

n be the product of M independent
i.i.d. n by n matrices with complex-valued entries and sub-Gaussian decay. Assume that the
factor matrices X

(1,i)
n and X

(2,i)
n (for 1 ≤ i ≤ M) match to four moments. Let z1, . . . , zk be

complex numbers (which may depend on n) located in the spectral bulk τ0 ≤ n−1/2|zi | ≤
1 − τ0 for some fixed positive constant τ0 > 0.

Let p
(k)
β be the k-point correlation function of the M th root eigenvalue process associated

with Z
β
n . If G :Ck →C is a smooth function supported on B(0, r0)

k (for a small r0 > 0 which
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depends on τ0) then for any sufficiently small positive constant c0 > 0 the following estimate
holds: ∣∣∣∣

∫
Ck

G(w1, . . . ,wk)p
(k)
1 (z1 + w1, . . . , zk + wk)d2w1 · · ·d2wk

−
∫
Ck

G(w1, . . . ,wk)p
(k)
2 (z1 + w1, . . . , zk + wk)d2w1 · · ·d2wk

∣∣∣∣
≤ C[τ0,k,G]n−c0 .

The constant C[τ0,k,G] depends on τ0, k, M , and (linearly) on the maximal L∞-norm bound
on the first 2k + 6 derivatives of G.

While this result focuses on the M th root eigenvalue process, our methods can be gen-
eralized to other scaling conventions for the eigenvalues as well; see Remark 36 for further
details.

The proof of Theorem 5 is based on an application of Theorem 2.1 in [51], and may be
particularly of interest in the case of complex Ginibre factor matrices. Indeed, the derivation
of the correlation functions for the product of independent complex Ginibre matrices can
be found in [2], which finds that the limiting correlation functions match those of a single
Ginibre matrix away from the origin. Specifically, the eigenvalues of the product of M in-
dependent n × n complex Ginibre matrices form a determinantal point process with kernel
K

(M)
n defined by the formula

K(M)
n (z,w) =√

wM(z)wM(w)

n−1∑
k=0

1

(πk!)M (zw̄)k.(8)

The weight function wM(z) appearing here depends only on the modulus of z and is defined
through the Meijer G-function; see equation (2.3) in [2]. As shown in [2], the kernel KM

n

obeys the following scaling limit in the spectral bulk, away from the origin:

lim
n→∞M2−M |ξiξj |M−1K(M)

n

(
(ξi/

√
M)M, (ξj /

√
M)M

)

= 1

π

(
ξiξj

|ξiξj |
)(1−M)/2

exp
(
−1

2

(|ξi |2 + |ξj |2 + ξiξj

))
.

Up to the phase factor in front (which is irrelevant after taking determinants), this limiting
kernel is the same as the limiting bulk behavior of a single Ginibre matrix (when M = 1).
Theorem 5 implies that this behavior should be universal for other matrix products matching
the Ginibre ensemble to four moments. Both the spectral edge and the origin are dealt with in
[2] as well, but our universality result does not extend to these cases. It would be interesting
to see if it can be generalized to include these cases as well.

In the case of real entries, the spectrum and, therefore, the correlation functions split into
real and imaginary components. For a thorough exposition on the spectrum in the real case
see, for instance, [51]. For such a point process, we define pk,l to be the correlation function
for k real (which we will denote ζi,R) and l complex points in the upper half place (which
we will denote ζj,C+ ). To be precise, for continuous test functions φ : Rk × C

l → C with
compact support we require

E
[ ∑
i1,...,ik distinct

∑
j1,...,jl distinct

φ(ζi1,R, . . . , ζik,R, ζj1,C+, . . . , ζjl,C+)

]

=
∫
Rk

∫
C

l+
φ(x1, . . . , xk, z1, . . . , zl)

× pk,l(x1, . . . , xk, z1, . . . , zl) d2z1 · · ·d2zl dx1 · · ·dxk.
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This defines the mixed correlation functions pk,l over regions of the form R
k × C

l+. These
function are then extended to include zi ∈ C− by requiring that they be symmetric under
conjugation of any complex argument.

The following universality result for the M-th root eigenvalue process holds in the case of
products of matrices whose entries have real distributions.

THEOREM 6. For β = 1,2, let Z
β
n = X

(β,1)
n · · ·X(β,M)

n be the product of M independent
i.i.d. n by n matrices with identically distributed, real-valued entries and sub-Gaussian decay,
and let x1, . . . , xk ∈ R and z1, . . . , zl ∈ C be numbers (which are allowed to depend on n)
located in the spectral bulk (meaning τ0 ≤ n−1/2|zi | ≤ 1− τ0 and τ0 ≤ n−1/2|xi | ≤ 1− τ0 for
some fixed τ0 > 0).

Let p
k,l
β be the mixed (k, l)-correlation function for the M th root eigenvalue process asso-

ciated with Z
β
n , and assume that the factor matrices X

(1,i)
n and X

(2,i)
n (for 1 ≤ i ≤ M) match

to four moments, and also that the correlation functions for one of the two processes satisfy
the following estimate in the spectral bulk (which is the annulus defined by the equations
τ0 ≤ n−1/2|zi | ≤ 1 − τ0 and τ0 ≤ n−1/2|xi | ≤ 1 − τ0):

p
2,0
β (x1, x2) < C,(9)

p
0,1
β (z1) < C.(10)

If G :Rk ×C
l →C is a smooth function supported on [−r0, r0]k × B(0, r0)

l (for some small
r0 > 0 depending on τ0), then for any sufficiently small c0 > 0 the following estimate holds
(where we write dμ = dy1 · · ·dyk d2w1 · · ·d2wl):∣∣∣∣

∫
Rk

∫
Cl

G(y1, . . . , yk,w1, . . . ,wl)

× p
k,l
1 (x1 + y1, . . . , xk + yk, z1 + w1, . . . , zl + wl) dμ

−
∫
Rk

∫
Cl

G(y1, . . . , yk,w1, . . . ,wl)

× p
k,l
2 (x1 + y1, . . . , xk + yk, z1 + w1, . . . , zl + wl) dμ

∣∣∣∣
≤ C[τ0,k,l,G]n−c0 .

The constant C[τ0,k,l,G] depends on C, k, l, τ0, M and (linearly) on the maximal L∞-norm
bound on the first 2(k + l) + 6 derivatives of G.

Analogously to the complex case, this result may be of particular interest when comparing
to the product of M real Ginibre factor matrices; concrete expressions for the correlation
kernels (which are expressed in terms of Pfaffians) as well as the correlations between real
eigenvalues and the correlations between complex eigenvalues are derived and can be found
in [21, 26].

As was the case with Theorem 3, the spectral bulk requirement (namely, that zi is chosen
such that the estimate τ0 ≤ n−1/2|zi | ≤ 1 − τ0 holds) which appears in both Theorem 5 and
Theorem 6 is necessary to invoke aspects of Nemish’s proof of the local M-fold circular
law for the spectral bulk [32]. In particular, this restriction appears to be an artifact of the
method of proof and the authors believe that it should be possible to lift this requirement; an
inspection of the proofs of Theorems 5 and 6 should make clear exactly where the difficulties
lie.
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The proofs of the preceding results (with the exception of Theorem 4) rely in large part
on a least singular value estimate, Theorem 7 below, which is the main technical advance
in the present volume and may be useful in a variety of other contexts. To present this re-
sult properly, we first must discuss linearization, one of the most useful techniques in the
study of products of random matrices, which allows one to bypass many of the difficulties
associated with the product structure. In a linearization argument, one studies the product
X = X(1)X(2) · · ·X(M) by considering instead an associated Mn by Mn linearization block
matrix Y , defined below:

Y =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 X(1) 0 · · · · · · 0
0 0 X(2) · · · · · · 0
0 0 0 X(3) · · · 0
...

...
...

...
. . .

...

0 0 0 0 · · · X(M−1)

X(M) 0 0 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

As observed by Burda, Janik and Waclaw [17], if λ1, . . . , λn are the eigenvalues of X, then
each λk is an eigenvalue of YM with multiplicity M . Indeed, to see this it suffices to raise
Y to the M th power and notice that the diagonal block entries are cyclic permutations of
X(1) · · ·X(M). It is this link that, in some situations, allows one to study the linearization
matrix in lieu of the actual product matrix (which may be substantially more cumbersome).

Frequently, it happens the matrix of interest is not Y but is actually Y − zI , where I is the
identity matrix and z is some parameter in the complex plane. Our next result deals primarily
with the smallest singular value of such matrices.

THEOREM 7. Let X(i), for 1 ≤ i ≤ M , denote a family of jointly independent n by n i.i.d.
random matrices with sub-Gaussian decay (with potentially different atom distributions) and,
for any z ∈ C, define the Mn by Mn matrix Y(z) = Y − zI as below:

Y(z) =

⎛
⎜⎜⎜⎜⎜⎜⎝

−zI X(1) 0 · · · 0
0 −zI X(2) · · · 0
...

...
...

. . .
...

0 · · · 0 −zI X(M−1)

X(M) 0 · · · 0 −zI

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Let σ1(Y (z)) denote the least singular value of Y(z). For any sufficiently small constant
A > 0, there exists t0 > 0 (depending on A, M and the distributions of the entries) such that
if n1/2−t0 ≤ |z| ≤ n1/2+t0 , then

P
{
σ1
(
Y(z)

)≤ n−1/2−A}≤ Cn−KA.(11)

Here, the constant C depends only on M , A and the distributions of the entries; K depends
only on M and the distributions of the entries. The requisite smallness of A depends on M

and the distributions of the entries.

Previous efforts to control the smallest singular value of this matrix only established a
lower bound of the form n−B , where B was (potentially a quite large) positive constant which
was not explicitly determined [24, 35, 36].

The random matrix theory literature contains many other results concerning the least sin-
gular value and related singularity probability bounds for various models of random matrices
including [9, 12, 16, 18, 19, 29, 30, 39, 40, 42, 46–49, 53–55] and references therein. The ap-
proach to proving Theorem 7 is roughly modeled on the approach taken to prove a similar
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result for a single independent entry random matrix in [49], however the block structure in-
troduces substantial new difficulties that must be overcome. Namely, to control the smallest
singular value we would like to control the distance between a given row of Y(z) (say, the
last row) and the span of the remaining rows, exploiting the independence between the last
row and others through a suitable anti-concentration estimate. The difficulty is that the last
row of Y(z) contains quite a lot of zeros placed there by the block structure itself, and if the
normal to the hyperplane spanned by the remaining rows places too much weight away from
coordinates on which the last row is supported then no anticoncentration estimate could pos-
sibly be applied and the entire argument collapses. On the one hand, such a scenario does not
sound particularly probable (as it would seem to require significant coordination between the
independent factor matrices), and on the other hand there does not appear to be a simple way
to easily rule out such occurrences. The bulk of the argument is occupied with this problem,
which is not encountered in the case of a single i.i.d. random matrix (where all entries of
all rows are random) and whose resolution depends on careful consideration of the interplay
between the block structure and the linear spaces spanned by the small singular vectors of the
individual factor matrices.

As a corollary, Theorem 7 implies a least singular value bound on the original product
matrix.

COROLLARY 8. Let X1, . . . ,XM be independent n by n i.i.d. random matrices with
sub-Gaussian decay (featuring potentially different atom distributions). For any z ∈ C, let
σ1(X(z)) denote the smallest singular value of the random matrix X(z) = X1 · · ·XM − zMI ,
where I denotes the identity matrix. For any sufficiently small constant A > 0, there exists
t0 > 0 (depending on A, M and the distributions of the entries) such that if n1/2−t0 ≤ |z| ≤
n1/2+t0 , then

P
{
σ1
(
X(z)

)≤ |z|M−1n−1/2−A}≤ Cn−KA.(12)

Here, the constant C depends only on M , A and the distributions of the entries; K depends
only on M and the distributions of the entries. The requisite smallness of A depends on M

and the distributions of the entries.

The remainder of this paper is organized as follows. In Section 3, we present the proof
of Theorem 7 and the proof of its corollary for matrix products. In Section 4, we present
a version of Theorem 3 in the base case of Gaussian entries; the proof of this result along
with the proof of Theorem 4, which uses similar techniques, are given in the Supplementary
Material [28]. In Section 5, we prove Theorem 3 in full generality, and in Section 6 we prove
Theorems 5 and 6. The proofs of Theorems 5 and 6 reference the proof of Theorem 3 to some
degree; otherwise, these sections may be read independently of one another.

2. Notation. In this section, we will collect some elementary notation which we will use
throughout the paper.

We will write fn = O(gn), fn � gn, gn � fn or gn = �(fn) if |fn| ≤ C|gn| holds for all
n > C and for some fixed C > 0. If the value of the constant C depends on some param-
eters, we will denote this with subscripts, for example, if the constant depends on the pa-
rameters a1, . . . , ak , we would write fn = Oa1,...,ak

(gn). We will write fn = o(gn) to denote
fn/gn → 0 as n → ∞. We will also make heavy use of the following two basic definitions
from probability theory.

DEFINITION 9. A sequence of events En holds with overwhelming probability if for
every fixed A > 0 there exists a constant CA > 0 such that the estimate P(En) ≥ 1 − CAn−A

holds for all n.
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DEFINITION 10. A sequence of events En holds with exponential probability (or expo-
nentially high probability) if there exist constants C,c > 0 such that the estimate P(En) ≥
1 − C exp(−cn) holds for all n.

We will also make extensive use of the 1-, 2- and ∞-norms for vectors. Letting v =
(v1, . . . , vn) ∈ C

n:

‖v‖1 = |v1| + |v2| + · · · + |vn|,(13)

|v| = ‖v‖2 =
√

|v1|2 + · · · + |vn|2,(14)

‖v‖∞ = max
j

|vj |.(15)

For a matrix M , we define the operator norm ‖M‖op as follows:

‖M‖op = sup
‖v‖2=1

‖Mv‖2.(16)

For complex functions f defined on the measure space (X,�,μ), we define the usual 1-, 2-
and ∞-norms:

‖f ‖1 =
∫
X

∣∣f (x)
∣∣dμ,(17)

‖f ‖2 =
√∫

X

∣∣f (x)
∣∣2 dμ,(18)

‖f ‖∞ = ess sup
∣∣f (x)

∣∣.(19)

In the last definition, we use the essential supremum of |f (x)| to denote the smallest constant
which bounds |f (x)| almost everywhere with respect to the appropriate measure. On the
linear algebra side of things, we will let V ⊥ denote the vector space of all vectors orthogonal
to V , and will frequently use X − z to denote the matrix X − zI , where X is some matrix, I

is the identity matrix of matching dimension and z ∈ C. For a p ×n matrix A with p ≤ n, we
let σ1(A) ≤ · · · ≤ σp(A) denote the ordered singular values of A. In particular,

σ1(A) = inf‖v‖2=1
‖Av‖2.

We let [m] denote the discrete interval {1, . . . ,m}. For a finite set S, |S| is the cardinality
of S. We often use

√−1 for the imaginary unit and reserve i as an index.

3. Smallest singular value.

3.1. Preliminary definitions and lemmas. In this section, we provide the proof of The-
orem 7 and Corollary 8. We begin by collecting some elementary definitions and lemmas
which we will require, and also make some preliminary reductions. Let X(i) for 1 ≤ i ≤ M

and Y(z) be as in the statement of Theorem 7, and let the small positive parameter A > 0 be
arbitrary. In several parts of the proof, we assume M > 1 as Theorem 7 and Corollary 8 both
follow from [49], Theorem 3.2, in the case M = 1.

Our argument will rely on the following estimate on the singular values of the factor ma-
trices X(i), which follows from the proof of Lemma 4.11 in [12].

LEMMA 11. There exists a constant γ ∈ (0,1) and a constant c0 > 0 such that with
overwhelming probability, the following estimate hold simultaneously for the singular values



1382 P. KOPEL, S. O’ROURKE AND V. VU

σ1(X
(i)) ≤ · · · ≤ σn(X

(i)) of each factor matrix X(i) and for all choices of 0 < τ < γ (such
that n1−τ is an integer):

σn1−τ

(
X(i))≥ c0n

1/2−τ .(20)

The constants γ and c0 depend only on the atom distributions of the matrices in question.

We will also need the small ball probability bound, which appears as Corollary 6.3 in [49].

LEMMA 12. Let ξ1, . . . , ξn be i.i.d. random variables with mean zero and variance one.
Then there exists a constant c > 0 such that

P
{|ξ1v1 + · · · + ξnvn − z| < c

}≤ 1 − c

for all z ∈ C and all unit vectors v = (v1, . . . , vn) ∈ C
n.

It is technically possible to operate in greater generality here: the assumption of identi-
cal distribution can be weakened to the more general technical condition that the random
variables in question be κ-controlled, but we will not seek such refinements here. For more
information on κ-controlled distributions, the reader is referred to [49].

We will also need the classical Chernoff bound for indicator variables; see, for example,
[13].

LEMMA 13. Let X1, . . . ,Xn be independent indicator variables, and let μ = E[∑n
i=1 Xi]

denote the expectation of the sum. Then for any 0 < δ ≤ 1,

P

{
n∑

i=1

Xi ≥ (1 + δ)μ

}
≤ e−μδ2/3(21)

and

P

{
n∑

i=1

Xi ≤ (1 − δ)μ

}
≤ e−μδ2/2.(22)

We will frequently use the Chernoff bound in conjunction with a well-known cardinality
bound on epsilon nets. A set of vectors Nε ⊆ � ⊆ C

n is said to constitute an ε-net for � if
for any vector v ∈ � there exists u ∈ Nε such that ‖u − v‖2 ≤ ε.

LEMMA 14. For any ε > 0, the unit sphere of Cn contains an ε-net Nε whose cardinality
satisfies

|Nε | ≤
(

1 + 2

ε

)2n

.

The reader is referred to the excellent resource [54] for a proof. We will also require the
following estimate on the sizes of nets

LEMMA 15. For a, b ∈ (0,1), the set of unit vectors in C
n with at most an nonzero

coordinates admits a b-net with cardinality at most(
n

an

)(
C

b

)2an

≤
(

e

a

C

b

)2an

.

Here, C > 0 is an absolute constant.
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This follows from Lemma 14 along with the well-known bound on binomial coefficients(n
k

)≤ (ne/k)k (valid for all k less than n).
During the course of the argument, we will find it necessary to work with so-called com-

pressible and incompressible vectors separately. Intuitively, this distinction captures whether
or not a vector is well approximated by a sparse vector. Precisely, we define a compress-
ible vector, with parameters a, b ∈ (0,1), to be a vector v′ such that there exists a vector v

supported on at most an coordinates with ‖v − v′‖2 ≤ b. Let Comp(a, b) denote the set of
compressible unit vectors with parameters a and b, and let Incomp(a, b), the set of incom-
pressible unit vectors, denote its complement on the unit sphere.

Without loss of generality, we now place some assumptions on the matrices we will be
working with, ruling out some very unlikely pathologies. By the bounds on the operator norm
of i.i.d. random matrices with sub-Gaussian entries [54] we will often work on the event

max
{∥∥X(1)

∥∥
op, . . . ,

∥∥X(M)
∥∥

op

}≤ √
n(1 + r0),(23)

which holds with exponential probability for r0 sufficiently large.
Let X̃(i) be the n − 1 by n rectangular matrix formed by deleting the last row of X(i), and

let Ỹ (z) be the Mn − 1 by Mn rectangular matrix formed by deleting the last row of Y(z).
By the upper bound on the operator norm of X(i), for sufficiently large and fixed r0 > 0, the
following holds:

max
i

{∥∥X(i)
∥∥

op,
∥∥X̃(i)

∥∥
op

}≤ √
n(1 + r0)(24)

with exponential probability.

3.2. The compressible case. Our starting observation is that it is quite unlikely for any
fixed selection of unit vector to be orthogonal to the row space of Y(z).

LEMMA 16. The following estimate holds for all z ∈ C and any fixed unit vector u:

P
{∥∥Y(z)u

∥∥
2 ≤ c1

√
n
}≤ O

(
exp(−c0n)

)
.

The implied constants featured in this bound, as well as c0 > 0 and c1 > 0, can be taken to
depend only on M and the atom distributions of the factor matrices.

PROOF. Begin by letting u be any fixed unit vector, and write u = (u(1), u(2), . . . , u(M)),
where each u(l) ∈ C

n. The estimate ‖u(l)‖2 ≥ M−1/2 must hold for at least one l: without loss
of generality, we will take this estimate to hold for l = 2. Let us then expand (for 1 ≤ k ≤ n):

∣∣(Y(z)u
)
k

∣∣=
∣∣∣∣∣
(

n∑
j=1

X
(1)
k,ju

(2)
j

)
− zu

(1)
k

∣∣∣∣∣.
Define Tk to be the indicator variable associated with the event that the following estimate
holds: ∣∣∣∣∣

(
n∑

j=1

X
(1)
k,ju

(2)
j

)
− zu

(1)
k

∣∣∣∣∣≤ c

M1/2 .(25)

Since by assumption u is a vector whose first n coordinates have 2-norm at least M−1/2, we
are able to choose the constant c > 0 appropriately (in a manner that depends only on the
distribution of X

(1)
j,k) such that Lemma 12, the small ball probability bound, implies that

P{Tk = 1} ≤ 1 − c.(26)
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We would like to bound the probability of the following rare event:
n∑

i=1

Ti ≥ n

(
1 − c

2

)
.

Clearly, this probability is maximized when the inequality in (26) is an equality, so we may as
well assume that Tk = 1 with probability 1−c. By the Chernoff bound for indicator variables,
we have that for any δ > 0:

P

{
n∑

i=1

Ti ≥ n(1 − c)(1 + δ)

}
≤ exp

(−n(1 − c)δ2/3
)
.

Taking the parameter δ to be c/(2(1 − c)) (we can safely assume c < 1/2, as we can always
choose smaller c) and c0 = c2/(12(1 − c)):

P

{
n∑

i=1

Ti ≥ n

(
1 − c

2

)}
≤ exp(−c0n).

This means that, with exponential probability, for at least (cn/4) coordinates, the following
estimate holds: ∣∣(Y(z)u

)
k

∣∣≥ c

M1/2 .

Since we can bound the norm of Y(z)u from below by the norm of its first cn/4 coordinates:

P
{∥∥Y(z)u(1)

∥∥2
2 ≤ c3n

4M

}
≤ O

(
exp(−c0n)

)
.

Setting c1 =
√

c3

4M
concludes the argument. �

As a quick corollary, let us use this lemma to handle the case of compressible vectors. The
thrust of the argument is that, since the set of compressible vectors can be well approximated
by a relatively small ε-net, the union bound may be applied and yield nontrivial bounds.

LEMMA 17. For every ε > 0, there exists t0, θ > 0 (depending on ε, M , the constant
r0 from (23) and the atom distribution of the factor matrices X(1), . . . ,X(M)) such that the
following estimate holds for all |z| ≤ n1/2+t0 , for a = 1/ log(n) and for b = θn−ε :

P
{

min
u∈Comp(a,b)

∥∥Y(z)u
∥∥

2 ≤ c1
√

n
}

≤ O
(
exp(−c0n)

)
.(27)

The implied constants featured in this bound, and also the constants c0 > 0 and c1 > 0, can
be taken to depend only on ε, M and the atom distributions of the matrices X(i).

PROOF. It suffices to prove the bound for all sufficiently small values of ε > 0, as the
bound then trivially holds for all larger values of ε (since Comp(a, b′) ⊂ Comp(a, b) for all
b′ ≤ b). Let �a,b denote a b-net of the set of all vectors with unit length and at most an

nonzero coordinates. Using Lemma 15, we can bound the cardinality of this net:

|�a,b| ≤
(

n

an

)(
C

b

)2an

≤
(

e

a

C

b

)2an

= exp
(

2an log
(

Ce

ba

))
.

Set a = 1/ log(n) and b = θn−ε for ε sufficiently small (to be determined momentarily)
and θ > 0 to be chosen shortly. Our net can then be chosen to satisfy the cardinality bound:

|�a,b| ≤ exp
(

2n

log(n)
log

(
Ceθ−1nε log(n)

))≤ O
(
exp(c3n)

)
,
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where c3 can be chosen arbitrarily small by taking ε sufficiently small (and because
log(log(n))/ log(n) tends to zero). By the union bound and Lemma 16, if we take c3 to be
small enough (and hence ε small enough), we have the following probability estimate:

P
{

min
u∈�a,b

∥∥Y(z)u
∥∥

2 ≤ c1
√

n
}

≤ O
(
exp(−cn)

)
.(28)

This proves the result over the net, it remains to extend this bound to the rest of the set of
compressible vectors. Recall that a vector u in Comp(a, b) is distance at most b away from a
vector with at most an nonzero coordinates and, therefore, is at most distance 2b away from
a vector u′ in �a,b. Suppose there exists a vector u ∈ Comp(a, b) such that ‖Y(z)u‖ ≤ c1

10

√
n

and that ‖Y(z)‖ ≤ (2 + r0)n
1/2+t0 . Then there exists a vector u′ ∈ �a,b such that ‖u − u′‖ ≤

2b. Hence, by the triangle inequality, taking θ = c1
30(2+r0)

and t0 = ε gives

∥∥Y(z)u′∥∥≤ 2b(2 + r0)n
1/2+t0 + c1

10

√
n ≤ c1

√
n.

In view of (28), we conclude that

P
{

min
u∈Comp(a,b)

∥∥Y(z)u
∥∥

2 ≤ c1

10

√
n and

∥∥Y(z)
∥∥≤ (2 + r0)n

1/2+t0

}

≤ P
{

min
u∈�a,b

∥∥Y(z)u
∥∥

2 ≤ c1
√

n
}

≤ O
(
exp(−cn)

)
.

Since the norm bound ‖Y(z)‖ ≤ (2 + r0)n
1/2+t0 holds with exponential probability (due to

(23) and the assumption that |z| ≤ n1/2+t0 ), the claim follows. �

We will utilize Lemma 17 at the end of the section. Notice that the proof to Lemma 17
goes over if we delete a row from either a factor matrix X(i) or Y(z) (simply by replacing n

with n − 1 as appropriate gives the equivalent results in this rectangular case).

LEMMA 18. For every ε > 0, there exists t0, θ > 0 (depending on ε, M , the constant
r0 from (23) and the atom distribution of the factor matrices X(1), . . . ,X(M)) such that the
following estimate holds for all |z| ≤ n1/2+t0 , for a = 1/ log(n) and for b = θn−ε :

P
{

min
u∈Comp(a,b)

∥∥Ỹ (z)u
∥∥

2 ≤ c0
√

n
}

≤ O
(
exp(−cn)

)
.

The constants in this bound depend only on ε, M and the atom distributions of the matrices
X(i).

This extension will be useful for some of the arguments we will make later on as a quick
way of ruling out certain problematic scenarios without repeating all the details of this sec-
tion.

3.3. The incompressible case, Part I. We need to collect some preliminary lemmas in
preparation for dealing with incompressible vectors.

First, an overview. Recall that Ỹ (z) denotes the rectangular matrix produced by deleting
the last row of Y(z). In this section, we will endeavor to show that, with high probability,
any unit vector v which is orthogonal to the rows of Ỹ (z) has the property that its first n

coordinates are not too close, in a certain sense, to the singular vectors corresponding to the
small singular values of the product of the first M − 1 factor matrices. The end game is to
control the unit normal to the row space of Ỹ (z), and to show that it does not place the vast
majority of its weight away from its leading n coordinates.
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Observe that if v is orthogonal to the first Mn − 1 rows of Y(z), the block structure which
results from linearization implies that

v(1) = 1

zM−1 X(1) · · ·X(M−1)v(M)

and

Ĩ v(M) = 1

z
X̃(M)v(1),

where Ĩ is the (n− 1)× n matrix formed from the n× n identity matrix by removing the last
row. In view of these identities, we would like to show that a specific class of unit vectors v

satisfy an estimate which looks like∥∥∥∥∥
M−1∏
i=1

(
1

z
X(i)

)
v

∥∥∥∥∥
2

> n−ε0(29)

for an appropriate set of values of z ∈ C (this set of complex numbers will depend on M). One
of the main technical challenges will be showing that ε0 can be chosen independent of M .

We will need to get a handle on the small singular values of the matrices X(i) to accomplish
our goal, so let us start there. We will let σ

(i)
1 ≤ σ

(i)
2 ≤ · · · ≤ σ

(i)
n denote the ordered singular

values of X(i), and let u
(i)
j denote some choice of associated unit singular vectors:

(
X(i))∗(X(i))u(i)

j = (
σ

(i)
j

)2
u

(i)
j .(30)

Since we have a decent estimate on the number of small singular values of our factor matrices,
we will try to isolate all vectors which interact with these singular values into a space of
modest dimension. The advantage here is that we may now apply epsilon-net arguments
which are not admissible when dealing with incompressible vectors more generally. The
construction of this space is straightforward and is the occupation of the next lemma. The
parameter τ determines exactly which singular values we will categorize as small, and an
explicit selection of τ will be made later in the argument.

LEMMA 19. Let c, τ > 0 be sufficiently small constants. With overwhelming probability,
there exists a linear subspace Vτ with dimension at most O(n1−τ ) such that for all unit
vectors v orthogonal to Vτ :

∥∥X(1) · · ·X(M−1)v
∥∥

2 ≥ cn(1/2)(M−1)

n(M−1)τ
.(31)

In addition, Vτ can be taken to be the linear subspace spanned by the singular vectors cor-
responding to the O(n1−τ ) smallest singular values of X(1) · · ·X(M−1).

PROOF. We first construct a subspace Vτ with the desired properties; in the second half
of the proof, we will show that Vτ can be taken to be the linear subspace spanned by the
singular vectors corresponding to the O(n1−τ ) smallest singular values of X(1) · · ·X(M−1).
Indeed, for each i ∈ {1, . . . ,M − 1}, let W

(i)
τ denote the vector space which is given by the

span of u
(i)
j for 1 ≤ j ≤ n1−τ . With overwhelming probability, we may assume that each

of the factor matrices X(1), . . . ,X(M−1) is both invertible (by Proposition 27 in [52]) and
satisfies (20) (with the same τ as appears in the statement of the lemma, as we can take τ to
be sufficiently small.)

Define the space Ṽ
(M−1)
τ to simply be equal to W

(M−1)
τ , and define Z

(M−1)
τ to be

the image of the vector space (W
(M−1)
τ )⊥ under the matrix (X(M−1))−1, which we may
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write (X(M−1))−1(W
(M−1)
τ )⊥. Define Ṽ

(M−2)
τ to be the span of the union of Ṽ

(M−1)
τ with

(Z
(M−1)
τ )⊥. Then the dimension of Ṽ

(M−2)
τ is at most 2n1−τ (because it is the span of the

union of two spaces each with dimension at most n1−τ ).
Because Ṽ

(M−2)
τ contains Ṽ

(M−1)
τ , Lemma 11 implies that every unit vector v orthogonal

to Ṽ
(M−2)
τ meets the following condition:∥∥X(M−1)v

∥∥
2 ≥ cn1/2−τ .

Further, the orthogonality between v and Ṽ
(M−2)
τ ensures that v ∈ Z

(M−1)
τ by construction

and, therefore, that the vector X(M−1)v is orthogonal to the space W
(M−2)
τ . Lemma 11 then

guarantees that ∥∥X(M−2)X(M−1)v
∥∥

2 ≥ cn1/2−τ
∥∥X(M−1)v

∥∥
2.

Combining the preceding two estimates,∥∥X(M−2)X(M−1)v
∥∥

2 ≥ c2n1−2τ .

Continuing the construction iteratively, we construct a space Ṽ
(1)
τ with dimension at most

O(n1−τ ) such that for all unit vectors v orthogonal to Ṽ
(1)
τ :∥∥X(1) · · ·X(M−2)X(M−1)v

∥∥
2 ≥ cM−1n(1/2)(M−1)−(M−1)τ .(32)

This shows that the subspace Vτ has exactly the properties we require. To complete the
proof, we need to show that Vτ can be taken to be spanned by the singular vectors of
X(1) · · ·X(M−1). Indeed, we now use Vτ to construct another linear subspace �τ which satis-
fies the same properties, but which is spanned by the singular vectors of the product. Let d be
the dimension of Vτ . Fix a realization in which (31) holds and in which d = O(n1−τ ). Let �τ

denote the linear subspace spanned by the singular vectors of X(1) · · ·X(M−1) corresponding

to singular values which are strictly smaller than cn(1/2)(M−1)

n(M−1)τ (if there are no such singular
values, take �τ to be the trivial subspace). By the orthogonality of the singular vectors, it
follows that if v is a unit vector orthogonal to �τ , then

∥∥X(1) · · ·X(M−1)v
∥∥

2 ≥ cn(1/2)(M−1)

n(M−1)τ
.

It remains to show that the dimension of �τ is O(n1−τ ). This follows from (31). Indeed, by
the minimax principle for singular vectors (see, for instance, [10], Problem III.6.1), it follows
that

σd+1
(
X(1) · · ·X(M−1))≥ min

v∈V ⊥
τ ,‖v‖=1

∥∥X(1) · · ·X(M−1)v
∥∥

≥ cn(1/2)(M−1)

n(M−1)τ
.

This implies that dim(�τ ) ≤ d = O(n1−τ ), completing the proof of the lemma. �

Next, we leverage the relatively small size of the space Vτ to control its behavior much in
the same way we controlled compressible vectors. Specifically, we will see that it is unlikely
for a unit vector in Vτ to be the first n coordinates of a vector approximately normal to both
the first (M − 1)n rows of Ỹ (z) (which we may condition on) and the remaining rows (which
are still random).
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LEMMA 20. Let Ĩn be the n − 1 by n matrix formed by deleting the last row of the
n-dimensional identity matrix, and assume that z ∈ C is such that |z| ∈ [n1/2−δ, n1/2+δ]
for some choice of δ ∈ (0, 1

4(M+1)
). Then with overwhelming probability the matrices

X(1), . . . ,X(M−1) are such that the following probability estimate holds with respect to the
random matrix X̃(M):

P

{
min‖v‖=1,v∈Vτ

∥∥∥∥∥
(
zĨn − X̃(M)

M−1∏
h=1

(
1

z
X(h)

))
v

∥∥∥∥∥
2

≤ Cδn
1/2−(M+1)δ

}

≤ C−1
δ exp(−cτn).

The constant Cδ > 0 depends on δ, on M and on the distribution of the matrix entries, while
cτ depends on the distribution of the matrix entries and also on the choice of τ .

PROOF. By Lemma 19, the dimension of Vτ is at most O(n1−τ ) with overwhelming
probability. Assume this is so, and choose a (1/

√
n)-net of the unit ball of Vτ , which we will

denote by �τ . By Lemma 14, we can take this net to have cardinality at most

|�τ | ≤ (
1 + 2n1/2)2n1−τ ≤ exp

([
(3/2)n−τ log(n)

]
n
)

(33)

for n sufficiently large. Crucially, as long as τ > 0 this cardinality will grow slower than
exp(cn) for any fixed choice of c > 0. Now, fix an arbitrary choice of v ∈ �τ and, for nota-
tional simplicity, define the vector yv as follows:

yv =
(

1

z
X(1)

)(
1

z
X(2)

)(
1

z
X(3)

)
· · ·

(
1

z
X(M−1)

)
v.

For yv �= 0, Lemma 12, the small ball probability bound, implies the following anticoncen-
tration estimate for 1 ≤ j ≤ n − 1:

P

{∣∣∣∣∣
n∑

i=1

X̃
(M)
j,i (yv)i − zvj

∣∣∣∣∣≤ c‖yv‖2

}
≤ 1 − c.

Let Tj , for 1 ≤ j ≤ n−1, be the indicator variable associated with the event that the following
estimate holds: ∣∣∣∣∣

n∑
i=1

X̃
(M)
j,i (yv)i − zvj

∣∣∣∣∣
2

≥ c2‖y‖2
2.

By the small ball probability bound, each Tj equals 1 with probability at least c, and by the
Chernoff inequality (Lemma 13) for sums of indicator variables,

P

{
n−1∑
j=1

Tj ≤ c

2
(n − 1)

}
≤ exp

(−c(n − 1)/8
)
.

On the complement of this event at least (c/2)(n − 1) many of the Tj must then be equal
to 1. Consequently,

P
{∥∥X̃(M)yv − zĨnv

∥∥2
2 ≤ c3

2
‖yv‖2

2(n − 1)

}

≤ exp(−cn/8)

for a slightly different constant c > 0 and all n sufficiently large. To proceed further, we need
to have an estimate of the quantity ‖yv‖2, which we will handle by inspecting various cases.
If we assume that ‖yv‖2 ≥ (n1/2/|z|)M−1, then we can conclude that there exist constants
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C0, c0 > 0 depending only on the entry distributions such that for this choice of unit vector
v:

P
{∥∥X̃(M)yv − zĨnv

∥∥
2 ≤ C0|z|(n1/2/|z|)M}≤ C−1

0 exp(−c0n).(34)

If we instead assume that ‖yv‖2 ≥ n−2δ , then we can similarly conclude that there exist
constants C0, c0 > 0 depending only on the entry distributions such that for this choice of
unit vector v:

P
{∥∥X̃(M)yv − zĨnv

∥∥
2 ≤ C0n

1/2−2δ}≤ C−1
0 exp(−c0n).(35)

These two cases handle the situations where yv is relatively large, we now consider the
case where yv is relatively small. Specifically, assume that

‖yv‖2 ≤ min
{(

n1/2/|z|)M−1
, n−2δ}.(36)

The Chernoff bound method employed above is not helpful for such yv , as the bounds we
would obtain would be too weak to establish the desired result. We therefore employ a dif-
ferent approach in this case, which takes advantage of the largeness of |z| instead of the
randomness of the rows of X̃(M). For this method to work, we need to make sure that v

does not put too much mass on its last coordinate, so for now also assume that the following
estimate holds:

‖Ĩnv‖2 ≥ n−δ/2.(37)

We will justify this assumption in due course, but first notice that the bound on the operator
norm of X̃(M), along with the smallness of ‖yv‖2, imply∥∥X̃(M)yv

∥∥
2 ≤ (1 + r0)n

1/2−2δ

with exponential probability. Comparing magnitudes, we have the estimate∥∥zĨnv − X̃(M)yv

∥∥
2 ≥ (|z|n−δ/2 − (1 + r0)n

1/2−2δ).
Using our assumptions on the magnitude of the parameter |z| and also bounding 3δ/2 by 2δ,
we obtain the following estimate:∥∥zĨnv − X̃(M)yv

∥∥
2 ≥ cn1/2−2δ(38)

for a constant c > 0.
It remains to justify (37), which as in the case of compressible vectors, boils down to the

fact that the product of our random matrices with any fixed unit vector is not small with
very high probability. To that end, let en ∈ C

n denote the unit Cartesian coordinate vector
supported only on the nth coordinate. By the same argument, as we have used in the com-
pressible case (specifically, by the Chernoff bound calculation in the proof of Lemma 16)

P
{∥∥X(M−1)en

∥∥
2 ≤ C

√
n
}≤ O

(
exp(−cn)

)
.

Iterating this argument and applying our assumptions on the magnitude of |z|, it is exponen-
tially likely that∥∥∥∥

(
1

z
X(1)

)(
1

z
X(2)

)(
1

z
X(3)

)
· · ·

(
1

z
X(M−1)

)
en

∥∥∥∥
2
≥ cn(M−1)/2|z|−(M−1).

On the other hand, if v is a vector such that ‖ωen − v‖2 ≤ Cn−δ/2 for some ω ∈ C with
|ω| = 1, then (by the operator norm bound on the matrices X(i))∥∥∥∥

(
1

z
X(1)

)(
1

z
X(2)

)(
1

z
X(3)

)
· · ·

(
1

z
X(M−1)

)
(v − ωen)

∥∥∥∥
2

≤ C(1 + r0)
M−1|z|−(M−1)n(M−1)/2n−δ/2.
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Using the fact that C(1 + r0)
M−1n−δ/2 → 0 as n → ∞, as well as the triangle inequality,∥∥∥∥

(
1

z
X(1)

)(
1

z
X(2)

)(
1

z
X(3)

)
· · ·

(
1

z
X(M−1)

)
v

∥∥∥∥
2
≥ cn(M−1)/2|z|−(M−1).

This in turn implies (37), as we can assume that if v is such that (37) fails then ‖yv‖2 ≥
c(n1/2/|z|)M−1 necessarily, and we can take c < 1.

Combining (38) with (34) and (35), we see that for any choice of unit vector v in the net
�τ ,

P
{∥∥X̃(M)yv − zĨnv

∥∥
2 ≤ C0 min

{|z|(n1/2/|z|)M,n1/2−2δ}}≤ exp(−c0n).

Taking the union bound over all v in our net and using (33), we obtain

P
{

min
v∈�τ

∥∥X̃(M)yv − zĨnv
∥∥

2 ≤ C0 min
{|z|(n1/2/|z|)M,n1/2−2δ}}

≤ O
(
exp(−c0n)

)
.

(39)

To complete the proof, we approximate an arbitrary vector in Vτ with a vector in our net. For
any unit v′ ∈ Vτ and v ∈ �τ , the triangle inequality and the definition of yv imply

∥∥X̃(M)yv − zĨnv
∥∥

2 −
∥∥∥∥∥
(
zĨn − X̃(M)

M−1∏
h=1

(
1

z
X(h)

))∥∥∥∥∥
op

∥∥v − v′∥∥
2

≤
∥∥∥∥∥
(
zĨn − X̃(M)

M−1∏
h=1

(
1

z
X(h)

))
v′
∥∥∥∥∥

2

.

By construction of our net, we may take ‖v − v′‖2 ≤ n−1/2, and by the triangle inequality
again we also have the operator norm estimate∥∥∥∥∥

(
zĨn − X̃(M)

M−1∏
h=1

(
1

z
X(h)

))∥∥∥∥∥
op

≤ |z|(1 + (1 + r0)
M(

n1/2/|z|)M)
,

which holds with exponential probability by (23). In view of (39), it remains to bound the
following quantity from below:

min
{|z|(n1/2/|z|)M,n1/2−2δ}− |z|√

n

(
1 + (1 + r0)

M(
n1/2/|z|)M)

.

To accomplish this, we will inspect both instances of the minimum. On one hand, we have

|z|(n1/2/|z|)M − |z|√
n

(
1 + (1 + r0)

M(
n1/2/|z|)M)

= |z|
((

1 − (1 + r0)
M

√
n

)(
n1/2/|z|)M − 1√

n

)

≥ cn1/2−δn−Mδ = cn1/2−(M+1)δ

for n sufficiently large. On the other hand,

n1/2−2δ − |z|√
n

(
1 + (1 + r0)

M(
n1/2/|z|)M)

≥ n1/2−2δ − cn(M−1)δ

≥ cn1/2−2δ.
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To obtain the last inequality, we have used the assumption δ < 1
4(M+1)

. Since M + 1 ≥ 2, we
can therefore conclude

cn1/2−(M+1)δ ≤
∥∥∥∥∥
(
zĨn − X̃(M)

M−1∏
h=1

(
1

z
X(h)

))
v′
∥∥∥∥∥

2

.

Since v′ was an arbitrary unit vector in Vτ , this concludes the proof. �

We now have a level of control which we can live with over the space Vτ , and it remains
to take similar control over vectors which lie largely but not entirely in Vτ . The epsilon-net
methods which we have been employing will not work in this case, as the portion of such a
vector which does not lie in Vτ may lie in one of any number of directions. Instead, our next
lemma follows from an approximation argument.

LEMMA 21. Let ε0 > 0 be a sufficiently small constant, and suppose that the estimate
n1/2−ε0/16M ≤ |z| ≤ n1/2+ε0/16M holds. Let V [ε0] denote the set of all unit vectors v which
satisfy ∥∥∥∥∥

M−1∏
h=1

(
1

z
X(h)

)
v

∥∥∥∥∥≤ n−ε0 .

Then there exists a positive constant Cε0 such that with overwhelming probability X(1), . . . ,

X(M−1) are such that the following probability bound holds with respect to the random matrix
X̃(M):

P

{
min

v∈V [ε0]

∥∥∥∥∥
(
zĨn − X̃(M)

M−1∏
h=1

(
1

z
X(h)

))
v

∥∥∥∥∥
2

≤ Cε0

}

≤ O
(
exp(−cε0n)

)
.

The choice of ε0 depends only on the atom distributions of the factor matrices. Here, Cε0

depends on ε0 and M , and cε0 depends on ε0, the atom distributions of the factor matrices
and M .

PROOF. Choose 0 < τ ≤ ε0/4M . Applying Lemma 20 with δ = ε0/8(M + 1), it is
overwhelmingly probable that X(1), . . . ,X(M−1) are such that with probability at least
1 − C0 exp(−c0n) (with respect to X̃(M)) the following event occurs:

min‖v‖=1,v∈Vτ

∥∥∥∥∥
(
zĨn − X̃(M)

M−1∏
h=1

(
1

z
X(h)

))
v

∥∥∥∥∥
2

≥ Cn1/2−ε0/8.(40)

We will obtain our result by essentially just observing that (40) implies

min
v∈V [ε0]

∥∥∥∥∥
(
zĨn − X̃(M)

M−1∏
h=1

(
1

z
X(h)

))
v

∥∥∥∥∥
2

≥ Cε0 .(41)

Indeed, let v be any unit vector such that∥∥∥∥∥
M−1∏
h=1

(
1

z
X(h)

)
v

∥∥∥∥∥
2

≤ n−ε0 .(42)

We can decompose v = v(1) + v(2), where v(1) ∈ Vτ and v(2) is orthogonal to Vτ (and there-
fore to v(1) as well). We would like to show that v(2) must be small, and that therefore our
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vector v is well approximated by its projection v(1). Using the fact that v(2) is orthogonal to
Vτ (and, therefore, lies entirely in the span of the singular vectors associated with the “large”
singular values), as well as our assumptions about the magnitude of the complex parameter
z, we obtain

n−(M−1)ε0/(2M)
∥∥v(2)

∥∥
2 ≤

∥∥∥∥∥
M−1∏
h=1

(
1

z
X(h)

)
v(2)

∥∥∥∥∥
2

.

Following Lemma 19, we see that Vτ is spanned by the singular vectors corresponding to
the smallest singular values of the product X(1) · · ·X(M−1). Thus, v(1) can be expressed as a
linear combination of singular vectors in Vτ , and v(2) can be expressed as linear combinations
of singular vectors from V ⊥

τ . Hence, the orthogonality of singular vectors implies∥∥∥∥∥
M−1∏
h=1

(
1

z
X(h)

)
v

∥∥∥∥∥
2

≥ n−(M−1)ε0/(2M)
∥∥v(2)

∥∥
2.

Substituting in (42),

n−(M−1)ε0/(2M)
∥∥v(2)

∥∥
2 ≤

∥∥∥∥∥
M−1∏
h=1

(
1

z
X(h)

)
v

∥∥∥∥∥
2

≤ n−ε0

and, therefore, ∥∥v(2)
∥∥

2 ≤ n−ε0/2.(43)

Applying the triangle inequality and ‖v − v(1)‖2 = ‖v(2)‖2,∥∥∥∥∥
(
zĨn − X̃(M)

M−1∏
h=1

(
1

z
X(h)

))
v(1)

∥∥∥∥∥
2

−
∥∥∥∥∥
(
zĨn − X̃(M)

M−1∏
h=1

(
1

z
X(h)

))∥∥∥∥∥
op

∥∥v(2)
∥∥

2

≤
∥∥∥∥∥
(
zĨn − X̃(M)

M−1∏
h=1

(
1

z
X(h)

))
v

∥∥∥∥∥
2

.

By (24), (40) and (43), with exponential probability,∥∥∥∥∥
(
zĨn − X̃(M)

M−1∏
h=1

(
1

z
X(h)

))
v

∥∥∥∥∥
2

≥ Cε0n
1/2−ε0/8 − Cn1/2−ε0/4.

This is what we wanted to show, as (41) is now established. �

We are now in a position to prove the following.

LEMMA 22. Suppose that n1/2−ε0/16M ≤ |z| ≤ n1/2+ε0/16M , and let u be any unit vec-
tor orthogonal to the subspace spanned by the first Mn − 1 rows of Y(z). If we write
u = (u(1), . . . , u(M)), where each u(i) has n entries, it is overwhelmingly probable that
X(1), . . . ,X(M−1) are such that the following probability estimate holds (with respect to
X̃(M)):

P
{∥∥u(1)

∥∥
2 ≤ n−2ε0

}≤ exp(−cε0n).(44)

Here, ε0 > 0 is sufficiently small constant (where the maximal legal choice of ε0 depends on
the atom distributions of the factor matrices).
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PROOF. By Lemma 21, we may safely work on the event that

min
v∈V [ε0]

∥∥∥∥∥
(
zĨn − X̃(M)

M−1∏
h=1

(
1

z
X(h)

))
v

∥∥∥∥∥
2

≥ Cε0 .(45)

This is because the first M − 1 factor matrices are, with overwhelming probability, such
that this event is exponentially likely with respect to X̃(M). Since u is normal to the span of
the first nM − 1 rows of Y(z) by assumption, the block structure of Y(z) implies that for
1 ≤ j ≤ M − 1,

u(j) =
(

M−1∏
h=j

1

z
X(h)

)
u(M)

and, in particular,

u(1) =
(

M−1∏
h=1

1

z
X(h)

)
u(M).(46)

This is because, by the block structure and the orthogonality of u, we can express each u(i) in
terms of u(i+1). Since ‖z−1X(h)‖op is at most (1 + r0)n

ε0/16M , with exponential probability,
the fact that u is a unit vector implies that the 2-norm of u(M) cannot be too small. Specifically,
we can assume that

n−ε0 ≤ ∥∥u(M)
∥∥

2.(47)

By (46) and the orthogonality of u to the last n − 1 rows of Ỹ (z),∥∥∥∥∥
(
zĨn − X̃(M)

M−1∏
h=1

(
1

z
X(h)

))
u(M)

∥∥∥∥∥
2

= 0.

Comparing with (45), we have that u(M)/‖u(M)‖2 cannot lie in V [ε0], and this (along with
(47) and (46)) implies

∥∥u(1)
∥∥

2 = ∥∥u(M)
∥∥

2

∥∥∥∥∥
(

M−1∏
h=1

1

z
X(h)

)
u(M)

‖u(M)‖2

∥∥∥∥∥
2

≥ n−2ε0 .

This is what we wanted to show. �

We will also need the following lemma, which follows from a line of reasoning similar to
the one used in establishing Lemma 16.

LEMMA 23. For every sufficiently small constant θ > 0 and for every sufficiently small
t0 > 0, the following holds with a = 1/ logn, b = θn−100(M−1)t0 and n1/2−t0 ≤ |z| ≤ n1/2+t0 .
Let u ∈ C

Mn be a unit vector orthogonal to the first Mn − 1 rows of the random matrix Y(z).
Write u = (u(1), u(2), . . . , u(M)) where u(j) ∈ C

n for 1 ≤ j ≤ M . Then, with overwhelming
probability, any choice of u must be such that u(1) is not identically zero and the normalized
vector u(1)/‖u(1)‖2 does not lie in Comp(a, b). Here, sufficient smallness of θ depends only
on M , the constant r0 from (23) and the distributions of the entries of the factor matrices.

PROOF. Let θ, t0 ∈ (0,1) be a sufficiently small constants to be chosen later. The claim
that u(1) �= 0 is trivial, as the linear structure of Y(z) and orthogonality assumption on u

would then imply that X(1) is noninvertible, which can be ruled out with exponentially high
probability [54]; alternatively, one could also use Lemma 22.
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It therefore suffices to show that u(1)/‖u(1)‖2 is not compressible. We will assume M > 1;
in fact, the M = 1 case can be deduced from Lemma 18. Let v = (v(1), . . . , v(M)) be some
nonzero vector in C

Mn with each v(i) ∈ C
n and ‖v(1)‖2 = 1. We will use a net argument to

show that, with overwhelming probability, v cannot be orthogonal to the first Mn − 1 rows
of Y(z) if v(1) ∈ Comp(a, b).

If v is orthogonal to the first Mn − 1 rows of Y(z), the block structure which results from
linearization implies that

(48) v(1) = 1

zM−1 X(1) · · ·X(M−1)v(M)

and

(49) Ĩ v(M) = 1

z
X̃(M)v(1),

where Ĩ is the (n− 1)× n matrix formed from the n× n identity matrix by removing the last
row; these identities also appeared in the proof of Lemma 22. In particular, since ‖v(1)‖2 = 1,
with exponentially high probability, we use (23) and (48) to deduce that

1 ≤
(

(1 + r0)n
1/2

n1/2−t0

)M−1∥∥v(M)
∥∥

2,

and hence

(50)
∥∥v(M)

∥∥
2 ≥ Cr0n

−(M−1)t0

for some constant Cr0 > 0 which depends only on r0 and M .
Inductively repeating the argument from the proof of Lemma 16 (using Lemma 12 to

control the size of each coordinate and then applying the Chernoff bound), we have

P
{∥∥zM−1y − X(1) · · ·X(M−1)x

∥∥
2 ≤ c1n

(M−1)/2−3(M−1)t0
}= O

(
exp(−cn)

)
for any fixed vectors x, y with ‖x‖2 ≥ Cr0

2 n−3(M−1)t0 .
Let a and b be as in the statement of the lemma, and let �a,b be a 3b-net of Comp(a, b),

the set of compressible unit vectors in C
n. By Lemma 15, �a,b can be chosen so that

|�a,b| ≤ exp
(

2an log
(

eC

ab

))
= exp

(
o(n) + 200n(M − 1)t0

)
.

Let N be a b-net of {z ∈ C : |z| ≤ n2}. A simple volume argument shows that N can be
chosen so that

l := |N | ≤ O
(
nOM(1)).

Let ω1, . . . ,ωl be an enumeration of the elements in N . To each y ∈ �a,b, we associate the
vectors xy,1, . . . , xy,l such that

Ĩ xy,k = 1

z
X̃(M)y

for each 1 ≤ k ≤ l, and the last coordinate of xy,k is given by ωk . The vectors xy,1, . . . , xy,l

are random, but only depend on X̃(M). In particular, these vectors are independent of
X(1), . . . ,X(M−1). For notational simplicity, define

�′
a,b =

{
(y, xy,k) : y ∈ �a,b,1 ≤ k ≤ l,‖xy,k‖2 ≥ Cr0

2
n−3(M−1)t0

}
,

so ∣∣�′
a,b

∣∣� exp
(
o(n) + 200n(M − 1)t0

)
.
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Taking t0 sufficiently small and applying the union bound, we conclude that

(51)
P
{

min
(y,x)∈�′

a,b

∥∥zM−1y − X(1) · · ·X(M−1)x
∥∥

2 ≤ c1n
(M−1)/2−3(M−1)t0

}

= O
(
exp

(−c′n
))

.

Here, we have exploited the fact that �′
a,b depends only on X̃(M) and is independent of

X(1), . . . ,X(M−1), while the probability above is only in terms of X(1), . . . ,X(M−1). In par-
ticular, the probability bound above holds uniformly for any realization of X̃(M).

Now suppose v = (v(1), . . . , v(M)) ∈ C
Mn is normal to the first Mn − 1 rows of Y(z) with

‖v(1)‖2 = 1, v(1) ∈ Comp(a, b), and Cr0n
−(M−1)t0 ≤ ‖v(M)‖2 ≤ n. Then clearly v(1) and v(M)

must satisfy (48) and (49). In addition, there exists y′ ∈ �a,b such that ‖v(1) − y′‖2 ≤ 3b. By
(49), with exponentially high probability and for all 1 ≤ k ≤ l,∥∥Ĩ v(M) − Ĩ xy′,k

∥∥
2 ≤ 3(1 + r0)n

t0b.

By the assumption that ‖v(M)‖2 ≤ n, the last coordinate of v(M) cannot be larger than n.
Thus, there exists k such that ‖v(M) − xy′,k‖2 ≤ 5(1 + r0)n

t0b. Taking θ sufficiently small (in
particular, choosing

√
θ small enough), we obtain

∥∥v(M) − xy′,k
∥∥

2 <
Cr0

2

√
θn−99(M−1)t0 .

In particular, by the lower bound assumption on ‖v(M)‖2, this implies that ‖xy′,k‖2 ≥
Cr0

2 n−3(M−1)t0 . Hence, (y′, xy′,k) ∈ �′
a,b. Applying (48), (23) and taking θ sufficiently small,

we conclude that ∥∥zM−1y′ − X(1) · · ·X(M−1)xy′,k
∥∥

2

≤ |z|M−13b + [
(1 + r0)

√
n
]M−1 Cr0

2

√
θn−99(M−1)t0

< c1n
(M−1)/2−3(M−1)t0

with exponentially high probability. Comparing to (51), we obtain

P
{∃v orthogonal to rows of Ỹ (z) with v(1) ∈ Comp(a, b),

Cr0n
−(M−1)t0 ≤ ∥∥v(M)

∥∥
2 ≤ n

}
= O

(
exp

(−c′′n
))

.

To complete the proof, it remains to show, with overwhelming probability, that every vector
v orthogonal to the first Mn − 1 rows of Y(z) satisfies Cr0n

−(M−1)t0 ≤ ‖v(M)‖2 ≤ n. Indeed,
the lower bound follows, with exponentially high probability, due to (50). We now prove the
upper bound holds with overwhelming probability. Indeed, in view of (48) and (49), v(M)

must satisfy (
Ĩ − 1

zM
X̃(M)X(1) · · ·X(M−1)

)
v(M)

‖v(M)‖2
= 0.

(Note that v(M) cannot be zero by (48) since v(1) is assumed to be a unit vector.) Taking
t0 sufficiently small and applying Lemma 21, we find that, with overwhelming probability,
v(M)/‖v(M)‖2 /∈ V [16Mt0]. Hence, by definition of V [16Mt0] and (48),∥∥∥∥ 1

zM−1 X(1) · · ·X(M−1) v(M)

‖v(M)‖2

∥∥∥∥
2
= ‖v(1)‖2

‖v(M)‖2
≥ n−16Mt0,
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which by rearranging (and since ‖v(1)‖2 = 1) yields∥∥v(M)
∥∥

2 ≤ n16Mt0 ≤ n

for t0 sufficiently small. The proof of the lemma is complete. �

3.4. The incompressible case, Part II. Let θ > 0 be a sufficiently small constant satisfy-
ing Lemma 23. We now prove the following result for incompressible vectors.

LEMMA 24. For any sufficiently small constant A > 0, there exists a constant t0 > 0
such that the following holds for a = 1/ logn and b = θn−100(M−1)t0 . Suppose that z lies in
the following annulus:

n1/2−t0 ≤ |z| ≤ n1/2+t0 .(52)

Then the following probability bound holds:

P
{

min
v∈Incomp(a,b)

∥∥Y(z)v
∥∥

2 ≤ cn−1/2−A
}

≤ O
(
(logn)n−KA).

Here, c and K are positive constants depending only on the atom distributions of the factor
matrices and on M (as does in the implied constant on the right-hand side of the probability
estimate).

The argument presented here will in large part follow along the same lines as the argument
in [49], and will be organized around the following result of Rudelson and Vershynin [41].

LEMMA 25. Let distk denote the distance between the kth row of Y(z) and the hypersur-
face spanned by the other Mn − 1 rows. Then the following estimate holds for any constants
1 > a,b > 0:

P
{

min
v∈Incomp(a,b)

∥∥Y(z)v
∥∥

2 ≤ ε′b(Mn)−1/2
}

≤ 1

aMn

Mn∑
k=1

P
{
distk ≤ ε′},(53)

where ε′ > 0 is any arbitrary positive constant.

PROOF OF LEMMA 24. Our task is now to estimate distk , which can be formulated as the
magnitude of an inner product. It is sufficient to establish the result for the very last row of
Y(z), the changes required to establish the result for the other rows being purely notational.
Make the following definitions, for constants c1, c2 > 0 to be determined later:

ε = c1bn−A, ρ = c2n
−A.

Define also Sε,ρ to be the set of unit vectors v ∈ C
n satisfying the following inequality (where

X is a random vector with the same distribution as a row of X(M)):

sup
ξ∈C

[
P
(|X · v − ξ | ≤ ε

)]≥ ρ.(54)

By Lemma 6.7 in [49], we have that for any t0, θ > 0, for n large enough, and A < 1/2 (and
choosing c1 and c2 appropriately):

Sε,ρ ⊂ Comp
(
O

(
1

nρ2

)
,O

(
ε

ρ

))
⊂ Comp(a, b).

Let � be an Mn-dimensional vector � = (�(1), . . . ,�(M)) (not necessarily of unit length)
orthogonal to first Mn − 1 rows of Y(z), with each �(i) ∈ C

n and with ‖�(1)‖2 = 1. Notice



RANDOM MATRIX PRODUCTS 1397

that � can be chosen to depend only on the first Mn − 1 rows of Y(z) and is indepen-
dent of the last row of X(M). By Lemma 23, with overwhelming probability (with respect
to X(1), . . . ,X(M−1)), we have that such a normal vector exists and �(1) is not in Sε,ρ . This
implies that

P
{∥∥X(M)

n �(1) − z�(M)
∥∥

2 ≤ ε
}≤ ρ.(55)

Here, since � is orthogonal to the first Mn−1 rows of Y(z), ‖X(M)
n �(1) −z�(M)‖2 is simply

the magnitude of the dot product of � with the last row of Y(z). For A and t0 sufficiently
small, Lemma 22, with overwhelming probability, guarantees that ‖(�(1)/‖�‖2)‖2 ≥ n−A.
In other words, (since ‖�(1)‖2 = 1), ‖�‖2 ≤ nA. Rescaling, we obtain

P
{
distMn ≤ εn−A}≤ P

{∥∥X(M)
n �(1) − z�(M)

∥∥
2 ≤ εn−A‖�‖2

}≤ O(ρ).(56)

Applying Lemma 25, we conclude that

P
{

min
v∈Incomp(a,b)

∥∥Y(z)v
∥∥

2 ≤ c′
1θ

2n−2A−1/2−200(M−1)t0
}

≤ O
(
(logn)ρ

)
,

where c′
1 = c1/

√
M . Taking t0 sufficiently small (in terms of A and M), we deduce that

P
{

min
v∈Incomp(a,b)

∥∥Y(z)v
∥∥

2 ≤ c′
1θ

2n−3A−1/2
}

≤ O
(
(logn)ρ

)
.

Since this is true for any sufficiently small positive constant A, replacing A by A/3 completes
the proof of Lemma 24. �

The proof of Theorem 7 can now be completed by combining Lemma 17 with Lemma 24
and bounding the lower order terms (such as bounding logn above by nKA/2 for n sufficiently
large). We now turn to the proof of Corollary 8. From the block structure of Y(z), one can
compute each n × n block of the inverse Y(z)−1. Indeed, the top-left n × n minor of Y(z)−1

is given by

(
1

zM−1 X1 · · ·XM − z

)−1
.

By Theorem 7,

P
{∥∥Y(z)−1∥∥

op ≥ n1/2+A}≤ Cn−KA,

and consequently (using the fact that the operator norm of a matrix bounds the operator norm
of any submatrix):

P
{∥∥∥∥
(

1

zM−1 X1 · · ·XM − z

)−1∥∥∥∥
op

≥ n1/2+A

}
≤ Cn−KA.

We conclude that with probability at least 1−Cn−KA the smallest singular value of the trans-
lated product matrix X1 · · ·XM − zM is no smaller than |z|M−1n−(1/2+A). This establishes
Corollary 8.

4. Linear statistics of product matrices. The main result of this section will be a cen-
tral limit theorem for linear statistics of products of independent complex Ginibre matrices.
Recall that U represents the unit disk in the complex plane centered at the origin.
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THEOREM 26. Let f : C → R be a function with continuous partial derivatives and
at most polynomial growth at infinity. Additionally, let λ1, . . . , λn denote the eigenvalues
of the matrix product n−M/2X(1) · · ·X(M), where each X(i) is an independent n × n com-
plex Ginibre matrix, and let Nn[f ] denote the associated centered linear statistic: Nn[f ] =∑n

j=1 f (λj ) − E[∑n
j=1 f (λj )]. Then Nn[f ] converges in distribution to the mean zero nor-

mal distribution with the following limiting variance:

1

4π

∫
U

∣∣∇f (z)
∣∣d2z + 1

2
‖f ‖2

H 1/2(∂U)
.(57)

We will follow the approach developed by Rider and Virág [38] to prove a similar result for
the Ginibre ensemble, which will come down to using rotary flow combinatorial machinery
to control the cumulants of the statistic in the case of polynomial test functions, and then
producing a variance bound to extend the result to the case of more general test functions.
The key property which we are exploiting here is the fact that the Ginibre product matrix,
like the Ginibre ensemble itself, is a rotationally invariant determinantal point process. The
proof of Theorem 26 is given in the Supplementary Material [28]. As the proof of Theorem 4
follows similar arguments, the details are also presented in [28].

Theorem 26 will provide us with a base case to which we will then apply four moment
universality.

5. Four moment universality. In this section, we prove Theorem 3 by way of four mo-
ment universality (with the bound on the smallest singular value, Theorem 7, playing a crucial
role in the argument). The development in this section is based on an approach previously em-
ployed in [27] for independent entry matrices, which was itself based on the argument put
forward in [52].

We will on several occasions appeal to technical results obtained by Nemish during the
course of his proof of the local M-fold circular law [32].

THEOREM 27 (Nemish). Let f : C → R be a fixed smooth function with compact sup-
port. Let λ1, . . . , λn be the eigenvalues of n−M/2X(1) · · ·X(M), where each jointly indepen-
dent factor X(i) is an n × n i.i.d. random matrix. If |z0|, (1 − |z0|) ≥ τ0 for some τ0 > 0, then
for any d ∈ (0,1/2],(

1

n

n∑
j=1

fz0(λj ) − 1

Mπ

∫
|z|≤1

fz0(z)|z|2/M−2

)
≺ n−1+2d‖�f ‖1.(58)

Here, fz0 is the n−d rescaling of f (z) around z0:

fz0(z) = n2df
(
nd(z − z0)

)
.

Similar local law results for independent-entry matrices have also been obtained in [7, 14,
15, 52, 56]. The notation A ≺ B appearing in the local M-fold circular law denotes stochastic
domination.

DEFINITION 28. Let An,Bn ∈ C be two sequences of random variables for n ∈ N. The
sequence Bn is said to stochastically dominate An (written An ≺ Bn) if, for any ε > 0 and
D > 0, the following holds:

P
{|An| ≥ nε |Bn|}≤ CDn−D.(59)
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This explains the presence of the spectral bulk condition τ0 < |z| < 1 − τ0 in Theorem 3;
if the arguments in [32] could be extended to the spectral edge then our argument would be
extended to the spectral edge as well. Notice that this is asking more than the extension of
the result in [32]; indeed this has recently been accomplished at the origin in [23], but the
arguments used do not appear to translate into the context of the argument presented here.

5.1. Overview of the argument. Recall that the linearization matrix of the product
n−M/2X(1) · · ·X(M), denoted Y , is defined as follows:

Y = 1√
n

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 X(1) 0 · · · 0
0 0 X(2) · · · 0
...

...
...

. . .
...

0 · · · 0 0 X(M−1)

X(M) 0 · · · 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

For β = 1,2, let Y (β) be the linearization matrix associated with the product n−M/2 ×
X(β,1) · · ·X(β,M) (with factor matrices obeying the assumptions in the statement of Theo-
rem 29 below). For any choice of complex z in the spectral bulk (defined as in the statement
of Theorem 29), define Y (β)(z) = Y (β) − zI , and define also

W(β)(z) =
(

0 Y (β)(z)(
Y (β)(z)

)∗ 0

)
.(60)

We let λ
(β)
j (z), for 1 ≤ j ≤ 2Mn, denote the eigenvalues of W(β)(z).

Our argument will rest in large part on the classical Girko Hermitization trick, which we
will use to get around various complications which stem from the failure of Hermiticity. The
trick relies on the following identity for twice continuously differentiable test functions with
compact support:

f (λ) = 1

2π

∫
C

�f (z) log |λ − z|d2z.(61)

If ι1, . . . , ιMn are the eigenvalues of Y (β), then this formula becomes
Mn∑
j=1

f (ιj ) = 1

2π

∫
C

�f (z) log
∣∣det

(
Y (β) − z

)∣∣d2z

= 1

4π

∫
C

�f (z) log
∣∣detW(β)(z)

∣∣d2z.

The upshot here is that the matrix W(β)(z) is Hermitian, and can therefore be analyzed by
the tools of Hermitian random matrix theory. The cost we have incurred is the presence of
the integral, which we will need to deal with. Using this formulation, we prove the following
four moment universality result for the linear statistics of the linearization matrix.

THEOREM 29. Suppose Y (1) is the linearization matrix associated with the product ma-
trix n−M/2X(1,1) · · ·X(1,M) and Y (2) is the linearization matrix associated with the product
n−M/2X(2,1) · · ·X(2,M) (where all factor matrices are mutually independent n by n i.i.d. ma-
trices), and suppose that the atom distributions of the factors X(1,i) and X(2,i) match to four
moments for 1 ≤ i ≤ M . Let f : C → R be a fixed function with two continuous derivatives,
supported in the spectral bulk τ0 < |z| < 1 − τ0 for some fixed τ0 > 0. If the linear statistic
generated by the eigenvalues of Y (1) and f , denoted N

(1)
n [f ], converges in distribution to

some limiting distribution χ , then the linear statistic generated by the eigenvalues of Y (2)

and f , N
(2)
n [f ], necessarily converges in distribution to χ as well.
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We can connect this linear statistic with the linear statistic of the product matrix
n−M/2X(β,1) · · ·X(β,M) (with eigenvalues μ1, . . . ,μn) through the formula (see, for instance,
[36] for a complete derivation)

n∑
j=1

f (μj ) =
Mn∑
j=1

[
1

M
f
(
ιMj
)]

,(62)

where ι1, . . . , ιMn are the eigenvalues of the linearization matrix of the product n−M/2 ×
X(β,1) · · ·X(β,M). Applying universality to the test function M−1f (zM) immediately extends
fourth moment universality for linear statistics of linearization matrices to fourth moment
universality for linear statistics of product matrices. Theorem 29 then implies the following
corollary.

THEOREM 30. Suppose that the product matrices X(1) = n−M/2X(1,1) · · ·X(1,M) and
X(2) = n−M/2X(2,1) · · ·X(2,M) are both products of mutually independent n by n i.i.d. ran-
dom matrices, and suppose that the atom distributions of the factors X(1,i) and X(2,i) match to
four moments for 1 ≤ i ≤ M . Let f : C → R be a fixed function with two continuous deriva-
tives, supported in the spectral bulk τ0 < |z| < 1 − τ0 for some fixed τ0 > 0. If the linear
statistic generated by the eigenvalues of X(1) and f , denoted N

(1)
n [f ], converges in distribu-

tion to some limiting distribution χ , then the linear statistic generated by the eigenvalues of
X(2) and f , N

(2)
n [f ], converges in distribution to χ as well.

Combining Theorem 30 with the Gaussian result, Theorem 26, one immediately obtains
Theorem 3, which is our objective. It remains then to prove Theorem 29, which the rest
of this section is dedicated. Throughout the proof, we will assume that all matrices under
consideration feature exclusively real entries; the same proof goes forward for matrices with
complex entries but with slightly more cumbersome notation.

5.2. Preliminaries. Here, we collect some preliminary results and definitions which we
will need in order to prove Theorem 29. Define an elementary matrix to be a Hermitian
matrix featuring one or at most two entries equal to 1, and all the other entries set to zero.
Therefore, adding a multiple of an elementary matrix to a Hermitian matrix H changes either
a single diagonal entry or two conjugate off-diagonal entries of H , and leaves the other entries
undisturbed.

For a n × n Hermitian matrix H and an elementary matrix V , define

Ht = H + 1√
n
tV,(63)

R0(ζ ) = (H − ζ )−1,(64)

Rt(ζ ) = (Ht − ζ )−1,(65)

st (ζ ) = 1

n
TrRt(ζ ).(66)

We will also need to define an appropriate matrix norm:

‖A‖(∞,1) = max
1≤i,j≤n

|Aij |.

The following Taylor expansion type lemma is due to Tao and Vu (see Proposition 13 in [50]),
and is proven by iterating the classical resolvent identity.
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LEMMA 31. Let H be a Hermitian matrix, V an elementary matrix, t and E real num-
bers and η > 0. Take ζ = E + √−1η. Let k ≥ 0 be fixed. Suppose we have

|t | × ∥∥R0(ζ )
∥∥
(∞,1) = o(

√
n).

Then we have the following Taylor expansion to order k of the quantity st (ζ ):

s0 +
k∑

j=1

n−j/2cj t
j

+ O

(
n−(k+1)/2|t |k+1∥∥R0(ζ )

∥∥k+1
(∞,1) min

(∥∥R0(ζ )
∥∥
(∞,1),

1

nη

))
.

The coefficients cj are independent of t and obey the following estimate:

|cj | �
∥∥R0(ζ )

∥∥j
(∞,1) min

(∥∥R0(ζ )
∥∥
(∞,1),

1

nη

)
.

We will also need the following Monte Carlo sampling lemma (see Lemma 6.1 in [51]), a
consequence of Chebyshev’s inequality.

LEMMA 32. Let (X,μ) be a probability space and F a square integrable function from
(X,μ) to the real line. For m independent xi , distributed according to μ, define the empirical
average:

Sm = 1

m

m∑
i=1

F(xi).

Then for any δ > 0 the following estimate holds with probability at least 1 − δ:∣∣∣∣Sm −
∫
X

F dμ

∣∣∣∣≤ 1√
δm

(∫
X

(
F −

∫
X

F dμ

)2
dμ

)1/2
.(67)

We will require the following technical lemma, which will take the place of Propositions 29
and 31 in [52].

LEMMA 33. Let N
(β)
I = Card{i, λ(β)

i ∈ I } be the counting function of the number of
eigenvalues in an interval I of W(β)(z), let R0(ζ ) denote the matrix (W(β)(z)− ζ )−1 for any
ζ ∈ C, and suppose that τ0 ≤ |z| ≤ 1− τ0 for some fixed τ0 > 0. Then we have, uniformly and
with overwhelming probability, the following bounds:

NI ≤ no(1)(1 + Mn|I |)(68)

for all intervals I (where |I | here denotes the length of the interval I ) and

∣∣R0(
√−1η)i,j

∣∣≤ no(1)

(
1 + 1

Mnη

)
(69)

for all η > 1/n and 1 ≤ i, j ≤ 2Mn. In addition, for any sufficiently small constant c0, there
exists an event which holds with probability at least 1 − O(n−�(c0)+o(1)) such that condi-
tioned on this event,

(70) sup
η>0

∥∥R0(
√−1η)

∥∥
(∞,1) ≤ O

(
nO(c0)

)
with overwhelming probability.
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PROOF. Both (68) and (69) are immediate from the proof of the local M-fold circular
law [32]. First, (68) follows from the fact that the number of classical eigenvalue locations of
W(β)(z) in an interval is proportional to the length of the interval, and from the eigenvalue
rigidity argument which was used to obtain (26) from Theorem 5 in [32] (see also Lemma 5.1
in [14]). Second, (69) follows immediately from (ii) in the proof of Lemma 17 in [32].

Equation (70) follows from the proof of Lemma 46 in [52], where instead of applying
Proposition 31 from [52], one applies (69). We omit the details. �

5.3. Proof of Theorem 29. In this section, we will prove Theorem 29 by way of the
following, somewhat more general result.

THEOREM 34. Let G : R→C be any smooth function with five bounded derivatives, and
let f : C → R be a function with two continuous derivatives supported in the spectral bulk
τ0 < |z| < 1 − τ0 for some fixed τ0 > 0. Let N

(β)
n [f ] (for β = 1,2) denote the linear statistics

of the linearization matrices corresponding to two products of M independent n by n i.i.d.
random matrices: n−M/2X(1,1) · · ·X(1,M) and n−M/2X(2,1) · · ·X(2,M). Assume furthermore
that the entry distributions of X(1,i) match the entry distributions of X(2,i) to four moments
for 1 ≤ i ≤ M . Then there exist constants C,A > 0 such that∣∣EG

(
N(1)

n [f ])− EG
(
N(2)

n [f ])∣∣≤ Cn−A.(71)

Notice that Theorem 29 follows as a simple corollary by the Fourier inversion formula (as
we can take G such that E[G(N

(β)
n [f ])] is the characteristic function of N

(β)
n [f ]; see [52] or

[27]). The following proof of Theorem 34 is a combination of the proof of a similar result in
[52] with a Monte Carlo sampling argument.

PROOF OF THEOREM 34. The proof is divided into three steps: the first is a prepro-
cessing step which reformulates the statement we wish to prove into a statement about finite
sums. The second step reduces the problem into a statement about Stieltjes transforms and
the third uses resolvent swapping and a Taylor expansion to conclude the argument.

Step 1: Reformulating the problem. We will first need a variance bound which follows
from the proof of the local M-fold circular law [32]. By (2.9) in [32], we have that, for any
D > 0 and any ε > 0, with probability at least 1 − OD,ε(n

−D), the following estimate holds:

∫
C

∣∣�f (z)
∣∣2∣∣∣∣∣

2Mn∑
j=1

log

∣∣∣∣∣λ(β)
j (z)

∣∣− log
∣∣γj (z)

∣∣∣∣2 d2z ≤ OD,ε

(
nε).(72)

Here, γj (z) represent the classical locations of the eigenvalues of Wβ(z), as defined in [32]
(the exact definition of γj (z) and properties thereof will not be essential to our argument, so
we do not provide an overview of this material here; the important feature will simply be that
these are deterministic quantities).

By the Girko Hermitization trick, to prove the desired result it suffices to establish the
following estimate (see the discussion in Section 5.1):∣∣∣∣∣EG

(∫
C

�f (z)

2Mn∑
j=1

[
log

∣∣λ(1)
j (z)

∣∣]d2z

)
− EG

(∫
C

�f (z)

2Mn∑
j=1

[
log

∣∣λ(2)
j (z)

∣∣]d2z

)∣∣∣∣∣
≤ Cn−A.

Fix some choice of positive constant k0 > 0 to be determined later, and for K = �nk0�, let
z1, . . . , zK denote independent random elements selected uniformly at random from the sup-
port of f , independent of the product matrices. Let L > 0 be the Lebesgue measure of the
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support of f ; since f is supported in the spectral bulk, it follows that L = O(1). Define the
two stochastic Riemann sums S

(1)
K and S

(2)
K :

S
(β)
K = L

K

K∑
i=1

(2Mn∑
j=1

�f (zi)
[
log

∣∣λ(β)
j (zi)

∣∣− log
∣∣γj (zi)

∣∣]).

By (72) (with some choice of D > 0 to be determined) and the Monte Carlo sampling lemma
(Lemma 32),

P

{∣∣∣∣∣
(∫

C

�f (z)

2Mn∑
j=1

[
log

∣∣λ(β)
j (z)

∣∣− log
∣∣γj (z)

∣∣]d2z

)
− S

(β)
K

∣∣∣∣∣
2

≤ O

(
nε

δK

)}

≥ 1 − O
(
n−D)− δ.

Choosing ε = k0/4 and δ = n−k0/4 and D sufficiently large, this becomes

P

{∣∣∣∣∣
(∫

C

�f (z)

2Mn∑
j=1

[
log

∣∣λ(β)
j (z)

∣∣− log
∣∣γj (z)

∣∣]d2z

)
− S

(β)
K

∣∣∣∣∣
2

≤ O

(
1

nk0/8

)}

≥ 1 − O
(
n−k0/8).

Since we are dealing with the expectations of bounded functions, this estimate will suffice
for our purposes. Indeed, it follows that we may write

EG

(∫
C

�f (z)

Mn∑
j=1

[
log

∣∣λ(1)
j (z)

∣∣− log
∣∣γj (z)

∣∣]d2z

)

− EG

(∫
C

�f (z)

Mn∑
j=1

[
log

∣∣λ(2)
j (z)

∣∣− log
∣∣γj (z)

∣∣]d2z

)

= EG
(
S

(1)
K

)− EG
(
S

(2)
K

)+ OG

(
1

nk0/8

)
.

Step 2: Additional reductions. We have now replaced the integral which resulted from the
Girko Hermitization trick with a sum of K terms; this more or less reduces the problem
to the one solved in [52] (as we may deal with each summand separately and just add the
resulting errors), and the remainder of the proof just follows the argument made in [52]. We
may condition on the precise choice of points z1, . . . , zK , and do so now.

Expanding the logarithm by way of the fundamental theorem of calculus, one obtains
(where we use sβ(z,

√−1η) to denote quantity 1
2Mn

Tr[W(β)(z) − √−1η]−1) for any z ∈ C

with |z| ≤ n2 (say)

log
∣∣det

(
Wβ(z)

)∣∣= log
∣∣det

(
Wβ(z) − in100)∣∣− 2Mn Im

∫ n100

0
sβ(z,

√−1η)dη

= 200Mn log(n) + O
(
n−10)− 2Mn Im

∫ n100

0
sβ(z,

√−1η)dη.

Since G has a bounded first derivative and may be translated, in order to prove Theorem 34
it is sufficient to show that∣∣∣∣∣EG

(
nL

K

K∑
i=1

Im
∫ n100

0
s1(zi,

√−1η)dη

)

− EG

(
nL

K

K∑
i=1

Im
∫ n100

0
s2(zi,

√−1η)dη

)∣∣∣∣∣≤ Cn−A.
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Step 3: Resolvent swapping. We would like to simplify this last expression via the resolvent
swapping lemma, Lemma 31; however, we must first make sure that the matrices W(1)(zi)

and W(2)(zi) satisfy the assumptions of the lemma for each zi , which is the one part of the
proof where we will require control over the smallest singular value of linearization matrices.
The argument here is the exact clone of the same argument in [52], and we do not reproduce
it here. Indeed, by the arguments given in Section 8 of [52] (with our Theorem 7 in the
place of their Proposition 27 and our Lemma 33 in place of their Propositions 29 and 31)
we can conclude that, with probability 1 − O(n−�0c0) the matrices W(1)(zi) and W(2)(zi),
for any fixed i, are such that resolvent swapping lemma applies. Here, the constant c0 > 0 is
sufficiently small and �0 > 0 is absolute. Since K = O(nk0), by taking k0 small enough and
using the union bound we may safely assume that this condition is satisfied for each zi , and
thus every summand in S

(β)
K .

We may now safely swap entries. We demonstrate this process by first swapping the very
first entry in the very first pair of factor matrices, X

(1,1)
1,1 and X

(2,1)
1,1 . This will require some

additional notation, which we develop presently. Let s(1,1)(zi,
√−1η) denote the Stieltjes

transform of W(1)(zi), and let s(2,1)(zi,
√−1η) denote the Stieltjes transform of the matrix

formed by taking W(1)(zi) and replacing the distribution of the entry X
(1,1)
1,1 (which we will

denote ξ
(1,1)
1,1 ) with the distribution of the entry X

(2,1)
1,1 (which we will denote ξ

(2,1)
1,1 ). Also

let s′
(1,1)(zi,

√−1η) denote the Stieltjes transform of the matrix formed by taking W(1)(zi)

and replacing the distribution of the entry X
(1,1)
1,1 with the distribution of the random variable

which is identically equal to zero.
An application of Lemma 31 (with W(β)(zi) in the role of the Hermitian matrix H ) pro-

duces the expansion (for β = 1,2):

s(β,1)(zi,
√−1η) = s′

(1,1)(zi,
√−1η) +

4∑
j=1

(
ξ

(β,1)
1,1

)j
n−j/2cj (η)

+ O

(
n−5/2+O(c0) min

(
1,

1

nη

))
.

Define the constants c̃j as follows:

c̃j = n Im
∫ n100

0
cj (η) dη.

By Lemma 31 and (70), the coefficients c̃j satisfy

|c̃j | ≤ O
(
nO(c0)

)
.(73)

By a trivial integration, we have

n

∫ n100

0
min

(
1,

1

nη

)
dη ≤ O

(
log(n)

)
(74)

and, therefore, we may write the expansion

n

K

K∑
i=1

Im
∫ n100

0
s(β,1)(zi,

√−1η)dη

= n

K

K∑
i=1

Im
∫ n100

0
s′
(1,1)(zi,

√−1η)dη +
4∑

j=1

((
ξ

(β,1)
1,1

)j
n−j/2c̃j

)

+ O
(
n−5/2+O(c0)

)
.
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Computing the fourth-order Taylor expansion of the function G, one obtains

EG

(
nL

K

K∑
i=1

Im
∫ n100

0
s(β,1)(zi,

√−1η)dη

)

= EG

(
nL

K

K∑
i=1

Im
∫ n100

0
s′
(1,1)(zi,

√−1η)dη

)

+ E
4∑

k=1

Lk

k! G(k)

(
nL

K

K∑
i=1

Im
∫ n100

0
s′
(1,1)(zi,

√−1η)dη

)

×
( 4∑

j=1

(
ξ

(β,1)
11

)j
n−j/2c̃j

)k

+ OG

(
n−5/2+O(c0)

)
.

Using the moment matching condition (i.e., the fact that the random variables ξ
(2,1)
11 and ξ

(1,1)
11

match to four moments) and bounding the remaining terms using (73),∣∣∣∣∣EG

(
nL

K

K∑
i=1

Im
∫ n100

0
s(1,1)(zi,

√−1η)dη

)

− EG

(
nL

K

K∑
i=1

Im
∫ n100

0
s(2,1)(zi,

√−1η)dη

)∣∣∣∣∣
≤ O

(
n−5/2+O(c0)

)
.

Repeating this process for all Mn2 entries, summing and applying the triangle inequality
concludes the proof. �

6. Proofs of Theorems 5 and 6. In this section, we will use Theorem 7 to prove The-
orem 5, which establishes local universality for the correlation functions. The proof of The-
orem 6 is virtually identical, except one swaps the call to Theorem 2.1 in [51] (which deals
with polynomials with complex coefficients) with a call to Theorem 3.1 in [51] (which deals
with polynomials with real coefficients), and is therefore omitted.

As in the statement of Theorem 5, for β ∈ {1,2} we let Z
β
n denote the product of M inde-

pendent n by n i.i.d. matrices, with p
(k)
β denoting the associated k-point correlation function

for the M th root eigenvalue process, and we assume the factor matrices of Z1
n and Z2

n match
to four moments. Let

f β
n (z) = det

(
zMI − Zβ

n

)
denote the polynomial whose roots form the M th root eigenvalue process associated with
Z

β
n . Additionally, we let z1, . . . , zk be complex numbers (which are allowed to depend on n)

located in the spectral bulk τ0 ≤ n−1/2|zi | ≤ 1 − τ0, and let G : Ck → C denote a smooth
function supported on the polydisc B(0, r0)

k , where r0 is a small constant which is allowed
to depend on τ0.

The method of proof consists mainly of an application of Theorem 2.1 in [51], the state-
ment of which we reproduce as Theorem 35 below, a wide ranging result concerning the
universality of zeros of random polynomials. We will use NB(z,ρ)(f ) to denote the number
of zeros of f in B(z,ρ), the disk centered at z with radius ρ.
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THEOREM 35 (Tao–Vu). Let C1, r0 ≥ 1, 1 ≥ c0 ≥ 0 be real constants and let a0, k ≥ 1
be integer constants. Set A = 100ka0/c0. Let f 1

n and f 2
n be random polynomials of degree

at most n, and let z1, . . . , zk be k points in the complex plane (which are allowed to depend
on n). Assume that three conditions holds:

1. (Nondegeneracy) The probability that either polynomial is identically zero is at most
C1n

−A.
2. (Nonclustering) For r ≥ 1, one has NB(zi,r)(f

1
n ) ≤ C1n

1/Ar2 with probability at least
1 − C1n

−A, and similarly for f 2
n .

3. (Comparability of log-magnitudes) Given any 1 ≤ k′ ≤ nc0 and complex number
z′

1, . . . , z
′
k′ ∈ ⋃k

i=1 B(zi,20r0), and any smooth function F : Ck′ → C with the derivative

bound |∇aF (w)| ≤ nc0 for all 0 ≤ a ≤ a0 and w ∈ C
k′

, one has∣∣EF
(
log

(∣∣f 1
n

(
z′

1
)∣∣), . . . , log

(∣∣f 1
n

(
z′
k′
)∣∣))− EF

(
log

(∣∣f 2
n

(
z′

1
)∣∣), . . . , log

(∣∣f 2
n

(
z′
k′
)∣∣))∣∣

≤ C1n
−c0,

with the convention that F vanishes when one or more of its arguments is undefined.

Let G : Ck →C be a smooth function supported on the polydisc B(0, r0)
k such that, for some

C2 > 0, G obeys the derivative bound |∇aG(w)| ≤ C2 for all 0 ≤ a ≤ a0 + 2k + 1 and all
w ∈ C

k . Then (letting p
(k)
β,n be the k-point correlation function of the zeros of the random

polynomial f
β
n ),∣∣∣∣
∫
Ck

G(w1, . . . ,wk)p
(k)
1,n(z1 + w1, . . . , zk + wk)d2w1 · · ·d2wk

−
∫
Ck

G(w1, . . . ,wk)p
(k)
2,n(z1 + w1, . . . , zk + wk)d2w1 · · ·d2wk

∣∣∣∣
≤ O

(
n−c0/4),

where the implied constant depends only on C1, r0, c0, k, a0 and linearly on C2.

REMARK 36. Theorem 35 is designed to handle cases where the mean spacing between
zeros is on the order of a constant. This is consistent with the M th root eigenvalue process,
where the mean spacing between points in the bulk is comparable to 1. To handle cases where
the mean spacing is not on the order of a constant, one would need to generalize Theorem 35;
see Remark 2.5 in [51] for further details. If one wishes to prove a version of Theorem 5
using a different scaling convention (rather than the M th root eigenvalue process), one would
need to utilize this more general version of Theorem 35.

The proof of Theorem 5 will boil down to making sure that the three conditions in this pre-
ceding theorem hold. Let us show instead that the analogous result holds for the characteristic
polynomials of the linearization matrices, Y 1(0) and Y 2(0) defined by

Yβ(z) =

⎛
⎜⎜⎜⎜⎜⎜⎝

−zI X(β,1) 0 · · · 0
0 −zI X(β,2) · · · 0
...

...
...

. . .
...

0 · · · 0 −zI X(β,M−1)

X(β,M) 0 · · · 0 −zI

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Indeed, since we have the identity |f β
n (z)| = |det(Y β

n (z))| (which follows from induction
and the Schur determinant identity), we may assume that f 1

n and f 2
n are the characteristic
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polynomials of Y 1(0) and Y 2(0), respectively. Choose r0 > 0 so small that B(zi,20r0) is
still in the spectral bulk τ ′

0 ≤ n−1/2|z| ≤ 1 − τ ′
0 for some positive τ ′

0 smaller than τ0, and
let c0 denote an arbitrarily small positive constant. We now verify the three conditions of
Theorem 35.

The first condition, the nondegeneracy condition, is immediate since these are both char-
acteristic polynomials of matrices. Second, we need the nonclustering property, ensuring that
NB(zi,ρ)(f

β
n ) ≤ C1n

1/Aρ2 for ρ ≥ 1 with probability at least 1 − O(n−A), but this is just a
consequence of Nemish’s local circular law for the linearization matrices Yβ(0), which fol-
lows from the results in [32] if we choose the constant C1 sufficiently large (for instance, by
approximating the indicator function of the relevant disc by smooth functions). We therefore
focus on establishing the third condition: comparability of log-magnitudes. We will demon-
strate this using some of the same arguments we used in establishing Theorem 3, which were
originally introduced in [52]. Because the arguments here are similar to those in [52], we
mostly provide a sketch of the details and explain those portions which differ from [52].

We need to show that given any k′ ≤ nc0 and any collection of complex numbers z′
1, . . . , z

′
k′

in the spectral bulk, and for any function F satisfying the estimate |�aF | ≤ nc0 for 0 ≤ a ≤ 5,
we have ∣∣EF

(
log

∣∣f 1
n

(
z′

1
)∣∣, . . . , log

∣∣f 1
n

(
z′
k′
)∣∣)− EF

(
log

∣∣f 2
n

(
z′

1
)∣∣, . . . , log

∣∣f 2
n

(
z′
k′
)∣∣)∣∣

≤ C1n
−c0 .

We will also first assume that k′ = 1 to keep the presentation and the notations simple, but
the argument generalizes easily. We will deal with the linearization matrices using the same
strategy employed during the proof of Theorem 34, albeit without the Monte Carlo sampling
step. Define the matrices W(β)(z1), for β ∈ {1,2}, as in (60). Let sβ(z′

1,
√−1η) denote the

Stieltjes transform of W(β)(z′
1), which is defined as 1

2Mn
tr(W(β)(z′

1) − √−1η)−1. We have
(by the argument presented in Step 2 of the proof of Theorem 34)∣∣EF

(
log

∣∣detY 1(z′
1
)∣∣)− EF

(
log

∣∣detY 2
n

(
z′

1
)∣∣)∣∣

=
∣∣∣∣EF

(
1

2
log

∣∣detW 1(z′
1
)∣∣)− EF

(
1

2
log

∣∣detW 2
n

(
z′

1
)∣∣)∣∣∣∣

=
∣∣∣∣EF̃

(
Mn Im

∫ n100

0
s1
(
z′

1,
√−1η

)
dη

)

− EF̃

(
Mn Im

∫ n100

0
s2
(
z′

1,
√−1η

)
dη

)∣∣∣∣+ O
(
n−10)

by taking c0 sufficiently small. Here, F̃ is a translation of F (exactly as was done in Step 2
of the proof of Theorem 34). Applying the same argument as in Step 3 of the proof of Theo-
rem 34 (and also as in [52]), and in particular using Theorem 7, we see that Lemma 31, the
resolvent swapping lemma, applies, and that Mn2 separate applications of the the resolvent
swapping lemma (combined with a Taylor expansion of F̃ , again exactly as in Step 3 of the
proof of Theorem 34), provides∣∣EF

(
log

∣∣detY 1(z′
1
)∣∣)− EF

(
log

∣∣detY 2
n

(
z′

1
)∣∣)∣∣≤ CF Mn2n−5/2+O(c0)

≤ O
(
n−c0

)
by taking c0 sufficiently small, which establishes all three conditions from Theorem 35. If
k′ > 1, we simply apply this argument k′ times (one for each argument of F ), and use the
upper bound k′ ≤ O(nc0) (by taking c0 smaller if necessary) to show that the error is still
sufficiently small. By Theorem 35, the result is then established.
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SUPPLEMENTARY MATERIAL

Supplement to “Random matrix products: Universality and least singular values”
(DOI: 10.1214/19-AOP1396SUPP; .pdf). The supplemental material contains the proofs of
Theorems 4 and 26. The proofs are based on the approach developed by Rider and Virág [38],
which comes down to using rotary flow combinatorial machinery to control the cumulants of
the linear statistics.
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