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Consider a negatively drifted one-dimensional Brownian motion starting
at positive initial position, its first hitting time to 0 has the inverse Gaussian
law. Moreover, conditionally on this hitting time, the Brownian motion up to
that time has the law of a three-dimensional Bessel bridge. In this paper, we
give a generalization of this result to a family of Brownian motions with in-
teracting drifts, indexed by the vertices of a conductance network. The hitting
times are equal in law to the inverse of a random potential that appears in the
analysis of a self-interacting process called the vertex reinforced jump pro-
cess (Ann. Probab. 45 (2017) 3967–3986; J. Amer. Math. Soc. 32 (2019) 311–
349). These Brownian motions with interacting drifts have remarkable prop-
erties with respect to restriction and conditioning, showing hidden Markov
properties. This family of processes are closely related to the martingale that
plays a crucial role in the analysis of the vertex reinforced jump process and
edge reinforced random walk (J. Amer. Math. Soc. 32 (2019) 311–349) on
infinite graphs.

1. Introduction. We first recall some classic facts about hitting times of standard Brow-
nian motion. Let (Bt )t≥0 be a standard Brownian motion and

X(t) = θ + B(t),

be a Brownian motion starting from initial position θ > 0. It is well known that the first hitting
time of 0:

(1.1) T = inf
{
t ≥ 0,X(t) = 0

}
has the law of the inverse of a Gamma random variable with parameter (shape, rate) =
(1

2 , θ2

2 ). Moreover, conditionally on T , (Xt)0≤t≤T has the law of a three-dimensional Bessel
bridge from θ to 0 on time interval [0, T ] (see Chapter XI, Section 3 of [15]). More generally,
if

(1.2) X(t) = θ + B(t) − ηt,

is a drifted Brownian motion with negative drift −η < 0 starting at θ > 0, then T has the
inverse Gaussian distribution with parameters ( θ

η
, θ2), that is, T has density

f (t) = θ√
2πt3

exp
(
−1

2

(
θ2

t
+ η2t − 2ηθ

))
1t>0 dt.

Moreover, conditionally on T , (Xt)0≤t≤T has the law of a three-dimensional Bessel bridge
from θ to 0 on time interval [0, T ]. (See [24], Theorem 3.1, or [15], p. 317, Corollary 4.6,
and [14, 23] for complements.)
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This paper aims at giving a generalization of these statements on a conductance network,
namely for a family of Brownian motions with interacting drifts indexed by the vertices of
the network. The distribution of hitting times of these processes will be given by a mul-
tivariate exponential family of distributions introduced by Sabot, Tarrès and Zeng [18], and
generalized in [9, 10], which appeared in the context of self-interacting processes and random
Schrödinger operators. This family of distributions is also intimately related to the supersym-
metric hyperbolic sigma model introduced by Zirnbauer [25] and investigated by Disertori,
Spencer and Zirnbauer [6, 7], and plays a crucial role in the analysis of the edge reinforced
random walk (ERRW) and the vertex reinforced jump process (VRJP) [5, 17, 19].

The generalization of the one-dimensional statement presented in this Introduction was
hinted by the martingales that appear in [19]. This martingale has played an important role
in the analysis of the ERRW and the VRJP on infinite graphs. In Section 2.3, we explain
the relations between the stochastic differential equations (SDEs) defined in this paper and
the VRJP and in Section 9 we relate the martingales that appear in the study of VRJP to the
SDEs.

Note that the computations done in this paper seem to have many similarities with com-
putations done for exponential functional of the Brownian motion in dimension one (see, in
particular, Matsumoto, Yor [11–13]). More precisely, it would be possible to write an ana-
logue of the Lamperti transformation that changes the SDE EW,θ,η

V (Y ) presented below in its
exponential functional counterpart with μ = 1

2 (see the Matsumoto Yor opposite drift theorem
[11]): the counterpart of the representation of Theorem 1 would correspond to a representa-
tion of the SDE with a Brownian motion with opposite drifts as in [11]. In fact, in dimension
one (i.e., one vertex), the inverse Gaussian distribution corresponds to μ = 1

2 , and the Gen-
eralized Inverse Gaussian (GIG) distribution corresponds to general μ ∈ R; see [1] and [23].
On a conductance network (i.e., multidimensional), the case μ = 1

2 can be carried out by
explicit computation; for general μ, one will have to use Bessel K functions as normalizing
constant. We plan to develop these aspects in a further work.

It might not be a coincidence that the GIG distribution was initially called generalized
hyperbolic distribution, and the distribution we considered here stems from a supersymmetric
hyperbolic sigma model, where one considered spin systems with spins taking values on a
super hyperbolic space. Interested readers can check [1] and [22] for more details.

Another related direction goes back to Vallois, where GIG is conceived as the exit law of
some one-dimensional diffusion. Matrix version of geometric drifted Brownian motions are
studied in [16] and such matrix process is shown to have interesting properties which seems
related to our model. In [3], Chhaibi explicitly computed the exit law of certain hypoelliptic
Brownian motion on a solvable Lie group where, for example, he recovered the Matsumoto
Yor opposite drift theorem, by taking the group to be sl2. It is very likely that there is a
connection with our work. Note also that the integral of a geometric Brownian motion is
closely related to the study of Asian option. At last, some related open questions are listed in
Section 4.5 of [10].

2. Statement of the main results.

2.1. The multivariate generalization of inverse Gaussian law: The random potential asso-
ciated with the VRJP. Let N be a positive integer and V = {1, . . . ,N}. Given a symmetric
matrix

W = (Wi,j )i,j=1,...,N

with nonnegative coefficients Wi,j = Wj,i ≥ 0 (in particular, we allow Wi,i �= 0). We denote
by G = (V ,E) the associated graph with

V = {1, . . . ,N} and E = {{i, j}, i �= j,Wi,j > 0
}
.
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We always assume that the matrix W is irreducible, that is, the graph G is connected. If
(βi)i∈V is a vector indexed by the vertices, we set

(2.1) Hβ = 2β − W,

where 2β represents the operator of multiplication by the vector (2βi) (or equivalently the
diagonal matrix with diagonal coefficients (2βi)i∈V ). We always write Hβ > 0 to mean that
Hβ is positive definite. Remark that when Hβ > 0, all the entries of (Hβ)−1 are positive
(since G is connected and Hβ is a M-matrix; see, e.g., [2], Proposition 3).

The following distribution was introduced in [18], and generalized in [9, 10].

LEMMA A. Let (θi)i∈V ∈ (R∗+)V be a positive1 vector indexed by V . Let (ηi)i∈V ∈
(R+)V be a nonnegative vector indexed by V . The measure

ν
W,θ,η
V (dβ) := 1Hβ>0

(
2

π

)|V |/2
exp
(
−1

2
〈θ,Hβθ〉 − 1

2

〈
η,H−1

β η
〉+ 〈η, θ〉

)
×
∏

i∈V θi√
detHβ

dβ

(2.2)

is a probability distribution on R
V , where 1Hβ>0 is the indicator function that the operator

Hβ (defined in (2.1)) is positive definite, 〈·, ·〉 is the usual inner product on R
V , and dβ =∏

i∈V dβi . When η = 0, we simply write ν
W,θ
V for ν

W,θ,0
V .

Moreover, the Laplace transform of (2.2) is explicitly given by∫
e−〈λ,β〉νW,θ,η

V (dβ) = e− 1
2 〈

√
θ2+λ,W

√
θ2+λ〉+ 1

2 〈θ,Wθ〉+〈η,θ−
√

θ2+λ〉

× ∏
i∈V

θi√
θ2
i + λi

(2.3)

for all (λi)i∈V such that λi + θ2
i > 0, ∀i ∈ V .

REMARK 1. The probability distribution ν
W,θ,η
V was initially defined in [18] in the case

η = 0. In [9, 10], Letac gave a shorter proof of the fact that ν
W,θ
V is a probability and remarked

that the family can be generalized to the family ν
W,θ,η
V above. It appears (see the forthcoming

Lemma C) that the general family ν
W,θ,η
V can be obtained from the family ν

W,θ
V by taking

marginal laws.

REMARK 2. The definition of ν
W,θ
V is not strictly the same as ν

W,θ
V in [18]. First, com-

pared with the definition of [18], the parameter θi above corresponds to
√

θi in [18]. It is in
fact simpler to write the formula as in (2.3) since the quadratic form 〈θ,Hβθ〉 appears natu-
rally in the density and since θi will play the role of the initial value in the forthcoming SDE.
Second, we do not assume here that the diagonal coefficients of W are zero. It is obvious that
the two definitions are equivalent up to a translation of βi by Wi,i . It will be more convenient
here to allow this generality.

NOTATION 1. To simplify notation, in the sequel, for any function ζ : V �→ R and any
subset U ⊂ V , we write ζU for the restriction of ζ to the subset U . We write dβU =∏i∈U dβi

to denote integration on variables in βU . Similarly, if A is a V × V matrix and U ⊂ V ,

1Our convention is R+ = {x ∈R, x ≥ 0} and R
∗+ = {x ∈R, x > 0}.
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U ′ ⊂ V , we write AU,U ′ for its restriction to the block U ×U ′. Note also that when (ξi)i∈V is
in R

V , we sometimes simply write ξ for the operator of multiplication by ξ (i.e., the diagonal
matrix with diagonal coefficients (ξi)i∈V ), as it is done in formula (2.1). It will be clear
from the context and considerations of dimension if it denotes a vector or the operator of
multiplication. Finally, we write ν

W,θ,η
U for ν

WU,U ,θU ,ηU

U when U ⊂ V is a subset of V and W

(resp., θ , η) is a V × V matrix (resp., vectors in R
V ).

We state the counterpart of Proposition 1 of [18] in the context of the measure ν
W,θ,η
V .

COROLLARY B. Under the probability distribution νW
V (dβ):

(i) the random variable 1
2βi−Wi,i

follows an inverse Gaussian distribution with parameters

( θi

ηi+∑j �=i Wi,j θj
, θ2

i ), for all i ∈ V ,

(ii) the random vector (βi) is 1-dependent, that is, for any subsets V1 ⊂ V , and V2 ⊂ V

such that the distance in the graph G between V1 and V2 is strictly larger than 1, then the
random variables βV1 and βV2 are independent.

The following lemma was proved independently in the 3rd arXiv version of [18] and in
[10]. (The result is stated in the case of θ = 1 in [18], Lemma 4, but it can be easily extended
to the case of general θ ; see Section 3.)

LEMMA C. Let U ⊂ V . Under the probability distribution ν
W,θ,η
V (dβ):

(i) βU is distributed according to ν
W,θ,η̂
U (i.e., ν

WU,U ,θU ,η̂

U , cf. Notation 1) where

η̂ = ηU + WU,Uc(θUc).(2.4)

(ii) conditionally on βU , βUc is distributed according to ν
|W,θ,qη
Uc where

qW = WUc,Uc + WUc,U

(
(Hβ)U,U

)−1
WU,Uc,

qη = ηUc + WUc,U

(
(Hβ)U,U

)−1
(ηU).

2.2. Brownian motions with interacting drifts: Main results. Let t0 = (t0
i )i∈V ∈ (R+)V

be a nonnegative vector. We set

(2.5) Kt0 = Id − t0W,

where t0 denotes the operator of multiplication by t0 (or equivalently the diagonal matrix
with diagonal coefficients (t0

i )). Note that when t0
i > 0, ∀i ∈ V , we have Kt0 = t0(H 1

2t0
),

with notation (2.1) and 1
2t0 = ( 1

2t0
i

)i∈V .

For T = (Ti)i∈V ∈ (R+ ∪ {+∞})V and t ∈ R+, we write t ∧ T for the vector (t ∧ Ti)i∈V ,
where for reals x, y, x ∧ y = min(x, y).

The following lemma introduces the processes which are the main objects of study of this
paper as solution to a SDE.

LEMMA 1. Let θ = (θi)i∈V ∈ (R∗+)V and η = (ηi)i∈V ∈ (R+)V be nonnegative vectors.
Denote |V | = N , let (Bi(t))i∈V be a standard N -dimensional Brownian motion.
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(i) The following stochastic differential equation is well defined for all t ≥ 0 and has a
unique pathwise solution:

Yi(t) = θi +
∫ t

0
1s<Ti

dBi(s) −
∫ t

0
1s<Ti

(
Wψ(s)

)
i ds

∀i ∈ V,

(EW,θ,η
V (Y ))

where T = (Ti)i∈V is the random vector of stopping times defined by

Ti = inf
{
t ≥ 0;Yi(t) − tηi = 0

} ∀i ∈ V,

and where, for all t ≥ 0,

ψ(t) := K−1
t∧T Y (t)(2.6)

and Kt∧T is positive definite. Moreover, Ti < +∞ a.s. for all i ∈ V , and KT is a.s. positive
definite.

(ii) Denote X(t) = Y(t) − (t ∧ T )η. The previous SDE is equivalent to the following:

Xi(t) = θi +
∫ t

0
1s<Ti

dBi(s) −
∫ t

0
1s<Ti

(
(Wψ)(s) + η

)
i ds

∀i ∈ V,

(EW,θ,η
V (X))

with

ψ(t) = K−1
t∧T

(
X(t) + (t ∧ T )η

)
(2.7)

and Ti is identified to be the first hitting time of 0 by Xi(t).
(iii) The process ψ(t) is a continuous vectorial martingale, it can be written as (recall

that 1s<T is the operator of multiplication by 1s<Ti
):

ψ(t) = θ +
∫ t

0
K−1

s∧T

(
1s<T dB(s)

)
.(EW,θ,η

V (ψ))

Moreover, the quadratic variation of ψ(t) is given by, for all t ≥ 0 (with convention that
1
∞ = 0, 1

0 = ∞),

〈ψ,ψ〉t = (H 1
2(t∧T )

)−1.

REMARK 3. One can combine (iii) and (i) of Lemma 1 and write

Yt = Kt∧T

(
θ +

∫ t

0
K−1

s∧T (1s<T dBs)

)
, t ≥ 0.

This defines the solution of EW,θ,η
V (Y ) directly as a stochastic integral. It is easy to check

“informally” that the previous equation is indeed a solution of EW,θ,η
V (Y ) by Itô formula, but

it is not obvious that the previous expression is well defined for all time t ≥ 0: indeed, Kt0

defined in (2.5) is not invertible for all values of t0 ∈ (R+)V . It is the main difficulty of the
lemma to prove that the solution of EW,θ,η

V (Y ) can be defined for all t ≥ 0.

It may not seem obvious at this point why we call these processes “Brownian motions with
interacting drifts.” The explanation will come at the end of this section as a consequence of
the Abelian property Theorem 2: under the condition that the diagonal terms of W are null,
we will show that the marginals (Xi(t))t≥0 are Brownian motions with constant negative drift
stopped at their first hitting time of 0; see Corollary 1.

Our first main result concerns the distribution of its hitting time.
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THEOREM 1. Let θ ∈ (R∗+)V , η ∈ (R+)V and Y(t), X(t), T be as in Lemma 1.

(i) The random vector 1
2T

has law ν
W,θ,η
V .

(ii) Conditionally on T , (Xi(t))i∈V,0≤t≤Ti
are independent three-dimensional Bessel

bridges started at θi and ending at 0 over the time intervals [0, Ti].

Remark that when V = {1} is a single point and W1,1 = 0, then X1(t) = Y1(t) − tη1 is a
drifted Brownian motion with initial value θ1 > 0 and negative drift −η1 stopped at its first
hitting time of 0. Hence, it corresponds to the problem presented in (1.2); in particular, η1 = 0
corresponds to (1.1).

When V = {1} and W1,1 > 0, (Y1(t))t≥0 is the solution of the SDE

(2.8) dY1(t) = 1t<T1

(
dB1(t) − W1,1

1 − tW1,1
Y(t) dt

)
with initial condition Y1(0) = θ1. It follows that Y1(t)− tη1 has the law of a drifted Brownian
bridge from θ1 to 0 on time interval [0,1/W1,1] with constant negative drift −η1, and stopped
at its first hitting of 0. By drifted Brownian bridge from θ1 to 0 on time interval [0,1/W1,1]
with constant negative drift −η1, we mean the process Zt − tη1 where (Zt )t∈[0,1/W1,1] is the
Brownian bridge. (It may also be viewed as a Brownian bridge from θ1 to − η1

W1,1
on time

interval [0,1/W1,1].) Consequently, Y1(t) has the same law as (1 − tW1,1)[θ + B1(
t

1−tW1,1
)]

up to time T1 (see, e.g., [15], p. 154) and T1 has the same law as 1
1+τW1,1

where τ is the first

hitting time of 0 by a Brownian motion with drift −η1. Therefore, 1
1
T1

−W1,1
follows an inverse

Gaussian law with parameters ( θ1
η1

, θ2
1 ), and it is coherent with the expression of marginal law

of βi in Corollary B.

REMARK 4. As pointed out by a referee, in dimension d = 1, the time reversal of the
process is closely related to the law of the first and last hitting time of the drifted Brownian
motion; see, for example, [20]. Indeed, in the case d = 1, if X(t) := θ +B(t)−ηt is a drifted
Brownian motion with drift −η starting from θ , then −tX(1/t) = η − tB(1/t) − tθ is a
drifted Brownian motion starting from η and with drift −θ . The first hitting time T of 0 by
X satisfies

1

T
= sup

{
s > 0;−sX(1/s) = 0

}
,

and T is the last hitting time of 0 by the drifted Brownian motion −tX(1/t). This proves that
the last hitting time of 0 by a drifted Brownian motion with drift −θ and initial value η has
the law of the inverse of an inverse Gaussian r.v. with parameters ( θ

η
, θ2). It is not clear how

to give a counterpart of this relation in the multidimensional case presented in this paper.
Indeed, our process is only defined up to the hitting times of 0 and it is not clear how to
continue it after the hitting time, but it is an interesting question.

The next result shows some “abelianity” of the process, in the sense that times on each
coordinates can be run somehow independently. The first two statements are counterparts of
the two statements of Lemma C.

THEOREM 2 (Abelian properties). Let (X(t)) be the solution of EW,θ,η
V (X). Denote β =

1
2T

.



HITTING TIMES OF INTERACTING DRIFTED BM AND THE VRJP 1063

(i) (Marginal) Let U ⊂ V . Then (XU(t)) has the same law as the solution of

E
WU,U ,θU ,η̂

U (X), where

η̂ = ηU + WU,Uc(θUc).

(ii) (Conditioning on a subset) Let U ⊂ V . Then, conditionally on (XU(t))t≥0,

(XUc(t))t≥0 has the law of the solutions of the SDE E
|W,θUc ,qη

Uc (X), where

qW = WUc,Uc + WUc,U

(
(Hβ)U,U

)−1
WU,Uc,

qη = ηUc + WUc,U

(
(Hβ)U,U

)−1
(ηU).

(iii) (Markov property) Consider t0 = (t0
i )i∈V ∈ (R+)V . Denote by

FX(t0)= σ
{(

Xk(s)
)
s≤t0

k
, k ∈ V

}
,

the filtration generated by the past of the trajectories before time (t0
k )k∈V . Then consider for

t ≥ 0,

X̃(t) = X
(
t0 + t

) (= (Xi

(
t0
i + t

))
i∈V

)
,

the process shifted by times (t0
i )i∈V . (Note that the shift in time is not necessarily the same

for each coordinate). Conditionally on FX(t0), the process (X̃(t))t≥0 has the same law as

the solution of the equation EW̃ (t0),X(t0),η̃(t0)

V (X), with

W̃ (t0) = W(Kt0∧T )−1, η̃(t0) = η + W̃ (t0)((t0 ∧ T
)
η
)
,

where in the second expression, t0 ∧ T denotes the operator of multiplication by (t0
i ∧ Ti).

In particular, if V (t0) = {i ∈ V,Ti > t0
i }, conditionally on F(t0), ( 1

Ti−t0
i

)i∈V (t0) has the law

ν
W̃ (t0),X(t0),η̃(t0)

V (t0)
.

(iv) (Strong Markov property) Let T 0 = (T 0
i )i∈V ∈ (R+ ∪ {∞})V be a “multistopping

time,” that is, for all t0 ∈ (R+)V , the event {T 0 ≤ t0} := ⋂
i∈V {T 0

i ≤ t0
i } is FX(t0)-

measurable. Denote by

FX(T 0)= {A ∈ FX(∞),∀t0 ∈ (R+)V ,A ∩ {T 0 ≤ t0} ∈FX(t0)}
the filtration of events anterior to T 0. Define for t ≥ 0,

X̃(t) = X
(
T 0 + t

)
the process shifted at times (T 0

i )i∈V . On the event {T 0
i < ∞,∀i ∈ V }, conditionally on T 0 and

FX(T 0), the process X̃(t) has the same law as the solution of the SDE EW̃ (T 0),X(T 0),η̃(T 0)

V (X),
where

W̃ (T 0) = W(KT 0∧T )−1, η̃(T 0) = η + W̃ (T 0)((T 0 ∧ T
)
η
)
,

where in the second expression, T 0 ∧ T denotes the operator of multiplication by (T 0
i ∧ Ti).

REMARK 5. Assertions (i) and (ii) of the theorem are direct consequences of Theorem 1
and Lemma C. The assertion (iii) is more involved. The extension to the strong Markov
property (iv) follows rather standard arguments. See the proofs in Section 8.
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REMARK 6. In all these statements, the restricted (or conditioned) process that appears
is not in general solution of the SDE with the original shifted Brownian motion, but with a
different one, which is a priori not a Brownian motion in the original filtration. Nevertheless,
when all the t i0 are equal to the same real s, then it is the case: (X(t + s))t≥0 is solution of
the SDE with the shifted Brownian motion (B(s + t))t≥0; cf. forthcoming Proposition 1. The
result in the latter case is much simpler and is a consequence of a plain computation, whereas
the general case uses the representation of Theorem 1.

Note that this allows to identify the law of marginals and conditional marginals.

COROLLARY 1. Consider (X(t))t≥0 solution of EW,θ,η
V (X). Fix i0 ∈ V .

(i) If Wi0,i0 = 0 (resp., Wi0,i0 > 0), the marginal (Xi0(t))t≥0 has the law of a drifted
Brownian motion starting at θi0 (resp., drifted Brownian bridge from θi0 to 0 on time interval
[0, 1

Wi0,i0
], with the meaning given in the discussion of equation (2.8)) with constant drift

−η̂i0 = −
(
ηi0 + ∑

j �=i0

Wi0,j θj

)

and stopped at its first hitting time of 0.
(ii) Conditionally on ((Xk(t))t≥0)k �=i0 , the process (Xi0(t))t≥0 has the law of a drifted

Brownian bridge from θi0 to 0 on time interval [0, 1
|Wi0,i0

] with constant drift −qηi0 and stopped

at its first hitting time of 0, where, with U = V \ {i0},
qWi0,i0 = Wi0,i0 + Wi0,U

(
(Hβ)U,U

)−1
WU,i0,

qηi0 = ηi0 + Wi0,U

(
(Hβ)U,U

)−1
(ηU).

PROOF. Apply Theorem 2(i) to the case U = {i0} for (i) and Theorem (2)(ii) to U = {i0}c
for (ii), and the considerations following Theorem 1. �

In particular, it means that the marginal (Xi0(t))t≥0 is a diffusion process, as well as the
(conditional) marginal (Xi0(t))t≥0 conditioned on ((Xk(t))t≥0){k:k �=i0}. This Markov property

is not obvious in the initial equation EW,θ,η
V (X). Indeed, the process (Xi0(u))u≤s before time s

affects the drifts of (X{k:k �=i0}(u))u≤s , and so the values X{k:k �=i0}(s), which themselves affect
the drift of Xi0(s).

More generally, there are hidden Markov properties in the restricted process (XU(t))t≥0.
Indeed, the law of the future path (XU(t))t≥s only depends on the past of (XU(u))u≤s through
the values of XU(s) and (s ∧ T )U . This is not obvious from the initial equation EW,θ,η

V (X).
The same is true for the process (XUc(t))t≥0 conditioned on (XU(t))t≥0.

2.3. Relation with the vertex reinforced jump process. Let us describe the VRJP in its
“exchangeable” time scale introduced in [17]. We consider the VRJP with a general initial
local time, as in [18], Section 3.1. The VRJP, with initial local time (θi)i∈V , is the self-
interacting process (Zt )t≥0 that, conditionally on its past at time t , jumps from a vertex i to
j with rate

Wi,j

√
θj + Z

j (t)√
θi + Z

i (t)
,
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where Z
i (t) = ∫ t

0 1Zs=i ds denotes the local time of Z at site i. In [17], it was proved that this
process is a mixture of Markov jump processes and that the mixing law can be represented
by a marginal of a supersymmetric σ -field investigated by Disertori, Spencer and Zirnbauer
in [6, 7, 25]. In [18], it was related to the random potential β of Lemma A.

THEOREM D ([17] Theorem 2, [18] Theorem 3). Let δ ∈ V where V is finite, and
U = V \ {δ}. Let (θi)i∈V ∈ (R∗+)V be a positive vector. Consider β = (βj )j∈V sampled with

distribution ν
W,θ
V . Define (ψj )j∈V as the unique solution of{

ψ(δ) = 1,

Hβ(ψ)|U = 0.

Then the VRJP starting at vertex δ and initial local times (θi)i∈V is a mixture of Markov jump
processes with jumping rates from i to j equal to

1

2
Wi,j

ψj

ψi

.(2.9)

More precisely, it means that

P
VRJP,θ
δ (·) =

∫
P

ψ
δ (·)νW,θ

V (dβ),

where P
VRJP,θ
δ is the law of the VRJP starting at vertex δ and initial local times (θi)i∈V and

P
ψ
δ is the law of the Markov jump process with jumping rates (2.9) starting at vertex δ.

Remark that the random variables (βj )j∈U appear as asymptotic holding times of the
VRJP. Indeed, let Ni(t) be the number of visits of vertex i by Z before time t . Then, by
Theorem D, the empirical holding times converge P

VRJP,θ
δ a.s., that is, the following limit

exists a.s.,

lim
t→∞

Ni(t)

Z
i (t)

= 1

2

∑
j∼i

Wi,j

ψj

ψi

= βi ∀i ∈ U,

and, by Lemma C(i), βU has law ν
W,θ,η
U where η = WU,δθδ . Moreover, conditionally on βU ,

the VRJP is a Markov jump process with jump rates given by (2.9).
Consider now the SDE EWU,U ,θU ,η

U (Y ) with same parameters. From Theorem 1, the law
( 1
Ti

)i∈U coincides with that of βU . Moreover, if we set

ψj(∞) := lim
t→∞ψj(t) ∀j ∈ U,

then ψ(∞) = ((H 1
2T

)U,U )−1η. Hence, it means that ψ(∞) coincides with the ψ of Theo-

rem D if we identify βU and 1
2T

. Hence, (βU ,ψ) of Theorem D has the same law as ( 1
2T

,ψ)

arising in the SDE EW,θ,η
U (Y ).

There are remarkable similarities between Theorem 1 and Theorem D. First, (βi)i∈U are
homogeneous to the inverse of time, and have same distribution in both cases. Second, in
both cases, a type of exchangeability appears in the sense that, conditionally on the limiting
holding times or hitting times, the processes are simpler: in the case of the VRJP, it becomes
Markov; in the case of the SDE, the marginals are independent and diffusion processes (in
fact Bessel bridges).

In Section 9, we push forward this relation, by explaining the martingale property that
appears in [17], and the exponential martingale property that extends it in [4], by Theorem 1
and the Abelian properties of Theorem 2.

However, we do not yet clearly understand the relation between the VRJP and the SDE
EW,θ,η

V beyond these remarks.
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2.4. Organization of the paper. In Section 3, we prove the properties related to the distri-
bution ν

W,θ,η
V , Lemma A, Lemma C and Corollary B. In Section 4, we present some simple

key computations that are used several times in the proofs. In Section 5, we prove the results
concerning existence and uniqueness of pathwise solution of the SDE, Lemma 1 and state
and prove Proposition 1 mentioned in Remark 5 above. Section 7 is devoted to the proof of
the main Theorem 1. In Section 8, we prove the Abelian properties of Theorem 2. Finally,
in Section 9, we explain the relation between the Abelian properties of Theorem 2 and the
martingale that appears in [19]. In Section 10, we illustrate some of the results in the case of
the graph with 2 vertices.

3. Proof of the results concerning the distribution ν
W,θ,η
V : Lemma A, Lemma C and

Corollary B. Lemma A and Lemma C are proved in [19] (third arXiv version) in the case
θi = 1 for all i ∈ V ; see Lemma 3 and Lemma 4 therein (see also [10]). The case of general θ

can be deduced from the special case θ = 1 by a change of variables. More precisely, setting
β ′

i = θ2
i βi , W ′

i,j = θiθjWi,j and η′
i = θiηi , then we have

〈θ,Hβθ〉 = 〈1,H ′
β ′1
〉
,

〈
η,H−1

β η
〉= 〈η′,

(
H ′

β ′
)−1

η′〉, 〈η, θ〉 = 〈η′,1
〉
,

where H ′
β ′ = 2β ′ − W ′, so that β ∼ ν

W,θ,η
V if and only if β ′ ∼ ν

W ′,1,η′
V .

Corollary B is a direct consequence of the expression of the Laplace transform. Indeed,
under ν

W,θ,η
V , the Laplace transform of the marginal βi − 1

2Wi,i is given for ζ ∈ R+ by∫
exp
(
−ζ

(
βi − 1

2
Wi,i

))
ν

W,θ,η
V (dβ)

= θi√
θ2
i + ζ

exp
(
−
(√

θ2
i + ζ − θi

)(
ηi +∑

j �=i

Wi,j θj

))
.

It coincides with the Laplace transform of the inverse of the inverse Gaussian density. More
precisely, by changing the parameter of inverse Gaussian distribution, we have∫ ∞

0
exp
(
− ζ

2x

)(
λ

2πx3

) 1
2

exp
(
−λ(x − μ)2

2μ2x

)
dx

=
√

λ√
ζ + λ

exp
(
−
√

λ

μ2 (
√

ζ + λ − √
λ)

)
.

It means that the law of 2βi −Wi,i coincides with the law of the inverse of an inverse Gaussian

random variable with parameters (λ,μ) such that λ = θ2
i and

√
λ
μ2 = ηi +∑j �=i Wi,j θj .

4. Simple key formulas. Let us start with a remark. If (ti) ∈ (R+)V and Kt > 0, then
the operator H−1

1
2t

is well defined even when some of the ti ’s vanish: indeed, using the identity

H−1
1
2t

= K−1
t t,

the right-hand side is perfectly well defined when Kt is invertible. In all of the sequel, we
will implicitly consider that H−1

1
2t

is defined by this formula when some of the ti ’s vanish.

We prove below some simple formulas that will be key tools in forthcoming computations.

LEMMA 2. Let (t0
i )i∈V and (t1

i )i∈V be vectors in R
V+ such that Kt0+t1 > 0.
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(i) We have

(4.1) Kt0+t1 = K̃t1Kt0,

with

K̃t1 = Id − t1W̃ where W̃ = WK−1
t0 .

Hence, we also have, with H̃ 1
2t1

= 1
t1 − W̃ (where |H | := detH )

(4.2)
|H 1

2(t0+t1)

|
|H̃ 1

2t1
| =

(∏
i∈V

t1
i

t0
i + t1

i

)
|Kt0 |.

(ii) Let

η̃ = η + W̃
(
t0η
)
,

then

(4.3) η̃ = (t0)−1
H−1

1
2t0

η,

and

(4.4)
〈
η̃, (H̃ 1

2t1
)−1η̃

〉= 〈η, (H 1
2(t0+t1)

)−1η
〉− 〈η, (H 1

2t0
)−1η

〉
.

REMARK 7. One should not confuse W̃ in Lemma 2 (which is deterministic) with W̃ (t0)

in Theorem 2, which should be considered as a process.

PROOF OF LEMMA 2. (i) We can write

Kt0+t1 = Kt0 − t1W = (Id − t1WK−1
t0

)
Kt0 = K̃t1Kt0 .

(ii) Formula (4.3) follows from

η̃ = (t0)−1(Id + t0WK−1
t0

)
t0η = (t0)−1

K−1
t0 t0η = (t0)−1

H−1
1

2t0
η.

Turning to Formula (4.4), using (4.1), we have

K−1
t0+t1 = K−1

t0 K̃−1
t1

and

(4.5)

H̃−1
1

2t1
= Kt0K

−1
t0+t1 t

1

= Kt0K
−1
t0+t1

(
t0 + t1)( 1

t0 − 1

t0 + t1

)
t0

= t0H 1
2t0

H−1
1

2(t0+t1)

(
1

t0 − 1

t0 + t1

)
t0

= t0H 1
2t0

H−1
1

2(t0+t1)

(H 1
2t0

− H 1
2(t0+t1)

)t0

= t0H 1
2t0

H−1
1

2(t0+t1)

H 1
2t0

t0 − t0H 1
2t0

t0.

Now, (4.3) implies

H̃ 1
2t1

η̃ = t0H 1
2t0

H−1
1

2(t0+t1)

η − t0η.

Since H 1
2t0

is symmetric, we get (4.4) by (4.3). �
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5. Proof of basic properties of the SDE EW,θ,η
V : Proof of Lemma 1. Remark that (i)

and (ii) of Lemma 1 are equivalent since dX(t) = dY (t)−η dt . In order to prove the existence
and uniqueness of the pathwise solution of EW,θ,η

V (Y ) (or equivalently EW,θ,η
V (X)), we first

consider a nonstopped version of the SDE EW,θ,η
V (Y ), for which the existence and uniqueness

is simpler.

LEMMA 3. Let (θi)i∈V ∈ R
V+. Let h > 0 be the smallest positive real such that det(Kh) =

0. Then the following SDE is well defined on time interval [0, h) and has a unique pathwise
solution

Ỹi(t) = θi + Bi(t) −
∫ t

0

(
WK−1

s Ỹ (s)
)
i ds ∀i ∈ V.(5.1)

Moreover, there exists a time τ < h such that Ỹi(τ ) = τηi for some vertex i ∈ V .

PROOF. As WK−1
t is bounded on time interval [0, h − ε) for all ε > 0, (5.1) is a linear

SDE with bounded coefficients which has a unique pathwise solution, with continuous sample
paths, by standard existence and uniqueness theorems on SDE.

We denote

K(t) = exp
(∫ t

0
WK−1

s ds

)
.

Note that WK−1
s is symmetric with positive coefficients for s ∈ [0, h), and commutes with

any WK−1
s′ for any s, s′ ∈ [0, h). Therefore, it commutes with K(t) for t ∈ [0, h). Besides,

K(t) has positive coefficients and

(5.2) lim
t→h

min
i,j

(
K(t)

)
i,j = +∞.

Indeed, since W is symmetric with positive coefficients and irreducible, by the Perron–
Frobenius theorem, it has a unique maximal eigenvalue λ1 associated with an eigenfunction
with strictly positive coefficients. By construction, since Ks = Id − sW and h is the smallest
positive real such that det(Kh) = 0, we have λ1 = 1/h. Hence, denoting λ1 = 1/h > λ2 > · · ·
the eigenvalues of W and p1,p2, . . . the corresponding spectral projectors, we have

K−1
s =∑ 1

1 − sλk

pk,

and lims→h (1 − s/h)K−1
s = p1, which has strictly positive coefficients. This implies (5.2),

since the integral in the definition of K(t) is a matrix with positive coefficients and it diverges
when t → h, t < h.

Define

H(t) := K(t)Ỹ (t),

we have, using the commutation above, dH(t) = K(t) dB(t), hence

H(t) = θ +
∫ t

0
K(s) dB(s).

Therefore, H(t) is a Gaussian process and its first coordinate (H1(t))0≤t<h is a time-changed
Brownian motion, more precisely, since K(s) is symmetric,

H1(t)
law= θ1 + B1

(√(∫ t

0
K2(s) ds

)
1,1

)
.
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Since the time change tends to +∞ when t tends to h, it implies that H1(t) becomes negative
on time interval [0, h).

Assume by contradiction that Ỹi(t) ≥ 0 for all i ∈ V and all t ∈ [0, h). Since K(t) has pos-
itive coefficients and by definition of H(t), it follows that H(t) has nonnegative coordinates
for all t in [0, h), which leads to a contradiction. Hence, Ỹi(t) hits 0 for some i ∈ V on time
interval [0, h). In particular, as the drift η has nonnegative coefficients, Ỹi(t) must hit the line
y = tηi at some time τ < h for some vertex i. �

PROOF OF LEMMA 1(I). We prove it by recurrence on the size of V . We will gradually
define Y(t), solution to the equation EW,θ,η

V (Y ) and X(t) = Y(t) − tη. Consider

τ = inf
{
t ≥ 0,∃i ∈ V such that Xi(t) = 0

}
and denote by i0 the vertex in V such that Xi0(τ ) = 0. Up to time τ , equation EW,θ,η

V (Y )

is equivalent to equation (5.1), hence equation EW,θ,η
V (Y ) is well defined and has unique

pathwise solution up to time τ and τ < ∞ a.s. Moreover, Ti0 = τ . Now we set U = {i0}c and

(T̃i)i∈V = (Ti − τ)i∈V ,

W̃ = WK−1
τ , K̃s = Id − sW̃ , η̃ = η + W̃ (τη)

and use that, by (4.1) applied to t0
i = τ for all i, and t1 = s ∧ T̃ ,

K−1
(τ+s)∧T = K−1

τ K̃−1
s∧T̃

.

We set

X̃(s) = X(τ + s), B̃(s) = B(τ + s).

Hence, we have that

(τ + s) ∧ T = τ + s ∧ T̃ , WK−1
(τ+s)∧T = W̃ K̃−1

s∧T

and after time τ , (Xτ+t )t≥0 is solution of EW,θ,η
V (X) if and only if X̃(s) is solution of

(5.3) dX̃(s) = 1s<T̃ dB̃(s) + 1s<T̃

(
W̃ K̃−1

s∧T̃

(
X̃(s) + τη + (s ∧ T̃ )η

)+ η
)
ds.

Using that

W̃ K̃−1
s∧T̃

(
X̃(s) + τη + (s ∧ T̃ )η

)
= W̃ K̃−1

s∧T̃

(
X̃(s) + K̃s∧T̃ (τη) + (s ∧ T̃ )W̃ (τη) + (s ∧ T̃ )η

)
= W̃ K̃−1

s∧T̃

(
X̃(s) + (s ∧ T̃ )η̃

)+ W̃ (τη)

we see that (5.3) is equivalent to the fact that X̃ is solution of EW̃ ,X(τ),η̃
V (X). Since, Xi0(τ ) = 0

is it equivalent to the fact that X̃U is solution of EW̃ ,X(τ),η̃
U (X). Hence, we conclude by the

recurrence hypothesis applied to U , which implies that EW̃ ,X(τ),η̃
U (X) has a unique pathwise

solution. �

PROOF OF LEMMA 1(III). Remark first that

∂

∂t
K−1

t∧T = K−1
t∧T 1t<T WK−1

t∧T .
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Differentiating ψ(t) = K−1
t∧T (Y (t)), we get

dψi(t) = (K−1
t∧T

(
dY (t)

))
i + (K−1

t∧T 1t<T WK−1
t∧T

(
Y(t)

))
i dt

= (K−1
t∧T

(
1t<T dB(t)

))
i .

Moreover, the quadratic variation of ψi(t) and ψj(t) is given by

〈ψi,ψj 〉t =∑
l∈V

∫ t

0

(
K−1

s∧T

)
i,l1s<Tl

(
K−1

s∧T

)
j,l ds

=∑
l∈V

∫ t

0

(
H−1

1
2(s∧T )

)
i,l

(
1

s ∧ Tl

)2
1s<Tl

(
H−1

1
2(s∧T )

)
l,j ds

=
∫ t

0

∂

∂s

(
H−1

1
2(s∧T )

)
i,j ds

= (H−1
1

2(t∧T )

)
i,j ,

where in the second equality, we used Hβ is a symmetric matrix and H−1
1

2(t∧T )

= K−1
t∧T (t ∧ T ),

and so that H−1
1

2(t∧T )

= (t ∧T )(K−1
t∧T )t . In the last equality, we used that H−1

1
2(t∧T )

is well defined

and null for t = 0. �

6. Stationarity property.

PROPOSITION 1 (Stationarity). If (X(t))t≥0 is the solution of EW,θ,η
V (X) and s ≥ 0,

then (X(t + s))t≥0 is solution of the SDE EW̃ (s),X(s),η̃(s)

V (X) directed by the shifted Brownian
motion (B(t + s))t≥0, and with

W̃ (s) = WK−1
s∧T , η̃(s) = η + W̃ (s)((s ∧ T )η

)
.

REMARK 8. Proposition 1 corresponds to Theorem 2(iii) in the case where all the coor-
dinates of (t0

i ) are equal to s, except that in this case the equation is directed by the shifted
Brownian motion, which is not the case when coordinates are not all equal. The proof in
this case is based on elementary computations and do not rely on the representation given in
Theorem 1. The result can be interpreted as a dynamic evolution of the parameters along the
trajectory: conditioned on the past, the future of the trajectory is in the same family of SDEs
with deformed parameters.

PROOF OF PROPOSITION 1. Set (X̃(t))t≥0 := (X(t +s))t≥0, (B̃(t))t≥0 := (B(t +s))t≥0,
and T̃ (s) = T − s ∧ T . Remark that by Lemma 2

(s + t) ∧ T = s ∧ T + t ∧ T̃ (s), W(K(s+t)∧T )−1 = W̃ (s)(K̃(s)

t∧T̃

)−1

with W̃ (s) defined in Proposition 1 and K̃
(s)

t∧T̃
= Id − (t ∧ T̃ (s))W̃ (s). The SDE EW,θ,η

V (X)

after time s is thus equivalent to

dX̃i(t) = 1
t<T̃

(s)
i

dB̃i(t)

− 1
t<T̃

(s)
i

(
W̃ (s)(K̃(s)

t∧T̃

)−1(
X̃(t) + (s ∧ T )η + (t ∧ T̃ (s))η)+ η

)
i dt

∀i ∈ V.
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By Lemma 2, we have that

W̃ (s)(K̃(s)

t∧T̃

)−1(
X̃(t) + (s ∧ T )η + (t ∧ T̃ (s))η)

= W̃ (s)(K̃(s)

t∧T̃

)−1(
X̃(t) + K̃

(s)

t∧T̃

(
(s ∧ T )η

)
+ (t ∧ T̃ (s))W̃ (s)((s ∧ T )η

)+ (t ∧ T̃ (s))η)
= W̃ (s)(K̃(s)

t∧T̃

)−1(
X̃(t) + (t ∧ T̃ (s))η̃(s))+ W̃ (s)(s ∧ T )η.

Hence, X̃(t) is solution of

dX̃(t) = 1
t<T̃

(s)
i

dB̃i(t)

− 1
t<T̃

(s)
i

(
W̃ (s)(K̃(s)

t∧T̃

)−1(
X̃(t) + (t ∧ T̃ (s))η̃(s))+ η̃(s))

i dt

∀i ∈ V.

Since, X̃(0) = X(s), we have the result. �

7. Proof of Theorem 1. We provide below a convincing but incomplete argument for
the proof of Theorem 1. We do not know yet how to turn this argument into a rigourous
alternative proof, even though we think that it should be possible. The rigorous proof is given
in Section 7.2.

7.1. A convincing but incomplete argument for Theorem 1(i). Let λ ∈ R
V+ be a nonnega-

tive vector on V . As

exp
(
−〈η,H−1

β λ
〉− 1

2

〈
λ,H−1

β λ
〉)

ν
W,θ,η
V = exp

(−〈λ, θ〉)νW,θ,η+λ
V ,

we have ∫
exp
(
−〈η,H−1

β λ
〉− 1

2

〈
λ,H−1

β λ
〉)

ν
W,θ,η
V (dβ) = exp

(−〈λ, θ〉).(7.1)

On the other hand, consider Y(t), solution of EW,θ,η
V (Y ), and the associated processes (X(t)),

(ψ(t)). By Lemma 1 and [15], Proposition 3.4, page 148, we know that

exp
(
−〈λ,ψ(t)

〉− 1

2

〈
λ,H−1

1
2(t∧T )

λ
〉)

,

is a continuous martingale, dominated by 1. Moreover, we have that X(t) → 0, a.s., when
t → ∞, hence, a.s.,

lim
t→∞ψ(t) = K−1

T (T η) = H−1
1

2T

η.

By the dominated convergence theorem, it implies that

E

(
exp
(
−〈λ,H−1

1
2T

η
〉− 1

2

〈
λ,H−1

1
2T

λ
〉))= exp

(−〈λ,ψ(0)
〉)= exp

(−〈λ, θ〉).
Hence, it implies that both β under ν

W,θ,η
V and 1

2T
obtained from EW,θ,η

V satisfy the same
functional identity (7.1). Note that the dimension of the space of variables (λi)i∈V and of
the random variables (βi)i∈V are the same. Nevertheless, it is not clear wether the functional
identity (7.1) characterizes the distribution ν

W,θ,η
V ; at least we have no proof of this fact.

If such an argument were available, it would imply Theorem 1(i) also: indeed, using the
stationarity of the equation, Proposition 1, it would be possible to deduce Theorem 1(ii) by
enlargement of filtration (see [8]). We do not give the detail of the argument here since the
first part of the proof is missing.
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7.2. Proof. Even if it is not obvious at first sight since the context is very different, the
strategy of the proof of Theorem 1 is quite in the spirit of the proof of Theorem 2(ii) of [17]:
we start from the mixture of Bessel processes and we prove that this mixture has the same law
as the solutions of the SDE EW,θ,η

V (X). We use in a crucial way the fact that the law ν
W,θ,η
V is

a probability density with explicit normalizing constant.

7.2.1. The classical statement for N = 1. We denote by W = C(R+,R) the Wiener
space. For θ > 0, we denote by Pθ the law of Xt∧T where Xt = θ + Bt and Bt is a stan-
dard Brownian motion and T = inf{t ≥ 0,Xt = 0} is the first hitting time of 0. For a positive
real2 T, we denote by B

3,T
θ,0 the law of the three-dimensional Bessel Bridge from θ > 0 to 0

on time interval [0,T], as defined in [15], Section XI-3. We always consider that the Bessel
bridge is extended to time interval R+, with constant value equal to 0 after time T, and thus
B

3,T
θ,0 is a probability on W. As mentioned in the Introduction, it is known (see [24], or p. 317

of [15]), that under Pθ , 1
2T

has the law Gamma(1
2 , θ2) and that, conditionally on T , (Xt)t≥0

has law B
3,T
θ,0 . Otherwise stated, it means that the following equality of probabilities holds on

the Wiener space W:

Pθ (·) =
∫ ∞

0
B

3, 1
2β

θ,0 (·) 1√
π

θ√
β

e−θ2β dβ.(7.2)

7.2.2. Proof of Theorem 1(i) and (ii). We use the formulation of Lemma 1(ii), and we
will prove that if (Xi(t))i∈V satisfies EW,θ,η

V (X), then β := 1
2T

is distributed as ν
W,θ,η
V and

conditionally on T , the coordinates (Xi(t))t≥0 are independent 3-dimensional Bessel bridges
from θi to 0 on time interval [0, Ti].

Recall that V = {1, . . . ,N}, and denote by WV = C(R+,RV ) the N -dimensional Wiener
space and (X(t))t≥0 the canonical process. As usual, on this canonical space, we denote by
T = (Ti)i∈V the hitting times of 0, Ti = inf{t ≥ 0,Xi(t) = 0}. For θ = (θi)i∈V ∈ R

V+, we set
PV,θ :=⊗i∈V Pθi

and by (7.2) we have

(7.3) PV,θ =
∫
R

V+

(⊗
i∈V

B
3, 1

2βi

θi ,0
(·)
)(∏

i∈V

√
2

π

θ√
2βi

e−θ2
i βi dβi

)
,

the probability on WV such that (Xi(t))i∈V are N independent Brownian motions starting
at positions (θi) and stopped at their first hitting times of 0. The assertions of Theorem 1(i)
and (ii) are equivalent to the fact that the law of the solution of the SDE. EW,θ,η

V (X) is a

mixture of independent Bessel bridges B
3, 1

2βi

θi ,0
where β is a random vector with distribution

ν
W,θ,η
V . Otherwise stated, it means that the probability distribution P

W,θ,η

V defined by

(7.4) P
W,θ,η

V (·) :=
∫ (⊗

i∈V

B
3, 1

2βi

θi ,0

)
(·)νW,θ,η

V (dβ),

is the law of the solution of the SDE EW,θ,η
V (X). The strategy is now to write the Radon–

Nikodym derivative of P
W,θ,η

V with respect to PV,θ as an exponential martingale, and then to
apply Girsanov’s theorem.

2Note the different typeface embodied T to distinguish real variable representing a time from the random hitting
time T .
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Comparing the representations (7.3) and (7.4), together with the explicit expression for
ν

W,θ,η
V , we get

d
P

W,θ,η

V

PV,θ

= 1H 1
2T

>0 · e− 1
2 〈θ,H 1

2T
θ〉+ 1

2 〈θ, 1
T

θ〉− 1
2 〈η,(H 1

2T
)−1η〉+〈η,θ〉∏i∈V T

−1/2
i√|H 1
2T

|
(7.5)

= 1H 1
2T

>0 · exp
(

1

2
〈θ,Wθ〉 − 1

2

〈
η,K−1

T T η
〉+ 〈η, θ〉

)
1√|KT | .

(Indeed, on the right-hand side of the representation (7.3) and (7.4), the hitting times of 0 Ti

corresponds to the variable 1
2βi

.)
Let t > 0, and define⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

V (t) := {i ∈ V,Ti > t},
β(t) := 1

2(t ∧ T )
,

W̃ (t) := WK−1
t∧T = W + WK−1

t∧T (t ∧ T )W,

η̃(t) := η + W̃ (t)(t ∧ T )η,

where the third equality comes from the fact that K−1
t∧T = Id+ (t ∧T )WK−1

t∧T . Note that W̃ (t)

is symmetric since K−1
t∧T (t ∧ T ) = H−1

1
2(t∧T )

. We also set

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

T̃ (t) := T − t ∧ T ,

β̃(t) := 1

2T̃ (t)
,

K̃
(t)

T̃
:= Id − T̃ (t)W̃ (t),

H̃
(t)

β̃
:= 2β̃(t) − W̃ (t) = 1

T̃ (t)
K̃

(t)

T̃
.

Note that (H̃
(t)

β̃
)−1 is well defined for all t using (H̃

(t)

β̃
)−1 = (K̃

(t)

T̃
)−1T̃ (t); see the beginning

of Section 4. By equation (4.3) applied with t0 = t ∧ T , we get that

(7.6) η̃(t) = (t ∧ T )−1H−1
β(t)η.

We first prove the following lemma.

LEMMA 4. Let

Mt = exp
(
−1

2

〈
X(t), W̃ (t)X(t)

〉+ 1

2

〈
η̃(t),

(
H̃

(t)

β̃

)−1
η̃(t)〉− 〈η̃(t),X(t)

〉)√∣∣K̃(t)

T̃

∣∣.
Under PV,θ , we have

Mt

M0
= exp

(
−
∫ t

0

〈
Wψ(s) + η, dXs

〉
(7.7)

− 1

2

∫ t

0

〈
Wψ(s) + η,1s<T

(
Wψ(s) + η

)〉
ds

)
with

ψ(t) = K−1
t∧T

(
X(t) + (t ∧ T )η

)
.
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PROOF. We will compute the Itô derivative of lnMt ; the following formulae will be used
several times:

∂

∂t
Kt∧T = −1t<T W,

∂

∂t
K−1

t∧T = K−1
t∧T 1t<T WK−1

t∧T ,

(7.8)
∂

∂t
W̃ (t) = W̃ (t)1t<T W̃ (t),

∂

∂t
H−1

β(t) = H−1
β(t)1t<T

(
1

t ∧ T

)2
H−1

β(t) .(7.9)

By (7.8) and the Itô formula, we have

d
〈
X(t), W̃ (t)X(t)

〉
= 2
〈
dX(t), W̃ (t)X(t)

〉+ 〈W̃ (t)X(t),1t<T W̃ (t)X(t)
〉
dt(7.10)

+ Trace
(
W̃ (t)1t<T

)
dt,

where in the second term we used that the operator W̃ (t) is symmetric.
By (4.4) of Lemma 2 applied to t0 = t ∧ T and t1 = T̃ (t), we get〈

η̃(t),
(
H̃

(t)

β̃

)−1
η̃(t)〉= 〈η, (Hβ)−1η

〉− 〈η, (Hβ(t))
−1η

〉
.

Using (7.9) and (7.6), it implies

(7.11) d
〈
η̃(t),

(
H̃

(t)

β̃

)−1
η̃(t)〉= −〈η̃(t),1t<T η̃(t)〉dt.

We have also

∂

∂t
η̃(t) = W̃ (t)1t<T η + W̃ (t)1t<T W̃ (t)(t ∧ T )η = W̃ (t)1t<T η̃(t).

Hence,

(7.12) d
〈
η̃(t),X(t)

〉= 〈η̃(t), dX(t)
〉+ 〈η̃(t),1t<T W̃ (t)Xt

〉
dt.

Finally, using (4.1) of Lemma 2 applied to t0 = t ∧ T and t1 = T̃ (t), we get

(7.13) K−1
T = K−1

t∧T

(
K̃

(t)

T̃

)−1
,

which implies by (7.8),

∂

∂t
ln
∣∣K̃(t)

T̃

∣∣= − ∂

∂t
ln |Kt∧T | = −Trace

(
1t<T WK−1

t∧T

)
(7.14)

= −Trace
(
1t<T W̃ (t)).

Combining (7.10), (7.11), (7.12) and (7.14), we get using that Wψ(t)+η = W̃ (t)X(t)+ η̃(t),

d lnMt = −〈dX(t), W̃ (t)X(t) + η̃(t)〉− 1

2

〈
W̃ (t)X(t),1t<T W̃ (t)X(t)

〉
dt

− 1

2

〈
η̃(t),1t<T η̃(t)〉dt − 〈η̃(t),1t<T W̃ (t)Xt

〉
dt

= −〈Wψ(t) + η, dXt

〉− 1

2

〈
Wψ(t) + η,1t<T

(
Wψ(t) + η

)〉
dt.
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Consider now a positive measurable test function φ((Xs)s≤t ). Denote by E
W,θ,η

V (resp., EV,θ ),

the expectation with respect to P
W,θ,η

V (resp., PV,θ ). We have, by (7.5),

E
W,θ,η

V

(
φ
(
(Xs)s≤t

))
)

= EV,θ

(
φ
(
(Xs)s≤t

)
1H 1

2T
>0 · e 1

2 〈θ,Wθ〉− 1
2 〈η,(KT )−1T η〉+〈η,θ〉 1√|KT |

)
(7.15)

= EV,θ

(
Mt

M0
φ
(
(Xs)s≤t

)
1H 1

2T
>0

× e
1
2 〈X(t),W̃ (t)X(t)〉− 1

2 〈η̃(t),(H̃
(t)

β̃
)−1η̃(t)〉+〈η̃(t),X(t)〉 1√

|K̃(t)

T̃
|

)
.

Let us denote by 〈·, ·〉V (t) the usual scalar product on R
V (t) (we keep denoting by 〈·, ·〉 the

usual scalar product on R
V ). As X(t) vanishes on V \ V (t), we have〈

X(t), W̃ (t)X(t)
〉= 〈X(t), W̃ (t)X(t)

〉
V (t),

〈
η̃(t),X(t)

〉= 〈η̃(t),X(t)
〉
V (t).

By (4.5), since (H̃
(t)

β̃
)−1 = (K̃

(t)

T̃
)−1T̃ (t) and since T̃ (t) vanishes on the subset V \ V (t) and

H̃
(t)

β̃
is symmetric, we get〈

η̃(t),
(
H̃

(t)

β̃

)−1
η̃(t)〉= 〈η̃(t),

(
H̃

(t)

β̃

)−1
η̃(t)〉

V (t).

Moreover, ∣∣K̃(t)

T̃

∣∣= ∣∣Id − T̃ (t)W̃ (t)
∣∣= ∣∣(Id − T̃ (t)W̃ (t))

V (t),V (t)

∣∣
and

1H 1
2T

>0 = 1H
β(t)>01H̃

(t)

β̃
>0

thus

1H 1
2T

>0e
1
2 〈X(t),W̃ (t)X(t)〉− 1

2 〈η̃(t),(H̃
(t)

β̃
)−1η̃(t)〉+〈η̃(t),X(t)〉 1√

|K̃(t)

T̃
|

(7.16)

= 1H
β(t)>0

dP
W̃ (t),X(t),η̃(t)

V (t)

dPV (t),X(t)

.

Therefore, using (7.15) and (7.16),

E
W,θ,η

V

(
φ
(
(Xs)s≤t

))
)

= EV,θ

(
1H

β(t)>0
Mt

M0
φ
(
(Xs)s≤t

)
E

W̃ (t),X(t),η̃(t)

V (t) [1]
)

= EV,θ

(
1H

β(t)>0φ
(
(Xs)s≤t

)
e
∫ t

0 〈Wψ(s)+η,dXs〉− 1
2

∫ t
0 〈Wψ(s)+η,1s<T (Wψ(s)+η)〉ds),

where we used Lemma 4 in the second equality. It implies that

P
W,θ,η

V = 1H
β(t)>0 exp

(∫ t

0

〈
Wψ(s) + η, dXs

〉
− 1

2

∫ t

0

〈
Wψ(s) + η,1s<T

(
Wψ(s) + η

)〉
ds

)
PV,θ .
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Finally, by Girsanov’s theorem, we know that under the law

exp
(∫ t

0

〈
Wψ(s) + η, dXs

〉
− 1

2

∫ t

0

〈
Wψ(s) + η,1s<T

(
Wψ(s) + η

)〉
ds

)
PV,θ

(7.17)

the process (
B̃(t)

)
t≥0 :=

(
Xt +

∫ t

0
1s<T

(
Wψ(s) + η

)
ds

)
t≥0

is a Brownian motion stopped at time T , the first hitting time of 0 by (X(t)). (Indeed, recall
that PV,θ is the law of independent Brownian motions starting at θ and stopped at their first
hitting time of 0). Hence,

dX(t) = 1t<T dB̃(t) + 1t<T

(
Wψ(t) + η

)
dt,

and under the law (7.17), X is solution of the SDE EW,θ,η
V (X) with driving Brownian motion

B̃ . By Lemma 1, we know that a.s. under the law (7.17), we have Hβ(t) > 0, thus P
W,θ,η

V

and (7.17) are equal. Hence, under P
W,θ,η

V , (X(t)) has the law of the solutions of the SDE

EW,θ,η
V (X). �

8. Proof of the Abelian properties: Theorem 2.

PROOF OF THEOREM 2(I), (II). Consider first the restriction property (i). By Theorem 1,
conditionally on T , (Xi(t))i∈V are independent Bessel bridges from θi to 0 in time Ti . By

Theorem 1 and Lemma C, 1
2TU

is ν
WU,U ,θU ,qη

U distributed. By Theorem 1 applied to the set U

and parameters WU,U , θU , qη, it implies that XU has the law of the solutions of EW,θ,qη
U (X).

For (ii), the same argument applies, using that βUc , conditionally on βU , is ν
|W,θUc ,qη

Uc dis-
tributed. �

PROOF OF THEOREM 2(III). We adopt the same notation as in the proof of Theorem 1:
we denote by W = C(R+,R) (resp., WV = C(R+,RV )) the Wiener space and X(t) (resp.,
(Xi(t))i∈V ) the canonical process of the Wiener space; we denote by T (resp., T = (Ti)i∈V )
the hitting time of 0 by (X(t)) (resp., by the processes (Xi(t))). For a real T > 0, recall that
B

3,T
θ,0 and E

3,T
θ,0 denotes the law (resp., the expectation) on W of a Bessel bridge from θ to 0

on time interval [0,T] (and extended by 0 for t ≥ T).3 Recall also that EW,θ,η
V (·) denotes the

expectation with respect to the law on WV of the solution of the SDE EW,θ,η
V (X).

Following [15] page 463, under B
3,T
θ,0, the law of X(t) for some 0 < t < T is given by

p
3,t,T
θ,0 (y) dy on R+, with

(8.1) p
3,t,T
θ,0 (y) = 1√

2πt

y

θ

(
T

T − t

)3/2
e
− y2

2(T−t)
+ θ2

2T
(
e− (y−θ)2

2t − e− (y+θ)2

2t
) ∀y ≥ 0.

Moreover, the Markov property of the Bessel bridge implies that under B3,T
θ,0 and conditionally

on X(t) = x, 0 < t < T, the law of ((X(u))0≤u≤t , (X(t + u))0≤u≤T−t ) is given by

B
3,t
θ,x ⊗B

3,T−t
x,0 .(8.2)

3As before, we use a different typeface embodied T to distinguish real variables representing a time from the
random hitting time T .
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Let us denote by ν
W,θ,η
V the distribution of T = (Ti )i∈V := 1

2β
under the distribution

ν
W,θ,η
V (dβ), so that

ν
W,θ,η
V (dT) = 1H 1

2T
>0

(
2

π

)|V |/2
e
− 1

2 〈θ, 1
T θ〉+ 1

2 〈θ,Wθ〉− 1
2 〈η,(H 1

2T
)−1η〉+〈η,θ〉

×
∏

i∈V θi√|H 1
2T

|
∏
i∈V

1

2T2
i

dTi .

Let t0 = (t0
i )i∈V ∈ R

V+ be as in the statement of the theorem. For T = (Ti )i∈V ∈R
V+, set

(8.3) V
(
t0,T

)= {i ∈ V,Ti > t0
i

}
.

Fix U ⊂ V . Let h,g be bounded measurable test functions. By Theorem 1, we have

E
W,θ,η
V

[
1V (t0,T )=Uh

((
Xi

[
0, t0

i

])
i∈V

)
g
((

Xi

([
t0
i , Ti

]))
i∈U

)]
=
∫

1V (t0,T)=U

⊗
i∈V

E
3,Ti

θi ,0

[
h
((

Xi

[
0, t0

i

])
i∈V

)
g
((

Xi

([
t0
i ,Ti

]))
i∈U

)]
dν

W,θ,η
V (T).

By the Markov property (8.2), when V (t0,T) = U , we have that⊗
i∈V

E
3,Ti

θi ,0

[
h
((

Xi

[
0, t0

i

])
i∈V

)
g
((

Xi

([
t0
i ,Ti

]))
i∈U

)]
=
∫
R

U+
K
(
xU , t0

U,TUc

)⊗
i∈U

E
3,Ti−t0

i

xi ,0

[
g
((

Xi

([
0,Ti − t0

i

]))
i∈U

)]
×
(∏

i∈U

p
3,t0

i ,Ti

θi ,0
(xi) dxi

)
,

where

K
(
xU , t0

U,TUc

) := (⊗
i∈U

E
3,t0

i

θi ,xi

⊗
i∈Uc

E
3,Ti

θi ,0

)[
h
((

Xi

[
0, t0

i

])
i∈V

)]
(8.4)

is a function that only depends on (xi, t
0
i )i∈U, (Ti)i∈Uc . We thus get

E
W,θ,η
V

[
1V (t0,T )=Uh

((
Xi

[
0, t0

i

])
i∈V

)
g
((

Xi

([
t0
i , Ti

]))
i∈U

)]
=
∫

1V (t0,T)=UK
(
xU , t0

U,TUc

)⊗
i∈U

E
3,Ti−t0

i

xi ,0

[
g
((

Xi

([
0,Ti − t0

i

]))
i∈U

)]
×
(∏

i∈U

p
3,t0

i ,Ti

θi ,0
(xi) dxi

)
dν

W,θ,η
V (T).

In the sequel, on the event {V (t0,T) = U}, we set

(̃Ti)i∈U = (Ti − t0
i

)
i∈U .

The strategy is now to show that we can combine the terms
∏

i∈U p
3,t0

i ,Ti

θi ,0
(xi) and the mea-

sure dν
W,θ,η
V (T) in such a way that on the event {V (t0,T) = U}, changing from variables

(Ti )i∈U to variables (̃Ti )i∈U , we end up with a function of (xU , t0
U,TUc) and the measure

ν
W̃ (t0),x,η̃(t0)

U (dT̃); see the forthcoming formula (8.5).
Let us denote by 〈·, ·〉U the usual scalar product on R

U (recall that we keep denoting by
〈·, ·〉 the usual scalar product on R

V ). Note that η̃(t0) and W̃ (t0) defined in Theorem 2(iii)
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correspond to η̃ and W̃ of Lemma 2 for t0 ∧ T and T̃. Hence, by (4.4) of Lemma 2, we get

with H̃
(t0)
1

2T̃

= 1
2T̃

− W̃ (t0) that

〈
η̃(t0),

(
H̃

(t0)
1

2T̃

)−1
η̃(t0)〉

U − 〈η, (H 1
2T

)−1η
〉= −〈η, (H 1

2t0∧T

)−1η
〉

and by (4.2) of Lemma 2,

|(H̃ (t0)
1

2T̃

)U,U |
|H 1

2T
| = |Kt0∧T|

∏
i∈U

(
Ti

T̃i

)
.

Note that we have

∏
i∈U

p
3,t0

i ,Ti

θi ,0
(xi) = e

− 1
2 〈x, 1

T̃
x〉U+ 1

2 〈θ, 1
T θ〉U ∏

i∈U

(
e
− (xi−θi )

2

2t0
i − e

− (xi+θi )
2

2t0
i
)

× 1√
2πt0

i

xi

θi

(
Ti

T̃i

)3/2
.

Changing from variables (Ti )i∈U to (̃Ti)i∈U , we get

1V (t0,T)=U

(∏
i∈U

p
3,Ti

θi ,0
(xi)

)
ν

W,θ,η
V (dT)

= 1Ti<t0
i ,i∈Uc�

(
xU , t0

U,TUc

)
ν

W̃ (t0),x,η̃(t0)

U (dT̃)
∏

i∈Uc

dTi

(8.5)

for some explicit function �(xU, t0
U,TUc) that only depends on (xi, t

0
i )i∈U, (Ti)i∈Uc .

Continuing our computation, we have

E
W,θ,η
V

[
1V (t0,T )=Uh

((
Xi

[
0, t0

i

])
i∈V

)
g
((

Xi

([
t0
i , Ti

]))
i∈U

)]
=
∫

1Ti<t0
i ,i∈UcK

(
xU , t0

U,TUc

)
�
(
xU , t0

U,TUc

)
(8.6)

×E
W̃ (t0),x,η̃(t0)

U

[
g
((

Xi

([0, Ti]))i∈U

)] ∏
i∈U

dxi

∏
i∈Uc

dTi .

Let us apply the last equality to the case where h and g are replaced by

h̃
((

Xi

[
0, t0

i

])
i∈V

) := h
((

Xi

[
0, t0

i

])
i∈V

)
E

W̃ (t0),XU (t0),η̃(t0)

U

(
g
((

Xi

([0, Ti]))i∈U

))
,

g̃ := 1.

The identity (8.6) gives in this case

E
W,θ,η
V

[
1V (t0,T )=Uh

((
Xi

[
0, t0

i

])
i∈V

)
E

W̃ (t0),XU (t0),η̃(t0)

U

(
g
((

Xi

([0, Ti]))i∈U

))]
(8.7)

=
∫

1Ti<t0
i ,i∈UcK̃

(
xU , t0

U,TUc

)
�
(
xU , t0

U,TUc

) ∏
i∈U

dxi

∏
i∈Uc

dTi ,

where, using (8.4) applied to h̃ instead,

K̃
(
xU , t0

U,TUc

)= K
(
xU , t0

U,TUc

)
E

W̃ (t0),x,η̃(t0)

U

[
g
((

X
([0, T ])i∈U

))]
.
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Remark that the right-hand sides of (8.6) and (8.8) are thus the same. Hence, we conclude
that

E
W,θ,η
V

[
1V (t0,T )=Uh

((
Xi

[
0, t0

i

])
i∈V

)
g
((

Xi

([
t0
i , Ti

]))
i∈U

)]
= E

W,θ,η
V

[
1V (t0,T )=Uh

((
Xi

[
0, t0

i

])
i∈V

)
E

W̃ (t0),XU (t0),η̃(t0)

U

(
g
((

Xi

([0, Ti]))i∈U

))]
.

Summing on all possible choices of U , we exactly get that the law of (Xi([t0
i , Ti])), condi-

tionally on FX(t0), is the law of the solutions of the SDE EW̃ (t0),X(t0),η̃(t0)

V (X). �

PROOF OF THEOREM 2(iv). Fix as before U ⊂ V . With the notation of the theorem and
(8.3),

V
(
T 0, T

)= {i ∈ V,Ti > T 0
i

}
,

and for U ⊂ V fixed, we define the event

A
(
T 0, T

)= {V (T 0, T
)= U

}= {Ti > t0
i , i ∈ U

}∩ {Ti ≤ t0
i , i ∈ Uc}.

We simply write {T0 < ∞} for the event {T 0
i < ∞,∀i ∈ V }. In order to prove the strong

Markov property (iv), it is enough to prove that, for any bounded test function h,g, depending
continuously on finitely many marginals of X, we have

(8.8)

E
W,θ,η
V

[
1T 0<∞1A(T 0,T )h

((
Xi

[
0, T 0

i

])
i∈V

)
g
((

Xi

[
T 0

i , Ti

])
i∈U

)]
= E

W,θ,η
V

[
1T 0<∞1A(T 0,T )h

((
Xi

[
0, T 0

i

])
i∈V

)
×E

W̃ (T0),XU (T 0),η̃(T 0)

U

(
g
((

Xi[0, Ti])i∈U

))]
.

We define the sequence of stopping times, for all i ∈ V , by[
T 0

i

]
n = k

2n
when

k − 1

2n
≤ T 0

i <
k

2n
, k ∈ N,

and [T 0
i ]n = ∞ when T 0

i = ∞. We can check that [T 0] := ([T 0
i ]n)i∈V is a multistopping

time in the sense of Theorem 2(iv), since for (ki)i∈V ∈ N
V ,⋂

i∈V

{
ki − 1

2n
≤ T 0

i <
ki

2n

}
∈ σ

(
Xi(s), s ≤ ki

2n
, i ∈ V

)
.

Moreover, [T 0
i ]n decreases a.s. to T 0

i and for n large enough V ([T 0]n) = V (T 0) a.s. This
implies that a.s.,

1T 0<∞1A(T 0,T )g
((

Xi

[
T 0

i , Ti

])
i∈U

)
= lim

n→∞1[T 0]n<∞1A([T 0]n,T )g
((

Xi

[[
T 0

i

]
n, Ti

])
i∈U

)
.

Therefore, by dominated convergence theorem,

E
W,θ,η
V

[
1T 0<∞1A(T 0,T )h

((
Xi

[
0, T 0

i

])
i∈V

)
g
((

Xi

[
T 0

i , Ti

])
i∈U

)]
= lim

n→∞E
W,θ,η
V

[
1[T 0]n<∞1A([T 0]n,T )h

((
Xi

[
0, T 0

i

])
i∈V

)
g
((

Xi

[[
T 0

i

]
n, Ti

])
i∈U

)]
= lim

n→∞
∑

k=(ki)i∈V ∈NV

E
W,θ,η
V

[(∏
i∈V

1 ki−1
2n ≤T 0

i <
ki
2n

)
1A( k

2n ,T )
h
((

Xi

[
0, T 0

i

])
i∈V

)

× g

((
Xi

[
ki

2n
, Ti

])
i∈U

)]
,
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where in the last equality we sum on the possible values of each [T 0
i ]n, i ∈ V . Note that(∏

i∈V

1 ki−1
2n ≤T 0

i <
ki
2n

)
1A( k

2n ,T )
h
((

Xi

[
0, T 0

i

])
i∈V

)
is FX( k

2n ) measurable, so we can apply the Markov property (iii), and we get

E
W,θ,η
V

[
1A( k

2n ,T )

(∏
i∈V

1 ki−1
2n ≤T 0

i <
ki
2n

)
h
((

Xi

[
0, T 0

i

])
i∈V

)
g

((
Xi

[
ki

2n
, Ti

])
i∈V ( k

2n )

)]

= E
W,θ,η
V

[
1A( k

2n ,T )

(∏
i∈V

1 ki−1
2n ≤T 0

i <
ki
2n

)
h
((

Xi

[
0, T 0

i

])
i∈V

)

×E
W̃

( k
2n )

,XU ( k
2n ),η̃

( k
2n )

U

(
g
((

Xi[0, Ti])i∈U

))]
.

Summing on possible values of (ki), we get

E
W,θ,η
V

[
1T 0<∞1A(T 0,T )h

((
Xi

[
0, T 0

i

])
i∈V

)
g
((

Xi

[
T 0

i , Ti

])
i∈U

)]
= lim

n→∞E
W,θ,η
V

[
1T 0<∞1A([T 0]n,T )h

((
Xi

[
0, T 0

i

])
i∈V

)
(8.9)

×E
W̃ ([T 0]n),XU ([T 0]n),η̃([T 0]n)

U

(
g
((

Xi[0, Ti])i∈U

))]
.

We conclude the proof thanks to the Feller property (see, e.g., Section 18.6 of [21]) proved
in the lemma below. �

LEMMA 5. The function (W, θ, η) → E
W,θ,η
V (g((Xi[0, Ti])i∈V )) is continuous on

(R∗+)E × (R∗+)V × R
V+ for any bounded measurable function g depending only on a finite

number of marginals.

PROOF OF LEMMA 5. It is enough to consider the case η = 0, since the case η �= 0 is a
marginal of the case η = 0 by Lemma C. Without loss of generality, we assume Wi,i = 0,∀i.
The proof follows from the representation Theorem 1 and the two ingredients below.

Under the three-dimensional Bessel bridge law, the expectation E
3,T
θ,0 (g((Xi[0, Ti])i∈V ))

is continuous in (θ, T ). Indeed, the three-dimensional Bessel bridge is the norm of a three-
dimensional Brownian bridge from x to 0 if ‖x‖ = θ , and the three-dimensional Brownian
bridge from x to 0 can be represented as x + B

(3)
t − t

T
B

(3)
T − t

T
x where (B

(3)
t ) is a three-

dimensional standard Brownian motion.
On the other hand, the measure νW

V (dβ) can be dominated locally on the parameters W,θ

after some change of coordinates, following [18]. (Note that the density ν
W,θ
V in the present

paper correspond to νW,θ2
in [18].) For convenience, write V = {1, . . . ,N}. By the change of

variables, (βi)i∈V → (xi)i∈V from {β,Hβ > 0} to (R∗+)V described in the proof of Theorem 1
of [18] (see p. 3977), we have

1Hβ>0 exp
(
−1

2
〈θ,Hβθ〉 − 1

2

∑
i,j

Wi,j θiθj

)
1√

detHβ

dβ

(8.10)

= 1

2N
1x∈RN+ exp

(
−

N∑
l=1

(
θ2
l xl

2
+ 1

2xl

(
N∑

k=l+1

θ2
k H 2

l,k

)))
1√

x1 · · ·xN

dx,

following the notation there, in particular the definition of {xi,Hi,j : 1 ≤ i, j ≤ N}. By defi-
nition, for any l ≥ 1, Hl,k ≥ Wl,k .



HITTING TIMES OF INTERACTING DRIFTED BM AND THE VRJP 1081

Now fix W 0, θ0, let � be a neighborhood of (W, θ), denote

Wl,k = inf
�

Wl,k, θ l = inf
�

θl.

For any W,θ ∈ �, we have Hl,k ≥ Wl,k ≥ Wl,k and θl ≥ θ l for all 1 ≤ l, k ≤ N , so the density
in (8.10) is locally uniformly bounded (in the variables xs) by

1x≥0 exp

(
−

N∑
l=1

(
θ2

l xl

2
+ 1

2xl

(
N∑

k=l+1

θ2
kW

2
l,k

)))
1√

x1 · · ·xN

,

which is an integrable function, as x1, . . . , xN−1 are distributed as inverse of IG distribution,
and xN is a Gamma distributed random variable. �

9. Relation with the martingales associated with the VRJP. Consider in this section
that V is infinite and that W is such that the associated graph G has finite degree at each
vertex and is connected. Following [17], we extend the definition of the distribution ν

W,θ
V to

the case of this infinite graph. In order to be coherent with [17], we assume that W is zero
on the diagonal. Note that we slightly generalize the definition of [17] since we consider a
general vector (θi)i∈V ∈ (R+)V , which is equal to 1 in [17]. (But as noted at the beginning
of Section 3 it is in fact not more general since we can always take θ to 1 by a change of
variables on β and W .)

Let us recall the construction of the distribution ν
W,θ
V obtained by Kolmogorov’s extension

theorem. The approach is slightly different from that of [17] and make use of Lemma C(i).
Let Vn be an increasing sequence of subsets such that

⋃
n≥1 Vn = V . Consider the vector

η(n) ∈ (R+)Vn defined by

η(n) = WVn,V c
n
(θV c

n
).(9.1)

By Lemma C(i), the sequence of distribution ν
W,η(n)

Vn
is compatible, hence by the Kolmogorov

theorem it can be extended to a measure ν
W,θ
V on (R+)V . We define the Schrödinger operator

Hβ := 2β − W,

on R
V associated with the potential β ∼ ν

W,θ
V . Note that Hβ ≥ 0 as the limit of (Hβ)Vn,Vn

which is positive definite since βVn has law ν
W,θ,η(n)

Vn
.

In [19], we considered the sequence of functions (ψ
(n)
j )j∈V ∈ (R+)V defined by{(

Hβψ(n))
Vn

= 0,

ψ
(n)
V c

n
= θV c

n
,

(9.2)

and the operators (Ĝ(n)(i, j))i,j∈Vn by{
Ĝ

(n)
Vn,Vn

= ((Hβ)Vn,Vn

)−1
,

Ĝ(n)(i, j) = 0 if i or j in not in Vn.

Let Fn = σ(βi, i ∈ Vn), the sigma field generated by βVn . In [19], Proposition 9, it was proved
that ψ(n) is a vectorial Fn-martingale, with quadratic variation given by Ĝ(n)(i, j), that is,
that for all i, j in V and all n,

E
(
ψ(n+1)(i)ψ(n+1)(j) − Ĝ(n+1)(i, j)|Fn

)= ψ(n)(i)ψ(n)(j) − Ĝ(n)(i, j).

It was extended in [4] to an exponential martingale property, namely it was proved that for
any compactly supported function λ ∈ (R+)V ,

e−〈λ,ψ(n)〉− 1
2 〈λ,Ĝ(n)λ〉,(9.3)

is a Fn-martingale.
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We can interpret the functions ψ(n) that appear above in terms of the SDEs. Consider X(n)

the solution of the SDE EW,θ,η(n)

Vn
, where η(n) is defined in (9.1). Denote by T (n) the associated

stopping times and β(n) = 1
2T (n) and

K
(n)

t∧T (n) = IdVn,Vn − (t ∧ T (n))WVn,Vn, ψ(n)(t) = (K(n)

t∧T (n)

)−1
X(n)(t),

the associated operator and martingale that appear in Lemma 1. We always consider that ψ(n)

is extended to the full set V by ψ
(n)
V c

n
(t) = θV c

n
. Considering (9.2), we have that

lim
t→∞ψ(n)(t) = ψ(n).

Hence the function ψ(n) appears as the limit of the continuous martingale ψ(n)(t).
It is possible to interpret the exponential martingale property (9.3) in terms of the Abelian

properties; see Theorem 2. More precisely, conditionally on σ(βVn), it is possible to construct
a continuous martingale that interpolates between ψ(n) and ψ(n+1) and with total quadratic
variation given by Ĝ(n+1) − Ĝ(n), which explains the exponential martingale property as a
consequence the standard exponential martingale property for continuous martingales. We
do not give details of this computation which require heavy notation (but the authors will
provide details under request).

10. Case of the two points graph. We illustrate some of the results in the case of two
points. The discussion in this section will be rather informal since it is only meant to be an
illustration of the results. Assume V = {1,2} and W1,1 = W2,2 = 0, W1,2 = W > 0, that is,
the graph Laplacian is (

0 W

W 0

)
.

We denote (t ∧ T1, t ∧ T2) = (tT1, tT2). It follows that

Kt∧T = 1 − (t ∧ T )W =
(

1 −tT1W

−tT2W 1

)
,

K−1
t∧T = 1

1 − tT1 tT2W 2

(
1 tT1W

tT2W 1

)
.

And

ψ(t) = K−1
t∧T

(
X(t) + tT η

)
.

The SDEs are now

Xi(t) = θi +
∫ t

0
1s<Ti

dBi(s) −
∫ t

0
1s<Ti

[(
0 W

W 0

)(
ψ1(s)

ψ2(s)

)
+
(
η1
η2

)]
i

ds,

i = 1,2;
where

Ti = inf
{
t ≥ 0,Xi(t) = 0

}
.

Because of the interactive drifts, it is nontrivial that this equation is well defined for all t ≥ 0
(i.e., 1 − tT1 tT2W 2 > 0) as shown in Lemma 1, even though intuitively it is rather clear: if
1 − tT1 tT2W 2 approaches 0 before the hitting times of 0, then it gives a strong negative drift
in the equation which pushes the process toward 0.
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Theorem 1 asserts that the law of ( 1
2T1

, 1
2T2

) is hW(θ, η,β) dβ , where

hW(θ, η,β) = 1Hβ>0
2

π
e
− 1

2 (θHβθ+ηH−1
β η+θη) θ1θ2√

detHβ

, Hβ =
(

2β1 −W

−W 2β2

)
.

Theorem 2(i) asserts that X1(t) has the law of a drifted Brownian motion with drift η1 −Wθ2
(with corresponding formula for X2 and stopped at first hitting time of 0). Theorem 2(ii)
asserts that conditionally on (Y2(t))t≥0, (X1(t)) has the law of a Bessel bridge from θ1 to 0
on time interval [0, 2T2

W 2 ], with a constant drift −(η1 + W
η2

2T2
).

Let us show that, if we assume Theorem 1, that is, that we know the law of the hitting times,
then it is possible to check by direct computation that conditionally on (T1, T2), X1(t) and
X2(t) are 3D-Bessel bridges. Let t > 0, denote T̃ = T − t ∧T . Using Proposition 1, which is
a simple property of stationarity of the equation, the shifted process X̃(s) = X(t + s), s ≥ 0,
conditionally on FX(t), is solution of the same class of SDE. More precisely, if we denote

W̃ (t) = 1

1 − tT1 tT2W 2

(
tT2W 2 W

W tT1W 2

)
,

(
η̃

(t)
1

η̃
(t)
2

)
=
(
η1
η2

)
+ W

1 − tT1 tT2W 2

(
tT1 tT2Wη1 + tT2η2

tT1η1 + tT1 tT2Wη2

)
,

then, ψ̃(s) := ψ(t + s), s ≥ 0, is equal to

ψ̃(s) = [Id − (s ∧ T̃ )W̃ (t)]−1[
X̃(s) + (s ∧ T̃ )η̃(t)]

and X̃(s) is solution of

X̃(s) = X(t) +
∫ s

0
1u<T̃ dB(u) −

∫ s

0
1u<T̃

[
W̃ (t)ψ̃(u) + η̃(t)]du.

In particular, Theorem 2(iii) asserts that, conditionally on FX(t), the vector ( 1
2T̃1

, 1
2T̃2

) has
distribution

hW(t)(
X(t), η̃(t), β

)
dβ.

(Note that this density can be degenerated, depending on the cardinal of V (t) = {i ∈
{1,2}, Ti > t}. To be more rigorous, one would need to separate the case where V (t) is two,
or one point.)

Therefore, conditionally on ( 1
2T1

, 1
2T2

), the law of (X(t)) is a Doob’s h-process of the initial
law of X(t) with Doob’s exponential martingale given by

Mt = h(X(t), η̃(t), β(t))

h(θ, η,β)
.

By explicit (but rather long and cumbersome) Itô differentiation, we have

d logMt = ∑
(i,j)∈{(1,2),(2,1)}

(
1

Xi(t)
− Xi(t)

Ti − t

)
dXi(t)

+ 1t<Ti

1 − tT1 tT2W 2

(
Xi(s) + tT1WXj(t)

)
dBi(t)

+ drift terms.

Therefore, by applying twice Girsanov’s theorem, and using Doob’s h-transform, condition-
ally on ( 1

2T1
, 1

2T2
), X(t) = (X1(t),X2(t)) is solution of

Xi(t) = θi +
∫ t

0
1t<Ti

(
dB̃i(s) + 1

Xi(s)
− Xi(s)

Ti − s
ds

)
, i = 1,2,
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where B̃1(t), B̃2(t) are independent Brownian motion under the conditional law P(·|T1, T2).
That is, conditionally on (T1, T2), X1(t),X2(t) are independent 3D-Bessel bridges.
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