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RANDOM GLUING OF METRIC SPACES1

BY DELPHIN SÉNIZERGUES

Université Paris XIII

We construct random metric spaces by gluing together an infinite se-
quence of pointed metric spaces that we call blocks. At each step, we glue the
next block to the structure constructed so far by randomly choosing a point
on the structure and then identifying it with the distinguished point of the
block. The random object that we study is the completion of the structure that
we obtain after an infinite number of steps. In (Ann. Inst. Fourier (Grenoble)
67 (2017) 1963–2001), Curien and Haas study the case of segments, where
the sequence of lengths is deterministic and typically behaves like n−α . They
proved that for α > 0, the resulting tree is compact and that the Hausdorff di-
mension of its set of leaves is α−1. The aim of this paper is to handle a much
more general case in which the blocks are i.i.d. copies of the same random
metric space, scaled by deterministic factors that we call (λn)n≥1. We work
under some conditions on the distribution of the blocks ensuring that their
Hausdorff dimension is almost surely d, for some d ≥ 0. We also introduce
a sequence (wn)n≥1 that we call the weights of the blocks. At each step, the
probability that the next block is glued onto any of the preceding blocks is
proportional to its weight. The main contribution of this paper is the compu-
tation of the Hausdorff dimension of the set L of points which appear during
the completion procedure when the sequences (λn)n≥1 and (wn)n≥1 typi-
cally behave like a power of n, say n−α for the scaling factors and n−β for
the weights, with α > 0 and β ∈ R. For a large domain of α and β, we have
the same behaviour as the one observed in (Ann. Inst. Fourier (Grenoble) 67
(2017) 1963–2001), which is that dimH(L) = α−1. However, for β > 1 and
α < 1/d, our results reveal an interesting phenomenon: the dimension has a
nontrivial dependence in α, β and d, namely

dimH(L) = 2β − 1 − 2
√

(β − 1)(β − αd)

α
.

The computation of the dimension in the latter case involves new tools, which
are specific to our model.
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Introduction. Let us recall Aldous’ famous line-breaking construction of
the Brownian CRT (Continuum Random Tree) in [3]. On the half-line [0 ,∞),
consider C1,C2, . . . ,Cn the points of a Poisson process with intensity tdt . Cut
the half-line in closed intervals [Ci ,Ci+1], which we call branches (of length
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Ci+1 −Ci). Starting from [0 ,C1], construct a tree by recursively gluing the branch
[Ci ,Ci+1] to a random point chosen uniformly on the tree already constructed
(i.e., under the normalised length measure). Aldous’ Brownian CRT is the com-
pletion of the tree constructed after an infinite number of steps. This process can
be generalised by using any arbitrary sequence (λn) for the length of the successive
branches. This model was introduced and studied by Curien and Haas in [7], who
proved that when λn = n−α+o(1) for some α > 0, the tree obtained is a.s. compact
and has Hausdorff dimension (1 ∨ α−1). In [4], Amini et al. obtained a neces-
sary and sufficient condition on the sequence (λn) for the almost sure compactness
of the resulting tree, under the assumption that this sequence is nonincreasing. In
[13], Haas describes how the height of the tree explodes when n → ∞ under the
assumption that λn ≈ nα , with α ≥ 0.

Our goal is to define a more general version of this model, in which the branches
are replaced by arbitrary (and possibly random) measured metric spaces, and to
investigate the compactness and the Hausdorff dimension of the resulting metric
space. As we will see, in this broader context, a striking phenomenon (absent from
[7]) pops up. In this paper, we will work with

(λn)n≥1 and (wn)n≥1,

two sequences of nonnegative real numbers that will be the scaling factors and
weights of the metric spaces that we glue. All the scaling factors (λn)n≥1 are con-
sidered strictly positive, but the weights, except for the first one w1, can possibly
be null.

Definition of the model and main results. Let us first present a simpler version
of our construction, in which we construct a tree through an aggregation of seg-
ments. For now the branches, which we denote (bn)n≥1, are segments of length
(λn)n≥1, rooted at one end and endowed with the Lebesgue measure normalised
so that their respective total measure is (wn)n≥1 (or endowed with the null mea-
sure for branches with vanishing weight). We then define a sequence (Tn)n≥1 of
increasing trees by gluing those branches as follows. First, T1 = b1. Then, if Tn

is constructed, we build Tn+1 by first sampling a point Xn chosen proportion-
ally to the measure μn obtained by aggregating the measures concentrated on the
branches b1, . . . ,bn and then gluing bn+1 onto Tn by identifying its root with Xn.
Let T ∗ be the increasing union of the trees Tn for n ≥ 1 and T be the comple-
tion of T ∗. Note that if (wn) = (λn), this model coincides with the one studied
in [7].

We can compute the Hausdorff dimension of the resulting tree in the case where
(λn) and (wn) behave like powers of n, say λn = n−α and wn = n−β . We define
L := (T \ T ∗) to which we refer as the set of leaves of T . In this particular case it
coincides, up to a countable set, with the set of points x such that T \ {x} remains
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connected. In the above context, a trivial consequence of our main theorem is that
T is a.s. compact and

dimH(L) = 2β − 1 − 2
√

(β − 1)(β − α)

α
if β > 1 and α < 1,

= 1

α
otherwise,

where dimH(X) stands for the Hausdorff dimension of the metric space X; see
Section A.2.

Note that, since we can check that the dimension of the skeleton T ∗ is always 1,
we can recover the dimension of T as dimH(T ) = max(1,dimH(L)). We see that
dimH(L) = 1

α
as in [7] for most values of β , however, a new phenomenon, absent

from [7], happens in the case β > 1 (the sum of the weights is finite) and α < 1
(the total length is infinite). In this case, the Hausdorff dimension of T depends in
a nontrivial manner on α and β .

Now we want to generalise it to sequences (bn) of more general metric spaces
that we call blocks, which can be random and possibly more elaborate than just seg-
ments. Specifically, our blocks are based on the distribution of a random pointed
measured compact metric space, (B,D, ρ, ν), with underlying set B, distance D,
distinguished point ρ and endowed with a probability measure ν. We sometimes
denote it B by abuse of notation when no confusion is possible and we refer to it
as the underlying random block. We consider a sequence ((Bn,Dn, ρn, νn))n≥1 of
i.i.d. random variables with the distribution of (B,D, ρ, ν) and define our blocks
by setting

(1) ∀n ≥ 1, (bn,dn,ρn, νn) := (Bn, λn · Dn, ρn,wn · νn),

meaning that we dilate all the distances in the space Bn by the factor λn and scale
the measure by wn. We suppose that, λn ≈ n−α for some α > 0, and wn ≈ n−β

for some β ∈ R, in some loose sense which we make precise in the sequel. For
technical reasons, we have to separate the case β < 1, the case β > 1 and β = 1.
This gives rise to the three hypotheses Hypothesis ©α,β , Hypothesis α,β and
Hypothesis �α,1. For any d ∈ [0 ,∞), we will introduce the Hypothesis Hd and
suppose that the distribution of our underlying random block (B,D, ρ, ν) satisfies
this hypothesis for some d ≥ 0. This hypothesis ensures that our random block
exhibits a d-dimensional behaviour. We set out all of these hypotheses just below
the statement of our theorem.

Except in Section 1.1, we will always assume that the blocks are of the form (1).
This is implicit in all our results.

In this extended setting, we can perform the same gluing algorithm and build a
sequence (Tn)n≥1 of random compact metric spaces by iteratively gluing the root
of bn+1 onto a point chosen in Tn according to the measure μn obtained as the
sum of the measures of the blocks b1, . . . ,bn. Again T ∗ =⋃

n≥1 Tn is called the
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FIG. 1. Gluing of circles of radii λn = n−3/5, with weights wn = n−3/2. The Hausdorff dimension
of the resulting metric space is ( 10

3 − √
5).

skeleton of the construction and its completion is still denoted T . See Figure 1
for nonisometric, nonproper representation in the plane of a simulation of this
model, with B chosen to be almost surely a circle of unit length. As for the case
of segments, we refer to L = (T \ T ∗) as the set of leaves of the construction. We
can now state our main theorem.

THEOREM 1. Suppose that there exists d ≥ 0, such that (B,D, ρ, ν) satisfies
Hypothesis Hd , and α > 0 and β ∈ R such that the sequences (wn) and (λn) sat-
isfy either Hypothesis α,β or Hypothesis ©α,β or Hypothesis �α,1. Then, almost
surely, the structure T resulting from the construction is compact, and

dimH(L) = 2β − 1 − 2
√

(β − 1)(β − αd)

α
if β > 1 and α <

1

d
,

= 1

α
otherwise.

The function (α,β) �→ dimH(L) is plotted in Figure 2. Remark that for β > 1
the dimension of the set L depends on the geometry of the underlying ran-
dom block through d , its dimension. For β ≤ 1, it is not the case, and actu-
ally the theorem remains true under much weaker hypotheses for the distribu-
tion of (B,D, ρ, ν), namely that ν is not almost surely concentrated on {ρ}, and
that ∀k ≥ 0, E[(diam(B))k] < ∞, where diam(·) denotes the diameter of a metric
space. We could even replace the assumption that the blocks ((Bn,Dn, ρn, νn))n≥1
are i.i.d. by some weaker assumption but we do not do it for the sake of clarity. The
proofs when β ≤ 1 are quite short and the interested reader can easily generalise
them to a more general setting.
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FIG. 2. The plot represents the Hausdorff dimension of the leaves as a function of α and β , the
dimension d being fixed to 1. The expression obtained for β > 1 and α < 1

d
can be rewritten as

d + (
√

β−αd−√
β−1)2

α . This expression is always larger than d and smaller than 1
α , and it is de-

creasing in α and β on the domain on which we consider it. When β → 1, it converges to the value
1
α so that the function (α,β) �→ dimH (L) is continuous on the domain R

∗+ ×R.

Hypotheses of the theorem. Let us define and discuss the precise hypotheses of
our theorem. First, let us describe the assumptions that we make on the sequences
(λn) and (wn). We define

Wn =
n∑

k=1

wk,

and for all ε > 0, we set

(2) Gε := {
k ≥ 1 | wk ≥ k−β−ε, λk ≥ k−α−ε},

and also

(3) Gε
n := {

k ∈ �n ,2n� | wk ≥ n−β−ε, λk ≥ n−α−ε}.
As said earlier, we separate the case β < 1, the case β > 1 and the case β = 1.

HYPOTHESIS ©α,β . We have α > 0 and β < 1 and for all n ≥ 1, λn ≤
n−α+o(1) and wn ≤ n−β+o(1). Furthermore, Wn = n1−β+o(1) and for all ε > 0,

lim inf
n→∞

∑n
k=1 wk1{k∈Gε}∑n

k=1 wk

> 0.

The last display ensures that for all ε > 0, the set Gε contains asymptotically a
positive proportion of the total weight.

HYPOTHESIS α,β . We have α > 0 and β > 1 and for all n ≥ 1, λn ≤
n−α+o(1) and wn ≤ n−β+o(1). Furthermore, for all ε > 0,

#Gε
n =

n→∞ n1+o(1).
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Under the stronger assumption, λn = n−α+o(1) and wn = n−β+o(1), Hypothesis
α,β holds if β > 1 (resp., Hypothesis ©α,β , if β < 1). The case β = 1 is slightly
different and in this case we set

HYPOTHESIS �α,1. We have α > 0 and β = 1 and for all n ≥ 1, λn ≤
n−α+o(1) and wn ≤ n−1+o(1). Furthermore, for all ε > 0,

1

log log logN

N1+ε∑
k=N

wk

Wk

1{k∈Gε} −→
N→∞ +∞.

Note that this last hypothesis requires in particular that Wn → ∞ as n → ∞.
Now let us define Hypothesis Hd , for any d ≥ 0, which will ensure that our random
underlying block has the appropriate d-dimensional behaviour.

HYPOTHESIS Hd . The law of the block (B,D, ρ, ν) satisfies the following con-
ditions:

(i) • If d = 0, the block B is a finite metric space which is not a.s. reduced to a
single point and such that the measure ν satisfies ν({x}) > 0, for all points x ∈ B.

• If d > 0, there exists an increasing function ϕ : [0 ,1] → [0 , d/2], satis-
fying limr→0 ϕ(r) = 0, such that almost surely, there exists a (random) r0 ∈ (0 ,1)

such that

(	r0) ∀r ∈ [0 , r0),∀x ∈ B, rd+ϕ(r) ≤ ν
(
B(x, r)

)≤ rd−ϕ(r).

(ii) Let Nr(B) be the minimal number of balls of radius r needed to cover B.
Then

E
[
Nr(B)

]≤ r−d+o(1) as r → 0.

(iii) For all k ≥ 0, we have E[diam(B)k] < ∞.

Here, B(x, r) is the open ball centred at x with radius r and the notation diam(B)

denotes the diameter of B, defined as the maximal distance between two points
of B. The conditions (i) and (ii) ensure that the blocks that we glue together have
dimension d . The condition (iii) ensures that the blocks cannot be too big. In the
paper, some results are stated under some weaker assumptions on the distribution
of random block (B,D, ρ, ν) and they are hence all still valid under Hypothesis Hd .

Motivations. The assumptions of Theorem 1 are rather general and various
known models fall into our setting. First, let us cite two constructions that were
already covered by the work presented in [7]. Of course, we have Aldous’ line-
breaking construction of the CRT but let us also cite the work of Ross and Wen in
[19], in which the authors study a discrete model of growing trees and prove that
its scaling limit can be described as a line-breaking procedure à la Aldous using
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a Poisson process of intensity t ldt , with l an integer. The Hausdorff dimension
of the resulting tree is then (l + 1)/ l. Our extended setting now also includes
the Brownian looptree, defined in [6], which appears as the scaling limit of the
so-called discrete looptree associated with Barabási–Albert model. This random
metric space also has a natural construction through an aggregation of circles, and
our theorem proves that this object has almost surely Hausdorff dimension 2. These
examples do not really use our theorem in its full generality since their underlying
block is deterministic. In fact, Hypothesis Hd is very general and is satisfied (for
the appropriate d ≥ 0) by many distributions of blocks, including the Brownian
CRT (d = 2); see [8], for the Brownian map (d = 4), see [15, 20], for the θ -stable
trees (d = θ+1

θ
), see [9]. Hence, our results can apply to a whole variety of such

constructions, with a very general distributions for the blocks, and we are currently
working on some examples in which this construction naturally arises as the limit
of discrete models.

Indications on the proofs. The computations of the dimension in Theorem 1
differ, depending on the assumptions we make on α and β , and always consist
of an upper bound, that we derive by providing explicit coverings, and a lower
bound that arises from the construction of a probability measure satisfying the
assumptions of Frostman’s lemma; see Lemma 20 in the Appendix for a state-
ment.

If we just assume that the scaling factors are smaller than n−α+o(1), we can
prove that the dimension is bounded above by 1

α
for rather general behaviours

of the weights. To do so, we adapt arguments from [7] to our new setting. The
essential idea behind the proof is that the substructure descending from a block bn

has size n−α+o(1), and so that one only needs to cover every block bn with a ball
of radius n−α+o(1) to cover the whole structure.

When α < 1
d

and β > 1, although the substructure descending from a block bn

may have diameter of order n−α+o(1), we can also check that the index of the first
block glued on block n has index roughly nβ , which is large compared to n. Hence,
the diameter of the substructure descending from bn is essentially due to bn itself.
This gives us a hint that we can cover the whole substructure descending from the
block bn, using a covering of bn with balls that are really small compared to the
size of bn, and that it would lead to a more optimal covering. In fact we use these
two observations to recursively construct a sequence of finer and finer coverings,
which lead to the optimal upper bound. The idea of the proof is presented in more
detail in Section 3.2.1.

Concerning the lower bounds, for all values of α and β , we can define a natural
probability measure μ̄ on T as the limit of (a normalised version of) the measure
μn defined on Tn for every n ≥ 1, see Section 2. In the case β ≤ 1, this probability
measure only charges the leaves of T , and an application of Lemma 20 gives the
lower bound 1

α
.
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For β > 1, the measure μ̄ does not charge the leaves and so the preceding argu-
ment does not work. We construct another measure as the subsequential limit of a
sequence of measures (πk) which are concentrated on sets of the form (T2nk

\Tnk
)

with (nk) chosen appropriately; see Section 4.2.1 for a presentation of the idea of
the proof. The limiting measure is then concentrated on a strict subset of leaves
and again, using Lemma 20 yields the appropriate lower bound.

Related constructions. Let us also cite some other models that have been stud-
ied in the literature and which share some features with ours. First, the line-
breaking construction of the scaling limit of critical random graphs in [2] by
Addario-Berry, Broutin and Goldschmidt, that of the stable trees in [11] by Gold-
schmidt and Haas, and that of the stable graphs in [12] by Goldschmidt, Haas and
Sénizergues (in preparation), use a gluing procedure that is identical to ours. Their
constructions are not directly handled by Theorem 1 but they fall in a slightly
more general setting, for which our proofs still hold. In [5], Borovkov and Vatutin
study a discrete tree constructed recursively, which corresponds to the “genealogi-
cal tree” of the blocks in our model. Lastly, in [18], Rembart and Winkel study the
distribution of random trees that satisfy a self-similarity condition (in law). They
provide an iterative construction of those trees in which infinitely many branches
are glued at each step.

Plan of the paper. In Section 1, we give a rigorous definition of our model,
set up some useful notation, and discuss some general properties. In the second
section, we study the (normalised) natural measure μ̄n on Tn and prove that it
converges to a measure μ̄ on T under suitable assumptions. In Section 3.1, we
prove the almost sure compactness of T and some upper bounds on its Hausdorff
dimension under some relatively weak hypotheses. In Section 3.2, we develop a
new (more involved) approach that allows us to obtain a better upper bound for
some parameters for which the former fails to be optimal. In Section 4, we prove
the lower bounds that match the upper bounds obtained in Section 3. It is again
divided in two subsections, each providing a proof that is only valid for some
choices of parameters α and β . The Appendix A.2 contains a short reminder of
basic properties concerning Hausdorff dimension. The Appendices A.1, A.3 and
A.4 contain some technical proofs that can be skipped at first reading.

1. General framework. In this section, we start by providing a precise defi-
nition of our model and then we investigate some of its general properties.

1.1. Construction. Consider ((bn,dn,ρn, νn))n≥1 a sequence of compact
pointed metric spaces endowed with a finite Borel measure. Recall from the In-
troduction the heuristics of our recursive construction. We define T1 as the first
block b1 endowed with its measure ν1. Then at each step, we construct Tn+1 from
Tn by gluing the root of the block bn+1 to a random point Xn ∈ Tn, which has
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distribution (a normalised version of) μn. The measure μn+1 is defined as the sum
of the measures μn and νn+1, the measure supported by bn+1. We define T ∗ as
the increasing union of all the Tn for n ≥ 1, and its completion is denoted T . In the
next paragraph, we describe formally how to construct such growing metric spaces
as subsets of a larger ambient space. The definitions here are rather technical and
the proofs in the paper do not use the details of the construction, so the reader can
skip this part at first reading.

Embedded construction. We consider (U, δ) the Urysohn space, and fix a point
u0 ∈ U . The space U is defined as the only Polish metric space (up to isometry)
which has the following extension property (see [14] for constructions and basic
properties of U ): given any finite metric space X, and any point x ∈ X, any isom-
etry from X \ {x} to U can be extended to an isometry from X to U . In the rest of
the construction, we assume that the measured metric spaces ((bn,dn,ρn, νn))n≥1
are all embedded in the space U and that their root is identified to u0. From the
properties of the Urysohn space, this is always possible (see Appendix A.1 for a
construction in the case of random blocks).

We introduce

1(U,u0) :=
{
(xn)n≥1 ∈ UN

∗ ∣∣∣ ∞∑
n=1

δ(xn, u0) < +∞
}
.

If we endow 1(U,u0) with the distance d((xn)n≥1, (yn)n≥1) = ∑∞
n=1 δ(xn, yn),

it is an easy exercise to see that it makes this space Polish. We can now con-
struct the Tn recursively, by T1 = {(x, u0, u0, . . . ) | x ∈ b1}, and identifying T1 to
the block b1, we set μ1 = ν1. For n ≥ 1, the point Xn is sampled according to
μ̄n a normalised version of μn with total mass 1. The point Xn is of the form
(x

(n)
1 , x

(n)
2 , . . . , x

(n)
n , u0, . . . ) and we set

Tn+1 := Tn ∪ {(x(n)
1 , x

(n)
2 , . . . x(n)

n , x, u0, . . .
) | x ∈ bn+1

}
.

We set μn+1 := μn + νn, where as in the preceding section, we see bn+1 as the
corresponding subset of Tn+1. Then T ∗ =⋃

n≥1 Tn and T = (T ∗) is its closure in
the space (1(U,u0),d). At the end, T is a random closed subset of a Polish space.

In the rest of the paper, we will not refer to this formal construction of T and
we will identify bn with the corresponding subset in T . We recall the notation
Wn =∑n

k=1 wn for the total mass of the measure μn.

1.2. Some notation. Let us introduce some notation that will be useful in the
sequel, some of which is illustrated in Figure 3. Recall that, from now on, we
always assume that the blocks are of the form (1).

• If (E,d, ρ) is a pointed metric space, and x ∈ E, we define ht(x), the height of
x, as its distance to the root d(ρ, x). We also denote ht(E) = supx∈E ht(x), the
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FIG. 3. Substructure descending from a set, and projection on a substructure, illustrating some
notation introduced in the paper in the case of the gluing of segments.

height of E. Let us consider (B,D, ρ, ν), a random block of our model before
scaling, and X a point of B which conditionally on (B,D, ρ, ν), has distribu-
tion ν. We denote

(4) H := ht(X) = D(ρ,X),

the height of a uniform random point in the block. Remark that Hypothesis Hd

implies that E[H2] < ∞, and that P(H > 0) > 0. Some of our results are stated
under these weaker assumptions.

• Whenever we sample the point Xn under μ̄n, we do it in the following way: first,
we sample Kn such that for all 1 ≤ k ≤ n, P(Kn = k) = wk

Wn
and then, condition-

ally on Kn = k, the point Xn is chosen on the block bk using the normalised
version of the measure νk . Whenever Kn = k, we say that bn+1 is grafted onto
bk and write bn+1 → bk . Remark that this entails that Xn ∈ bk , but this condi-
tion is not sufficient in the case where Xn belongs to several blocks (which only
happens if the measures carried by the blocks have atoms). We denote

μ̄∗
n := law of (Kn,Xn),(5)

seen as a measure on
⊔n

k=1{k} × bk . In this way, the random variables
((Kn,Xn))n≥1 are independent with respective distributions (μ̄∗

n)n≥1. We re-
main loose on the fact that we sometimes consider the blocks as abstract metric
spaces and at other times we see them as subsets of T . It is implicit in the pre-
ceding discussion that everything is expressed conditionally on the sequence of
blocks (bn)n≥1.

• We simultaneously construct a sequence of increasing discrete trees (Tn)n≥1 by
saying that for n ≥ 1, the tree Tn has n nodes labelled 1 to n and i is a child of
j if and only if bi → bj . Also define T their increasing union. We denote ≺ the
genealogical order on N

∗ induced by this tree. We denote dT(i, j) for the graph
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distance between the nodes with label i and j in this tree and htT(·) for their
height.

• For x ∈ T , we define [x]n, the projection of x on Tn, as the unique point y of Tn

that minimizes the distance d(x, y).
• Similarly, for k ≥ 1, we define [k]n, the projection of k on Tn, as the unique

node i ≤ n that minimizes the distance dT(i, k).
• If S is a subset of a block bn for some n ≥ 1, then we define T (S), the substruc-

ture descending from S as

T (S) := S ∪ ⋃
i�n

[Xi−1]n∈S

bi .

If S = bn, this reduces to

T (bn) = ⋃
i�n

bi ,

and we consider (T (bn),d,ρn) as a rooted metric space.
• Remark that if x ∈ T (bk) for some k ≥ 1 then we have [x]k ∈ bk and more

generally, for any n ≤ k, we have [x]n ∈ b[k]n .
• We often use the little-o notation and denote o(1) a deterministic function that

tends to 0 when some parameter tends to 0 or ∞, depending on the context. For
such functions that are random, we write instead oω(1).

1.3. Zero-one law for compactness, boundedness and Hausdorff dimension.
The main properties of T and L that we study are compactness and Hausdorff di-
mension. One can check that some of these properties are constants almost surely
by an argument using Kolmogorov’s zero-one law.

Indeed, take the whole construction T and contract the compact subspace Tn

into a single point. We can easily check that the resulting space is compact (resp.,
bounded) iff the former is compact (resp., bounded). Also, the subset L and its
image after the contraction of Tn have the same Hausdorff dimension. Now remark
that the space that we just described only depends on the randomness of the blocks
and the gluings after n steps. Indeed, if we start at time n with a unique point with
weight Wn and then follow the procedure by gluing recursively bn+1,bn+2, . . . ,
we get exactly the same space.

Hence, as this is true for all n, these properties only depend on the tail σ -algebra
generated by the blocks and the gluings, and are therefore satisfied with probability
0 or 1.

REMARK 2. In the setting of [7], where the blocks are segments and the
weights correspond to the lengths of those segments, the authors proved that the
event of boundedness and compactness for T coincide almost surely. This is not
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the case in our more general setting: consider the case of branches with weights
and lengths defined as

wn = 2n, λn = 2−n for n /∈ {2k | k ∈N
}
,

w2k = 1, λ2k = 1, for k ∈ N.

In this case, an application of the Borel–Cantelli lemma shows that a.s. for n large
enough, no branch bn is ever grafted onto a branch b2k for any k. It is then clear
that the resulting tree is a.s. bounded since the sum of the lengths of the branches
bn for n /∈ {2k | k ∈ N} is finite, but it cannot be compact since there exists an
infinite number of branches with length 1.

1.4. Monotonicity of Hausdorff dimension. Let us present an argument of
monotonicity of the Hausdorff dimension of L with respect to the sequence (λn),
on the event on which T is compact. Let (wn) be a sequence of weights and (λn)

and (λ′
n) be two sequences of scaling factors such that for all n ≥ 1, we have

λn ≥ λ′
n. Suppose that ((Bn,Dn, ρn, νn))n≥1 is a sequence of random compact

metric spaces endowed with a probability measure. Then let T (resp., T ′) be the
structure constructed using the blocks (bn,dn,ρn, νn) = (Bn, λn · Dn, ρn,wn · νn),
for n ≥ 1 (resp., (b′

n,d′
n,ρ

′
n, ν

′
n) = (Bn, λ

′
n · Dn, ρn,wn · νn)). Note that since we

use the same sequence of weights we can couple the two corresponding gluing
procedures.

Let f be the application that maps each of the block bn to the corresponding
b′

n. Recall here that we see the blocks as subsets of the structure. We can verify
that f : T ∗ −→ (T ′)∗, is 1-Lipschitz. We can then extend uniquely f to a function
f̂ : T −→ T ′, which is also 1-Lipschitz. Suppose T is compact. Then its image
f̂ (T ) is compact, hence closed in T ′. Since (T ′)∗ ⊂ f̂ (T ) and (T ′)∗ is dense in
T ′, we have f̂ (T ) = T ′ and so f̂ is surjective. Now since (T ′)∗ = f̂ (T ∗), we also
have L′ = f̂ (L), and since f̂ is Lipschitz,

(6) dimH
(
L′)≤ dimH(L).

2. Study of a typical point. In this section, we study the height of a typical
point of Tn, that is, the distance from the root to a point sampled according to μ̄n.
The proofs in this section are really close to those of [7], Section 1, to which we
refer for details.

2.1. Coupling with a marked point. We construct a sequence of points (Yn)n≥1
coupled with the sequence (Tn)n≥1 in such a way that for all n ≥ 1, the point Yn

has distribution μ̄n conditionally on Tn and such that the distance from Yn to the
root is nondecreasing in n. For technical reasons, we in fact define a sequence
((Jn,Yn))n≥1 such that for any n ≥ 1, (Jn,Yn) has distribution μ̄∗

n conditionally
on (Tn,Tn), see (5). The properties of this construction are stated in the following
lemma.
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LEMMA 3. We can couple the construction of ((Tn,Tn))n≥1 with a sequence
((Jn,Yn))n≥1 such that for all n ≥ 1:

(i) we have Jn ∈ {1, . . . , n} and Yn ∈ bJn ,
(ii) conditionally on (Tn,Tn), the couple (Jn,Yn) has distribution μ̄∗

n,
(iii) for all 1 ≤ k ≤ n, ([Jn]k, [Yn]k) = (Jk, Yk).

Furthermore, under the assumption Hd (iii), the sequence (Yn)n≥1 almost surely
converges in T iff

(7)
∞∑

n=1

λnwn

Wn

1{λn≤1} < ∞ and
∞∑

n=1

wn

Wn

1{λn>1} < ∞.

Note that if either

W∞ :=
∞∑

n=1

wn < ∞ or
∞∑

n=1

wnλn

Wn

< ∞,

then (7) is satisfied, and this is the case under the assumptions of Theorem 1. In
this case, we let

Y := lim
n→∞Yn.

PROOF OF LEMMA 3. Let n ≥ 2. Conditionally on Tn and Tn, sample a couple
(Jn,Yn) under the measure μ̄∗

n. Then two cases may happen:

• with probability 1 − wn/Wn: we have Jn < n, so the point Yn belongs to Tn−1,
that is [Yn]n−1 = Yn, and conditionally on this event ([Jn]n−1, [Yn]n−1) has the
same distribution as (Jn−1, Yn−1),

• with probability wn/Wn: we have Jn = n. In this case, the point Yn is located on
the last block bn grafted on Tn−1. Conditionally, on this event (if wn > 0), Yn is
distributed on this block under the measure νn and the couple ([Jn]n−1, [Yn]n−1)

is independent of the location of Yn on the nth block and has the same distribu-
tion as (Jn−1, Yn−1).

From this observation, we deduce that(
Tn−1,Tn−1, [Jn]n−1, [Yn]n−1

)= (Tn−1,Tn−1, Jn−1, Yn−1)

in distribution and more generally, (Tk,Tk, [Jn]k, [Yn]k) = (Tk,Tk, Jk, Yk) in dis-
tribution for all 1 ≤ k ≤ n.

Reversing this observation, we can construct a sequence (Jn,Yn)n≥1 (coupled
to the Kn and Xn involved in the construction of T ∗) such that conditionally on Tn

and Tn, the couple (Jn,Yn) has distribution μ̄∗
n and that for all 1 ≤ k ≤ n, we have

([Jn]k, [Yn]k) = (Jk, Yk). To do so, we consider:
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• a sequence (Un)n≥1 of uniform random variables on (0 ,1),
• a sequence (Zn)n≥1 of points respectively sampled on (bn)n≥1 with respec-

tive distribution (a normalised version of) the measure (νn)n≥1 whenever it is
nonzero, (set Zn = ρn a.s. whenever νn is trivial),

• a sequence (In,Pn)n≥1, sampled with respective distributions (μ̄∗
n)n≥1,

independently for all these random variables. Then we construct (Kn,Xn) and
(Jn,Yn) as follows. We set (J1, Y1) = (1,Z1). Then recursively for n ≥ 1, we
assume that Xn−1 (if n �= 1) and Yn have been constructed:

• if Un+1 ≤ wn+1
Wn+1

, then we set (Kn,Xn) := (Jn,Yn), Jn+1 := n + 1 and Yn+1 :=
Zn+1,

• if Un+1 >
wn+1
Wn+1

, then we set (Kn,Xn) := (In,Pn), Jn+1 := Jn and Yn+1 := Yn.

We can check that with this construction, for all 1 ≤ k ≤ n, we have ([Jn]k,
[Yn]k) = (Jk, Yk), the (Kn,Xn)n≥1 are independent with the appropriate distribu-
tion and for all n ≥ 1 conditionally on Tn and Tn the couple (Jn,Yn) has distribu-
tion μ̄∗

n. Notice that the distance from Yn to the root ρ is nondecreasing. Denoting
T0 = {ρ} and Y0 = ρ, for all 0 ≤ m ≤ n, we have

d(Yn,Ym) = d(Yn,Tm) =
n∑

k=m+1

d(Zk, ρk)1{Uk≤ wk
Wk

},(8)

which is equal in distribution to

n∑
k=m+1

λkHk1{Uk≤ wk
Wk

},

where the (Hk)k≥1 are i.i.d., independent of the (Uk)k≥1 and have the law of H,
see (4). Under Hd (iii), the random variable H has a finite second moment, and
an application of Kolmogorov’s three series theorem tells us that the almost sure
convergence of

∑
k≥1 λkHk1{Uk≤ wk

Wk
} is equivalent to (7). In this case, (Yn)n≥1 is a

Cauchy sequence in the complete space T , and hence it converges. �

Also notice that with this construction, the discrete counterpart of (8) is

dT(Jn, Jm) =
n∑

k=m+1

1{Uk≤ wk
Wk

} and so htT(Jn) =
n∑

k=2

1{Uk≤ wk
Wk

}.(9)
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Remark that for any θ ∈R,

E
[
exp

(
θ htT(Jn)

)]= E

[
exp

(
θ

n∑
k=2

1{Uk≤ wk
Wk

}

)]

=
n∏

k=2

(
Wk − wk

Wk

· 1 + wk

Wk

eθ

)

= exp

(
n∑

k=2

log
(

1 + (eθ − 1
)wk

Wk

))

≤ exp

((
eθ − 1

) n∑
k=2

wk

Wk

)
,

(10)

where in the last line we use the inequality log(1 + x) ≤ x, valid for all x > −1.

2.2. Convergence of the measure μ̄n.

PROPOSITION 4. Assume that E[H2] < ∞ and P(H > 0) > 0 and that (7)
holds. Then almost surely there exists a probability measure μ̄ on T such that

μ̄n −→
n→∞ μ̄ weakly.

Furthermore, conditionally on (T , μ̄), the point Y is distributed according to μ̄

almost surely. If W∞ < ∞, then μ̄ = 1
W∞ μ∞, and μ̄ is concentrated on T ∗. If

W∞ = ∞, then μ̄ is concentrated on L.

The proof of the last proposition is very similar to the proof of [7], Theorem 4,
and is left to the reader. We can easily check that the assumptions of Proposition 4
are satisfied under the hypotheses of Theorem 1. We now state an additional lemma
that will be useful later in the paper.

LEMMA 5. Suppose that the assumptions of Proposition 4 hold, that μ̄ is con-
centrated on the set L and that the sequence of weights satisfies wn

Wn
≤ n−1+o(1).

Then almost surely, we have

μ̄
(
T (bn)

)≤ n−1+oω(1),

where the random function oω(1) is considered as n → ∞.

PROOF. Let us introduce some notation. If i ≥ n, we set M
(n)
i := μ̄i(T (bn))

the relative mass of the tree descending from bn in Ti . As i varies, this sequence of
random variables evolves like one of Pemantle’s time-dependent Pólya urns (see
[17]) and is therefore a martingale. The topological boundary of T (bn) in T is
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either the empty set or the singleton {ρn}, thus it has zero μ̄-measure.2 It follows
from Portmanteau theorem that the quantity of interest μ̄(T (bn)) corresponds to
M

(n)∞ , the almost sure limit of this positive martingale. We can write

M
(n)
i+1 =

(
Wi

Wi+1

)
M

(n)
i + wi+1

Wi+1
1{Ui+1≤M

(n)
i },

with (Ui)i≥1 a sequence of i.i.d. random variables, uniform on (0 ,1). We are going
to show by induction on k ≥ 1 that there exists a function o(1) as n → ∞ such that
for all i ≥ n, we have

E
[(

M
(n)
i

)k]≤ n−k+o(1).

Note that we use the notation o(1) for all such functions, but that in this proof, the
corresponding functions can depend on k but not on i.

• For k = 1, the result follows from the fact that (M
(n)
i )i≥n is a martingale and

that almost surely M
(n)
n ≤ wn

Wn
≤ n−1+o(1).

• Let k ≥ 2. Suppose that the result is true for all 1 ≤ l ≤ k − 1. Then

E
[(

M
(n)
i+1

)k | M(n)
i

]
= E

[((
Wi

Wi+1

)
M

(n)
i + wi+1

Wi+1
1{Ui+1≤M

(n)
i }
)k ∣∣∣M(n)

i

]

=
(

Wi

Wi+1

)k(
M

(n)
i

)k
+E

[
k−1∑
l=0

(
k

l

)(
Wi

Wi+1

)l(
M

(n)
i

)l(wi+1

Wi+1
1{Ui+1≤M

(n)
i }
)k−l ∣∣∣M(n)

i

]

=
(

Wi

Wi+1

)k(
M

(n)
i

)k +
k−1∑
l=0

(
k

l

)(
Wi

Wi+1

)l(
M

(n)
i

)l+1
(

wi+1

Wi+1

)k−l

≤ (M(n)
i

)k(( Wi

Wi+1

)k

+ k · wi+1

Wi+1

(
Wi

Wi+1

)k−1)

+
k−2∑
l=0

(
k

l

)(
M

(n)
i

)l+1
(

wi+1

Wi+1

)k−l

.

2Indeed, under the assumptions of the lemma, μ̄ is carried on the leaves.
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Now taking the expectation and using the fact that ∀x ∈ [0 ,1], (1 − x)k + k(1 −
x)k−1x ≤ 1, we get, using the induction hypothesis,

E
[(

M
(n)
i+1

)k]≤ E
[(

M
(n)
i

)k]+ k−2∑
l=0

(
k

l

)
E
[(

M
(n)
i

)l+1](wi+1

Wi+1

)k−l

≤ E
[(

M
(n)
i

)k]+ k−2∑
l=0

(
k

l

)
n−(l+1)+o(1)(i−1+o(1))k−l

.

Summing over all i, we get that, for all i ≥ n,

E
[(

M
(n)
i

)k]≤ E
[(

M(n)
n

)k]+ ∞∑
j=n

k−2∑
l=0

(
k

l

)
n−l−1+o(1)j−k+l+o(1)

≤ E
[(

M(n)
n

)k]+ k−2∑
l=0

(
k

l

)(
n−l−1+o(1)) ∞∑

j=n

j−k+l+o(1)

≤ n−k+o(1) +
k−2∑
l=0

(
k

l

)
n−l−1+o(1)n−k+l+1+o(1)

≤ n−k+o(1).

This completes the proof by induction. This property passes to the limit by dom-
inated convergence so, for all n ≥ 1, we have E[(M(n)∞ )k] ≤ n−k+o(1). For N an
integer and ε > 0,

P
(
M(n)∞ ≥ n−1+ε)≤ nN−Nε

E
[(

M(n)∞
)N ]

≤ n−Nε+o(1).

If we take N large enough, those quantities are summable and so, using the Borel–
Cantelli lemma we get that with probability one, M

(n)∞ ≤ n−1+ε for all n large
enough. This completes the proof. �

3. Upper bounds and compactness for the (α,β)-model. In this section,
we compute upper bounds on the Hausdorff dimension of the set L. We first prove
Proposition 6, which tells us that, under the condition that λn ≤ n−α+o(1) for some
α > 0 and in a very general setting for the behaviour of the weights (wn), the
dimension is bounded above by 1/α. The techniques used in the proof are very
robust, and do not depend on the geometry of the blocks nor on the sequence of
weights. In a second step, in Proposition 7, we handle the more specific case where
the underlying block satisfies Hypotheses Hd and that λn ≤ n−α+o(1) for some
0 < α < 1/d and wn ≤ n−β+o(1) for some β > 1. In the proof of this proposition, a
careful analysis allows us to refine some of the arguments of the previous proof and
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prove upper bounds on the Hausdorff dimension of L that are below the “generic”
value 1/α, given by Proposition 6. The techniques used for the proof are new
and really take into account the behaviour of the weights and the geometry of the
blocks.

3.1. Upper bound independent of the weights and compactness. Notice that
under Hd (iii), the underlying block (B,D, ρ, ν) satisfies, for any N > 0,

P
(
diam(B) ≥ nε)≤ E[diam(B)N ]

n−Nε
,

which is summable if N is large enough. Hence, if (Bn) is an i.i.d. sequence with
the same law as B, then using the Borel–Cantelli lemma we have almost surely,

(11) diam(Bn) ≤ noω(1).

PROPOSITION 6. Suppose λn ≤ n−α+o(1), with α > 0, and that for all n, we
have Wn ≤ nγ for some γ > 0. Suppose also that (11) holds. Then the tree-like
structure T is almost surely compact and we have:

(i) dH(Tn,T ) ≤ n−α+oω(1),
(ii) dimH(L) ≤ 1

α
.

Since our model is invariant by multiplying all the weights by the same con-
stant, we can always assume that w1 ≤ 1. Hence, the assumption in the lemma is
always satisfied if Wn grows at most polynomially in n, which is the case if Hy-
pothesis α,β , Hypothesis �α,1 or Hypothesis ©α,β is fulfilled, for any choice of
α > 0 and β ∈ R.

PROOF OF PROPOSITION 6. We start with point (i). First,

dH(T2i ,T2i+1) ≤ sup
2i+1≤k≤2i+1

λk diam(Bk) + sup
2i+1≤k≤2i+1

d(ρk,T2i ).

For any 2i ≤ k ≤ 2i+1 −1, the point ρk+1 in the tree is identified with the point Xk ,
taken under the measure μ̄k on the tree Tk . From our construction in Section 1.2,
the point Xk belongs to some bKk

, and the couple (Kk,Xk) is sampled with mea-
sure μ̄∗

k . Bounding the contribution of every block along the ancestral line with
their maximum, we get

d(Xk,T2i ) ≤
(

sup
2i+1≤k≤2i

λk diam(Bk)
)

htT(Kk).(12)

Now, using Lemma 24 in Appendix A.4, we know that there exists a constant
C > 0 such that

∑n
i=1

wi

Wi
≤ C logn. Combining this with equation (10) (which
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holds for Kk because it has the same distribution as Jk) and Markov inequality, we
get for any u > 0,

P
(
htT(Kn) ≥ u logn

)≤ exp
((

C(e − 1) − u
)

logn
)= nC(e−1)−u.

The last display is summable in n if we choose u large enough. Hence, using
the Borel–Cantelli lemma, we almost surely have htT(Kn) ≤ u logn for n large
enough. Hence, in (12) we have htT(Kk) = (2i )o

ω(1). Combining this with (11)
and the upper bound on λn, we get

dH(T2i ,T2i+1) ≤ (2i)−α+oω(1)
.

Replacing i by k and summing the last display over k ≥ i,
∞∑
k=i

dH(T2k ,T2k+1) ≤ (2i)−α+oω(1)
,

hence the sequence of compact sets (T2i ) is a.s. a Cauchy sequence for Hausdorff
distance between compacts of the complete space T . So the sequence (Tn)n≥1 is
also Cauchy because of the increasing property of the construction, and T is then
almost surely compact. Moreover, we have a.s.

dH(T2i ,T ) ≤ (2i)−α+oω(1)
,

and this entails (i). Remark that since ht(T (bn)) ≤ dH(Tn−1,T ), this implies that
a.s. we have

(13) ht
(
T (bn)

)≤ n−α+oω(1).

We now prove point (ii). Let ε > 0. From (13), the collection of balls
B(ρn, n

−α+ε), for n ≥ N , where N is an arbitrary number, is a covering of L
whose maximal diameter tends to 0 as N → ∞. Besides, if we fix δ, for N large
enough, and s > 1

α−ε
, we have

Hδ
s (L) ≤

∞∑
n=N

diam
(
B
(
ρn, n

−α+ε))s ≤
∞∑

n=N

2sn(−α+ε)s −→
N→∞ 0.

Hence, for all such s, we have Hs(L) = 0 and so dimH(L) ≤ 1
α−ε

. Letting ε → 0
completes the proof. �

3.2. Upper bound for α < 1/d and β > 1. Now let us study the specific case
where the blocks satisfy Hypothesis Hd and that λn ≤ n−α+o(1) for some 0 < α <

1/d and wn ≤ n−β+o(1) for some β > 1. The preceding Proposition 6 still holds but
it is not optimal in this specific case. As in the previous proof, we construct explicit
coverings of the set L in order to bound its Hausdorff dimension. We construct
them using an iterative procedure, which strongly depends on the dimension d and
the exponent β . Starting from the covering given in the proof of Proposition 6, the
procedure provides at each step a covering that is “better” in some sense than the
preceding. In the limit, we prove the bound given in Proposition 7, which explicitly
depends on β and d .
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PROPOSITION 7. Suppose 0 < α < 1
d

and β > 1 and that for all n ≥ 1, λn ≤
n−α+o(1) and wn ≤ n−β+o(1). Suppose also that Hd (iii) and Hd (ii) hold for some
d ≥ 0. Then the Hausdorff dimension of L almost surely satisfies

dimH(L) ≤ 2β − 1 − 2
√

(β − 1)(β − αd)

α
.

For our purposes, we will work with countable sets of balls of T , that is, sets of
the form

R = {
B(xi, ri) | ∀i ≥ 1, xi ∈ T , ri > 0

}
,

where B(x, r) denotes the open ball centred at x with radius r . Let us introduce
some notation. If R is such a set of balls of T , we say that R is a covering of the
subset X ⊂ T if X ⊂⋃

B∈R B . We can also define the s-volume of R as

Vols(R) := ∑
B∈R

diam(B)s.

In this way, if the diameters of the balls that belong to R are bounded above by
some δ > 0, and R is a covering of X, then Hδ

s (X) ≤ Vols(R); see Section A.2
in the Appendix for the definition of Hδ

s (X). Also, if R and R′ are collections of
balls and R covers X and R′ covers X′, then obviously R ∪ R′ is a countable set
of balls that covers X ∪ X′ and for any s, we have

(14) Vols
(
R ∪ R′)≤ Vols(R) + Vols

(
R′).

In what follows, we construct random sets of balls and we prove that they are
coverings of our set L, which allow us to prove upper bounds on the Hausdorff
dimension of L.

3.2.1. An idea of the proof. We briefly explain the idea of the proof before
going into technicalities. The goal will be to provide a covering of each T (bn), for
all n large enough. Since from the definition of L, we have for any N ≥ 1,

(15) L ⊂ ⋃
n≥N

T (bn),

then the union over all n large enough of coverings of the T (bn) is indeed a cov-
ering of L.

We recall how we derived the upper bound 1
α

for the Hausdorff dimension of
L in the proof of Proposition 6(ii). The idea is to consider for every n ≥ 1, a ball
of radius n−α+ε , say centred at ρn. For n large enough, this ball covers T (bn) by
(13). Thanks to (15), the set of balls {B(ρn, n

−α+ε) | n ≥ N}, for any N ≥ 1, is a
covering of L.

For β ≤ 1, this covering is good because, as a block of index n has relative
weight wn/Wn which can be of order up to n−1+o(1) when it appears, the indices
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of the first blocks that are glued on bn can have also an index of the order of n, and
so a height of order up to n−α . On the contrary, if β > 1, we will see that the first
block to be grafted on bn has index roughly of order nβ , and so a height at most
of order n−αβ , which is very small compared to n−α . This gives us a hint that we
can provide a “better” covering using a big number of smaller balls to cover bn

instead of just a “big” one; see Figure 4. We will use this rough idea to provide an
algorithm which will construct finer and finer (random) coverings. Let us fix β > 1
from now on and take s > d , and explain informally how the algorithm works.

Goal. At each step i of the algorithm, we want to construct for all n ≥ 1 a set
of balls Rs

n,i such that, for n large enough, this set of balls is a covering of T (bn).
Such a set of balls Rs

n,i will have an s-volume of roughly nfi(s), say. From step to
step, we try to lower the s-volume of the set of balls constructed by the algorithm,
which corresponds to lowering this exponent fi(s). Whenever we manage to get
an exponent below −1, we stop the algorithm. We will see that it implies that the
Hausdorff dimension of L is lower or equal to s.

Step 1. The first step of the algorithm is deterministic and corresponds to what
we did in the proof of Proposition 6. For each n, we take a ball centred at ρn of
radius roughly n−α (in fact n−α+ε but let us not consider these technicalities for
the moment). As seen before, for n large enough, it is a covering of T (bn). The s-
volume of this covering is then of order n−αs . Denote f1(s) = −αs. If f1(s) < −1,
stop. Otherwise, proceed to step 2.

Step 2. As represented in Figure 4(a), decompose T (bn) as

T (bn) = bn ∪ ⋃
bk→bn

T (bk).

Since the first block grafted on the block bn has typically an index, that is, very
large compared to n, we design a covering using smaller balls. We fix γ > 1 and
decide to cover bn with balls of size n−αγ , so that the blocks (and their descending
substructure) of index > nγ are included in these balls; see Figure 4(b). Since
the blocks have dimension d , this covering uses roughly ( n−α

n−αγ )d balls, each with
s-volume n−αγ s . So the total volume used is around n−αd+αγ d−αγ s .

But doing so, we forgot to cover the blocks bk such that bk → bn and k ≤ nγ .
To take care of them, we use the preceding step of the algorithm and cover each
of them with a ball of radius k−α ; see Figure 4(c). Recalling that s ≤ 1/α, we get
that in expectation, these balls have a s-volume of order

nγ∑
k=n+1

P(bk → bn)k
−αs ≈ n−β

nγ∑
k=n+1

k−αs ≈ n−β+γ (1−αs).
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FIG. 4. Explanation of Step 2 of the algorithm.

Consequently, the total s-volume of the balls used to cover T (bn) has order
nmax(−β+γ (1−αs),−αd+αγ d−αγ s). Since we want to construct a covering having the
smallest possible volume, we can optimise on γ the last exponent. Under our as-
sumptions, one can check that it is minimal if we take γ := β−αd

1−αd
> 1. We then

get

max
(−β + γ (1 − αs),−αd + αγ d − αγ s

) = −αd + αβd − αβs + α2ds

1 − αd

:= f2(s).

We can check that the new exponent f2(s) is smaller than f1(s) = −αs. Hence,
we can cover T (bn) with balls using a total s-volume of a lower order than the
preceding step. If f2(s) < −1, stop. Otherwise, proceed to step 3.

Step i. Now we recursively repeat the preceding step. Thanks to step i − 1,
we know that we can provide a covering of T (bn) for any n, using a s-volume
of approximately nfi−1(s). Now we fix a number γ > 1 and we cover the block
bn with balls of radius n−αγ . As in step 2, this covering has a s-volume of order
n−αd+αγ d−αγ s . Then we take care of the bk such that bk → bn and k < nγ . To
cover them, we use step i − 1, which ensures that we can do that for each k with
a s-volume roughly kfi−1(s). Hence, the expectation on the s-volume for all these
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balls is, if s is such that fi−1(s) ≥ −1,

nγ∑
k=n+1

P(bk → bn)k
fi−1(s) ≈ n−β

nγ∑
k=n+1

kfi−1(s) ≈ n−β+γ (1+fi−1(s)).

We then choose the optimal γ > 1 that minimizes the maximum of the exponents

max
(−αd + αγ d − αγ s,−β + γ

(
1 + fi−1(s)

))
.

We denote γi(s) the value for which the minimum is obtained, which depends
on s. The first exponent is linearly decreasing with γ , the other one is linearly
increasing, and their value for γ tending to 1, satisfy −αs > −β + 1 + fi−1(s).
Hence, the value of γi(s) is the value for which the two of them are equal, and this
value is strictly greater than 1. We call this minimal exponent fi(s). If fi(s) < −1,
stop. Otherwise, proceed to step i + 1.

Upper bound on Hausdorff dimension. Now, suppose s is such that fi(s) is
well defined and fi(s) < −1, for some i ≥ 1. If we cover every T (bn) using the
covering provided by step i of the algorithm, then the union of all those coverings
covers L. Furthermore, we only need to cover all the T (bn) for n sufficiently large
to cover L, so we can have a covering of L using arbitrarily small balls. Hence,
we get that for all δ > 0, we have Hδ

s (L) <
∑∞

n=1 nfi(s) < ∞ and so Hs(L) < ∞,
which proves that

dimH(L) ≤ s.

This rough analysis is turned into a rigorous proof in what follows. We begin with
elementary definitions and calculations that arise from what precedes.

3.2.2. Study of a sequence of functions. We begin by defining recursively the
sequence of functions (fi)i≥1, together with a sequence (si)i≥1 of real numbers.

DEFINITION-PROPOSITION 8. We set s0 := ∞. We define a sequence (fi)i≥1
of functions as follows. We set

∀s ∈ [d ,∞), f1(s) := −αs,

and set s1 := 1
α

. Then for all i ≥ 1, we recursively define

∀s ∈ [d , si], fi+1(s) := α(−d + βd − βs − fi(s)d)

1 + fi(s) + αs − αd
.

Define si+1 as the unique solution to the equation fi+1(s) = −1.

Before proving the validity of this definition, let us state some properties of this
sequence of functions.
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PROPOSITION 9. The following properties are satisfied:

(i) For all i ≥ 1, the function fi is continuous, strictly decreasing and fi(d) =
−αd .

(ii) For all i ≥ 1, for all s ∈ (d , si], we have fi+1(s) < fi(s).

(iii) Let s∞ := 2β−1−2
√

(β−1)(β−αd)
α

. Then we have for all s ∈ [d , s∞),

fi(s) −→
i→∞ f∞(s),

where

f∞(s) = −(1 + αs) +
√

1 + 2αs + α2s2 − 4αd + 4αβd − 4αβs

2
.

(iv) For all s ∈ [d , s∞), we have f∞(s) > −1.
(v) The sequence (si)i≥1 is strictly decreasing and

si −→
i→∞ s∞.

(vi) For all i ≥ 1, we have fi+1(si) < −1.

PROOF. We define the function F on the set {(s, x) ∈ R
2 | d ≤ s ≤ 1

α
,

x > αd − αs − 1} by the expression

F(s, x) = α(−d + βd − βs − dx)

1 + x + αs − αd
.

We have, for all s > d and all x > αd − αs − 1,

∂xF (s, x) = α(β − αd)(s − d)

(1 + x + αs − αd)2 > 0.

This shows that for all s > d , the function F(s, ·) is strictly increasing, and also
strictly concave since the derivative is strictly decreasing.

From these facts, we can show by induction on i the points (i) and (ii) of Propo-
sition 9, together with the validity of the definition of fi and si , in Definition-
Proposition 8.

• For i = 1, the function f1 is well defined, s1 is indeed the unique solution to
f1(s) = −1 and the point (i) is satisfied. Moreover, f2(s) is well defined for
s ∈ [d , s1] by f2(s) = F(s,−αs) and for all s ∈ (d , s1), we have

F(s,−αs) + αs = α(β − 1)(d − s)

1 − αd
< 0,

which proves that (ii) holds for i = 1.
• By induction, if fi and si are defined up to some i ≥ 1 and satisfy (i), then one

can verify that for all s ∈ [d , si], the function fi+1 is well defined by the formula

fi+1(s) = F
(
s, fi(s)

)
.
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From the monotonicity of F(s, ·) and fi , this function is continuous and strictly de-
creasing. One can check that F(d, x) = −αd for any x > −1 so fi+1 satisfies (i).
Then, if i = 1, the initialisation already gives us that (ii) holds. Otherwise, if i ≥ 2,
then using the induction hypothesis, for all s ∈ (d , si−1] we have fi(s) < fi−1(s).
Using that F(s, ·) is strictly increasing for s > d , we get that for all s ∈ (d , si],
fi+1(s) < fi(s), and so (ii) holds. Since fi+1 is continuous and strictly decreasing
and that fi+1(d) > −1 and fi+1(si) < fi(si) = −1, then si+1 is well defined. This
completes our proof by induction.

Let us study at fixed s > d the equation F(s, x) = x. We get the following
second-order equation:

x2 + x(1 + αs) + (αd − αβd + αβs) = 0,

for which the discriminant is �s = 1 + 2αs + α2s2 − 4αd + 4αβd − 4αβs. We
can evaluate this quantity at d and at 1

α
. We get

�d = (αd − 1)2 > 0 and �1/α = 4(β − 1)(αd − 1) < 0.

We can check that it vanishes exactly at s = s∞ so that in the end, �s is strictly
positive on [d , s∞), null at s∞ and strictly negative on (s∞ , 1

α
]. Hence, the func-

tion F(s, ·) has 2 (resp., 1, resp., 0) fixed points on the corresponding intervals.
The convergence (iii) is a consequence of the fact that for s ∈ [d , s∞), the

function F(s, ·) is strictly increasing and concave, has exactly two fixed points
and that the initial value f1(s) is greater than the smallest fixed point. We then
have a convergence of the sequence fi(s) towards the greatest fixed point of
F(s, ·), the value of which can be computed using the equation above. The prop-
erty of the limit (iv) can be checked by proving that for all s ∈ [d , s∞], we have
f∞(s) ≥ f∞(s∞) = √

(β − 1)(β − αd) − β > −1.
Let us prove the point (v). According to property (ii), we have fi(si+1) >

fi+1(si+1) = −1, and since fi is decreasing, we get si+1 < si . Hence, the se-
quence (si)i≥1 is strictly decreasing, bounded below by d , so it converges. Now
let s > s∞. If the sequence (fi(s))i≥1 was well defined for all i ≥ 1, then for
all i ≥ 1 we would have fi(s) > −1, so it would be decreasing, bounded below;
hence, it would have a limit, which would be a fixed point of F(s, ·). It is im-
possible since F(s, ·) has no fixed point, so the sequence is not well defined for
all i ≥ 1 and so for i large enough, s > si . We conclude that limi→∞ si ≤ s∞. If
we had limi→∞ si < s∞, then it would contradict the property (iv). In the end,
limi→∞ si = s∞.

The last property (vi) follows from property (ii). Indeed, we have fi+1(si) <

fi(si) = −1. �

3.2.3. Construction of the coverings. Let us provide a rigorous proof of our
upper bound, which follows the heuristics that we derived in the beginning of the
section. Here, we distinguish two types of negligible functions, on(1) and oε(1).
A function denoted on(1) (resp., oε(1)) is negligible as n → ∞ (resp., as ε → 0)
and does not depend on ε (resp., on n).
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PROPOSITION 10. Fix i ≥ 1 and s ≤ si−1. For all ε > 0, we can construct
simultaneously for all n ≥ 1 a set of balls R

s,ε
n,i , such that the following holds:

(i) Almost surely, for n large enough, R
s,ε
n,i covers T (bn).

(ii) We have

E
[
Vols

(
R

s,ε
n,i

)]≤ nfi(s)+on(1)+oε(1).

(iii) The diameter of the balls used are such that maxB∈R
s,ε
n,i

diamB −→
n→∞ 0.

We will define the set of balls R
s,ε
n,i over the block bn and its descendants in an

algorithmic way, and each step of the algorithm only depends on the gluings that
happen after time n. The proof of the upper bound will directly follow from this
proposition. Let us first state an elementary result, the proof of which is left to the
reader. Note that we allow the function oε(1) to be infinite for large values of ε.

LEMMA 11. Let ξ ≥ −1. Then for all γ > 1, we have

E

[
nγ∑

k=n+1

1{bk→bn}kξ+on(1)+oε(1)

]
≤ n−β+γ (ξ+1)+on(1)+oε(1).

PROOF OF PROPOSITION 10. Let s > 0 and ε > 0. We prove the proposition
by induction on i. The first set of balls that we build is the following: for each
block bn, we cover the block with a ball of radius n−α+ε , centred on the point ρn.
We write

R
s,ε
n,1 = {

B
(
ρn, n

−α+ε)}.
According to (13), there exists a random N such that for all n ≥ N , the set R

s,ε
n,1

covers T (bn). The diameter of the ball of R
s,ε
n,1 tend to 0 as n → ∞. Besides we

have

E
[
Vols

(
R

s,ε
n,1

)]≤ (2n)−αs+εs = nf1(s)+on(1)+oε(1).

The property is thus proved for i = 1.
Let i ≥ 1 and s < si . Let us construct (R

s,ε
n,i+1)n≥1, using the previous step i.

We set γi+1(s) > 1 a positive real number that we will choose later, and ε > 0. We
define R

s,ε
n,i+1 as follows: it is the union over all the blocks bk for k < nγi(s) that

are grafted on the block bn, of their covering R
s,ε
k,i of the preceding step, together

with the union of a deterministic set of balls that we define hereafter.
We want to cover bn with balls of radius n−αγi+1(s), which is equivalent to

covering Bn with balls of radius λ−1
n n−αγi+1(s). Under Hypothesis Hd , for any

d ≥ 0, using Lemma 21 and Lemma 23 in Appendix A.3, we can a.s. find a random
collection (xm)1≤m≤Mr(Bn) of points of Bn such that the balls centred on those
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points with radius r := λ−1
n n−αγi+1(s) cover Bn, and such that Mr(Bn) ≤ Nr/4(Bn),

where Nr(B) is the minimal number of balls of radius r needed to cover B.
From the assumption on the sequence (λn), we have r ≥ n−αγi+1(s)+α+on(1).

Since Nr(Bn) is decreasing in r , using Hypothesis Hd (ii), we get that

E
[
Nr/4(Bn)

]≤ n−αd+αγi+1(s)d+on(1).

In the end,

R
s,ε
n,i+1 :=

( ⋃
k≤nγi+1(s):bk→bn

R
s,ε
k,i

)
∪ {B(xm,n−αγi+1(s)+ε) | 1 ≤ m ≤ Mr(Bn)

}
.

Now we compute the expectation of the s-volume of these sets of balls:

E
[
Vols

(
R

s,ε
n,i+1

)]
= E

[
nγi+1(s)∑
k=n+1

1{bk→bn} Vols
(
R

s,ε
k,i

)]+E
[
Mr(Bn)

](
2n(−αγi+1(s)+ε))s

≤ E

[
nγi+1(s)∑
k=n+1

1{bk→bn}E
[
Vols

(
R

s,ε
k,i

)]]+E
[
Nr/4(Bn)

](
2n(−αγi+1(s)+ε))s

≤ E

[
nγi+1(s)∑
k=n+1

1{bk→bn}kfi(s)+on(1)+oε(1)

]

+ n−αd+αdγi+1(s)+(−αγi+1(s)+ε)s+on(1)+oε(1)

≤ n−β+γi+1(s)(fi(s)+1)+on(1)+oε(1) + n−αd+αdγi+1(s)−αγi+1(s)s+on(1)+oε(1),

where in the last line we used Lemma 11 which applies because s ≤ si ; hence,
fi(s) ≥ −1. We then take γi+1(s) := β−αd

fi(s)+1−αd+αs
> 1, which yields

−β + γi+1(s)
(
fi(s) + 1

)= −αd + αγi+1(s)d − αγi+1(s)s = fi+1(s).

We then have

E
[
Vols

(
R

s,ε
n,i+1

)]≤ nfi+1(s)+on(1)+oε(1).

We can check that maxB∈R
s,ε
n,i+1

diamB −→
n→∞ 0, and that almost surely, for n large

enough, the collections of balls R
s,ε
n,i+1 are indeed coverings of T (bn) thanks again

to (13). This completes the proof. �

We can now prove the main proposition of this section.

PROOF OF PROPOSITION 7. Let i ≥ 1. For ε > 0 small enough, we use Propo-
sition 10 to get a set of balls (R

si,ε
n,i+1)n≥1, which satisfies

E
[
Volsi

(
R

si,ε
n,i+1

)]≤ nfi+1(si )+on(1)+oε(1).
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From Proposition 9(vi), we have fi+1(si) < −1, so we can choose ε small enough
such that the exponent is eventually smaller than fi+1(si )−1

2 < −1 as n → ∞. Then,
for N ≥ 1, we set RN = ⋃

n≥N R
si,ε
n,i+1. According to Proposition 10, the set of

balls R
si,ε
n,i+1 is a covering of T (bn) for n large enough and so RN is a covering

of L, for all N . Since for any δ > 0, we may choose N large enough so that
maxB∈RN

diamB < δ, and we get

Hsi (L) = lim
δ→0

Hδ
si
(L) ≤ lim sup

N→∞
Volsi (RN) ≤ Volsi (R1) < +∞, a.s.

since

E
[
Volsi (R1)

]≤ ∞∑
n=1

n
fi+1(si )−1

2 +on(1) < +∞.

This shows that the Hausdorff dimension of L satisfies dimH(L) ≤ si , almost
surely. In the end, since the sequence (si)i≥1 tends to s∞, we conclude that al-
most surely,

dimH(L) ≤ s∞ = 2β − 1 − 2
√

(β − 1)(β − αd)

α
. �

4. Lower bounds for the (α,β)-model. In this section, we compute lower
bounds on the Hausdorff dimension of the set L. We do that by constructing Borel
measures on L that satisfy the assumptions of Frostman’s lemma (Lemma 20 in
Appendix A.2). In the case where β ≤ 1, we use the natural measure μ̄ on T
which arises as the limit of the normalised weight measures on Tn (see Proposi-
tion 4). The case β > 1 is a bit more technical because the natural measure μ̄ is
not concentrated on L, so we have to construct another measure π , that we define
as the subsequential limit of some well-chosen sequence of probability measures
on T .

4.1. Case β ≤ 1 and use of the measure μ̄. In this subsection, we suppose
that β ≤ 1. Under the assumptions of Proposition 4, the sequences of measures μ̄n

almost surely converges weakly to a measure μ̄, which is concentrated on the set
of leaves L. The existence of μ̄ will be useful for the proof of the next proposi-
tion. Recall from (4) the definition of the random variable H and the fact that the
assumptions on H in the proposition are satisfied under Hypothesis Hd for any
d ≥ 0.

PROPOSITION 12. Suppose that Hypothesis ©α,β or Hypothesis �α,1 is sat-
isfied. Suppose also that E[H2] < ∞ and that P(H > 0) > 0. Then the Hausdorff
dimension of L almost surely satisfies

dimH(L) ≥ 1

α
.
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As we said earlier, the idea is to prove this lower bound on the dimension using
Frostman’s lemma: we will thus prove that almost surely, for μ̄-almost all leaves
x ∈ L, we have an upper bound of the type

μ̄
(
B(x, r)

)≤ r1/α−ε,

for r sufficiently small, and for all ε. An application of Lemma 20 will then com-
plete our proof.

In order to prove this control on the masses of the balls, we will use two lem-
mas. The first one allows us to compare μ̄(B(x, r)) with a quantity of the form
μ̄(T (bn)) for an appropriate n. The second one, Lemma 5, provides a good con-
trol of the quantities μ̄(T (bn)) for large n, such that the combination of the two
will provide the upper bound that we want. Let ε > 0. Recall from (2) the definition
of Gε .

LEMMA 13. Set n0 = 2 and nk+1 = �n1+ε
k �. Under the hypotheses of Propo-

sition 12, almost surely for μ̄-almost every x ∈ L, for all k large enough,3 there
exists n ∈ �nk , nk+1� ∩ Gε such that

x ∈ T (bn) and d(x,ρn) ≥ n−α−2ε.

PROOF. Note that in our setting, the hypothesis of Proposition 4 holds and
so the random leaf Y constructed in Section 2 is defined a.s. Also, according to
Proposition 4, conditionally on (T , μ̄), the point Y has distribution μ̄. So it suffices
to prove that the lemma holds for the the random leaf Y . We recall

d(Yn,Ym)
law=

n∑
k=m+1

λkHk1{Uk≤ wk
Wk

} and Y = lim
n→∞Yn.

Let us introduce a constant c > 0 and set

p := P(H > c).

For β < 1, thanks to our assumptions, we can fix c such that p is nonzero. We
then have

P

(
∀i ∈ �nk , nk+1� ∩ Gε,Ui >

wi

Wi

or Hi < c

)
=

n1+ε
k∏

i=nk

i∈Gε

(
1 − p

wi

Wi

)

= exp

(n1+ε
k∑

i=nk

i∈Gε

log
(

1 − p
wi

Wi

))

3The threshold depends on the realisation and on x.
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≤ exp

(
−p

n1+ε
k∑

i=nk

i∈Gε

wi

Wi

)

≤
Lem.25

exp
(−pCε log(nk)

)
.

To write the last line, we use Lemma 25 in the Appendix and we can see that the
last display is summable over k.

For the case β = 1, Hypothesis �α,1 allows us to write

P

(
∀i ∈ �nk , nk+1� ∩ Gε,Ui >

wi

Wi

or Hi < c

)
≤ exp

(−pf (k) log log log(nk)
)
,

with a function f (k) tending to infinity. Since nk ≥ 2(1+ε)k , then log log log(nk) ≥
(1 + o(1)) log k and the last display is also summable in k. In both cases, an appli-
cation of the Borel–Cantelli lemma shows that we have almost surely, for k large
enough,

∃n ∈ �nk , nk+1� ∩ Gε, Un ≤ wn

Wn

and Hn ≥ c.

Since n ∈ Gε , we have λn ≥ n−α−ε . Combined with the fact that Hn ≥ c, we get

d(ρn, Y ) ≥ λnHn ≥ cn−α−ε ≥ n−α−2ε,

for n (or equivalenly k) large enough. �

PROOF OF PROPOSITION 12. Let ε > 0. Let us fix a realisation of T and a leaf
x ∈ L such that the conclusions of Lemma 13 and Lemma 5 hold. Note that thanks
to Hypothesis ©α,β or Hypothesis �α,1, the condition of application of Lemma 5
are fulfilled. From the definition of nk+1, we have n1+ε

k < nk+1 ≤ n1+ε
k + 1 and so

nk+1 =
k→∞ n

1+ε+o(1)
k . We know from Lemma 13 that for all k large enough, there

exists n ∈ �nk , nk+1� such that x ∈ T (bn) and

d(ρn, x) ≥ n−α−2ε ≥ n−α−2ε
k+1 ≥ n

(1+ε+o(1))(−α−2ε)
k .

So if we take k large enough and r ∈ [n−α−2ε
k+2 , n−α−2ε

k+1 ), then

μ̄
(
B(x, r)

)≤ μ̄
(
T (bn)

) ≤
Lem. 5

n−1+ε ≤ n−1+ε
k = n

−1+ε

(1+ε)2
+o(1)

k+2

≤ (r −1
α+2ε

)−1+ε
1+ε

+o(1)

≤ r
1
α
+g(ε)+o(1),

with a function g tending to 0 as ε → 0.
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Since the last display is true almost surely for all r sufficiently small, we use
Lemma 20 (Frostman’s lemma) to deduce that the Hausdorff dimension of L is a.s.
larger than 1

α
+ g(ε). Taking ε → 0, we get that almost surely,

dimH(L) ≥ 1

α
. �

4.2. Case β > 1 and construction of measures on the leaves. The following
section is devoted to prove the following proposition.

PROPOSITION 14. Suppose that Hypothesis α,β is satisfied and that the block
B satisfies Hypothesis Hd for some d ≥ 0. Then the Hausdorff dimension of L
almost surely satisfies

dimH(L) ≥ 2β − 1 − 2
√

(β − 1)(β − αd)

α
if α <

1

d
,

≥ 1

α
otherwise.

In the case β > 1, we cannot use the natural measure μ̄ to get a good lower
bound on the Hausdorff dimension of L since, as stated in Proposition 4, the mea-
sure μ̄ does not charge the leaves. So the goal of this subsection is to artificially
construct a probability measure concentrated on the leaves that will give us, using
Frostman’s lemma, the appropriate lower bound on the Hausdorff dimension, that
is, the one matching with the upper bound derived in Section 3. The measure will
be obtained as a subsequential limit of a sequence of measures concentrated on the
blocks, and will only charge a strict subset of L.

First, let us fix some notation. Recall the definition of Gε
n in (3). It follows from

Hypothesis α,β that there exists a function h(n) tending to 0 such that #G
h(n)
n =

n1+o(1). We choose such a function h and let

(16) Gn := Gh(n)
n .

We will also use an increasing sequence of positive integers (nk)k≥0, such that for
all k ≥ 0, we have nk+1 = �nγ

k �, with a fixed γ > 1, that we will optimise later.
Also we suppose n0 to be very large, with conditions that we will make explicit in
what follows. For all n ≥ 1, we set

bn :=
{
x ∈ bn

∣∣∣ dn(ρn, x) >
ht(bn)

2

}
,

the “upper-half” of block bn. For technical reasons, we will only keep in our con-
struction the blocks that behave reasonably well; see the forthcoming property
(Pd ), introduced in Section 4.2.2. We recursively define some random sets of inte-
gers. Let

(17) G̃n0 = {n ∈ Gn0 | Bn satisfies property (Pd )},
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and for k ≥ 0,

G̃nk+1 = {n ∈ Gnk+1 | Bn satisfies property (Pd );
∃i ∈ G̃nk

,bn → bi ,Xn−1 ∈ bi}.
(18)

We then define for all k ≥ 0,

Bk = ⋃
n∈G̃nk

bn.

In other words, B0 is the union of all the upper-halves of the blocks bn, for n in
Gn0 for which Bn behaves well, and Bk+1 is defined to be the union of all the
upper-halves of the blocks of index n ∈ Gnk+1 that are grafted directly on Bk , and
such that Bn behaves well. Note that for the moment, Bk can be empty.

We define the measure
∑

n∈G̃nk
νn and refer to it as the mass measure4 on the

kth generation. To simplify notation, we denote it | · |. We do not index it by k since
the index for which we consider it is always clear from the context. We also define
a sequence (πk)k≥0 of probability measures on Bk by

πk := |· ∩Bk|
|Bk| ,

the normalised mass measure on Bk . Note that the sequence (πk) is only well
defined on the event where Bk has nonzero mass for all k. In what follows, we will
ensure that it is the case for an event of strictly positive probability and only work
conditionally on this event. Remark that, still conditionally on this event and on
the event that T is compact, which has probability 1, the sequence (πk)k≥0 is a
sequence of probability measures on a compact space, hence it admits at least one
subsequential limit π for the Lévy–Prokhorov distance. We can check using [7],
Lemma 17, which is essentially an application of the Portmanteau theorem, that π

is concentrated on
⋂

k≥0 T (Bk) ⊂ L.

4.2.1. Idea of the proof. Let us briefly explain how the measure π that we just
constructed enables us to derive the appropriate lower bound for the Hausdorff
dimension. We give the intuition for α < 1/d; the idea for α > 1/d is very similar.
We will be very rough for this sketch of proof and we keep the notation introduced
above. Let us here forget that some blocks may not satisfy (Pd ), and that we only
deal with half-blocks.

4It may appear more natural to define the mass measure as simply
∑∞

n=1 νn which gives T a
finite mass. However, this definition would not have the property that for every set S ⊂ bn, we have
|S| = νn(S). Indeed, when blocks can have an atom at their root, which is possible in the case d = 0,
the contribution of the mass added by the roots of future blocks should be counted in |S|.
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Number of blocks in Bk . Suppose that the number of blocks in Bk evolves like a
power of nk , say na

k . Then the total weight of Bk is |Bk| ≈ na
kn

−β
k , because all the

blocks in Bk have weight ≈ n
−β
k . Since the probability that any block with index

in �nk+1 ,2nk+1� is grafted on Bk is roughly |Bk|, and since the number of blocks
in Bk+1 is roughly na

k+1, we have

n
γa
k ≈ na

k+1 ≈ |Bk| · nk+1 ≈ na
kn

−β
k n

γ
k .

Hence, we have a = γ−β
γ−1 , and so |Bk| ≈ n

γ(1−β)
γ−1

k .

Estimation on π . For each k ≥ 0, the set Bk is made of blocks of size ≈ n−α
k .

Let us suppose that the quantities of the form π(B(x, r)) are well approximated
by πk(B(x, r)), whenever r ∈ [n−α

k+1 , n−α
k ]. For x close to Bk , such a ball typically

intersects only one block of Bk , with weight roughly n
−β
k , and since the block is

d-dimensional, the ball covers a proportion (r/n−α
k )d of this block. So |B(x, r) ∩

Bk| ≈ n
−β
k (r/n−α

k )d , and

π
(
B(x, r)

)≈ πk

(
B(x, r)

)
= |B(x, r) ∩Bk|

|Bk|

≈ rdn
−β+αd−γ

β−1
γ−1

k

≈ rdn
1

γ−1 (γ (αd−1)+β−αd)

k .

Then, if α < 1/d , the last exponent is negative for γ large enough. For such γ ,
using r > n−α

k+1 ≈ n
−αγ
k yields

(19) π
(
B(x, r)

)≤ r
d− 1

αγ (γ−1)
(γ (αd−1)+β−αd)

.

Optimisation. We then choose γ such that the exponent d − γ (αd−1)−αd+β
αγ (γ−1)

is

maximal. We get the value 2β−1−2
√

(β−1)(β−αd)
α

which matches our upper bound.

Plan of the proof. Our goal is now to make those heuristics rigorous. First, we
will make some precise estimation on how the mass of the blocks with indices in
G̃nk

is spread on subsets of Tnk−1. Then we will decompose each block of each Bk

into subsets that we call fragments for which our preceding estimation holds. After
that, we use this decomposition to control the behaviour of the (πk), and also how
the measures πk can approximate the limiting measure π . At the end, we conclude
by optimising on the parameters.

We will distinguish the two cases d = 0 and d > 0 and mostly work on the latter.
We then explain quickly how the proof can be adapted to d = 0, in which fewer
technicalities are involved.
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4.2.2. Mass estimations. Before proving our main proposition, we have to
state some technical lemmas that will allow us to control how regularly the mass
of Bk+1 is spread on Bk . Let us now define the property (Pd ), in a different way
whether d = 0 or d > 0. Let C > 0 be a positive number and remind the defini-
tion of (	r0) in Hypothesis Hd (i). For d > 0, we say that a pointed compact metric
space endowed with a probability measure (b,d,ρ, ν) satisfies (Pd ) iff

(Pd )

⎧⎪⎪⎪⎨⎪⎪⎪⎩
C−1 ≤ ht(b) ≤ C,

ν

({
x ∈ b

∣∣∣ d(ρ, x) ≥ ht(b)

2

})
≥ C−1,

(b,d,ρ, ν) satisfies (	r0) with r0 = C−1.

For d = 0, we say that (b,d,ρ, ν) satisfies (P0) iff b is finite and

(P0)

⎧⎪⎪⎨⎪⎪⎩
C−1 ≤ ht(b) ≤ C,

#b ≤ C,

∀x ∈ b, ν
({x})≥ C−1.

In any case, under Hypothesis Hd (i), for any d ≥ 0, we can choose C such that
the underlying block (B,D, ρ, ν) satisfies (Pd ) with a positive probability p > 0.

p = P
(
B satisfies (Pd )

)
> 0.

From now on, we fix such a constant C. We also set M := ν({x ∈ B | D(ρ, x) ≥
ht(B)

2 }), and m := E[M | B satisfies (Pd )]. We also denote by M a random variable
with the law of M conditional on the event {B satisfies (Pd )}.

LEMMA 15. Let S be a subset of some bi with i ≤ nk − 1, measurable with
respect to Fnk−1, the σ -field generated by the blocks and the gluings up to time
nk − 1. Let χ(S) be the total mass of the union of the sets {bn | n ∈ Gnk

,bn →
bi ,Xn−1 ∈ S,Bn satisfies (Pd )}, namely, the total mass of the half-blocks that are
grafted on S with index in Gnk

, and such that the corresponding blocks satisfy
property (Pd ). Then for all x ∈ [0 ,1],

P
(∣∣χ(S) − ak|S|∣∣> xak|S| | Fnk−1

)≤ 2 exp
(−x2n

1+o(1)
k |S|),

where ak := pm
∑

i∈Gnk

wi

Wi−1
, is such that E[χ(S) | Fnk−1] = ak|S| and the func-

tion o(1) in the right-hand side does not depend on x.

This lemma roughly states that, for every subset S ⊂ bi for i ∈ Gnk
, if the subset

has enough mass to attract a substantial number of the blocks coming between time
nk and 2nk then we have a good control on how the mass of Bk grafted on S can
deviate from its expected value.

PROOF OF LEMMA 15. First, we write χ(S) as

χ(S) = ∑
i∈Gnk

1{Ui≤ |S|
Wi−1

}1{Bi satisfies (Pd )}Miwi,
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where the (Ui) are independent uniform variables on [0 ,1], independent of every-
thing else. Then we can compute

E
[
χ(S) | Fnk−1

]= ∑
i∈Gnk

|S|
Wi−1

pwi ·E[Mi | Bi satisfies (Pd )
]

= |S| · pm

( ∑
i∈Gnk

wi

Wi−1

)
= |S| · ak.

Let us bound the exponential moments of χ(S):

E
[
exp

(
θχ(S)

) |Fnk−1
]

= ∏
i∈Gnk

(
p|S|
Wi−1

·E[eθwiMi | Bi satisfies (Pd )
]+ 1 − p|S|

Wi−1

)

= ∏
i∈Gnk

(
1 + p|S|

Wi−1

(
E
[
eθwiM

]− 1
))

≤ exp
(
p|S| ∑

i∈Gnk

1

Wi−1

(
E
[
eθwiM

]− 1
))

,

where we used the inequality ez ≥ 1 + z, in the last line. Now,

E
[
exp

(
θ
(
χ(S) − ak|S|)) | Fnk−1

]
≤ exp

(
p|S| ∑

i∈Gnk

1

Wi−1

(
E
[
eθwiM

]− 1
)− θ |S| ∑

i∈Gnk

pmwi

Wi−1

)

≤ exp
(
p|S|

( ∑
i∈Gnk

1

Wi−1

(
E
[
eθwiM

]− 1 − θmwi

)))

≤ exp
(
p|S|

( ∑
i∈Gnk

1

Wi−1
c(θwi)

2
))

.

Here, we used the fact that for z ∈ [−1 ,1], we have ez ≤ 1 + z + 3z2 and so

E
[
ezM]− 1 − zE[M] ≤ E

[
1 + zM+ 3(zM)2]− 1 − zE[M] ≤ 3E

[
M2]z2 ≤ cz2,

for c a constant. Since we ask that z ∈ [−1 ,1], the computation above is valid if
we restrict ourselves to |θ | ≤ (supi∈Gnk

wi)
−1 = n

β+o(1)
k . Note that we can use this

inequality for negative values of θ . Hence, for x ∈ [0 ,1] we have

P
(∣∣χ(S) − ak|S|∣∣> xak|S| | Fnk−1

)
≤ P

(
χ(S) − ak|S| > xak|S| | Fnk−1

)
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+ P
(−(χ(S) − ak|S|)> xak|S| | Fnk−1

)
≤ P

(
exp

(
θ
(
χ(S) − ak|S|))> eθxak |S| | Fnk−1

)
+ P

(
exp

(−θ
(
χ(S) − ak|S|))> eθxak |S| |Fnk−1

)
≤ 2 exp

(
p|S|

( ∑
i∈Gnk

1

Wi−1
c(θwi)

2
)

− θxak|S|
)

= 2 exp
(
p|S|

( ∑
i∈Gnk

1

Wi−1

(
c(θwi)

2 − θxmwi

)))
.

Taking θ = xn
β−ε
k in the last inequality, which is possible for nk large enough, this

gives

P
(∣∣χ(S) − ak|S|∣∣> xak|S| | Fnk−1

)
≤ 2 exp

(
p|S|x2

( ∑
i∈Gnk

1

Wi−1

(
n

β−ε
k wi

)(
cn

β−ε
k wi − m

)))
.

From our assumptions on the sequence (wn), we have n
β−ε
k wi → 0, and hence

(cn
β−ε
k wi − m) is eventually smaller than −m

2 , uniformly for i ∈ Gnk
. Also 1

Wn
is

always greater than 1
W∞ . Combining this with the last display, we get for nk large

enough

P
(∣∣χ(S) − ak|S|∣∣> xak|S| | Fnk−1

)
≤ 2 exp

(
−x2|S| · pm

2W∞
#Gnk

(
inf

i∈Gnk

wi

)
n

β−ε
k

)
≤ 2 exp

(−x2|S|n1−ε+o(1)
k

)
.

Now for every ε > 0, this inequality is true for nk large enough, so this proves the
lemma. �

Let us also state another technical lemma, the proof of which is in the Ap-
pendix A.4.

LEMMA 16. Suppose that Hypothesis α,β is satisfied. We have, for the se-
quence (ai) defined in Lemma 15,

k∏
i=1

ai = n

γ(1−β)
(γ−1)

+o(1)

k ,

where the o(1) is considered when k → ∞.
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4.2.3. Construction of fragments, case d > 0.

Fragments of a random block. Let us discuss how we can decompose a met-
ric space into a partition of subsets that we call r-fragments, all of them having
a diameter of order r . Suppose that the random block (B,D, ρ, ν) comes with a
sequence of random points (Xn)n≥1, which are i.i.d. with law ν, conditionally
on (B,D, ρ, ν), and that this block satisfies Hypothesis Hd (i), for some d > 0.
The following lemma ensures that in this setting, we can construct a partition
F(B, r) = (f

(r)
i )1≤i≤N of r-fragments of (B,D, ρ, ν), which have approximately

equal diameter and measure. Recall the function ϕ defined in Hypothesis Hd (i),
and the notation Nr(B) for the minimal number of balls of radius r needed to
cover B.

LEMMA 17. Suppose that (B,D, ρ, ν) satisfies Hypothesis Hd (i) for some
d > 0. For any r ∈ [0 ,1], we construct a finite partition of Borel subsets
(f

(r)
i )1≤i≤N of the block (B,D, ρ, ν) in a deterministic way from (B,D, ρ, ν) and

the sequence of random points (Xn)n≥1. There exists two functions ψ and φ de-
fined on the interval [0 ,1], which tend to 0 at 0 such that the following holds
almost surely on the event {(B,D, ρ, ν) satisfies (	r0)}, for any r0 > 3r :

(i) For all 1 ≤ i ≤ N ,

diamfi ≤ 2r and
(

r

4

)d+ϕ(r/4)

≤ ν(fi) ≤ rd−ϕ(r).

(ii) For all r ′ < r0/3, we have

∀x ∈ B, #
{
1 ≤ i ≤ N | B

(
x, r ′)∩ fi �= ∅

}≤ (r ∨ r ′)d+ψ(r∨r ′) · r−d+φ(r).

(iii) The (random) number N of fragments satisfies

N ≤ Nr/4(B) and N ≤
(

r

4

)−d−ϕ(r/4)

.

In the paper, we use this construction on (Bn,Dn, ρn, νn), assuming that for all
n ≥ 1, a sequence (Xn,j )j≥1 is defined on the same probability space and that this
sequence is i.i.d. with law νn, conditionally on (Bn,Dn, ρn, νn). For any n ≥ 1 and
r > 0, we denote F(Bn, r) = {f (r)

i | 1 ≤ i ≤ N} the partition of Bn into (random)
r-fragments which is given by the lemma. The proof of Lemma 17 can be found
in the Appendix.

Decomposition of bn into fragments. Fix a parameter η ∈ (0 , 1
d
). We want to

decompose every bn, for n ∈ G̃nk
, in fragments of size approximately n

−η
k+1. For

that, it is sufficient to use F(Bn, rn) the decomposition of Bn in rn-fragments with
rn = (λ−1

n · n−η
k+1), which is given by Lemma 17. Let us emphasise that these frag-

ments are constructed as subsets of Bn, but we consider them as subsets of bn in
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what follows, without changing notation. We define the set Fk is as the collection
of all these fragments coming from every bn with n ∈ G̃nk

. We have, of course,⋃
f ∈Fk

f = ⋃
n∈G̃nk

bn.(20)

In our construction, we decided to keep only the blocks that were sufficiently well
behaved with respect to some properties that will be useful now. Recall the def-
inition of the random set G̃nk

in equations (17) and (18). Remark that, from the
definition of Gnk

, we have

ck := min
n∈Gnk

(
λ−1

n · n−η
k+1

)= n
α−γ η+o(1)
k and

Ck := max
n∈Gnk

(
λ−1

n · n−η
k+1

)= n
α−γ η+o(1)
k .

If γ and η are such that γ > α
η

, then the last exponent is strictly negative, and so

we can take n0 sufficiently large so that Ck < C−1/3, for all k ≥ 0. For n ∈ G̃nk
,

we know that Bn satisfies (	r0) with r0 = C−1. Hence, for all n ∈ G̃nk
, we have

3rn ≤ r0, and so the conclusions of Lemma 17 hold simultaneously for all the
decompositions F(Bn, rn) for n ∈ G̃nk

.

Control on the mass and number of fragments. Recall the function h that we
defined in (16), which tends to 0 at infinity, and the function ϕ specified in Hy-
pothesis Hd (i), which tends to 0 at 0. Thanks to Lemma 17, we get, for all f ∈ Fk

such that f ⊂ bn,

|f | = wn · νn(f )

≥
(16),Lem.17(i)

n
−β−h(nk)
k · (λ−1

n · n−η
k+1

)d+ϕ(n
−αd+α+o(1)
k )

≥ n
−β−h(nk)
k · cd+ϕ(Ck)

k .

Note that the last quantity is deterministic and only depends on nk , and so almost
surely,

min
f ∈Fk

|f | ≥ n
−β−h(nk)
k · cd+ϕ(Ck)

k

≥ n
−ηdγ+αd−β+o(1)
k = n

−ηd+ 1
γ

(αd−β)+o(1)

k+1 .

(21)

Note that a similar computation using upper bounds instead of lower bounds also
yields, almost surely,

(22) max
f ∈Fk

|f | ≤ n
−β+o(1)
k · Cd−ϕ(ck)

k ≤ n
−ηdγ+αd−β+o(1)
k ,

where the right-hand side is deterministic. Also, from Lemma 17(iii), we get
that the number of fragments obtained from the block bn by that construction is
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bounded above by (rn/4)−d−ϕ(rn/4), with rn = λ−1
n · n−η

k+1 = n
α−γ η+o(1)
k , and so at

the end, the total number of fragments in Fk is bounded above by a deterministic
quantity which grows at most polynomially in nk .

4.2.4. Construction of fragments, case d = 0. In this case, we will consider
the finite number of points of each block as a decomposition into fragments; hence,
we set Fk = {{x} | x ∈ bn, n ∈ G̃nk

}. Note that

∀f ∈ Fk,f ⊂ bn, |f | = wn · νn(f ) ≥
(16),(P0)

n
−β−h(nk)
k · C−1,

and so the equations (21) and (22) are still valid when d = 0, and also the number
of fragments in Fk grows linearly, hence polynomially in nk .

4.2.5. Using the mass estimations. Recall that we fixed a parameter η ∈
(0 , 1

d
). We let 0 < ε < (1 − ηd). If γ and η are such that γ >

β−αd
1−ηd−ε

, then

−ηd + 1
γ
(αd − β) > −1 + ε. And so we get from (21) that minf ∈Fk

|f | ≥
n

−1+ε+o(1)
k+1 . We can apply the result of Lemma 15 for every fragment f ∈ Fk ,

with x = n
−ε/4
k+1 ,

P
(∣∣χ(f ) − ak+1|f |∣∣> n

−ε/4
k+1 ak+1|f | | Fnk+1−1

)
≤ 2 exp

(
−(n−ε/4

k+1

)2
n

1+o(1)
k+1 min

f ∈Fk

|f |
)

≤ 2 exp
(−n

−ε/2
k+1 n

1+o(1)
k+1 n

−1+ε+o(1)
k+1

)
≤ 2 exp

(−n
ε/4
k+1

)
for nk+1 large enough.

For that, again, we impose that n0 is large enough such that the last display is true
for all k and for all f . Now we can sum this over all fragments,

E

[ ∞∑
k=0

∑
f ∈Fk

P
(∣∣χ(f ) − ak+1|f |∣∣> n

−ε/4
k+1 ak+1|f | | Fnk+1−1

)]

≤
∞∑

k=0

E[#Fk] · 2 exp
(−n

ε/4
k+1

) −→
n0→∞ 0,

since (#Fk) is almost surely bounded by a deterministic quantity which grows at
most polynomially in nk . The same is true for the Bk ,

E

[ ∞∑
k=0

P
(∣∣χ(Bk) − ak+1|Bk|

∣∣> n
−ε/4
k+1 ak+1|Bk| | Fnk+1−1

)] −→
n0→∞ 0.
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In the rest of Section 4.2, we will fix n0 large enough and work on the event of
large probability E on which we have, for all k ≥ 0 and for all f ∈ Fk∣∣χ(Bk) − ak+1|Bk|

∣∣≤ n
−ε/4
k+1 ak+1|Bk| and∣∣χ(f ) − ak+1|f |∣∣≤ n
−ε/4
k+1 ak+1|f |.

(23)

Remark that thanks to Section 1.4, giving a lower bound of the Hausdorff dimen-
sion on a set of positive probability is enough to prove that the bound holds almost
surely. Note that this construction depends on the parameters η and ε and γ . The
parameters must satisfy

(24) η ∈ (0 ,
1

d
), ε ∈ (0 ,1 − ηd), γ > max

(
α

η
,

β − αd

1 − ηd − ε

)
,

and we can choose them in this particular order.

4.2.6. Control on the limiting measure. In this section, the values of η and ε

and n0 are fixed in such a way that the construction of the previous section holds.
Note that everything in the section implicitly depends on those values. On the event
E , if we consider a fragment f ∈ Fk , we have a very good control on the values of
πi(T (f )) for i ≥ k. Indeed set

c1 =
∞∏

k=0

(
1 − n

− ε
4

k+1

)
and c2 =

∞∏
k=0

(
1 + n

− ε
4

k+1

)
.

Remark that both c1 and c2 are strictly positive real numbers. Using in cascade the
estimations (23) which hold on the event E , we get that for f ∈ Fk and i ≥ k,

(25)
∣∣T (f ) ∩Bi

∣∣≤ c2|f |
(

i∏
j=k+1

aj

)
.

In fact, we can use the same argument for Bk , which is not empty on the event E .
For k large enough, we can write

(26) |Bi | ∈ |Bk|
(

i∏
j=k+1

aj

)
· [c1 , c2].

Remark that (26) combined with Lemma 16 yields that almost surely on E ,

(27) n

γ(1−β)
(γ−1)

+o(1)

k ≤ |Bk| ≤ n

γ(1−β)
(γ−1)

+o(1)

k ,

where the upper and lower bound are both deterministic. For πi the normalised
mass measure on Bi , we have

πi

(
T (f )

)= |T (f ) ∩Bi |
|Bi | ≤

(25),(26)

c2

c1
· |f |
|Bk| .
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If π is a subsequential limit of the (πk), using Portmanteau theorem (remark that
π is concentrated on the leaves and the leaves of T (f ) belong to the interior of
T (f )), we get

π
(
T (f )

)≤ c2

c1
· |f |
|Bk| .

And then

max
f ∈Fk

π
(
T (f )

)≤ c2

c1

1

|Bk| max
f ∈Fk

|f |.
We can now write, for all r > 0, for all x ∈ T ,

π
(
B(x, r)

)≤ ∑
f ∈Fk,f ∩B(x,r) �=∅

π
(
T (f )

)
≤ #

{
f ∈ Fk,f ∩ B(x, r) �=∅

} · max
f ∈Fk

π
(
T (f )

)
.

Putting everything together, we get

(28) π
(
B(x, r)

)≤ #
{
f ∈ Fk,f ∩ B(x, r) �= ∅

} · c2

c1

1

|Bk| max
f ∈Fk

|f |.

4.2.7. Control on the number of fragments intersecting a ball. From (28), we
see that the last thing that we have to estimate is #{f ∈ Fk,f ∩ B(x, r) �= ∅},
the number of fragments of Fk that have a nonempty intersection with a ball of
radius r . Since the measure π only charges

⋂
k≥1 T (Bk), we are only interested in

balls centred around points belonging to this set. Let us fix some notation again.
For all k ≥ 0, we set

�k := inf
{
d(x, y) | x ∈ Bk−1, y ∈ Bk

}
,

the set distance between Bk−1 and level Bk , for the integers k for which it is pos-
sible. On the event E , this quantity is well defined for all k ≥ 1 and the following
upper and lower bounds are almost surely satisfied

n
−α+o(1)
k = C−1

2
min

n∈Gnk

λn ≤ �k ≤ C max
n∈Gnk

λn = n
−α+o(1)
k .(29)

Now let us state a lemma.

LEMMA 18. Let x ∈⋂k≥1 T (Bk). For k ≥ 0, we denote xk := [x]2nk
∈ Bk . If

bn is the block of Bk such that xk ∈ bn, we have ∀r ∈ [0 ,�k],
(30)

{
f ∈ Fk | f ∩ B(x, r) �=∅

}⊂ {
f ∈ Fk | f ∩ B(xk, r) ∩ bn �= ∅

}
.

The proof of this lemma is simple and left to the reader. It tells us that, in fact, if
r is small enough, then all the fragments f ∈ Fk who intersect the ball of centre x

and radius r belong to the same block. This will allow us in the sequel, combined
with Lemma 17(ii), to bound the number of fragments involved, which is what we
wanted.
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4.2.8. Obtaining the lower bound. In order to get the lower bound on the
Hausdorff dimension of L matching that of the theorem, we have to distinguish
between the case α < 1

d
and the case α > 1

d
. The case α = 1

d
can be recovered

by a monotonicity argument, as seen in Section 1.4. Whenever d = 0, we have
1
d

= +∞ and only the first case can happen.

Case β > 1 and α < 1/d . We use the construction of Section 4.2.3 with η = α.
Recall (24) for the admissible parameters of the construction. In this case, if ε is
fixed and small enough, the only condition on γ implied by (24) is γ >

β−αd
1−αd−ε

since γ > α
η

reduces to γ > 1, which is already contained in the previous inequality

because β−αd
1−αd−ε

> 1. We define

�k := �k ∧
(minn∈Gnk

λn

lognk

)
.

Using (29), we get n
−α+o(1)
k ≤ �k ≤ n

−α+o(1)
k , almost surely, with deterministic

bounds. Here, the choice of 1
lognk

is rather arbitrary and we could change it to any

quantity that tends to 0 and is n
o(1)
k as nk → ∞. Now we claim the following.

LEMMA 19. On the event E , for all k ≥ 0, for any d ≥ 0, we almost surely
have

(31) ∀r ∈ [�k+1 ,�k], #
{
f ∈ Fk | f ∩ B(x, r) �=∅

}≤ rd+o(1)n
αγ d+o(1)
k .

Note that the the bounds �k of the interval on which we consider r are random,
but the upper bound given by (31) is deterministic.

PROOF OF LEMMA 19. For r ∈ [�k+1 ,�k], we have r ≤ �k ≤ �k so using
Lemma 18, with xk = [x]2nk

and n such that xk ∈ bn, we know that (30) holds.
In the case d > 0, the fragments of Fk that come from bn were constructed as
fragments of Bn of size rn := λ−1

n n−α
k+1. Recall that we denote F(Bn, rn) the set of

these fragments, seen as subsets of Bn, and denote xk the point of Bn corresponding
to xk ∈ bn. The analogue of the ball B(xk, r) in Bn is then the ball of centre xk and
radius r′n := λ−1

n r . From our definition of �k , we have

r′n = λ−1
n r ≤ λ−1

n

minn∈Gnk
λn

lognk

≤ 1

lognk

−→
k→∞ 0,

as well as rn := λ−1
n n−α

k+1 = n
α−γα+o(1)
k → 0 when k → ∞. Applying Lem-

ma 17(ii) yields

#
{
f ∈ F(Bn, rn) | f ∩ B(xk, rn) �= ∅

} ≤
Lem.17(ii)

(
rn ∨ r′n

)d+ψ(rn∨r′n) · r−d+φ(rn)
n

≤ ((
λ−1

n n−α
k+1

)∨ (λ−1
n r

))d+o(1)
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· (λ−1
n n−α

k+1

)−d+o(1)

≤ rd+o(1)n
αγ d+o(1)
k ,

and the last quantity is deterministic. Since any fragment in {f ∈ Fk | f ∩
B(x, r) �= ∅} corresponds to a fragment in {f ∈ F(Bn, rn) | f ∩ B(xk, rn) �= ∅},
the cardinal of {f ∈ Fk | f ∩ B(x, r) �= ∅} is almost surely bounded above by the
last display, which proves that (31) holds whenever d > 0. In the case d = 0, from
our definition of fragments and the property (P0), we easily have

#
{
f ∈ Fk | f ∩ B(xk, r) ∩ bn �=∅

}≤ C ≤ rd+o(1)n
αγ d+o(1)
k ,

and so (31) also holds whenever d = 0. �

We can compute

π
(
B(x, r)

) ≤
(28)

#
{
f ∈ Fk,f ∩ B(x, r) �= ∅

} · c2

c1
· 1

|Bk| · max
f ∈Fk

|f |

≤
(31),(27),(22)

(
rd+o(1)n

αγ d+o(1)
k

) · ro(1) · (nγ(β−1)
(γ−1)

+o(1)

k

)
· (n−αγ d+αd−β+o(1)

k

)
≤ rd+o(1) · n

1
(γ−1)

(γ αd−αd+β−γ+o(1))

k

≤ r
d− 1

αγ (γ−1)
(γ αd−αd+β−γ )+o(1)

.

In the last line, we used that r > �k+1 ≥ n
−α+o(1)
k+1 = n

−γα+o(1)
k and so nk >

r
− 1

αγ
+o(1) and the fact that γαd −αd +β − γ < 0 because γ >

β−αd
1−αd

. Let us now

maximise the quantity d − γαd−αd+β−γ
αγ (γ−1)

for γ ∈ (
β−αd
1−αd

,+∞). It is an easy exer-

cise to see that the maximum is attained at γ̄ = β−αd+√
(β−1)(β−αd)

1−αd
, with value

2β − 1 − 2
√

(β − 1)(β − αd)

α
.

If we fix ε small enough then, the value of γ that maximises the last display satis-
fies γ >

β−αd
1−αd−ε

and so, using this value to construct π , we get that on the event
E , for all x ∈⋂k≥1 T (Bk),

π
(
B(x, r)

)≤ r
2β−1−2

√
(β−1)(β−αd)
α

+o(1),

which allows us to conclude using Lemma 20.
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Case β > 1 and α > 1/d . Here, we suppose that d > 0. We fix η < 1
d

which
we suppose to be very close to 1

d
and a small ε > 0 and use the construction of

Section 4.2.3 with these values, which satisfy (24) if we take γ > max(
β−αd

1−ηd−ε
, α

η
).

• For r ∈ [�k+1 , n
−η
k+1], we apply Lemma 19 to get

#
{
f ∈ Fk,f ∩ B(x, r) �= ∅

}≤ n
o(1)
k .

Now we can use the upper bound (28), replacing term by term,

π
(
B(x, r)

) ≤
(28)

#
{
f ∈ Fk,f ∩ B(x, r) �= ∅

} · c2

c1

1

|Bk| max
f ∈Fk

|f |.

≤
(27),(22)

n
o(1)
k · c2

c1
n

γ(β−1)
(γ−1)

+o(1)

k n
−ηdγ+αd−β+o(1)
k

≤ n

γ(β−1)
(γ−1)

−γ ηd+αd−β+o(1)

k .

Hence, using the fact that r > �k+1 = n
−γα+o(1)
k and that the exponent in the

last display is negative, we get

π
(
B(x, r)

)≤ r
− 1

γα
·( γ (β−1)

(γ−1)
−γ ηd+αd−β)+o(1)

≤ r
ηd
α

− 1
αγ

(
γ (β−1)
(γ−1)

+αd−β)+o(1)
.

• For r ∈ [n−η
k+1 ,�k], we have once again using Lemma 19,

#
{
f ∈ Fk,f ∩ B(x, r) �= ∅

}≤ rd+o(1)n
ηd+o(1)
k+1 .

Replacing in (28) yields

π
(
B(x, r)

)≤ rd+o(1)n
ηd+o(1)
k+1 · c2

c1

1

n

γ(1−β)
(γ−1)

+o(1)

k

n
−ηdγ+αd−β+o(1)
k

≤ rd+o(1) · nαd−1+ β−1
γ−1 +o(1)

k .

Since r ≤ �k ≤ n
−α+o(1)
k , we have nk ≤ r− 1

α
+o(1). Since the quantity αd − 1 +

β−1
γ−1 is positive, we can write

π
(
B(x, r)

)≤ rd+o(1) · r− 1
α
(αd−1+ β−1

γ−1 )+o(1)

≤ r
d− αd−1

α
− β−1

α(γ−1)
+o(1)

≤ r
1
α
− β−1

α(γ−1)
+o(1)

.

Now the result is obtained by taking ε → 0 and η → 1
d

and γ → ∞.
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To conclude the proof of Proposition 14, we have to prove that in the case
α = 1/d , the dimension of L is bounded below by d . To that end, we use the
monotonicity of the Hausdorff dimension of L, with respect to the scaling factors
(λn), proved in Section 1.4. Suppose the sequences (λn) and (wn) satisfy Hypoth-
esis α,β for α = 1/d . If for some ε > 0, we set for all n ≥ 1, λ′

n = n−ελn, then
the sequences (λ′

n) and (wn) satisfy Hypothesis α+ε,β . Now for n ≥ 1, we have
λn ≥ λ′

n, and T is compact with probability 1 from Proposition 6. Hence, (6) holds
and so we have a.s.

dim(L) ≥ 1

α + ε
.

In the end, dim(L) ≥ d .

PROOF OF THEOREM 1. Use Proposition 6, Proposition 7 for the upper
bounds and Proposition 12 and Proposition 14 for the lower bounds. �

APPENDIX

A.1. Lifting to the Urysohn space. In this section, we prove that it is al-
ways possible to work with random measured metric spaces that are embedded in
the Urysohn space. Let us first recall the definition of the Gromov–Hausdorff–
Prokhorov distance. If (X,d) is a metric space, and A ⊂ X, then we denote
A(ε) := {x ∈ X | d(x,A) < ε}, the ε-fattening of A. Then dH the Hausdorff dis-
tance on the set of nonempty compact subsets of X is defined as

dH
(
K,K ′) := inf

{
ε > 0 | K ⊂ (

K ′)ε,K ′ ⊂ (K)ε
}
.

Also we denote the so-called Lévy–Prokhorov distance on the Borel probability
measures by

dLP
(
ν, ν′) := inf

{
ε > 0 | ∀A ∈ B(X), ν(A) ≤ ν′((A)ε

)+ ε and

ν′(A) ≤ ν
(
(A)ε

)+ ε
}
,

where B(X) is the set of Borel sets of X. Now let (X,d, ρ, ν) and (X′,d′, ρ′, ν′)
be two compact, rooted, metric spaces endowed with a probability measure. Their
Gromov–Hausdorff–Prokhorov distance is defined as

dGHP
(
(X,d, ρ, ν),

(
X′,d′, ρ′, ν′))

:= inf
E,φ,φ′ max

(
d
(
ρ,ρ′),dH

(
φ(X),φ

(
X′)),dLP

(
φ∗ν,φ′∗ν′)),

where the infimum is taken over all Polish spaces (E, δ) and all isometric embed-
dings φ : X → E and φ′ : X′ → E, of respectively X and X′ into E. The notation
φ∗ν denotes the push-forward of the measure μ through the map φ. As it is, this
is only a pseudo-distance and becomes a distance on the set K of GHP-isometry
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(root and measure preserving isometry) classes of compact, rooted, metric spaces
endowed with a probability measure, which from [1], Theorem 2.5, is a Polish
space. We consider all our blocks as (possibly random) elements of the set K.

We would like to see all the blocks as compact subsets of the same space. To that
end, we consider (U, δ) the Urysohn space, and fix a point u0 ∈ U . The space U is
defined as the only Polish metric space (up to isometry) which has the following
extension property (see [14] for constructions and basic properties of U ): given
any finite metric space X, and any point x ∈ X, any isometry from X \ {x} to U

can be extended to an isometry from X to U . This property ensures in particular
that any separable metric space can be isometrically embedded into U . In what
follows, we will use the fact that if (K,d, ρ) is a rooted compact metric space,
there exists an isometric embedding of K to U such that ρ is mapped to u0. We
set

K(U) := {
(K, ν) | K ⊂ U,K compact, u0 ∈ K,

ν is a Borel measure and supp(ν) ⊂ K
}
,

where supp(ν) denotes the topological support of ν. We endow K(U) with the
“Hausdorff–Prokhorov” distance

dHP
(
(K, ν),

(
K ′, ν′))= max

(
dH
(
K,K ′),dLP

(
ν, ν′)).

It is easy to see that (K(U),dHP) is a Polish space. Now, we have a map f :
K(U) → K, which maps every (K, ν) to the isometry class of (K, δ|K ,u0, ν) in
K. This map is continuous, and hence measurable. The properties of U ensure that
f is surjective. Using a theorem of measure theory from [16], every probability
distribution τ on K can be lifted to a probability measure σ on K(U), such that
f∗σ = τ . Hence, for all n ≥ 1, we can have a version of (bn,dn,ρn, νn) = (Bn, λn ·
Dn, ρn,wn · νn) that is embedded in the space U .

A.2. Hausdorff dimension. We recall some notation and definitions that are
in relation with Hausdorff dimension and that we use throughout the paper. Let
(X,d) be a metric space and δ > 0. We say that the family (Oi)i∈I of subsets of X

is a δ-cover of X if it is a covering of X, and the set I is at most countable and for
all i ∈ I , the set Oi is such that its diameter satisfies diam(Oi) < δ. We set

Hδ
s (X) := inf

{∑
i∈I

diam(Oi)
s
∣∣∣ (Oi)i∈I is a δ-cover of X

}
.

As this quantity increases when δ decreases to 0, we define its limit

Hs(X) := lim
δ→0

Hδ
s (X) ∈ [0 ,∞],

the s-dimensional Hausdorff measure of X. Now the Hausdorff dimension of X is
defined as

dimH(X) := inf
{
s > 0 | Hs(X) = 0

}= sup
{
s > 0 | Hs(X) = ∞}

.
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We refer to [10] for details. A useful tool for deriving lower bounds on the Haus-
dorff dimension of a metric space is the so called Frostman’s lemma. In this paper,
we use the following version.

LEMMA 20 (Frostman’s lemma). Let (X,d) be a metric space. If there exists
a nonzero finite Borel measure μ on X and s > 0 such that for μ-almost every
x ∈ X, we have

μ
(
B(x, r)

) ≤
r→0

rs+o(1),

then

dimH(X) ≥ s.

A.3. Decomposition into fragments. In this section, we prove Lemma 17.
We first construct our fragments in a deterministic setting and then show how we
can apply this to random blocks.

Decomposition of a deterministic block. Let (b,d,ρ, ν) be a (deterministic)
pointed compact metric space endowed with a Borel probability measure. We are
interested in how we can decompose b into a partition of subsets that all have
approximately the same diameter r . For r > 0, we set

Pr (b) :=
{
{x1, x2, . . . , xn} ⊂ b

∣∣∣ n ≥ 1 and ∀i �= j,d(xi, xj ) ≥ r

2

}
.

It is easy to verify that we can find p = {x1, x2, . . . , xn} ∈ Pr (b) such that b ⊂⋃n
i=1 B(xi, r) and the balls (B(xi,

r
4))1≤i≤n are disjoint. Indeed, any r

2 -net of b
belongs to Pr (b) (they are the maximal elements of Pr (b) for the order relation of
inclusion). We denote P∗

r (b) the set

P∗
r (b) :=

{
{x1, x2, . . . , xn} ∈ Pr (b)

∣∣∣ b ⊂
n⋃

i=1

B(xi, r)

}
,

which is nonempty from what precedes. Considering the collection of balls of
radius r with centres in p ∈ P∗

r (b) gives rise to a covering of b which is close to
optimal in a sense specified by the following lemma. We recall the notation Nr(b)

which denotes the minimal number of balls of radius r needed to cover b.

LEMMA 21. For any p = {x1, x2, . . . , xn} ∈ P∗
r (b), we have n ≤ Nr/4(b).

PROOF. Let p = {x1, x2, . . . , xn} ∈ P∗
r (b). Remark that, for any set S such that

the union of the balls (B(s, r
4))s∈S covers b, each of the balls B(xi, r/4), for 1 ≤

i ≤ n, contains at least a point of S. Since those balls are disjoint, the cardinality
of S is at least n. �
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From any element p = {x1, x2, . . . , xn} ∈ P∗
r (b), we can then construct a parti-

tion of b, into subsets (fi)1≤i≤n that we call fragments, and such that

∀i ∈ �1 , n�, B
(
xi,

r

4

)
⊂ fi ⊂ B(xi, r).

We define the (fi) recursively as follows:⎧⎪⎪⎪⎨⎪⎪⎪⎩
f1 :=

{
x ∈ b

∣∣ d(x, x1) = min
1≤i≤n

d(x, xi)
}
,

fk+1 :=
{
x ∈

(
b \

k⋃
i=1

fi

) ∣∣∣ d(x, xk+1) = min
1≤i≤n

d(x, xi)

}
.

If we suppose that b satisfies the condition (	r0), and that r < r0 then, for p =
{x1, x2, . . . , xn} ∈ P∗

r (b), we get

n

(
r

4

)d+ϕ(r)

≤
n∑

i=1

ν

(
B
(
xi,

r

4

))
≤ ν(b) = 1,

so that we have

(32) n ≤
(

r

4

)−d−ϕ(r/4)

,

and also, for all i ∈ �1 , n�,

(33) diamfi ≤ 2r and
(

r

4

)d+ϕ(r/4)

≤ ν(fi) ≤ rd−ϕ(r).

Let us state another lemma.

LEMMA 22. Let r0 < 1. Under the condition (	r0), there exists two functions
ψ and φ defined on [0 , r0/3], which tend to 0 at 0 such that for all r ∈ (0 , r0/3),
for all p = {x1, x2, . . . , xn} ∈ P∗

r (b) and fragments (fi) constructed as above, we
have

∀x ∈ b,∀r ′ ∈ (0 , r1),

#
{
1 ≤ i ≤ n | B

(
x, r ′)∩ fi �= ∅

}≤ (r ∨ r ′)d+ψ(r∨r ′) · r−d+φ(r).

PROOF. Let x ∈ b. If for an i ∈ �1 , n�, we have y ∈ B(x, r ′) ∩ fi �= ∅, then
d(x, y) < r ′ and d(xi, y) < r so d(x, xi) < r + r ′, and so we get that B(xi, r) ⊂
B(x, r ′ + 2r). Then, using that fi ⊂ B(xi, r),( ⋃

i:fi∩B(x,r ′) �=∅

B
(
xi,

r

4

))
⊂
( ⋃

i:fi∩B(x,r ′) �=∅

fi

)
⊂ B

(
x, r ′ + 2r

)
.

We can use the condition (	r0) to get, for all r, r ′ ∈ [0 , r0/3],

#
{
1 ≤ i ≤ n | B

(
x, r ′)∩ fi �= ∅

} ·
(

r

4

)d+ϕ(r/4)

≤ (r ′ + 2r
)d−ϕ(r ′+2r)

.
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And so,

#
{
1 ≤ i ≤ n | B

(
x, r ′)∩ fi �=∅

}
≤ 4d+ϕ(r/4) (r

′ + 2r)d−ϕ(r ′+2r)

rd+ϕ(r/4)

≤ 4d+ϕ(r/4) (3(r ∨ r ′))d−ϕ(r ′+2r)

rd+ϕ(r/4)

≤ 4d+ϕ(r/4)3d−ϕ(r ′+2r)(r ∨ r ′)d−ϕ(r ′+2r)
r−d−ϕ(r/4),

≤ (r ∨ r ′)d−ϕ(3(r∨r ′))
r
−d−ϕ(r/4)+ log(123d/2)

log r ,

which proves the lemma. �

This lemma gives us an abstract result for the existence and the properties of
these decompositions in fragments. The next paragraph explains a procedure to
construct one using a sequence of i.i.d. random points, on a possibly random block.

Finding an element of P∗
r (b). Suppose that the measure ν charges all open

sets. Remark that this is almost surely true for our random block (B,D, ρ, ν) be-
cause they satisfy Hypothesis Hd (i). Let (Xn)n≥1 be a sequence of i.i.d. random
variables with law ν. Let us construct a random element of P∗

r (b) for some fixed
r > 0. Define the set En recursively as follows:

E1 := {1} and

⎧⎪⎨⎪⎩
En+1 := En if Xn+1 ∈ ⋃

i∈En

B
(
Xi,

r

2

)
,

En+1 := En ∪ {n + 1} otherwise.

We set E∞ =⋃
n≥1 En. Note that from the construction, {Xi, i ∈ E∞} ∈ Pr (b).

LEMMA 23. Almost surely, we have {Xi, i ∈ E∞} ∈P∗
r (b).

PROOF. The fact that the balls (B(Xi,
r
4))i∈E∞ are disjoint follows directly

from the construction. Now let x ∈ b. Since ν(B(x, r
4)) > 0, by the Borel–Cantelli

lemma there exists at least one n such that Xn ∈ B(x, r
4). If n ∈ E∞, then x ∈

B(Xn,
r
4). Otherwise, n /∈ E∞, in which case there exists k ≤ n such that Xn ∈

B(Xk,
r
2) and so x ∈ B(Xk,

3
4r). In both cases,

B
(
x,

r

4

)
⊂ ⋃

i∈E∞
B(Xi, r).

Since we can apply the same reasoning to every point of a countable dense se-
quence (yk)k≥1, the lemma is proved. �
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PROOF OF LEMMA 17. This is just a consequence of Lemma 21, Lemma 22
and Lemma 23 and equations (32) and (33), which almost surely apply to the
random block (B,D, ρ, ν). �

A.4. Computations.

LEMMA 24. Suppose that there exists γ ≥ 0 such that for all n ∈ N, Wn ≤ nγ .
Then there exists a constant C such that

n∑
k=1

wk

Wk

≤ C logn.

PROOF. If the series
∑

wk converges, then the results is trivial so let us sup-
pose that it diverges. For k ≥ 0, we define nk := inf{i ≥ 1 | Wi ≥ 2k} and write

n∑
k=n0

wk

Wk

≤
� logWn

log 2 �∑
i=0

ni+1−1∑
k=ni

wk

Wk

≤
� logWn

log 2 �∑
i=0

1

2i

ni+1−1∑
k=ni

wk

≤
� logWn

log 2 �∑
i=0

2i+1

2i

≤ 2
⌈

logWn

log 2

⌉
,

which grows at most logarithmically thanks to our assumption on the sequence
(Wn). �

LEMMA 25. Let β < 1 and assume that wn ≤ n−β+o(1) and Wn = n1−β+o(1),
and that for some ε > 0 we have

lim inf
n→∞

1

Wn

n∑
k=1
k∈Gε

wk > 0.

Then there exists a constant Cε such that for N large enough we have

N1+ε∑
k=N
k∈Gε

wk

Wk

≥ Cε logN.
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PROOF. Let c be such that, for n large enough, 1
Wn

∑n
k=1 wk1{k∈Gε} > c. Let

C := 3
c
, note that C > 1 because c ≤ 1. For all i ≥ 1, we set ni = inf{n | Wn ≥ Ci}.

For all i ≥ 1, we have Wni−1 ≤ Ci ≤ Wni
≤ Ci + wni

. We get
ni+1∑

k=ni+1

wk1{k∈Gε} ≥ cWni+1 − Wni

≥ cCi+1 − Ci − wni

≥ Ci

(
cC − 1 − wni

Ci

)
≥ Ci(1 + o(1)

)
for i tending to infinity. Now for N a large integer, we set

IN := inf{i | ni ≥ N} =
⌈

logWN

logC

⌉
and

JN := sup
{
i | ni ≤ N1+ε}=

⌊ logW�N1+ε�
logC

⌋
.

Then we compute

N1+ε∑
k=N

wk

Wk

1{k∈Gε} ≥
JN∑

i=IN

ni+1∑
k=ni+1

wk

Wk

1{k∈Gε}

≥
JN∑

i=IN

1

Wni+1

ni+1∑
k=ni+1

wk1{k∈Gε}

≥
JN∑

i=IN

1

Ci+1(1 + o(1))
Ci(1 + o(1)

)
≥ JN − IN

C

(
1 + o(1)

)
.

We complete the proof by noting that, thanks to the hypothesis on the growth of
Wn, the last display grows logarithmically in N . �

PROOF OF LEMMA 16. From our assumptions, it is easy to see that we have
ak = n

1−β+o(1)
k . For all k, we write

logak = (1 − β + rk) lognk,

with rk → 0 as k → ∞. We write
k∑

i=1

logai =
k∑

i=1

(1 − β + ri) logni =
k−1∑
i=0

(1 − β + rk−i) lognk−i .(34)
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For any k ≥ 0, from the recursive definition of the sequence (nk), we have nk+1 −
1 < n

γ
k ≤ nk+1, which entails lognk = 1

γ
lognk+1 + sk , with |sk| ≤ 1. Using this

recursively yields ∣∣∣∣lognk−i − 1

γ i
lognk

∣∣∣∣≤ γ

1 − γ
.

Hence, using (34) and the fact that lognk grows exponentially in k,

k∑
i=1

logai = lognk

(
(1 − β)

k−1∑
i=0

1

γ i
+

k∑
i=0

rk−i

γ i︸ ︷︷ ︸
→0

)

+
k−1∑
i=0

(1 − β + rk−i)

(
lognk−i − 1

γ i
lognk

)
︸ ︷︷ ︸

=O(k)

= lognk

(
(1 − β)γ

γ − 1
+ o(1)

)
,

which proves the lemma. �
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